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Summary

The annual percent change (APC) has been used as a measure to describe the trend in the age-adjusted
cancer incidence or mortality rate over relatively short time intervals. The yearly data on these age-adjusted
rates are available from the Surveillance, Epidemiology, and End Results (SEER) Program of the National
Cancer Institute. The traditional methods to estimate the APC is to fit a linear regression of logarithm
of age-adjusted rates on time using the least squares method or the weighted least squares method, and
use the estimate of the slope parameter to define the APC as the percent change in the rates between two
consecutive years. For comparing the APC for two regions, one uses a t-test which assumes that the two
datasets on the logarithm of the age-adjusted rates are independent and normally distributed with a common
variance. Two modifications of this test, when there is an overlap between the two regions or between
the time intervals for the two datasets have been recently developed. The first modification relaxes the
assumption of the independence of the two datasets but still assumes the common variance. The second
modification relaxes the assumption of the common variance also, but assumes that the variances of the
age-adjusted rates are obtained using Poisson distributions for the mortality or incidence counts. In this
paper, a unified approach to the problem of estimating the APC is undertaken by modeling the counts to
follow an age-stratified Poisson regression model, and by deriving a corrected Z-test for testing the equality
of two APCs. A simulation study is carried out to assess the performance of the test and an application of
the test to compare the trends, for a selected number of cancer sites, for two overlapping regions and with
varied degree of overlapping time intervals is presented.

Key words: Age-adjusted incidence/mortality rates, age-stratified Poisson Regression, annual percent
change (APC), surveillance, trends, hypothesis testing.

1 Introduction

The American Cancer Society (ACS) in its annual publication CancerACS 2007(http://www.cancer.org/)
reports that in 2007 about 1.5 million new cancer cases are expected to be diagnosed, and approximately
560,000 Americans are expected to die of cancer. Cancer is the most common cause of death in US,
exceeded only by heart disease, and accounts for 1 of every 4 deaths. The same report also reveals that, for
a number of cancer sites (such as breast, stomach, colon and rectum, lung and bronchus and leukemia), the
age-adjusted cancer mortality rates have been steadly decreasing in recent years. In addition, the National
Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (NCI)
periodically publishes similar reports on trends of cancer incidence at http://seer.cancer.gov/csr; see Ries
et al. (2003) So much has been at stake in terms of human life and cost - for example, the government
agencies such as the National Health of Institutes (NIH), and many private sectors spend billions of dollars
every year on cancer research, health insurance and medical and other costs - that there is an urgent need
for new methods that produce more accurate and reliable estimates of measures of cancer trends.
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The annual percent change (APC) has been used as a measure of cancer trends over short time periods,
and to compare the recent cancer trends by gender or by geographic regions, one compares their APC
values using the two-sample pooled t-test ( Kleinbaum et al., 1988) that assumes that the datasets on age-
adjusted rates under the study are independent. However, a fundamental statistical difficulty arises when
such comparisons, largely for policy making purposes, have to be made for regions or time intervals that
overlap, e.g. comparing the most recent changes in trends of cancer rates in a local area (e.g. the mortality
rate of breast cancer in California) with a more global level (i.e. the national mortality rate) over two
overlapping time periods. For example, as detailed in the data analysis section, it is of substantial interest
to compare the changes in California cancer mortality rates with the national cancer mortality rates in the
last 15 years.

Recently, Li and Tiwari (2007) and Li et al. (2007) developed Z-tests which adjust for the dependence
between the two APCs, and are more efficient than the naive test which assumes independence. However,
these tests are based on the logarithmic transformation of the age-adjusted rates, and fits a simple linear
regression model of the transformed data on time using either the ordinary least squares (OLS) or the other
weighted least squares (WLS) procedures. The proposed test procedure is based on the natural assumption
that the age-specific mortality or incidence counts are results of underlying Poisson processes (Brillinger,
1986), and hence are realizations of independent Poisson random variables. The age-specific instantaneous
hazards are modeled by a log-link function, thus leading to an age-stratified Poisson model. The estimation
of the parameters is then carried out using a likelihood-based approach.

The rest of the paper is organized as follows. In Section 2, we briefly review the existing tests, and
derive the new test in Section 3. To compare the performance of the proposed test with respect to the above
mentioned tests, a simulation study is carried out in Section 4. In this section, we also give application to
breast cancer mortality data from California (CA) and the US extracted from the SEER*STAT software of
the SEER Program. Section 5 ends this paper with a short discussion.

2 A Brief Review of Existing Tests

Consider two regions, and letdkji denote the number of counts (deaths or new cancer cases) from the
population at risknkji observed in Regionk (k = 1, 2) in age-groupj (j = 1, . . . , J) and at times
T1, . . . , Tm for Region 1 andTs+1, . . . , Ts+n for Region 2, whereT1 ≤ Ts+1 < Tm ≤ Ts+n, with
0 ≤ s < m leading to overlapping time intervals. Note that this formulation is general and allows one
region to have fewer time points than the other. In the SEER program, it is common to choosenkji (at year
Ti) to be the mid-year population representing the total person-years in one year, with the assumption of
“drop-outs” being uniform over the unit-intervals. The age-adjusted rates are defined as

rki =
J∑
j=1

wj
dkji
nkji

,

wherewj > 0, j = 1, . . . , J, are the known standards for the age groupj so that
∑J
j=1 wj = 1. For the

SEER analysis, there areJ = 19 standard age-groups consisting of 0-1, 1-4, 5-9,. . . , 85+, andwj are
chosen to be the year 2000 population standards (Fay et al. 2006).

Let yki = log(rki), be the logarithmic transformations of the age-adjusted rates. Consider the linear
regression models

yki = β0k + β1ktki + eki, i = 1, . . . , Ik, (1)

for k = 1, 2, flagging Regions 1 and 2, respectively. Hereeki are random errors with mean 0, andtki
corresponds to the calendar times of data collection in regionk with I1 = m andI2 = n. More specifically,
(t11, . . . , t1I1) = (T1, . . . , Tm), while (t21, . . . , t2I2) = (Ts+1, . . . , Ts+n). For the two regions, the
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annual percent change (APC) are defined asAPCk = 100(eβ1k − 1) .= 100β1k, for a smallβ1k, e.g. in
the order of10−2 (Kim et al., 2000; Fay et al., 2006; Tiwari et al., 2006).

Then under the assumptions thateki are independent and have common varianceσ2, the two-sample
pooled t-test (Kleinbaum et al., 1988) for testing the null hypothesisH0 : APC1 = APC2 versus the
alternativeHa : APC1 6= APC2 is given by

Tt =
β̂11 − β̂12√

σ̂2
(

(
∑I1
i=1(t1i − t̄1)2)−1 + (

∑I2
i=1(t2i − t̄2)2)−1

) ∼ t(I1+I2−4), (2)

wheret̄k =
∑Ik
i=1 tki/Ik for k = 1, 2, andσ̂2 is the “pooled” unbiased estimate ofσ2 given by

σ̂2 =
∑I1
i=1(y1i − ŷ1i)2 +

∑I2
i=1(y2i − ŷ2i)2

I1 + I2 − 4
,

whereŷki = β̂0k + β̂1ktki are the predictions fork = 1, 2. Here,β̂0k andβ̂1k are obtained from the least
squares estimation. That is,

β̂1k =
∑Ik
i=1(tki − t̄k)(yki − ȳk)∑ik

i=1(tki − t̄k)2
, β̂0k = ȳk − β̂1k t̄k

whereȳk =
∑Ik
i=1 yki/Ik.

The above test is not appropriate, however, when there is an overlap between the two regions or the two
time periods. For this case, Li and Tiwari (2007) proposed the following corrected Z-test

ZCT =
β̂11 − β̂12{

σ̂2
(
σ−2

1 + σ−2
2 − 2σ12σ

−2
1 σ−2

2
(n(O))2

n1n2

)}1/2
, (3)

whereσ2
k =

∑
i=1(tki − t̄k)2, σ12 =

∑m
s+1(Ti − t̄1)(Ti − t̄2), nk =

∑m
i=s+1

∑J
j=1 nkji for k = 1, 2,

n(O) =
∑m
i=s+1

∑J
j=1 n

(O)
ji and andn(O)

ji are the numbers of at-risk population in the overlapping region.

Note that there is no suffixk in n(O)
ji . The sign ofσ12 determines, whether the covariance betweenβ̂11

and β̂12 is positive or negative, and when there is no overlap in time intervals,σ12 = 0. Under the log-
normal model, the correctedZCT test was shown to follow a standard normal distribution under the null
hypothesis, and to be more efficient than the pooled t-test; see Li and Tiwari (2007).

However, one assumption in Li and Tiwari (2007) is the equal variance in both regression models,
which may not be realistic, especially for rare cancers. A further refinement has been made to derive
the variance ofyki by using the Poisson assumptions on the first two moments of the countsdkji, i.e.
E(dkji) = var(dkji). Under these assumptions, the consistent estimate of the error variance ofeki is
given byv2

ki = 1
r2
ki

∑J
j=1 w

2
j
dkji
n2
kji

, leading to the following weighted least squares test proposed by Li et

al. (2007), referred to asZWLS :

ZWLS =
β̃11 − β̃12{

σ̃−2
1 + σ̃−2

2 − 2σ̃12σ̃
−2
1 σ̃−2

2
(n(O))2

n1n2

}1/2
. (4)

with σ̃2
1 =

∑m
i=1(Ti − t̃1)2/v2

1i andσ̃2
2 =

∑s+n
i=s+1(Ti − t̃2)2/v2

2i,

σ̃12 =
m∑

i=s+1

(Ti − t̃1)(Ti − t̃2)
v

(o)
12i

v2
1iv

2
2i

,
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where

v
(o)
12i =

1
r1ir2i

J∑
j=1

w2
j

d
(o)
ji

(n(o)
ji )2

,

andd(o)
ji are the counts in the overlapping region and during the overlapping period. Here,

t̃1 =
∑m
i=1 Ti/v

2
1i∑m

i=1 1/v2
1i

, t̃2 =
∑s+n
i=s+1 Ti/v

2
2i∑s+n

i=s+1 1/v2
2i

,

andβ̃11, β̃12 are weighted least square estimates ofβ11, β12.
Under the null hypothesis, because of the normal approximation,ZWLS approximately follows a stan-

dard normal distribution. TheZWLS has been shown to be more conservative thanZCT in retaining the
size of the test, but is more powerful for the common cancer sites; see Li et al. (2007). However, there
are several disadvantages of the existing methods. First, one key step of Li et al. (2007) is the normal
approximation of the age-adjusted rates. Secondly, both Li et al. (2007) and Li and Tiwari (2007) need
adjustments for zero counts.

3 Age-stratified Poisson Regression Model

As the existing approaches to dealing with age-adjusted cancer rates were all based on the normal approx-
imation, we take a more natural route in the sequel by considering the Poisson nature of the underlying
count data and propose an age-stratified Poisson regression to describe the change trend of incident (or
death) counts on time. Based on this model, a proper test that accounts for overlapping is proposed.

Specifically, sincedkji, the number counts (deaths or new cancer cases) observed in Regionk (k = 1, 2)
in age-groupj, is a count, we assume that

dkji
ind∼ Pois(nkjiλkji),

with

log λkji = β0kj + β1ktki, (5)

which is referred to as theAge-stratified Poisson Regression Modelas the age-specific interceptβ0kj is
assumed for age-groupj. The common slopeβ1k is of particular importance as it transcribes the trends of
mortality or incidence and, in particular, determines the APC value.

Again letAPC1 andAPC2 be the corresponding APC values for these two Poisson regressions. A
natural test for the null hypothesisH0 : APC1 = APC2 versus the alternative hypothesisH1 : APC1 6=
APC2 would be

ZPOIS =
β̂11 − β̂12√

V ar{β̂11 − β̂12}
,

whereβ̂11 andβ̂12 are the maximum likelihood estimates ofβ11 andβ12 derived in the Appendix.
Because of the possible overlapping of Regions 1 and 2,β̂11 andβ̂12 may be correlated. Thus the key

to the derivation of the test lies in a correct evaluation ofCov(β̂11, β̂12).
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3.1 Derivation of the Test

To proceed, we letβk = (β1k, β0k1, . . . , β0kJ)′, k = 1, 2, whose estimateŝβk can be obtained by solving
the score equations [based on (5)]

Uk(βk) = 0,

for k = 1, 2, whereUk = (U1k,1, U0k,1, . . . , U0k,J)′ and

U1k,1 =
Ik∑
i=1

J∑
j=1

nkjitki exp(β0kj + β1ktki)−
Ik∑
i=1

J∑
j=1

dkjitki,

U0k,j =
Ik∑
i=1

nkji exp(β0kj + β1ktki)−
Ik∑
i=1

dkji,

for j = 1, . . . , J .
AsUk(β̂k) = 0, expanding it around the true valueβk, and ignoring the higher order terms yields

0 ≡ 1√
Ik
Uk(β̂k) =

1√
Ik
Uk(βk) +

1
Ik
U

(1)
k (βk)

{√
Ik

(
β̂k − βk

)}
+ op(1),

whereU (1)
k = ∂Uk(βk)/∂βk are(J+1)×(J+1) matrices with its1st row as(U (1)

1k,11, U
(1)
1k,01, . . . , U

(1)
1k,0J)

and the(j + 1)th row (j = 1, . . . , J) as(U (1)
0k,j1, U

(1)
0k,0j1, . . . , U

(1)
0k,0jJ), for k = 1, 2. Here

U
(1)
1k,11 =

∂U1k,1

∂β1k

=
Ik∑
i=1

J∑
j=1

nkjit
2
ki exp(β0kj + β1ktki),

U
(1)
1k,0j =

∂U1k,1

∂β0kj
=

Ik∑
i=1

nkjitki exp(β0kj + β1ktki),

U
(1)
0k,j1 =

∂U0k,j

∂β1k
=

Ik∑
i=1

nkjitki exp(β0kj + β1ktki),

U
(1)
0k,0jj′ =

∂U0k,j

∂β0kj′
= δjj′

Ik∑
i=1

nkji exp(β0kj + β1ktki),

andδjj′ = 1 if j = j′ and 0 otherwise.

Denote byAk = plimIk→∞ − U
(1)
k (βk)/Ik for k = 1, 2, whereplim denotes the limit in probability.

Then for largeI1(≡ m) andI2(≡ n), standard probabilistic arguments yield{√
I1(β̂1 − β1),

√
I2(β̂2 − β2)

}
d∼
{
A−1

1

1√
I1
U1(β1), A−1

2

1√
I2
U2(β2)

}
.

Here,
d∼ denotes approximate equivalence in joint distribution functions. Hence,

V ar(
√
m(β̂1 − β1),

√
m(β̂1 − β1)) .= A−1

1

1
m
Cov(U1(β1), U1(β1))A−T1 ,

V ar(
√
n(β̂2 − β2),

√
n(β̂2 − β2)′) .= A−1

2

1
n
Cov(U2(β2), U2(β2))A−T2 ,

Cov(
√
m(β̂1 − β1),

√
n(β̂2 − β2)′) .= A−1

1

1√
mn

Cov(U1(β1), U2(β2))A−T2 .
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Let V = 1
mCov(U1(β1), U1(β1)), W = 1

nCov(U2(β2), U2(β2)), Σ = 1√
mn

Cov(U1(β1), U2(β2)), and

V̂ , Ŵ , Σ̂ be the corresponding estimates, whose derivations are given in the Appendix.
Then,

Ĉov(β̂1, β̂1) = m{U (1)
1 (β̂1)}−1V̂ {U (1)

1 (β̂1)}−T ;

Ĉov(β̂2, β̂2) = n{U (1)
2 (β̂2)}−1Ŵ{U (1)

2 (β̂2)}−T ;

Ĉov(β̂1, β̂2) =
√
mn{U (1)

1 (β̂1)}−1Σ̂{U (1)
2 (β̂2)}−T .

These are three(J+1)×(J+1) matrices, the(1, 1) entries of which arêσ2
1 = V̂ ar(β̂11), σ̂2

2 = V̂ ar(β̂12)
andσ̂12 = Ĉov(β̂11, β̂12), respectively. From this we computêV ar(β̂11−β̂12) = V̂ ar(β̂11)+V̂ ar(β̂12)−
2Ĉov(β̂11, β̂12). Hence, the Z-test for comparing APC values is given by

ZPOIS =
β̂11 − β̂12

(σ̂2
1 + σ̂2

2 − 2σ̂12)1/2,
(6)

which follows the standard normal distribution underH0 : β11 = β12. The computation of̂β11, β̂12 is
given in the Appendix.

3.2 ARE Comparison with the WLS test

It is of substantial interest to evaluate the gains in efficiency of the proposed test compared with the WLS
test. First note (5) implies thatE(rki) ≡ E(

∑
j wj

dkji
nkji

) = (
∑
j wje

β0kj )eβ1kTi . This in turn implies that

E(log rki)
.= logE(rki) = log(

∑
j

wje
β0kj ) + β1ktki, (7)

whenV ar(rki) is small, which is often the case for the cancer incidence and mortality data (Kim et al.,
2000).

A comparison between (1) and (7) reveals that models (1) and (5) approximately specify the same first
moment of the age-adjusted cancer rates, making it possible to compare the efficiency of the tests based
on these two models via the measure of the Pitman Asymptotic Relative Efficiency. Specifically, standard
asymptotic analysis will yield

β̂11 − β̂12 ∼ N(β11 − β12, σ̂
2
1 + σ̂2

2 − 2σ̂12),

while, for the WLS estimates,

β̃11 − β̃12 ∼ N(β11 − β12, σ̃
−2
1 + σ̃−2

2 − 2σ̃12σ̃
−2
1 σ̃−2

2

(n(O))2

n1n2
).

Hence, the Pitman Asymptotic Relative Efficiency (ARE) comparing tests (6) and (4), which is the ratio
of the noncentralities of the above two normal distributions, is given by

ARE =
σ̃−2

1 + σ̃−2
2 − 2σ̃12σ̃

−2
1 σ̃−2

2
(n(O))2

n1n2

σ̂2
1 + σ̂2

2 − 2σ̂12

. (8)

The evaluation of (8) typically involves numerical computations.
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4 SEER mortality data analysis and Simulations

Li et al. (2007) demonstrated thatZWLS performs better thanZCT , via the calculation of ARE, asZCT
relies on the common variance assumption, which may not be realistic. Hence, we focus this paper on
comparingZPOIS with ZWLS . To comprehensively evaluate these tests, we consider several scenarios of
overlap in two regions and in two different time intervals. Specifically, we assume that Region 1 consists of
Georgia (GA), South Carolina (SC), and North Carolina (NC), and that Region 2 consists of NC, Virginia
(VA) and Maryland (MD); with NC as the overlapping state between the two regions. The three different
time intervals, with varying degree of overlap in the intervals, are taken to be : (a) [1980,1989] for Region
1, and [1990,1999] for Region 2 so that there is no overlap between the two time intervals and, hence,
σ12 = 0; (b) [1980,1989] for Region 1, and [1983,1992] for Region 2 so that there a considerable overlap
of six years between the two intervals andσ12 = 12.25; (c) [1980,1989] for Region 1, and [1987, 1996]
for Region 2 so that there is a little overlap of three years’ between the two intervals andσ12 = −34.75.

The counts,dkji were generated based on model (5) withtki taking values in the intervals corresponding
to the two regions stated above. More specifically, thet1i take values of{0, 1, . . . , 9}, while thet2i take
values of{10, . . . , 19}, {3, . . . , 12}, and{7, . . . , 16}, respectively for cases (a)-(c).

In order to fully specifyλkji in (5), we assume thatβ0kj = log(dkj1/nkj1) − β1ktk1, wheredkj1 and
nkj1 are respectively the observed number of deaths and the number of at-risk population at the beginning
of the intervals considered, and takeβ1k = log(APCk/100 + 1), based on the specified values ofAPCk.
The age-specific counts for the overlapping state, NC, are generated from Poisson distributions with means,
n

(o)
ji × 1

2 (λ1ji + λ2ji), wheren(o)
ji denotes the at-risk population in the overlapping region. Whenλ1ji =

λ2ji, this reduces to the situation specified by the null hypothesis. The number of at risk population and
the observed number of deaths were obtained from the SEER database for all malignant male cancers and
prostate cancer. The values of APC were assumed to range from -0.3% to 3.0%. For each parameter
configuration, a total of 1000 simulated data were obtained. The results for the three time-overlapping
cases are summarized in Tables 1-3.

We remark that that, even though bothZWLS andZPOIS are derived under different model assump-
tions, they are both valid tests for testing the equality of two APCs and hence the ARE defined in (8) is
valid. The tables show that the ARE ofZPOIS with respect toZWLS is greater than 1 for all the three
cases, meaning thatZPOIS would be more powerful thanZWLS when the alternative hypothesis is true.
The tables also show that in most situationsZPOIS outperforms theZWLS in retaining the Type I error
probabilities and, hence, yields a more valid test. Also the powers of both WLS and Poisson-based tests
are sensitive to the delta values (the differences of APC values). The larger the delta values are, the more
powerful the tests are. The larger delta values also lead to slightly larger AREs, though the differences are
not so obvious.

It is of substantial interest to compare the changes in cancer mortality rates in California with the
national levels starting late 1980’s as a California law (Health and Safety Code, Section 103885) was passed
then, which mandated the reporting of malignancies diagnosed throughout the state. For this purpose,
we applied the proposed methodology to compare the annual percent change (APC) in the age-adjusted
mortality rates for the United States (US) for the period from 1988-2002 to that of California (CA) for
the period from 1990 to 2004. We fitted the weighted linear models as well as the age-stratified Poisson
model, and applied both tests to compare the age-adjusted mortality rates of female breast cancer in CA
for the 16-year period from 1989-2004 to that of US for the 16-year period from 1987-2002, for which the
national mortality data were available. The observed values of the log-transformed annual age-adjusted
rates and fitted regression lines from theZPOIS test procedure are plotted in Figure 1. The parameter
estimates and the values of the test statistics are summarized in Table 4. The results indicated the mortality
rates of Breast cancer for California and the US have decreased. Both tests reject the null hypothesis of
equality of the two APCs, indicating that the annual percent change (APC) of California, is significantly
different from the national level. However, the p-value forZPOIS is much smaller than that ofZWLS ,
rendering more evidence again the null hypothesis.
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8 Li, Tiwari, and Zou: Age-Stratified Poisson Model for Cancer Surveillance

5 Discussion

In this paper, we have considered an important problem where comparisons have to be made for regions
or time intervals that overlap. As opposed to the existing work, e.g Li and Tiwari (2007) and Li et al.
(2007), this project advances this area in two distinct ways. First, the developed test does not rely on
the normal approximation of the cancer rate, but directly model the counts to follow a Poisson regression
model. The parameters are then estimated using their maximum likelihood estimates, and the Z-test is
derived for testing the equality of two APCs. Secondly, the developed Poisson regression model can
easily accommodate 0 count data (for the rare cancers), as opposed to the log normal model (Li and
Tiwari, 2007; Li et al., 2007) which needs to involve extra zero-corrected adjustment. We have applied
the developed methodology to the analysis of the major cancer sites from the SEER Program and have
found that the corrected Z-test renders more power than the existing tests. A Bayesian Poisson regression
would be a useful approach. However, choice of priors is always difficult and computation may not be
so straightforward compared to this current work, wherein analytical solutions have been derived. Hence,
we envision that the proposed method would be preferable because of simple interpretation of the model
parameters, natural choice of the model and computational readiness.

In our technical development, we have modelled the logarithm transformation of the age-adjusted rates
as a linear regression on time in (5) and have indeed explicitly assumed parallelism across age groups.
That is, the growth curves of the cancer rates for various age groups share the same slope, which carries
the information for the APC. Indeed, linearity parallelism for the cancer rates could be a debatable issue
in cancer surveillance, which is likely to be violated for some cancers. One alternative, along the line of
generalized mixed models, is to assume a random slope (as opposed to a constant slope) across age groups.
This ongoing work will be reported in a subsequent communication.

Acknowledgements The authors thank the editor, an AE and two referees for their insightful suggestion, which led
to a better version of this manuscript.

References

American Cancer Society (2007)Cancer Facts & Figures.Atlanta, Georgia.

Brillinger, D.R. (1986). The natural variability of vital rates and associated statistics (with discussion).
Biometrics42,693-734.

Fay, M., Tiwari, R., Feuer, E. and Zou, Z. (2006). Estimating Average Annual Percent Change for Disease
Rates without Assuming Constant Change.Biometrics62,847–854.

Kim, H., Fay, M., Feuer, E., Midthune, D. (2000) Permutation tests for joinpoint regression with applica-
tions to cancer rates.Statistics in Medicine19,335-351.

Kleinbaum, D., Kupper, and Muller, P. (1988). Applied Regression Analysis and Other Multivariable Meth-
ods. PWS-Kent, Boston, Mass., 2nd edition.

Li, Y. and Tiwari, R. (2007). Comparing Trends in Age-Adjusted Cancer Rates Across
Overlapping Regions or Time Intervals for the NCI SEER Program.Technical Report,
http://www.bepress.com/harvardbiostat/paper71.

Li, Y., Tiwari, R., Walters, K. and Zou, Z. (2007) A Weighted-Least-Squares Estimation Approach to
Comparing Trends in Age-Adjusted Cancer Rates Across Overlapping Regions.Technical Report,
http://biowww.dfci.harvard.edu/∼yili/apc2.pdf

Ries, L., Eisner, M., Kosary, C., Hankey, B., Miller, B., Clegg, L., Mariotto, A., Feuer, E. and Edwards,
B. (2003).SEER Cancer Statistics Review, 1975-2002,National Cancer Institute. Bethesda, MD,
http://seer.cancer.gov/csr/1975-2002/.

Copyright line will be provided by the publisher



bimj header will be provided by the publisher 9

Tiwari, R., Clegg, L. and Zou, Z. (2006). Efficient interval estimation for age-adjusted cancer rates.Statis-
tical Methods in Medical Research15, 547-569.

Appendix A: Derivation of V̂ , Ŵ , Σ̂

Write

V =
(
V11 V12

V ′12 V22

)
(J+1)×(J+1)

;W =
(
W11 W12

W ′12 W22

)
(J+1)×(J+1)

; Σ =
(

Σ11 Σ12

Σ′12 Σ22

)
(J+1)×(J+1)

where

V11 =
1
m
V ar(U11,1) =

1
m

m∑
i=1

J∑
j=1

T 2
i V ar(d1ji) =

1
m

m∑
i=1

J∑
j=1

T 2
i E(d1ji).

Hence a consistent estimate isV̂11 = 1
m

∑m
i=1

∑J
j=1 T

2
i d1ji.

Similarly,

V̂12 = (V̂12,1, . . . , V̂12,J)

where

V̂12,j = Ĉov(U11,1, U01,j) =
1
m

m∑
i=1

Tid1ji.

Also,V22 = ((V22,jj′)) with V̂22,jj′ = Ĉov(U01,j , U01,j′) = 0, j 6= j′; 1
m

∑m
i=1 d1ji, j = j′.

Next compute the estimate of W:

W11 =
1
n
V ar(U12,1) =

1
n

s+n∑
i=s+1

J∑
j=1

T 2
i V ar(d2ji) =

1
n

s+n∑
i=s+1

J∑
j=1

T 2
i E(d2ji)

so thatŴ11 = 1
n

∑s+n
i=s+1

∑J
j=1 T

2
i d2ji Similarly,Ŵ12 = (Ŵ12,1, . . . , Ŵ12,J) whereŴ12,j = Ĉov(U12,1, U02,j) =

1
n

∑n
i=s+1 Tid2ji. Also, Ŵ22 = ((Ŵ22,jj′)) with Ŵ22,jj′ = 0, j 6= j′; = 1

n

∑s+n
i=s+1 d2ji, j = j′ Finally,

the estimate ofΣ is computed as follows:

Σ11 =
1√
mn

Cov(U11,1, U12,1)

=
1√
mn

Cov

 m∑
i=1

J∑
j=1

Tid1ji,
s+n∑
i=s+1

J∑
j=1

Tid2ij


=

1√
mn

Cov

 m∑
i=1

J∑
j=1

Ti

(
d

(NO)
1ji + d

(O)
ji

)
,
s+n∑
i=s+1

J∑
j=1

Ti

(
d

(NO)
2ji + d

(O)
ji

)
wheredkji = d

(NO)
jki +d(O)

ji and the superscripts “NO” and “O” denote the non-overlapping and overlapping

regions, respectively. Thus,̂Σ11 = 1√
mn

∑m
i=s+1

∑J
j=1 T

2
i d

(O)
ji . Let Σ̂12 =

(
Σ̂12,1, . . . , Σ̂12,J

)
where

Σ̂12,j = 1√
mn

∑m
i=s+1 Tid

(O)
ji .Also, Σ̂22 = ((Σ̂22,jj′)) with Σ̂22,j,j′ = 0, j 6= j′; 1√

mn

∑m
i=s+1 d

(O)
ji , j =

j′.
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Appendix B: Computation of the MLEs

Note that the MLEs ofβ0jk andβ1k satisfy:

eβ0jk =
∑
i dkji∑

i e
β1kTinkji

;

Ũ(β1k) =
∑
j,i

nkjiTi

( ∑
i djki∑

i e
β1kTinkji

)
eβ1kTi −

∑
j,i

dkjiTi

=
∑
j

dkj.

(∑
i nkjiTie

β1kTi∑
i e
β1kTinkji

)
−
∑
i

dk.iTi

=
∑
j

dkj.[Akj(1)A−1
kj (0)]−

∑
i

dk.iTi = 0; k = 1, 2,

wheredkj. =
∑
i dkji, dk.i =

∑
j dkji, andAkj(a) =

∑
i nkjiT

a
i e

β1kTi for a = 0, 1, 2.

SinceŨ(β1k) is a monotonic function ofβ1k, there is a unique solution to this equation. Letβ̂1k be
the solution. This is the MLE ofβ1k. We can use a Newton-Raphson method to obtainβ̂1k as follows.
Let β̂1k(l) be the estimate at thelth iteration, then the estimate at the(l + 1)th iteration is given by
β̂1k(l + 1) = β̂1k(l) − [Ũ (1)(β̂1k(l))]−1Ũ(β̂1k(l)), whereŨ (1)(β) is the first (partial) derivative of̃U(b)
with respect tob evaluated atb = β. We stop iterating wh en|β̂1k(l + 1) − β̂1k(l)| < ε for some pre-
specified value ofε. Note that

Ũ (1)(β1k) =
∑
j,i

njkiT
2
i e
β1kTi

( ∑
i dkji∑

i e
β1kTinkji

)
−
∑
j,i

njkitie
β1kti

∑
i nkjitie

β1kti(∑
i e
β1ktinkji

)2

=
∑
j


(∑

i nkjit
2
i e
β1kti

)(∑
i dkji

)
∑
i e
β1ktinkji

−∑
j

(∑
i nkjitie

β1kti
)2

(∑
i e
β1ktinkji

)2

=
∑
j

dkj.

(∑
i nkjit

2
i e
β1kti∑

i e
β1ktinkji

)
−
∑
j

(∑
i nkjitie

β1kti
)2

(∑
i e
β1ktinkji

)2

=
∑
j

dkj.[Akj(2)(Akj(0))−1]−
∑
j

[(Akj(1))2(Akj(0))−1], k = 1, 2.

Substituting the MLÊβ1k in place forβ1k in eβ0kj =
∑
i dkji∑

i e
β1ktinkji

gives the MLEβ̂0kj = log
(∑

i dkji

)
−

log
(∑

i e
β̂1ktinkji

)
.
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Table 1 Comparison of the power functions under various hypotheses between the Poisson-based testZPOIS and
the weighted-least-squares based testZWLS for two overlapping regions over disjoint time intervals, Region 1 (1980-
1989) vs Region 2 (1990-1999). APC1 and APC2 are the annual percent changes in Regions 1 and 2, respectively.

Cancer Sites APC1 APC2 ARE ZWLS ZPOIS
All Malignant 0.100 0.100 1.1490 0.059 0.050

-0.300 -0.300 1.1491 0.049 0.045
0.500 0.500 1.1492 0.060 0.049
1.000 1.000 1.1493 0.048 0.053
3.000 3.000 1.1504 0.047 0.057
0.100 0.500 1.1507 0.877 0.907
-0.300 0.300 1.1509 0.998 1.000
1.000 2.000 1.1515 1.000 1.000
1.000 3.000 1.1518 1.000 1.000

Prostate 0.100 0.100 1.1610 0.043 0.045
-0.300 -0.300 1.1611 0.041 0.047
0.500 0.500 1.1612 0.051 0.041
1.000 1.000 1.1613 0.046 0.051
3.000 3.000 1.1614 0.045 0.051
0.100 0.500 1.1617 0.182 0.212
-0.300 0.300 1.1619 0.357 0.40
1.000 2.000 1.1622 0.773 0.830
1.000 3.000 1.1634 1.000 1.000

Table 2 Comparison of the power functions between the Poisson basedZPOIS and the weighted-least-squares based
ZWLS for two overlapping regions over roughly the same time intervals, Region 1 (1980-1989) vs Region 2 (1983-
1992). APC1 and APC2 are the annual percent changes in Regions 1 and 2, respectively.

Cancer Sites APC1 APC2 ARE ZWLS ZPOIS
All Malignant 0.100 0.100 1.1710 0.055 0.057

-0.300 -0.300 1.1710 0.056 0.057
0.500 0.500 1.1711 0.048 0.050
1.000 1.000 1.1712 0.047 0.049
3.000 3.000 1.1723 0.051 0.056
0.100 0.500 1.1726 0.872 0.908
-0.300 0.300 1.1729 0.994 0.997
1.000 2.000 1.1733 1.000 1.000
1.000 3.000 1.1737 1.000 1.000

Prostate 0.100 0.100 1.1820 0.043 0.047
-0.300 -0.300 1.1821 0.043 0.043
0.500 0.500 1.1822 0.046 0.041
1.000 1.000 1.1823 0.035 0.053
3.000 3.000 1.1823 0.034 0.055
0.100 0.500 1.1825 0.170 0.197
-0.300 0.300 1.1827 0.341 0.393
1.000 2.000 1.1832 0.742 0.802
1.000 3.000 1.1835 1.000 1.000
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Table 3 Comparison of the power functions between the Poisson basedZPOIS and the weighted-least-squares based
ZWLS for two overlapping regions over slightly overlapping time intervals, Region 1 (1980-1989) vs Region 2 (1987-
1996). APC1 and APC2 are the annual percent changes in Regions 1 and 2, respectively.

Cancer Sites APC1 APC2 ARE ZWLS ZPOIS
All Malignant 0.100 0.100 1.1350 0.044 0.044

-0.300 -0.300 1.1350 0.044 0.046
0.500 0.500 1.1351 0.046 0.051
1.000 1.000 1.1351 0.045 0.051
3.000 3.000 1.1352 0.043 0.047
0.100 0.500 1.1354 0.834 0.891
-0.300 0.300 1.1355 0.994 0.994
1.000 2.000 1.1362 1.000 1.000
1.000 3.000 1.1367 1.000 1.000

Prostate 0.100 0.100 1.1410 0.045 0.051
-0.300 -0.300 1.1410 0.043 0.049
0.500 0.500 1.1412 0.060 0.051
1.000 1.000 1.1423 0.061 0.055
3.000 3.000 1.1426 0.052 0.052
0.100 0.500 1.1428 0.170 0.184
-0.300 0.300 1.1431 0.319 0.361
1.000 2.000 1.1436 0.706 0.759
1.000 3.000 1.1439 0.998 1.000

Table 4 Comparing APC of Breast Cancer Mortality Between CA and the US

CA US
APCWLS -2.33 -1.94
SEWLS 0.084 0.027
ZWLS -4.95 (p=0.000000757)

APCPOIS -2.29 -1.84
SEPOIS 0.083 0.026
ZPOIS -5.62 (p= 0.000000019593)
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Fig. 1 Observed and fitted log-transformed age-adjusted breast cancer mortality rates in CA [1989-2004] and US
[1987-2002]
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