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Summary

The annual percent change (APC) has been used as a measure to describe the trend in the age-adjusted
cancer incidence or mortality rate over relatively short time intervals. The yearly data on these age-adjusted
rates are available from the Surveillance, Epidemiology, and End Results (SEER) Program of the National
Cancer Institute. The traditional methods to estimate the APC is to fit a linear regression of logarithm

of age-adjusted rates on time using the least squares method or the weighted least squares method, and
use the estimate of the slope parameter to define the APC as the percent change in the rates between two
consecutive years. For comparing the APC for two regions, one uses a t-test which assumes that the two
datasets on the logarithm of the age-adjusted rates are independent and normally distributed with a common
variance. Two modifications of this test, when there is an overlap between the two regions or between
the time intervals for the two datasets have been recently developed. The first modification relaxes the
assumption of the independence of the two datasets but still assumes the common variance. The second
modification relaxes the assumption of the common variance also, but assumes that the variances of the
age-adjusted rates are obtained using Poisson distributions for the mortality or incidence counts. In this
paper, a unified approach to the problem of estimating the APC is undertaken by modeling the counts to
follow an age-stratified Poisson regression model, and by deriving a corrected Z-test for testing the equality
of two APCs. A simulation study is carried out to assess the performance of the test and an application of
the test to compare the trends, for a selected number of cancer sites, for two overlapping regions and with
varied degree of overlapping time intervals is presented.

Key words: Age-adjusted incidence/mortality rates, age-stratified Poisson Regression, annual percent
change (APC), surveillance, trends, hypothesis testing.

1 Introduction

The American Cancer Society (ACS) in its annual publication CaAGS 2007 http://www.cancer.org/)

reports that in 2007 about 1.5 million new cancer cases are expected to be diagnosed, and approximately
560,000 Americans are expected to die of cancer. Cancer is the most common cause of death in US,
exceeded only by heart disease, and accounts for 1 of every 4 deaths. The same report also reveals that, for
a number of cancer sites (such as breast, stomach, colon and rectum, lung and bronchus and leukemia), the
age-adjusted cancer mortality rates have been steadly decreasing in recent years. In addition, the National
Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (NCI)
periodically publishes similar reports on trends of cancer incidence at http://seer.cancer.gov/csr; see Ries
et al. (2003) So much has been at stake in terms of human life and cost - for example, the government
agencies such as the National Health of Institutes (NIH), and many private sectors spend billions of dollars
every year on cancer research, health insurance and medical and other costs - that there is an urgent need
for new methods that produce more accurate and reliable estimates of measures of cancer trends.
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The annual percent change (APC) has been used as a measure of cancer trends over short time periods,
and to compare the recent cancer trends by gender or by geographic regions, one compares their APC
values using the two-sample pooled t-test ( Kleinbaum et al., 1988) that assumes that the datasets on age-
adjusted rates under the study are independent. However, a fundamental statistical difficulty arises when
such comparisons, largely for policy making purposes, have to be made for regions or time intervals that
overlap, e.g. comparing the most recent changes in trends of cancer rates in a local area (e.g. the mortality
rate of breast cancer in California) with a more global level (i.e. the national mortality rate) over two
overlapping time periods. For example, as detailed in the data analysis section, it is of substantial interest
to compare the changes in California cancer mortality rates with the national cancer mortality rates in the
last 15 years.

Recently, Li and Tiwari (2007) and Li et al. (2007) developed Z-tests which adjust for the dependence
between the two APCs, and are more efficient than the naive test which assumes independence. However,
these tests are based on the logarithmic transformation of the age-adjusted rates, and fits a simple linear
regression model of the transformed data on time using either the ordinary least squares (OLS) or the other
weighted least squares (WLS) procedures. The proposed test procedure is based on the natural assumption
that the age-specific mortality or incidence counts are results of underlying Poisson processes (Brillinger,
1986), and hence are realizations of independent Poisson random variables. The age-specific instantaneous
hazards are modeled by a log-link function, thus leading to an age-stratified Poisson model. The estimation
of the parameters is then carried out using a likelihood-based approach.

The rest of the paper is organized as follows. In Section 2, we briefly review the existing tests, and
derive the new test in Section 3. To compare the performance of the proposed test with respect to the above
mentioned tests, a simulation study is carried out in Section 4. In this section, we also give application to
breast cancer mortality data from California (CA) and the US extracted from the SEER*STAT software of
the SEER Program. Section 5 ends this paper with a short discussion.

2 A Brief Review of Existing Tests

Consider two regions, and léf;;; denote the number of counts (deaths or new cancer cases) from the
population at riskny;; observed in Regiot (kK = 1,2) in age-groupj (j = 1,...,J) and at times
Ti,...,T,, for Region 1 andl’s4,...,Tsy, for Region 2, wherél} < Ty < T, < Tsyq, With

0 < s < m leading to overlapping time intervals. Note that this formulation is general and allows one
region to have fewer time points than the other. In the SEER program, it is common to ehgo&s year

T;) to be the mid-year population representing the total person-years in one year, with the assumption of
“drop-outs” being uniform over the unit-intervals. The age-adjusted rates are defined as

dy,
= Y us
i=1 kji
wherew; > 0,5 = 1,..., J, are the known standards for the age grgigm thatz;.]:1 w; = 1. For the

SEER analysis, there are = 19 standard age-groups consisting of 0-1, 1-4, 5:9, 85+, andw; are
chosen to be the year 2000 population standards (Fay et al. 2006).

Let yx; = log(rks), be the logarithmic transformations of the age-adjusted rates. Consider the linear
regression models

Yri = Bok + Puktri +ewii=1,... I, 1)

for £ = 1,2, flagging Regions 1 and 2, respectively. Hefge are random errors with mean 0, ahd
corresponds to the calendar times of data collection in regieith /; = m and/, = n. More specifically,
(ti1s--. tir,) = (T1,..., Ty, while (ta1, ... ,tor,) = (Tsy1,-..,Tstn). For the two regions, the
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annual percent change (APC) are definedi&(), = 100(e®* — 1) = 1003y}, for a small3y, e.g. in
the order ofl0—2 (Kim et al., 2000; Fay et al., 2006; Tiwari et al., 2006).

Then under the assumptions tkat are independent and have common variamtethe two-sample
pooled t-test (Kleinbaum et al., 1988) for testing the null hypothé&kis: APC; = APC, versus the
alternativeH, : APC; # APC, is given by

T, = Pu — frz ~ b1, 41, —4)s (2)

V7 (St =)+ (28 - 22

wheret;, = Zfil tri/ I, for k = 1,2, ands? is the “pooled” unbiased estimate @f given by

I . I .
52 — St (e — 910)% + 2032 (y2i — G24)?
L +1,—4 ’

whereg: = Bor + Bixtr; are the predictions fat = 1, 2. Here, 3y, and 3, are obtained from the least
squares estimation. That is,

Ty T _
i1 (tki — te)(Yki — Uk) 5 _ -
Zz 1<¢k2 )(722 )7 BOk:yk:_ﬁlktk
Zi:1 (tk'i - tk)

wheregy, = 3%, yii/Tr.
The above test is not appropriate, however, when there is an overlap between the two regions or the two
time periods. For this case, Li and Tiwari (2007) proposed the following corrected Z-test

Bll - ﬁAIQ
1/2°
{&2 (01_2 + 052 — 201007 %052 ()2 )}

ninsg

Bk =

3)

Zer =

whereo} = 3. (tki — ), 012 = 2041 (T — 1) (Ti — t2), my, = 2004 Zj:l nyj; fork = 1,2,
n(9) = Z;’;Hl Z,}'le n§o) and andzﬁ? are the numbers of at-risk population in the overlapping region.

7

Note that there is no suffik in n§?) . The sign ofo15 determines, whether the covariance betwégn

andBlg is positive or negative, and when there is no overlap in time intervals= 0. Under the log-
normal model, the corrected 1 test was shown to follow a standard normal distribution under the null
hypothesis, and to be more efficient than the pooled t-test; see Li and Tiwari (2007).

However, one assumption in Li and Tiwari (2007) is the equal variance in both regression models,
which may not be realistic, especially for rare cancers. A further refinement has been made to derive
the variance ofy,; by using the Poisson assumptions on the first two moments of the céunis.e.

E(dy;;) = var(dgj;). Under these assumptions, the consistent estimate of the error variaageif

given byv?, = T% ijl wf Z’;“ , leading to the following weighted least squares test proposed by Li et
ki kji

al. (2007), referred to a8y, LS:,[

Bll - 312
a2 (n(O)? }1/2'

~—92 ~—92 ~
{01 + 05" — 201201 "0, PryvT

(4)

Zwrs =

with 67 = 377 | (T; — t1)?/v; andas = Zf::+1(Ti — t3)? /3,

m @

- x 7 12

012 = A E (Tz‘—h)(Ti—tz)U%Ué,
i=s+1 174
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andd;?) are the counts in the overlapping region and during the overlapping period. Here,

s +
; :il T;/v3; ;o Zf:gﬂ Ti/vgi

2

1= -
S /g S 13

and1, 312 are weighted least square estimategqf 31».

Under the null hypothesis, because of the normal approximafign,s approximately follows a stan-
dard normal distribution. Th&y, s has been shown to be more conservative thas in retaining the
size of the test, but is more powerful for the common cancer sites; see Li et al. (2007). However, there
are several disadvantages of the existing methods. First, one key step of Li et al. (2007) is the normal
approximation of the age-adjusted rates. Secondly, both Li et al. (2007) and Li and Tiwari (2007) need
adjustments for zero counts.

3 Age-stratified Poisson Regression Model

As the existing approaches to dealing with age-adjusted cancer rates were all based on the normal approx-

imation, we take a more natural route in the sequel by considering the Poisson nature of the underlying

count data and propose an age-stratified Poisson regression to describe the change trend of incident (or

death) counts on time. Based on this model, a proper test that accounts for overlapping is proposed.
Specifically, sincels;;, the number counts (deaths or new cancer cases) observed in R¢gienl, 2)

in age-groupy, is a count, we assume that

ind .
dka‘ ~ POZS(”k;ji)\kji)»
with
log Apji = Bokj + Brrtri, (5)

which is referred to as thage-stratified Poisson Regression Modslthe age-specific intercefy; is
assumed for age-groyp The common slopg;, is of particular importance as it transcribes the trends of
mortality or incidence and, in particular, determines the APC value.

Again let APC, and APC, be the corresponding APC values for these two Poisson regressions. A
natural test for the null hypothesi$, : APC; = APC, versus the alternative hypothedis : APC, #
APC5 would be

7 o 511 - [312
POIS = = = )
\/ Va?"{ﬂn - ﬁ12}

Whereﬁn andﬁlg are the maximum likelihood estimates@f; and3;» derived in the Appendix.
Because of the possible overlapping of Regions 1 ani#t| 2and 3;> may be correlated. Thus the key
to the derivation of the test lies in a correct evaluatio@ob(0;1, 512).
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3.1 Derivation of the Test

To proceed, we leB, = (8,4, Bok1s- - - Bors) s B = 1,2, whose estimataék can be obtained by solving
the score equations [based on (5)]
Uk(ﬂk) = 07

for k = 1,2, whereU; = (Uy;, 1,Ugy 1, - - - » Upy, ;)" @and

I, J I, J
Uy = Z Z Nyjitki €xXP(Bor; + Burtei) — Z Z dy;jilhis

i=1 j=1 i=1j=1
Iy Iy,

Uokj = Z Ny €XP(Borj + Prrtei) — Z i
i=1 i=1

forj=1,...,J.
As Uk(Bk) = 0, expanding it around the true valgg, and ignoring the higher order terms yields

1 N 1 1 5
0= \/—I_kUk(ﬁk) = \/—I_kUk(ﬁk) + EUlgl)(ﬁk) {\/E (ﬁk - ﬂk)} + 01’(1)’

whereU\" = 9U, (8,)/0,, are(J +1) x (J+1) matrices with itsL* row as(U,),,, Ul oy - Ulpos)
and the(j + 1) row (j = 1,... ,J) as(U$) ;1. Ut os1s - Usio;s ). for k = 1,2. Here

1) Uiy
Ukin = 55— = Z Z Nkjithi exp(Bog; + Brrtei)s
’ OB i=1j=1
Iy
OUik
Ul(li)Oj = — = Z Njithi €XP(Bo; + Birtri),
’ 0Bok;j =
Iy,
1 OUok;
Uék?jl - 861k] - Z Nejitki €xXP(Bor; + Bixtwi),
i=1
o [k
1 0k, j
Ué]f?ojj’ - aﬁOk; = 0jj Z Nkji eXP(ﬂokj + Biktri)s
i=1

andd;;; = 1if j = 5/ and O otherwise.
Denote byAy, = plimy, oo — U,gl)(ﬂk)/lk for k = 1,2, whereplim denotes the limit in probability.
Then for largel; (= m) andI>(= n), standard probabilistic arguments yield

(VI3 - 80, VE(5 — o) } {A;lx/z—lvl(ﬂl)A;l\/%Uz(ﬂg)} -

Here,< denotes approximate equivalence in joint distribution functions. Hence,
Var(vm(By = Br), V(B — 1))
Var(v/n(Bs — Ba2), V(B2 — B2)')

Coo(y/m(fh = ). Vil = ))) = AT —=Cou(Us(51). Ua()) 45"

AT - Cou(U (), U (81)) A7

A3 Cou(Un(), Un(52)) 45",
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6 Li, Tiwari, and Zou: Age-Stratified Poisson Model for Cancer Surveillance

LetV = L Cov(U1(61),Ur(B1)), W = Cou(Us(B2), U2(B2)), B = —=Couv(U1(f1), U2(f2)), and
V, W, 3 be the corresponding estimates, whose derivations are given in the Appendix.
Then,

T

T

Cov(Br, Br) = m{U" (B1)} VUL ()
Cov(Ba, Ba) = n{US" (B2)} WH{USY (5a)

-
! .
Cov(Br, Ba) = Vmn{UM (B1)} 1 S{US (B2)} 7.

b
b

These are thre@/ +1) x (J +1) matrices, thé¢1, 1) entries of which aré? = Var(811), 62 = Var(312)
ands, = Cov(f11, B12), respectively. From this we comput&r (511 — 812) = Var(6y1)+Var(8i2)—
2Cov(f71, 012)- Hence, the Z-test for comparing APC values is given by

Bll - 5)12

“2 | ~2 = \1/2
61 + 05 —26,,) /2,

(6)

Zpors = (

which follows the standard normal distribution undés : 311 = Bi». The computation of}11, 315 is
given in the Appendix.

3.2 ARE Comparison with the WLS test

It is of substantial interest to evaluate the gains in efficiency of the proposed test compared with the WLS
test. First note (5) implies that(ry;) = E(3, w; 28) = (3= wyeors)ePxTi, This in turn implies that

J 70 ki

E(logry;) =log E(r:) = log(z wjePoki) + By ti, (7)
J

whenVar(ry;) is small, which is often the case for the cancer incidence and mortality data (Kim et al.,
2000).

A comparison between (1) and (7) reveals that models (1) and (5) approximately specify the same first
moment of the age-adjusted cancer rates, making it possible to compare the efficiency of the tests based
on these two models via the measure of the Pitman Asymptotic Relative Efficiency. Specifically, standard
asymptotic analysis will yield

Bi1 — Bra ~ N(Bi1 — P2, 62 + 63 — 26,,),
while, for the WLS estimates,

n(0))2

ninz

3 > O U SO
Bi11 — P2 ~ N(Bi1 — Bi2,61 ~ + 65~ — 251267 05

Hence, the Pitman Asymptotic Relative Efficiency (ARE) comparing tests (6) and (4), which is the ratio
of the noncentralities of the above two normal distributions, is given by

~—2 | ~-2 ~ ~—2~-2(n(@)?
01"+ 057 — 201207 04
ARE = T 57 2 mnz (8)
01 T 03 012

The evaluation of (8) typically involves numerical computations.

Copyright line will be provided by the publisher



bimj header will be provided by the publisher 7

4 SEER mortality data analysis and Simulations

Li et al. (2007) demonstrated thay; ;s performs better thaid -, via the calculation of ARE, a&cr

relies on the common variance assumption, which may not be realistic. Hence, we focus this paper on
comparingZpors with Zy 5. To comprehensively evaluate these tests, we consider several scenarios of
overlap in two regions and in two different time intervals. Specifically, we assume that Region 1 consists of
Georgia (GA), South Carolina (SC), and North Carolina (NC), and that Region 2 consists of NC, Virginia
(VA) and Maryland (MD); with NC as the overlapping state between the two regions. The three different
time intervals, with varying degree of overlap in the intervals, are taken to be : (a) [1980,1989] for Region
1, and [1990,1999] for Region 2 so that there is no overlap between the two time intervals and, hence,
o12 = 0; (b) [1980,1989] for Region 1, and [1983,1992] for Region 2 so that there a considerable overlap
of six years between the two intervals aing = 12.25; (c) [1980,1989] for Region 1, and [1987, 1996]

for Region 2 so that there is a little overlap of three years’ between the two intervals and—34.75.

The countsdy,;; were generated based on model (5) withtaking values in the intervals corresponding
to the two regions stated above. More specifically,ttheake values of 0,1, ... ,9}, while thet,; take
values of{10,... ,19}, {3,... ,12}, and{7,... , 16}, respectively for cases (a)-(c).

In order to fully specify);; in (5), we assume thatty,; = log(di;1/nkj1) — Biktr1, whered;; and
ny;1 are respectively the observed number of deaths and the number of at-risk population at the beginning
of the intervals considered, and takg, = log(APC}/100 + 1), based on the specified valuesAPCy.

The age-specific counts for the overlapping state, NC, are generated from Poisson distributions with means,
n;g) x 2 (A1ji + A2ji), wheren§.§) denotes the at-risk population in the overlapping region. When=

X255, this reduces to the situation specified by the null hypothesis. The number of at risk population and
the observed number of deaths were obtained from the SEER database for all malignant male cancers and
prostate cancer. The values of APC were assumed to range from -0.3% to 3.0%. For each parameter
configuration, a total of 1000 simulated data were obtained. The results for the three time-overlapping
cases are summarized in Tables 1-3.

We remark that that, even though bdth, s and Zpo ;s are derived under different model assump-
tions, they are both valid tests for testing the equality of two APCs and hence the ARE defined in (8) is
valid. The tables show that the ARE &f-;s with respect taZy, s is greater than 1 for all the three
cases, meaning thatpo ;s would be more powerful tha@y, ¢ when the alternative hypothesis is true.

The tables also show that in most situatidfisp;s outperforms theZy, s in retaining the Type | error
probabilities and, hence, yields a more valid test. Also the powers of both WLS and Poisson-based tests
are sensitive to the delta values (the differences of APC values). The larger the delta values are, the more
powerful the tests are. The larger delta values also lead to slightly larger AREs, though the differences are
not so obvious.

It is of substantial interest to compare the changes in cancer mortality rates in California with the
national levels starting late 1980’s as a California law (Health and Safety Code, Section 103885) was passed
then, which mandated the reporting of malignancies diagnosed throughout the state. For this purpose,
we applied the proposed methodology to compare the annual percent change (APC) in the age-adjusted
mortality rates for the United States (US) for the period from 1988-2002 to that of California (CA) for
the period from 1990 to 2004. We fitted the weighted linear models as well as the age-stratified Poisson
model, and applied both tests to compare the age-adjusted mortality rates of female breast cancer in CA
for the 16-year period from 1989-2004 to that of US for the 16-year period from 1987-2002, for which the
national mortality data were available. The observed values of the log-transformed annual age-adjusted
rates and fitted regression lines from theo s test procedure are plotted in Figure 1. The parameter
estimates and the values of the test statistics are summarized in Table 4. The results indicated the mortality
rates of Breast cancer for California and the US have decreased. Both tests reject the null hypothesis of
equality of the two APCs, indicating that the annual percent change (APC) of California, is significantly
different from the national level. However, the p-value 55,5 is much smaller than that dfyy, 1.5,
rendering more evidence again the null hypothesis.
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5 Discussion

In this paper, we have considered an important problem where comparisons have to be made for regions
or time intervals that overlap. As opposed to the existing work, e.g Li and Tiwari (2007) and Li et al.
(2007), this project advances this area in two distinct ways. First, the developed test does not rely on
the normal approximation of the cancer rate, but directly model the counts to follow a Poisson regression
model. The parameters are then estimated using their maximum likelihood estimates, and the Z-test is
derived for testing the equality of two APCs. Secondly, the developed Poisson regression model can
easily accommodate 0 count data (for the rare cancers), as opposed to the log normal model (Li and
Tiwari, 2007; Li et al., 2007) which needs to involve extra zero-corrected adjustment. We have applied
the developed methodology to the analysis of the major cancer sites from the SEER Program and have
found that the corrected Z-test renders more power than the existing tests. A Bayesian Poisson regression
would be a useful approach. However, choice of priors is always difficult and computation may not be
so straightforward compared to this current work, wherein analytical solutions have been derived. Hence,
we envision that the proposed method would be preferable because of simple interpretation of the model
parameters, natural choice of the model and computational readiness.

In our technical development, we have modelled the logarithm transformation of the age-adjusted rates
as a linear regression on time in (5) and have indeed explicitly assumed parallelism across age groups.
That is, the growth curves of the cancer rates for various age groups share the same slope, which carries
the information for the APC. Indeed, linearity parallelism for the cancer rates could be a debatable issue
in cancer surveillance, which is likely to be violated for some cancers. One alternative, along the line of
generalized mixed models, is to assume a random slope (as opposed to a constant slope) across age groups.
This ongoing work will be reported in a subsequent communication.

Acknowledgements The authors thank the editor, an AE and two referees for their insightful suggestion, which led
to a better version of this manuscript.
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Appendix A: Derivation of V, W, 3
Write

V:<V1,1 V12) -W:<W1,1 W12> .Z:(E/n Z12)
Via Voo (JH+1)x(J+1) Wip Wy (JH1)x(J+1) Yip Yoo (JH+1)x(J+1)

where
1 1 m J 1 m J
Vi1 = %Var(UlLl) = ZZTEVW(dlji) o ZZTi2E(dlji)'

Hence a consistent estimatelis =
Similarly,
‘712 = (‘712,17 R VlQ,J)

where

Vlzj —CO’U(UH 1,U01J ZleJZ

Also, Vo, = ((Va,557)) with ‘72273’3" = COU(U01,j’ Upi,j1) =0,5#3" > dyis =7
Next compute the estimate of W:

s+n s+n J
Wi = fVar (Uiz1) Z ZT Var(dy,;) = Z > T?E(dyy,)
1=s+1 j=1 i=s+1 j=1

SO thathl = % Zfi—;zrl Zj:l degﬂ Slmllarly, ng = (W12,1’ R ,le’J> Whereij = éOU(Ulg,l, U027j> =

o 1 Tidy AISO, Wag = (Wag,j50)) With Wag i = 0, j # j's = £ 32320, | dayi, j = j Finally,
the estimate oE is computed as follows:

1
% = ——Cov(Uy11,U
11 \/% OU( 11,1 12,1)
1 m J s+n J
= =Cov| > > Tidii, >, D Ty
mn i=1 j=1 i=s+1j=1
m J o s+n 0) o
N N
- SOST (A ), S S (4 )
i=1 j=1 i=s+1j=1

wheredy,;; = d(NO)er(O) and the superscripts “NO” and “O” denote the non-overlapping and overlapping
regions, respectively. Thus};; = \/sz 1 Z] 1T2 49 Let$, = @1217-- S J) where

Sia; = T Dist T\ Also, 3225 = ((Sa2,51)) With Sz 5.5 = 0, j # 55 T Distl 4\, j=
7.

Copyright line will be provided by the publisher



10 Li, Tiwari, and Zou: Age-Stratified Poisson Model for Cancer Surveillance

Appendix B: Computation of the MLEs

Note that the MLEs of},, and g, satisfy:
Zi drji

BT ;

Z g .
anjl 4 3 Jl ¢ eﬁlle — dejiTi
§ €T Mg 4,

Sy TielwTi
dea ( :élk ln ) dez
= dej [Ay;(1 deufo k=1,2,

whered,; = 3, dyi;, dii = 3, dyji and Ay (a) = 32, ny, TiePnTi fora = 0,1, 2.

SincelU(f3,,,) is a monotonic function of, ,, there is a unique solution to this equation. &t be
the solution. This is the MLE of,,. We can use a Newton-Raphson method to obfajnas follows.
Let Blk(l) be the estimate at thi" iteration, then the estimate at tfie+ 1)*" iteration is given by
B+ 1) = B.(1) = [UD (B, (1)U (B, (1)), whereTU M) (3) is the first (partial) derivative off (b)
with respect toh evaluated ab = (3. We stop iterating wh eh3, (I 4+ 1) — 1, (1)| < e for some pre-
specified value of. Note that

eﬁojk —

U(Byy,)

i

J i i n t eﬂm
(1)(ﬂ1k) = ankineﬁlkTi % ankzt Pkt 2 kit ;
g 2y

i (Z ePiutiny )
2
Z (Z nkﬂthﬁlkt) (Zidkﬁ) Z (Zz nkjitieﬁ“ft")
By ti - 2
j Zie 1k nk]l j (Zz eﬁ]k”ﬂ’k_ji)

2
Doyt et (Zq ”kjitieﬁlkti>
2o \ ) T2
J

i 2
eﬁm nkji (Z eﬁlktink l)
= dej Ak] Akg Z Ak] Ak]( )) ]a k=12
J
T P . d . ~
Substituting the MLE3,, in place for3, , in efors = % gives the MLES,,,; = log (Zi dkji) -

log (Zl eBlktinkji).
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Table 1 Comparison of the power functions under various hypotheses between the Poisson-baged tesind
the weighted-least-squares based st s for two overlapping regions over disjoint time intervals, Region 1 (1980-
1989) vs Region 2 (1990-1999). APC1 and APC2 are the annual percent changes in Regions 1 and 2, respectively.

Cancer Sites APC, APCy ARE ZwLs Zpors

All Malignant 0.100 0.100 1.1490 0.059 0.050
-0.300 -0.300 1.1491 0.049 0.045
0.500 0.500 1.1492 0.060 0.049
1.000 1.000 1.1493 0.048 0.053
3.000 3.000 1.1504 0.047 0.057
0.100 0.500 1.1507 0.877 0.907
-0.300 0.300 1.1509 0.998 1.000
1.000 2.000 1.1515 1.000 1.000
1.000 3.000 1.1518 1.000 1.000

Prostate 0.100 0.100 1.1610 0.043 0.045
-0.300 -0.300 1.1611 0.041 0.047
0.500 0.500 1.1612 0.051 0.041
1.000 1.000 1.1613 0.046 0.051
3.000 3.000 1.1614 0.045 0.051
0.100 0.500 1.1617 0.182 0.212
-0.300 0.300 1.1619 0.357 0.40
1.000 2.000 1.1622 0.773 0.830
1.000 3.000 1.1634 1.000 1.000

Table 2 Comparison of the power functions between the Poisson baseds and the weighted-least-squares based
Zw s for two overlapping regions over roughly the same time intervals, Region 1 (1980-1989) vs Region 2 (1983-
1992). APC1 and APC2 are the annual percent changes in Regions 1 and 2, respectively.

Cancer Sites APC, APC> ARE ZwLs ZpoIs

All Malignant 0.100 0.100 1.1710 0.055 0.057
-0.300 -0.300 1.1710 0.056 0.057
0.500 0.500 11711 0.048 0.050
1.000 1.000 1.1712 0.047 0.049
3.000 3.000 1.1723 0.051 0.056
0.100 0.500 1.1726 0.872 0.908
-0.300 0.300 1.1729 0.994 0.997
1.000 2.000 1.1733 1.000 1.000
1.000 3.000 1.1737 1.000 1.000

Prostate 0.100 0.100 1.1820 0.043 0.047
-0.300 -0.300 1.1821 0.043 0.043
0.500 0.500 1.1822 0.046 0.041
1.000 1.000 1.1823 0.035 0.053

3.000 3.000 1.1823 0.034 0.055
0.100 0.500 1.1825 0.170 0.197

-0.300 0.300 1.1827 0.341 0.393
1.000 2.000 1.1832 0.742 0.802
1.000 3.000 1.1835 1.000 1.000
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Table 3 Comparison of the power functions between the Poisson baseds and the weighted-least-squares based
Zw 1s for two overlapping regions over slightly overlapping time intervals, Region 1 (1980-1989) vs Region 2 (1987-
1996). APC1 and APC2 are the annual percent changes in Regions 1 and 2, respectively.

Cancer Sites APC, APCy ARE ZwrLs Zpors

All Malignant 0.100 0.100 1.1350 0.044 0.044
-0.300 -0.300 1.1350 0.044 0.046
0.500 0.500 1.1351 0.046 0.051
1.000 1.000 1.1351 0.045 0.051
3.000 3.000 1.1352 0.043 0.047

0.100 0.500 1.1354 0.834 0.891
-0.300 0.300 1.1355 0.994 0.994
1.000 2.000 1.1362 1.000 1.000

1.000 3.000 1.1367 1.000 1.000
Prostate 0.100 0.100 1.1410 0.045 0.051
-0.300 -0.300 1.1410 0.043 0.049

0.500 0.500 1.1412 0.060 0.051
1.000 1.000 1.1423 0.061 0.055

3.000 3.000 1.1426 0.052 0.052
0.100 0.500 1.1428 0.170 0.184
-0.300 0.300 1.1431 0.319 0.361
1.000 2.000 1.1436 0.706 0.759

1.000 3.000 1.1439 0.998 1.000

Table 4 Comparing APC of Breast Cancer Mortality Between CA and the US

CA us
APCy s -2.33 -1.94
SEv s 0.084 0.027
Zwrs -4.95 (p=0.000000757)
APCpors -2.29 184
SEpors 0.083 0.026
Zpois -5.62 (p=0.000000019593)
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Fig. 1 Observed and fitted log-transformed age-adjusted breast cancer mortality rates in CA [1989-2004] and US

[1987-2002]
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