Web-based Supplementary Materials for "Estimating subject-specific dependent competing risk profile with censored event time observations" by Li, Tian and Wei

Appendix A: The Asymptotical Properties of $\hat{\eta}(v)$

Recalling that $\hat{\beta}$ is a solution from the estimating equation

$$n^{-1} \sum_{i=1}^{n} \frac{w_i}{\hat{G}(T_i \wedge t_0)} X_i \{ I(T_i \leqslant t_0, \epsilon = 1) - g(\beta' X_i) \} = 0,$$

it follows from the similar arguments used in Tian et al.(2007) that $\hat{\beta}$ converges to a deterministic limit β_0 and

$$\hat{\beta} - \beta_0 = n^{-1}\xi_i + o_p(n^{-1})$$

where β_0 is the solution of $r(\beta) = 0$,

$$\xi_i = [E\{\dot{g}(\beta_0' X_i) X_i^{\otimes 2}\}]^{-1} \left(X_i \{ I(\tilde{T}_i \leqslant t_0, \epsilon = 1) - g(\beta' X_i) \} \right)$$

$$-\int_0^{t_0} \mathbb{K}(X_i\{I(\tilde{T}_i \leqslant t_0, \epsilon = 1) - g(\beta'X_i)\}, u) \frac{dM_i^C(u)}{G(T_i \wedge t_0)} ,$$

 $\mathbb{K}(W,u) = W - E\{WI(\tilde{T} \wedge t_0 \geqslant u)\}/\operatorname{pr}(\tilde{T} \wedge t_0 \geqslant u)$ for any random vector W and $M_i^C(u)$ is the martingale process associated with the censoring time C_i . Let $V_i = \beta_0' X_i$ and $\hat{V}_i = \hat{\beta}' X_i$. With slightly abuse of notation, we let $\{\hat{a}(v)', \hat{b}(v)'\}'$ be the maximizer of

$$\sum_{i=1}^{n} \frac{w_i K_h(\hat{V}_i - v)}{\hat{G}(T_i \wedge t_0)} \left(\sum_{k=1}^{K-1} Y_{ik} \{ a_k + b_k(\hat{V}_i - v) \} - \log \left[1 + \sum_{k=1}^{K-1} \exp\{ a_k + b_k(\hat{V}_i - v) \} \right] \right),$$

and then it is the solution to the estimating equation

$$\hat{S}(a,b;v) = {\hat{S}'_1(a,b;v), \cdots, \hat{S}'_{K-1}(a,b;v)}' = 0$$

where

$$\hat{S}_k(a,b;v) = n^{-1} \sum_{i=1}^n \frac{w_i K_h(\hat{V}_i - v)}{\hat{G}(T_i \wedge t_0)} \begin{pmatrix} 1 \\ \hat{V}_i - v \end{pmatrix} \left\{ Y_{ik} - \frac{\exp\{a_k + b_k(\hat{V}_i - v)\}}{1 + \sum_{k=1}^{K-1} \exp\{a_k + b_k(\hat{V}_i - v)\}} \right\}.$$

To study the asymptotical properties of $\hat{a}(v)$, we let $\hat{\Delta}_a(v) = \{\hat{a}_1(v) - m_1(v), \cdots, \hat{a}_{K-1}(v) - m_{K-1}(v)\}$ and $\hat{\Delta}_b(v) = h\{\hat{b}_1(v) - \dot{m}_1(v), \cdots, \hat{b}_{K-1}(v) - \dot{m}_{K-1}(v)\}$, where $m_j(v) = \log\{\eta_j(v)/\eta_K(v)\}$ and $\dot{m}_j(v) = dm_j(v)/dv, j = 1, \cdots, K-1$. Therefore, $\{\hat{\Delta}_a(v)', \hat{\Delta}_b(v)'\}'$ is the solution to the estimating equation

$$\hat{Q}(\Delta_a, \Delta_b; v) = {\hat{Q}'_1(\Delta_a, \Delta_b; v), \cdots, \hat{Q}'_{K-1}(\Delta_a, \Delta_b; v)}' = 0$$

where $\hat{Q}_k(\Delta_a, \Delta_b; v)$ is

$$n^{-1} \sum_{i=1}^{n} \frac{w_i K_h(\hat{V}_i - v)}{\hat{G}(T_i \wedge t_0)} \begin{pmatrix} 1 \\ (\hat{V}_i - v)/h \end{pmatrix} \left\{ Y_{ik} - \frac{e^{\Delta_{a_k} + \Delta_{b_k}(\hat{V}_i - v)/h + \bar{m}_k(\hat{V}_i, v)}}{1 + \sum_{k=1}^{K-1} e^{\Delta_{a_k} + \Delta_{b_k}(\hat{V}_i - v)/h + \bar{m}_k(\hat{V}_i, v)}} \right\}$$

$$\Delta_a = (\Delta_{a_1}, \dots, \Delta_{a_{K-1}})', \ \Delta_b = (\Delta_{b_1}, \dots, \Delta_{b_{K-1}})' \text{ and } \bar{m}_k(u, v) = m_k(v) + \dot{m}_k(v)(u - v).$$

Following the similar arguments used in Cai et al. (2008), one may show that the changes in $\hat{Q}_k(\Delta_a, \Delta_b; v)$ by replacing $\hat{G}(\cdot)$ and \hat{V}_i by $G(\cdot)$ and V_i , respectively, are asymptotically negligible. Let $Q_k(\Delta_a, \Delta_b; h, v)$ be

$$n^{-1} \sum_{i=1}^{n} \frac{w_i K_h(V_i - v)}{G(T_i \wedge t_0)} \begin{pmatrix} 1 \\ (V_i - v)/h \end{pmatrix} \left\{ Y_{ik} - \frac{e^{\Delta_{a_k} + \Delta_{b_k}(V_i - v)/h + \bar{m}_k(V_i, v)}}{1 + \sum_{k=1}^{K-1} e^{\Delta_{a_k} + \Delta_{b_k}(V_i - v)/h + \bar{m}_k(V_i, v)}} \right\},$$

and write difference $\hat{Q}_k(\Delta_a, \Delta_b; v) - Q_k(\Delta_a, \Delta_b; v)$ as

$$-n^{-1} \sum_{i=1}^{n} \{\hat{G}(T_{i} \wedge t_{0}) - G(T_{i} \wedge t_{0})\} \frac{w_{i} K_{h}(\hat{V}_{i} - v)}{\hat{G}(T_{i} \wedge t_{0}) G(T_{i} \wedge t_{0})} \begin{pmatrix} 1 \\ (\hat{V}_{i} - v)/h \end{pmatrix}$$

$$\left\{ Y_{ik} - \frac{\exp\{\Delta_{a_{k}} + \Delta_{b_{k}}(\hat{V}_{i} - v)/h + \bar{m}_{k}(\hat{V}_{i}, v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\Delta_{a_{k}} + \Delta_{b_{k}}(\hat{V}_{i} - v)/h + \bar{m}_{k}(\hat{V}_{i}, v)\}} \right\} + \int_{v-h}^{v+h} K_{h}(s - v)$$

$$d\mathbf{P}_{n} \left[I(s < \hat{\beta}'X) \begin{pmatrix} 1 \\ (\hat{\beta}'X - v)/h \end{pmatrix} \left\{ Y_{k} - \frac{e^{\Delta_{a_{k}} + \Delta_{b_{k}}(\hat{\beta}'X - v)/h + \bar{m}_{k}(\hat{\beta}'X, v)}}{1 + \sum_{k=1}^{K-1} e^{\Delta_{a_{k}} + \Delta_{b_{k}}(\hat{\beta}'X - v)/h + \bar{m}_{k}(\hat{\beta}'X, v)}} \right\}$$

$$-I(s < \beta'_{0}X) \begin{pmatrix} 1 \\ (\beta'_{0}X - v)/h \end{pmatrix} \left\{ Y_{k} - \frac{e^{\Delta_{a_{k}} + \Delta_{b_{k}}(\beta'_{0}X - v)/h + \bar{m}_{k}(\beta'_{0}X, v)}}{1 + \sum_{k=1}^{K-1} e^{\Delta_{a_{k}} + \Delta_{b_{k}}(\beta'_{0}X - v)/h + \bar{m}_{k}(\beta'_{0}X, v)}} \right\} \right]$$

$$\times \frac{w}{G(T \wedge t_{0})},$$

which is bounded by

$$\sup_{t} |\hat{G}(t) - G(t)| \times n^{-1} \sum_{i=1}^{n} \frac{w_{i} K_{h}(\hat{V}_{i} - v)}{\hat{G}(T_{i} \wedge t_{0}) G(T_{i} \wedge t_{0})} \begin{pmatrix} 1 \\ (\hat{V}_{i} - v)/h \end{pmatrix} \left\{ Y_{ik} - \frac{\exp\{\Delta_{a_{k}} + \Delta_{b_{k}}(\hat{V}_{i} - v)/h + \bar{m}_{k}(\hat{V}_{i}, v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\Delta_{a_{k}} + \Delta_{b_{k}}(\hat{V}_{i} - v)/h + \bar{m}_{k}(\hat{V}_{i}, v)\}} \right\} + O_{p}(h^{-1}n^{-1/2}) \times \\ \left(\mathbf{G}_{n} \left[I(s < \hat{\beta}'X) \begin{pmatrix} 1 \\ (\hat{\beta}'X - v)/h \end{pmatrix} \left\{ Y_{k} - \frac{e^{\Delta_{a_{k}} + \Delta_{b_{k}}(\hat{\beta}'X - v)/h + \bar{m}_{k}(\hat{\beta}'X, v)}}{1 + \sum_{k=1}^{K-1} e^{\Delta_{a_{k}} + \Delta_{b_{k}}(\hat{\beta}'X - v)/h + \bar{m}_{k}(\hat{\beta}'X, v)}} \right\} - I(s < \beta'_{0}X) \begin{pmatrix} 1 \\ (\beta'_{0}X - v)/h \end{pmatrix} \left\{ Y_{k} - \frac{e^{\Delta_{a_{k}} + \Delta_{b_{k}}(\beta'_{0}X - v)/h + \bar{m}_{k}(\beta'_{0}X, v)}}{1 + \sum_{k=1}^{K-1} e^{\Delta_{a_{k}} + \Delta_{b_{k}}(\beta'_{0}X - v)/h + \bar{m}_{k}(\beta'_{0}X, v)}} \right\} \right] \times \\ \frac{w}{G(T \wedge t_{0})} + O_{p}(h^{2} + n^{-1/2}) \right) = O_{p}\{n^{-1/2} + (nh^{2})^{-3/4 + \delta_{0}} + (nh)^{-1}\},$$

for some small $\delta_0 > 0$, where \mathbf{P}_n and \mathbf{P} are the expectation operator with respect to the

empirical distribution of $\{(T_i, \Delta_i, \epsilon_i, U_i), i = 1, \dots, n\}$ and the distribution of (T, Δ, ϵ, U) , respectively, and $\mathbf{G}_n = n^{1/2}(\mathbf{P}_n - \mathbf{P})$. Furthermore, since

 $Q(\Delta_a, \Delta_b; v) = \{Q_1(\Delta_a, \Delta_b; v), \dots, Q_{K-1}(\Delta_a, \Delta_b; v)\}'$ can be written as sum of n identically distributed independent random functions, it follows from the standard arguments that it uniformly converges to $q(\Delta_a, \Delta_b; v) = \{q_1(\Delta_a, \Delta_b; v), \dots, q_{K-1}(\Delta_a, \Delta_b; v)\}'$, where

$$q_k(\Delta_a, \Delta_b; v) = \begin{pmatrix} g_0(v) \int K(x) \left[\eta_k(v) - \frac{\exp\{\Delta_{a_k} + \Delta_{b_k} x + m_k(v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\Delta_{a_k} + \Delta_{b_k} x + m_k(v)\}} \right] dx \\ g_0(v) \int x K(x) \left[\eta_k(v) - \frac{\exp\{\Delta_{a_k} + \Delta_{b_k} x + m_k(v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\Delta_{a_k} + \Delta_{b_k} x + m_k(v)\}} \right] dx \end{pmatrix},$$

and $g_0(\cdot)$ is the density function of the random variable β'_0X . Since $(\Delta'_a, \Delta'_b)' = (0', 0')'$ is the unique solution of $q(\Delta_a, \Delta_b; v) = 0$. $\hat{\Delta}_a(v)$ and $\hat{\Delta}_b(v)$ converge to zero uniformly in v, assuming that the "slope" matrix of $q(\Delta_a, \Delta_b; v)$ is nonsingular. Coupled with the consistency of $\hat{\Delta}_a$ and $\hat{\Delta}_b$, the Taylor series expansion can be used to show that

$$\hat{\Delta}_{a}(v) = \mathbf{A}(u)^{-1} n^{-1} \sum_{i=1}^{n} \frac{w_{i} K_{h}(\hat{V}_{i} - v)}{\hat{G}(T_{i} \wedge t_{0})} \begin{pmatrix} Y_{i1} - \frac{\exp\{\bar{m}_{1}(\hat{V}_{i}, v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\bar{m}_{k}(\hat{V}_{i}, v)\}} \\ \dots \\ Y_{i(K-1)} - \frac{\exp\{\bar{m}_{K-1}(\hat{V}_{i}, v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\bar{m}_{k}(\hat{V}_{i}, v)\}} \end{pmatrix} + o_{p}\{(nh)^{-1/2}\},$$

where

$$\mathbf{A}(u) = g_0(v) \begin{pmatrix} \eta_1(u)\{1 - \eta_1(u)\} & -\eta_1(u)\eta_2(u) & \cdots & -\eta_1(u)\eta_{K-1}(u) \\ -\eta_2(u)\eta_1(u) & \eta_2(u)\{1 - \eta_2(u)\} & \cdots & -\eta_2(u)\eta_{K-1}(u) \\ & \cdots & & \cdots & & \cdots \\ -\eta_{K-1}(u)\eta_1(u) & -\eta_{K-1}(u)\eta_2(u) & \cdots & \eta_{K-1}(u)\{1 - \eta_{K-1}(u)\} \end{pmatrix}.$$

Again, following the similar arguments for estimating the asymptotical order of (B.2) in Appendix B of Cai et al. (2008), one may show that

$$n^{-1} \sum_{i=1}^{n} \frac{w_i K_h(\hat{V}_i - v)}{\hat{G}(T_i \wedge t_0)} \left\{ Y_{ik} - \frac{\exp\{\bar{m}_k(\hat{V}_i, v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\bar{m}_k(\hat{V}_i, v)\}} \right\}$$

can be approximated by

$$n^{-1} \sum_{i=1}^{n} \frac{w_i K_h(V_i - v)}{G(T_i \wedge t_0)} \left\{ Y_{ik} - \frac{\exp\{\bar{m}_k(V_i, v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\bar{m}_k(V_i, v)\}} \right\}$$

uniformly in v up to an order of $o_p\{(nh)^{-1/2}\}$ for $h=n^{-\nu}, \nu\in(1/5,1/2)$. Noting that the

consistent estimator for $\eta_k(v)$ is

$$\hat{\eta}_k(v) = \frac{\exp\{\hat{a}_k(v)\}}{1 + \sum_{j=1}^{K-1} \exp\{\hat{a}_j(v)\}},$$

by δ -method we have

$$f\{\eta^*(v)\} - f\{\eta(v)\}$$

$$= \mathbf{D}(v)\mathbf{A}(u)\hat{\Delta}_a(v)/g_0(v) + o_p\{(nh)^{-1/2}\}$$

$$= \mathbf{D}(v)n^{-1}\sum_{i=1}^n \frac{w_i K_h(V_i - v)}{g_0(v)G(T_i \wedge t_0)}\varsigma_i(v) + o_p\{(nh)^{-1/2}\}$$

where $\mathbf{D}(v) = \operatorname{diag}[\dot{f}\{\eta_1(v)\}, \cdots, \dot{f}\{\eta_{K-1}(v)\}], \dot{f}(\cdot)$ is the derivative of $f(\cdot)$, and

$$\varsigma_{i}(v) = \begin{pmatrix}
Y_{i1} - \frac{\exp\{\bar{m}_{1}(V_{i},v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\bar{m}_{k}(V_{i},v)\}} \\
\dots \\
Y_{i(K-1)} - \frac{\exp\{\bar{m}_{K-1}(V_{i},v)\}}{1 + \sum_{k=1}^{K-1} \exp\{\bar{m}_{k}(V_{i},v)\}}
\end{pmatrix}.$$

Therefore by the central limit theorem

$$(nh)^{1/2}[f\{\hat{\eta}(v)\} - f\{\eta(v)\}] \to N\{0, \Sigma(v)\},$$

in distribution as $n \to \infty$.

To justify the consistency of the variance-covariance matrix estimator $\hat{\Sigma}(v)$ based on the resampling method, we first note that following the same arguments above, we have

$$f\{\eta^*(v)\} - f\{\eta(v)\} = \mathbf{D}(v)n^{-1}\sum_{i=1}^n \frac{w_i K_h(V_i - v)}{g_0(v)G(T_i \wedge t_0)} \varsigma_i(v)B_i + o_{P^*}\{(nh)^{-1/2}\},$$

where the probability measure P^* is on the joint product spaces of the random data and $\{B_i\}$. Therefore $(nh)^{1/2}[f\{\eta^*(v)\} - f\{\eta(v)\}]$ is asymptotically equivalent to

$$\mathbf{D}(v)n^{-1} \sum_{i=1}^{n} \frac{w_{i}K_{h}(V_{i}-v)}{g_{0}(v)G(T_{i} \wedge t_{0})} \varsigma_{i}(v)(B_{i}-1)$$

whose conditional variance is

$$\mathbf{D}(v)n^{-1}\sum_{i=1}^{n}h\left\{\frac{w_{i}K_{h}(V_{i}-v)}{g_{0}(v)G(T_{i}\wedge t_{0})}\right\}^{2}\varsigma_{i}(v)^{\otimes 2}\mathbf{D}(v)$$

which converges to $\Sigma(v)$ in probability as $n \to \infty$. Therefore, we have shown that $P(|\hat{\Sigma}(v) - \Sigma(v)| > \epsilon$ | data) converges to 0 for any $\epsilon > 0$.

Appendix B: The Justification of the Resampling Methods

To justify the resampling-based variance estimator, note that the variance estimator $\tilde{\sigma}_k^2(v)$ can be approximated by

$$\frac{\dot{f}^{2}\{\hat{\eta}_{k}(v)\}}{\hat{g}_{0}^{2}(v)}n^{-1}\sum_{i=1}^{n}E_{B_{i}}\left[\frac{w_{i}K_{h}(V_{i}^{*}-v)}{G^{*}(T_{i}\wedge t_{0})}\{Y_{ik}-\frac{e^{\hat{a}_{k}(v)+\hat{b}_{k}(V_{i}^{*}-v)}}{1+\sum_{k=1}^{K-1}e^{\hat{a}_{k}(v)+\hat{b}_{k}(V_{i}^{*}-v)}}\}B_{i}\right]^{2}$$

$$=\frac{\dot{f}^{2}\{\hat{\eta}_{k}(v)\}}{\hat{g}_{0}^{2}(v)}n^{-1}\sum_{i=1}^{n}\left[\frac{w_{i}K_{h}(\hat{V}_{i}-v)}{\hat{G}(T_{i}\wedge t_{0})}\{Y_{ik}-\frac{e^{\hat{a}_{k}(v)+\hat{b}_{k}(\hat{V}_{i}-v)}}{1+\sum_{k=1}^{K-1}e^{\hat{a}_{k}(v)+\hat{b}_{k}(\hat{V}_{i}-v)}}\}\right]^{2}+o_{p}(1),$$

which uniformly converges to σ_k^2 , the asymptotical variance of $n^{1/2}[f\{\hat{\eta}_k(v)\} - f\{\eta_k(v)\}]$, in probability as $n \to \infty$, where \mathbf{E}_{B_i} is the expectation with respect to the random weights $\{B_1, \dots, B_n\}$, which are independent of the observed data. The first approximation follows from the fact that $|\hat{\beta}^* - \hat{\beta}| + \sup_t |G^*(t) - \hat{G}(t)|$ is in the order of $O_p(n^{-1/2})$ and similar arguments used to bound the difference between $\hat{Q}_k(\Delta_a, \Delta_b; v)$ and $Q_k(\Delta_a, \Delta_b; v)$.

To justify the proposed procedure for constructing the simultaneous confidence band of $\eta_k(v), v \in \mathcal{I}$, first note that we have already established that uniformly in v,

$$(nh)^{1/2}[f\{\hat{\eta}_{k}(v)\} - f\{\eta_{k}(v)\}]$$

$$= (nh)^{1/2} \frac{\dot{f}\{\eta_{k}(v)\}}{g_{0}(v)} n^{-1} \sum_{i=1}^{n} \frac{w_{i} K_{h}(V_{i} - v)}{G(T_{i} \wedge t_{0})} \left\{ Y_{i1} - \frac{e^{\bar{m}_{k}(V_{i}, v)}}{1 + \sum_{k=1}^{K-1} e^{\bar{m}_{k}(V_{i}, v)}} \right\} + o_{p}(n^{-\delta_{0}})$$

$$= (nh)^{-1/2} \sum_{i=1}^{n} K\left(\frac{V_{i} - v}{h}\right) \xi_{ki} + o_{p}(n^{-\delta_{0}})$$

$$= h^{-1/2} \int K\left(\frac{x - v}{h}\right) y dZ_{nk}(x, y) + o_{p}(n^{-\delta_{0}})$$

for some $\delta_0 > 0$, where

$$\xi_{ki} = \frac{\dot{f}\{\eta_k(V_i)\}w_i}{g_0(V_i)G(T_i \wedge t_0)}\{Y_{ik} - \eta_k(V_i)\},\,$$

 $Z_{kn}(x,y) = n^{1/2} \{ n^{-1} \sum_{i=1}^{n} I(V_i, \xi_{ki}) - F_k(x,y) \}$, and $F_k(x,y)$ is the CDF of (V, ξ_k) . From the strong approximation theorem (Tusnady, 1977), one may construct a sequence of standard bivariate Brownian bridge processes $B_n(x,y)$ such that

$$\sup_{x,y} |B_n\{M(x,y)\} - Z_{nk}(x,y)| = O_p(n^{-1/2}\{\log(n)\}^2),$$

where M(x,y) is the Rosenblatt transformation such that $M(V_i,\xi_i)$ is uniformly distributed

on the unit square. Note that the similar strong approximation result for empirical process with more than 2 dimensions is not established yet. Therefore, by integration by part, $(nh)^{1/2} [f\{\hat{\eta}_k(v)\} - f\{\eta_k(v)\}] / \tilde{\sigma}_k(v)$ can be further approximately uniformly by

$$\mathcal{Y}_{1,n}(v) = \frac{1}{h^{1/2}\sigma_k(v)} \int K\left(\frac{x-v}{h}\right) y dB_n\{M(x,y)\}.$$

Let

$$\mathcal{Y}_{2,n}(v) = \frac{1}{h^{1/2}\sigma_k(v)} \int K\left(\frac{x-v}{h}\right) y dW_n\{M(x,y)\},$$

$$\mathcal{Y}_{3,n}(v) = \frac{1}{h^{1/2}\sigma_k(v)} \int \sigma_k(x) K(\frac{x-v}{h}) dW(x) \quad \text{and} \quad \mathcal{Y}_{4,n}(v) = \frac{1}{h^{1/2}} \int K(\frac{x-v}{h}) dW(x),$$

where $W_n(\cdot,\cdot)$ be a sequence of bivariate Wiener processes satisfying that

$$B_n(x,y) = W_n(x,y) - xyW_n(1,1)$$

and $W(\cdot)$ is the one-dimensional Wiener process. Following the similar arguments in Bickel and Rosenblatt (1973), we have the approximation $\sup_{\mathcal{I}} |\mathcal{Y}_{1,n}(v) - \mathcal{Y}_{2,n}(v)| = O_p(h^{1/2})$ and $\sup_{\mathcal{I}} |\mathcal{Y}_{3,n}(v) - \mathcal{Y}_{4,n}(v)| = O_p(h^{1/2})$. This, coupled with the fact that $\mathcal{Y}_{2,n}(v)$ and $\mathcal{Y}_{3,n}(v)$ are mean zero Gaussian processes with the identical variance-covariance function, implies that

$$S = \sup_{\mathcal{I}} (nh)^{1/2} \frac{|f\{\hat{\eta}_k(v)\} - f\{\eta_k(v)\}|}{\tilde{\sigma}_k(v)} = \sup_{\mathcal{I}} \frac{1}{h^{1/2}} \int K(\frac{x-v}{h}) dW(x) + o_p(n^{-\delta_0}),$$

for some $\delta_0 > 0$. Therefore, it follows from Bickel and Rosenblatt (1973) that

$$pr(\{-2\log(h)\}^{1/2}(S - d_h) \leqslant s) = \exp(-2e^{-x}) + o(1),$$

as $n \to \infty$, where

$$d_h = \{-2\log(h)\}^{1/2} + \frac{1}{\{-2\log(h)\}^{1/2}} \log \left\{ \frac{\int \dot{K}(t)^2 dt}{4\pi \int K(t)^2 dt} \right\}.$$

Unlike the supremum value of tight processes, S itself does not converge in distribution, since $d_h \to \infty$ as $n \to \infty$. In parallel arguments S^* , the resampling counterpart of S, is equivalent to

$$\sup_{\mathcal{I}} \left| \frac{1}{(nh)^{1/2} \sigma_k(v)} \sum_{i=1}^n K\left(\frac{V_i - v}{h}\right) \hat{\xi}_{ki} B_i \right| + o_p(n^{-\delta_0})$$

$$= \sup_{\mathcal{I}} \left| \frac{1}{(nh)^{1/2} \sigma_k(v)} \int K\left(\frac{x - v}{h}\right) y dW_n^* \{M^*(x, y)\} \right| + o_p(n^{-\delta_0})$$

for some $\delta_0 > 0$ where

$$\hat{\xi}_{ki} = \frac{\dot{f}\{\hat{\eta}_k(\hat{V}_i)\}w_i}{\hat{g}_0(\hat{V}_i)\hat{G}(T_i \wedge t_0)}\{Y_{ik} - \hat{\eta}_k(\hat{V}_i)\}$$

and $W_n^*\{M^*(x,y)\}$ is a sequence of mean zero Gaussian processes, whose covariance function is identical to that of $W_n\{M(x,y)\}$ conditional on the observed data. Let $\mathcal{T}^* = \{-2\log(h)\}^{1/2}(\mathcal{S}^* - d_h)$ and $\mathcal{T} = \{-2\log(h)\}^{1/2}(\mathcal{S} - d_h)$. It follows that

$$|\operatorname{pr}_B(\mathcal{T}^* \leqslant s) - \operatorname{pr}(\mathcal{T} \leqslant s)| = o_p(n^{-\delta_0}),$$

which implies that we can use the conditional distribution of \mathcal{S}^* to approximate that of \mathcal{S} , where pr_B is conditional on the observed data.