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Appendiz A: The Asymptotical Properties of 1(v)

Recalling that B is a solution from the estimating equation

n

-1 Wi /
;1 CT A ) {{( 0 ) —g(F'X3)}

it follows from the similar arguments used in Tian et al.(2007) that 3 converges to a

deterministic limit (3, and
B = fo=n""¢ +op(n")
where [y is the solution of () = 0,
6 = [EGERX)XPN (XU < e = 1) = g0X0)

_A%mxgmsmxzn—ﬂWW%wg%%%>’

K(W,u) =W — E{WI(T Aty > u)}/pr(T Aty > u) for any random vector W and ME (u) is
the martingale process associated with the censoring time C;. Let V; = (X, and XA/Z = B’ X

With slightly abuse of notation, we let {a(v)’,b(v)'} be the maximizer of

Zug((;(—/\to) (Z Yifay, + be(V; — v)} — log 1+Zexp{ak+bk(f/i_v)}]> :

=1 k=1 k=1

and then it is the solution to the estimating equation

S’(Qa b;U) - {gi(a’ b;’U), T ,5’}(_1(@ b;’l})}, =0

where
. i f/ 1 b(V; —
Si(a,b;v) =n 12 . v) Yy, — e};p_{lak"‘ k( UA)} '
~ ATt |y, T+ 21 expag + bu(Vi — o)}
To study the asymptotical properties of a(v), we let Aa(v) ={a1(v) —mi(v), - ,ax_1(v) —

mic—1(v)} and Ay(v) = h{by (v)=1ini (v), -+ bie—1 (0) =11 ()}, where my(v) = log{n;(v) /1 (v)}
and 1;(v) = dm;(v)/dv,j =1, , K — 1. Therefore, {A,(v)', Ay(v)'} is the solution to the

estimating equation

Q(Am Ab7 U) = {QA/1<ACH Abv U)? Ty QAlel(ACH Ab? U)}/ =0
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where Qk(Aa, Ap;v) is

Z % 1 {Yk - Day A0, (Vi) hting (Vi) }

= G(LAt) (Vi = v)/h R SR Bt By (o)t (Vi)

Ay = (Auyy o Aui )y Ay = (Apy, o, Ay, ) and my(u,v) = myg(v) + myg(v)(u — v).
Following the similar arguments used in Cai et al. (2008), one may show that the changes

in Qk(Aa,Ab;v) by replacing é() and V; by G(-) and V;, respectively, are asymptotically

negligible. Let Qx (A, Ap; h,v) be

eBay, +Ab, (Vimv)/htm (Vi) }

szh 1
n Y:Lk K- —v m v
Z G T /\ to (‘/L - U)/h { 14+ Z 1 AakJrAbk(V )/ htm (Vi)

and write difference Qk(Aa, Ap;v) — Qr(Ag, Ap;v) as

_n—l - A 5 _ . wiKh(‘Afi—U) 1
;{G(TZ/\to) G(Tl/\tO)}é(T’i/\to)G(Ti/\to) ( ( )

Vi —v)/h
Y — eXp{Aﬂk +Abk( 2/h+mk Vu'U / Kh s_v
14+ Z eXp{Aak + Ay, (Vi —v)/h + My Vl,
R eAakJrAbk(ﬁ’Xfu)/}H»ﬁzk(B’X,u)
dP., {I(s < fA'X) Yk - - —
(X — ) 14 KT ghap+hu, (B'X—0)/htmi (3 X,0)
, eBapTAb, (BoX —v) /b4 (By X v)
—I(s < BpX Y
(S ﬁo ) (ﬁ{)X 3 q;)/h k — 1+ ZK 1 Aak+Abk(B0X v)/h+m (84 X,0) ]
« %
G(T A to) ’
which is bounded by
. " K (Vi 1
sup[6(0) = Gl xn ™Y F nVi =) A {va
t — G(T: /\to)G(TiAto) (Vi —v)/h

exp{Aq, +Abk(‘7z )/h—i—ﬁlk(f/@, v)}
1+ZkK Sl exp{Aa, + Av, (Vi — v)/h + mk(Vi,

. 1 Bai 0, (' X —0) /htim (B X,0)
Gn | I(s<f3'X) Vi — - —
(B'X —v)/h 1 K ot B (B X o) b (B X.0)
eBay AL, (BX —v)/htmi (8 X,v) } }

1
/
—I(s < BpX) ( (B — )/ ) {Yk - 1+ 252_11 oBay +B0, (ByX —v)/h+my (B) X ,v)

v
G(T A to)

7 J 07T

+Op(h2 +n—1/2) ): Op{n_1/2 + (nhQ)—3/4+50 + (nh)—l}7

for some small 69 > 0, where P,, and P are the expectation operator with respect to the
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empirical distribution of {(7;, A, €;,U;),i = 1,--- ,n} and the distribution of (T, A,¢€,U),
respectively, and G,, = n'/2(P,, — P). Furthermore, since
Q(Au, Ap;v) = {Q1(Ay, Ap;v), -+, Qr—1(Ag, Ap;v)} can be written as sum of n identically
distributed independent random functions, it follows from the standard arguments that it

uniformly converges to q(A,, Ap;v) = {q1(Aq, Ap;v), -+, g —1(Aq, Ap; v)}, where

exp{QAq; +Ap, z+mi(v)}
G (Do A ) = 9o(v) fK(x) [nk(v) TS STS ex;{Aa:—i-Abkm-i-mk(v)}] dx
k as Sby - )
exp{Aa, +Ap, z+my(v)}
go(v) J e (x) [77’“@) ~ e exg{AaZk+Abk§+mk<v>}] du

and go(-) is the density function of the random variable G)yX. Since (Al, A}) = (0/,0") is
the unique solution of ¢(A,, Ay;v) = 0. A,(v) and A,(v) converge to zero uniformly in v,
assuming that the “slope” matrix of g(A,, Ap; v) is nonsingular. Coupled with the consistency

of A, and Ay, the Taylor series expansion can be used to show that

Y — exp{m1(\7¢,v)}A
n i (V ) L 1+Z£(;11 exp{m(V;,v)}
Aav :Auflnfl U)zAh—z_U +o nhfl/Q’
) = A Y T ) 2)
: N exp{mx_1(Vi,v)}
Y1) = 5 Texpma (Vo))
where
m{l —m()}  —mwn(u) - —n1(w)ng—1(w)
—mp(wmi(u)  me(w){l —mn(u)} - —n2(w)nw—1(u)
A(u) = go(v)
—Nx—1(w)n (u) —nr—1(uw)nz(u) - nro(w{l =k -1(u)}

Again, following the similar arguments for estimating the asymptotical order of (B.2) in
Appendix B of Cai et al. (2008), one may show that

3 V=) {Y exp{my(V;, v)} }

A ik — — ~
= G(Lint) L+ 305 exp{m(Vi, v)}

can be approximated by

N Wi (Vi v) {Y exp{m(Vi, v)} }

G(T; Nto) 1+ S exp{m(Vi, )}
uniformly in v up to an order of o,{(nh)~'/2} for h = n™",v € (1/5,1/2). Noting that the

i=1
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consistent estimator for 7, (v) is

exp{ax(v)}

Me(v) = 1+ 35 exp{a;(v)}

by d—method we have

fAn ()} = fin(v)}
=D (v)A(u)Ay(v)/go(v) + 0,{(nh)~/?}

n

=D S R ) el )

where D(v) = diag[f{m (v)},--- , f{nk_1(v)}], f(-) is the derivative of f(-), and

S exp{m1(Vi,v)}
Y;l 1+ZkK:711 exp{my (Vi,v)}

Gi(v) =

exp{mz_1(Vi,0)}
1+ K exp{me (Vi) }

Yik-1) —

Therefore by the central limit theorem

(nh) 21 f{A(w)} — f{n(v)} = N{0,S(v)},
in distribution as n — oo.

To justify the consistency of the variance-covariance matrix estimator i(v) based on the

resampling method, we first note that following the same arguments above, we have

n

()} = f{n(v)} = D(w)n Z w; K (Vi — v)

Oopx1(Nn 1/2
— 90(v)G(T; Ato) $i(v)Bi + op-{(nh)"/"},

where the probability measure P* is on the joint product spaces of the random data and

{B;}. Therefore (nh)'?[f{n*(v)} — f{n(v)}] is asymptotically equivalent to

- Z szh it /\t()))g (v)(B; — 1)

whose conditional variance is

which converges to X(v) in probability as n — oo. Therefore, we have shown that P(|3(v) —

Y(v)| > €| data ) converges to 0 for any € > 0.
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Appendiz B: The Justification of the Resampling Methods

To justify the resampling-based variance estimator, note that the variance estimator 63 (v)

can be approximated by

2 2
2 Ky (V7 a (v)+bi (V)
! {nk n! ZE o ) e B,
G*(T; N ty) 14+ SOKL ptn)+du(V—v)
wi (Vi — ) ()b (Vi) ’

:f2{m<v>}n_1 5 .

95(v) (TNt 1+ S e Y,
which uniformly converges to o2, the asymptotical variance of n'/2[f{fx(v)} — f{ne(v)}], in

+ Op(1)7

probability as n — 0o, where Ep, is the expectation with respect to the random weights
{By,---, B}, which are independent of the observed data. The first approximation follows
from the fact that |5* — 3| 4 sup, |G*(t) — G(t)| is in the order of O,(n~'/2) and similar
arguments used to bound the difference between Qk(Aa, Ap;v) and Qr(Aqg, Ap;v).

To justify the proposed procedure for constructing the simultaneous confidence band of

nk(v),v € Z, first note that we have already established that uniformly in v,

(nh)2[f{i(0)} — f{me(v)}]

1/2f{77k(71)} -1 - M{Yﬂ emk(vi v) }+0p(n—60)

=(nh n
() 9o(v) — G(T; Nty 1 _|_Zk L em(Viv)

=(nh) 1/2ZK(
x_
:h_1/2/K( ; )denk(x,y) —|—op(n_5°)

for some oy > 0, where

)sz+0p( %)

Fm (Vi) yws
o (VG gy o~ eVl

Zin(,y) = 02 {02500 (Vi &) — Fi(z,9)}, and Fy(x,y) is the CDF of (V,&;). From the

Eki =

strong approximation theorem (Tusnady, 1977), one may construct a sequence of standard

bivariate Brownian bridge processes B, (x,y) such that

Sup |Bu{M(,y)} = Zu(z,y)| = Op(n~""*{log(n)}?),

where M (z,y) is the Rosenblatt transformation such that M (V;,&;) is uniformly distributed
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on the unit square. Note that the similar strong approximation result for empirical process
with more than 2 dimensions is not established yet. Therefore, by integration by part,

(nh)2[f{fAe(v)} — f{nr(v)}]/6%(v) can be further approximately uniformly by

Y1al0) = s [ K (S ) wBata1 )

Let

Venlt) = s [ (S5 ) v (o))

1 T —v

W/ak(x)](( “U)dw () and y4,n(v)=#/K(

where W, (-, -) be a sequence of bivariate Wiener processes satisfying that

r—v

y3,n(v> =

)JaW (z),

Bu(,y) = Wa(z,y) — zyW,(1,1)
and W (-) is the one-dimensional Wiener process. Following the similar arguments in Bickel
and Rosenblatt (1973), we have the approximation supz |Vi,(v) — Yaon(v)] = O,(h'/?) and
supz [Vsn(v) — Yun(v)] = O,(h'/?). This, coupled with the fact that Vs, (v) and Vs,(v) are

mean zero Gaussian processes with the identical variance-covariance function, implies that

stup(nh)UQ’f{nk( )} f{nk( )}‘ — su hl/g/K x_v)dW( )+Op( —50)

T 1 (v)

for some dy > 0. Therefore, it follows from Bickel and Rosenblatt (1973) that

pr({—2log(h)}'/*(S — dy) < s) = exp(—2¢7") + o(1),
as n — 00, where

dyp = {—2log(h)}/? +

1 | [ K(t)2dt
{(—2log(h)}172 % \ ar [ K(t)2dt [

Unlike the supremum value of tight processes, S itself does not converge in distribution, since

dp — 0o as n — oo. In parallel arguments §*, the resampling counterpart of S, is equivalent

to
AW -6
w | o 1/20k ZK( )sz‘Bz +0p(n”")
=su ;/K i AW {M*(z,9)} | +o,(n~%)
= Ip (nh)1/20'k(v) h Y n Y p
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for some oy > 0 where

A U\ ) LU e,
Eri = go(‘z)é(Tz Ato) Yar — (Vi) }

and W{M*(x,y)} is a sequence of mean zero Gaussian processes, whose covariance function

is identical to that of W, { M (x, y)} conditional on the observed data. Let 7% = {—2log(h)}/?(S*—

dp) and T = {—2log(h)}'/%(S — d}). It follows that
prp(T* < ) = pr(7 < s) = 0,(n~"),
which implies that we can use the conditional distribution of S* to approximate that of S,

where pry is conditional on the observed data.



