
Abstract We investigate the effect of unobserved heterogeneity in the
context of the linear transformation model for censored survival data in the
clinical trials setting. The unobserved heterogeneity is represented by a frailty
term, with unknown distribution, in the linear transformation model. The bias
of the estimate under the assumption of no unobserved heterogeneity when it
truly is present is obtained. We also derive the asymptotic relative efficiency of
the estimate of treatment effect under the incorrect assumption of no unob-
served heterogeneity. Additionally we investigate the loss of power for clinical
trials that are designed assuming the model without frailty when, in fact, the
model with frailty is true. Numerical studies under a proportional odds model
show that the loss of efficiency and the loss of power can be substantial when
the heterogeneity, as embodied by a frailty, is ignored.
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1. Introduction

One major challenge in the study of brain tumors and many other cancers is
the presence of unexplained heterogeneity, which can be understood as
completely missing genetic or other prognostic information. Oncologists have
long suspected that subsets of patients who benefit from specific therapies
might be hidden in larger groups of resistant cases. The impact of unexplained
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heterogeneity that confers different risks to patients is to undermine the
power of a randomized trial to detect a truly beneficial therapy (Betensky
et al. 2002). There is a large literature on the effects of unexplained hetero-
geneity in the context of the proportional hazards model. Lagakos and
Schoenfeld (1984) investigated how misspecification of a proportional hazards
regression model affects the resulting likelihood score test for comparing
randomized treatment groups in the presence of covariate. Li et al. (2002)
extended the results of Lagakos and Schoenfeld (1984) to examine the impact
of unmeasured heterogeneity, as captured through a continuous frailty that
interacts with treatments, on the efficiency and power of the simple log-rank
test for treatment effect. Solomon (1984) examined the behavior of the MLE
of the regression parameter if proportional hazards are assumed for analysis
when the accelerated life model holds, and conversely when accelerated life
model is assumed when the proportional hazards model holds. Bretagnolle
and Huber-Carol (1988) examined the effect of omitting some of the inde-
pendent explanatory variables in the Cox regression model for survival data
with censoring, and predicted the sign of bias left under any number of
omitted covariates. Schmoore and Schumacher (1997) investigated the prop-
erties of the MPLE of the treatment effect under two common misspecifica-
tions of the models when analyzing survival data in randomized clinical trials
using Cox proportional hazards model (a) an important continuous prognostic
factor is omitted from the analysis and (b) an important continuous prognostic
factor is categorized. Kosorok et al. (2004) studied the proportional hazards
frailty regression model, a class of semiparametric regression model for right-
censored univariate failure times, which assumes the hazard given the cova-
riates and a random frailty unique to each individual has the proportional
hazards form multiplied by the frailty.

While the literature on the effects of unexplained heterogeneity is well-
developed for the proportional hazards model, there are almost no papers that
examine this problem for alternative semiparametric regression models. One
exception is a parametric examination of the accelerated failure time model
(Solomon 1984). Cheng et al. (1995) introduced a class of semi-parametric
linear transformation models, including the proportional hazards and pro-
portional odds models as special cases, for censored data, under which an
unknown strictly increasing transformation of the survival time is linearly
related to the covariates with some specified error distribution. Slud and Vonta
(2004) studied the large sample consistency for non-parametric maximum
likelihood estimators of an unknown baseline continuous cumulative-hazard-
type function and parameter of group survival differences, based on right-
censored two-sample survival data with marginal survival function assumed to
follow a transformation model. Slud and Vonta (2005) developed theoretical
results specialized to censored linear regression and to a class of semipara-
metric survival regression model including the proportional hazards models
with unobserved random effect. In this paper, we will introduce a random error
term (a frailty term) representing the missing prognostic information, to this
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class of linear transformation models in the clinical trials setting. We then study
the effects of ignoring the frailty term on the parameter estimates of fixed
covariates and on the power of associated tests. We also compare the asymp-
totic relative efficiency (ARE) of the treatment effect based on assuming the
simple linear transformation model to that from the frailty model.

There are two distinct types of asymptotic relative efficiency in the
literature. One compares two different test statistics as applied to data
generated from a single underlying model. One example is a comparison of
the simple log-rank test to the optimally weighted log-rank test assuming the
model of unobserved heterogeneity to be true (e.g. Lagakos and Schoenfeld,
1984; Li et al. 2002). This comparison measures the loss of efficiency due to
use of the wrong test statistic. The second concept of ARE compares the
same test statistic as applied to data generated from two different underlying
models (Lagakos and Schoenfeld, 1984, Appendix 3; Morgan, 1986). This
concept is especially useful for evaluating the loss of power when a study is
designed assuming a model without the frailty term when in fact the model
with frailty is true. We will study the second type of ARE and translate it
into a comparison of planned power to actual power in the presence of the
frailty. All future references of efficiency imply the second usage.

We introduce notation and the models in Section 2, and evaluate the bias of
the estimate based on ignoring the frailty term in Section 3. In Section 4, we
obtain an approximation for the ARE, and we derive an analytic approxi-
mation for the actual power of a study designed under the simple linear
transformation model when the frailty model is true. We conclude in Section 5
with numerical studies of these results.

2. Notation and models

Suppose that n patients are randomly assigned with probability p to treatment
group 1 and 1 – p to treatment group 2. Let Zi ði ¼ 1; . . . ; nÞ be the treatment
indicator for the ith subject with Zi ¼ 1 if subject i received treatment 1 and
Zi ¼ 0 if subject i received treatment 2. Let Ti be the failure time and Ci the
censoring time associated with subject i. For each subject, a bivariate vector
(Xi, Di) is observed, where Xi ¼ min (Ti, Ci), Di ¼ 1 when Xi ¼ Ti, and
Di ¼ 0 when Xi ¼ Ci. Censoring and the failure times are assumed to be
independent. We denote by GZ(Æ) the stratified survival function of the cen-
soring variable Ci based on covariate Z. Finally, associated with each subject i
is a frailty bi modeling unobserved heterogeneity, where bi ~ Fb(h) and h
parameterizes the frailty distribution, Fb.

If there is no unobserved heterogeneity, the treatment effect can be esti-
mated by the method proposed by Cheng et al. (1995). Let

hðTÞ ¼ �Zbþ e; ð1Þ
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where h(Æ) is an unspecified strictly increasing function of the failure time and
e is a random error with known distribution F. Cheng et al. (1995) proposed
the following estimating equations for b,

U0ðbÞ ¼
Xn

i¼1

Xn

j¼1

xðZijbÞZij
DjIðXi � XjÞ
bGZi
ðXjÞ bGZj

ðXjÞ
� n0ðZijbÞ

( )
¼ 0; ð2Þ

where Zij ¼ Zi – Zj, x(Æ) is a weight function, bGZi
is the Kaplan–Meier

estimator for the survival function, G, of the censoring variable, associated
with covariate Zi, and n0(Æ) is the survival function of ei – ej. This class of
estimating equations can be generalized when Z is multi-dimensional.

Model (1) represents a large class of survival models indexed by the dis-
tribution of e, F. For example, when F is the extreme value distribution, (1) is
the proportional hazards model and when F is the standard logistic distribu-
tion, (1) is the proportional odds model. The estimating Eq. (2) yields a
unique and consistent estimate for b when Z is a binary variable, such as
treatment assignment in a clinical trial (Cheng et al. 1995).

In the presence of unobserved heterogeneity, we extend model (1) through
inclusion of a frailty term b, leading to

hðTÞ ¼ �Zbþ bþ e: ð3Þ

If the distribution of frailty b were known, this model would simply be a
member of the class of model (1). In this case, the approach proposed by
Cheng et al. (1995) could be used to estimate b in model (3) by correctly
replacing n0 in the estimating Eq. (2), the survival function of ei – ej, with nh,
the survival function of bi – bj + ei – ej. Thus b should be consistently esti-
mated by solving

UhðbÞ ¼
Xn

i¼1

Xn

j¼1

xðZijbÞZij
DjIðXi � XjÞ
bGZi
ðXjÞ bGZj

ðXjÞ
� nhðZijbÞ

( )
¼ 0: ð4Þ

Hence, directly using (2), when the heterogeneity does exist (i.e. h „ 0), will
yield foreseeable biases, which will be investigated in the next section.

Finally, we remark that, when the covariate Z is not a degenerate random
variable, the identifiability of b and the frailty parameter, h, has been detailed
in Section 5 of Kosorok et al. (2004), where a set of sufficient identifiability
conditions were stated.

3. Estimation and bias

We are now in a position to investigate the effect of ignoring the frailty
in the estimation of the treatment effect, b. We assume that the weight
function x(Æ) is non-random and positive, and assume for any fixed h function
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nh(Æ) is invertible and the first derivative nh¢(Æ) exists. The results are sum-
marized in the following theorem, whose proof is deferred to the Appendix.

Theorem 1 The Eq. (2) has, asymptotically, a unique solution bb when the
weight function x(Æ) is positive. Moreover, if the frailty model (3) is true, bb
obtained from Eq. (2) is a consistent estimator of n0

–1{nh(b0)}.

As a special case, this theorem implies when the weight function x(Æ) ” 1,
the solution to (2) is unique. In the ensuing development we evaluate the bias
and ARE under x(Æ) ¼ 1 for simplicity, and the results for the general weight
functions will follow immediately. Indeed, the estimating procedure with a
constant weight has been shown to work well for the proportional odds model
and other models in the absence of frailties (Cheng et al. 1995).

Under x(Æ) ¼ 1, Eq. (2) reduces to

U0ðbÞ ¼
Xn

i¼1

Xn

j¼1

Zij
DjIðXi � XjÞ
bGZi
ðXjÞ bGZj

ðXjÞ
� n0ðZijbÞ

( )

¼
X

i;j:Zi 6¼Zj

Zij
DjIðXi � XjÞ
bGZi
ðXjÞ bGZj

ðXjÞ
þ 1

2

X

i;j

IðZi 6¼ ZjÞ � n0ðbÞ
X

i;j

IðZi 6¼ ZjÞ:

The estimating equation U0(b) ¼ 0 has a unique solution given by

bb ¼ n�1
0

P
i;j:Zi 6¼Zj

ZijfDjIðXi � XjÞ= bGZi
ðXjÞ bGZj

ðXjÞgP
i;j IðZi 6¼ ZjÞ

þ 1

2

 !
: ð5Þ

If model (1) is true, Cheng et al. (1995) proved that bb is an unbiased and
consistent estimator of the true treatment effect b0. However, bb is a biased
estimator when the frailty model (3) is true.

For the asymptotic bias of bb, note that

E
DjIðXi � XjÞ

GZi
ðXjÞGZj

ðXjÞ
jZi;Zj

( )
¼ E½IfhðTiÞ � hðTjÞgjZi;Zj� ¼ nhðZijb0Þ;

and

n�2
X

i;j

IðZi 6¼ ZjÞ�!
a:s:

2pð1� pÞ:

P
i;j:Zi 6¼Zj

ZijfDjIðXi � XjÞ=GZi
ðXjÞGZj

ðXjÞgP
i;j IðZi 6¼ ZjÞ

þ 1

2
�!a:s: nhðb0Þ:
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Again, replacing G with its consistent estimator bG results in
n0ðbbÞ�!

P
nhðb0Þ, and bb�!P n�1

0 ðnhðb0ÞÞ. Under the assumption of uniform
integrability of bb, EðbbÞ �! n�1

0 fnhðb0Þg, and the asymptotic bias of bb is
EðbbÞ � b0 �! n�1

0 fnhðb0Þg � b0:

4. ARE and power

In this section, we compare the asymptotic efficiency of bb, the estimate of
treatment effect derived using estimating Eq. (2), when the data arise from the
simple model (1) versus the frailty model (3).

We begin by deriving the asymptotic distribution of bb, the estimator
obtained using (2), under each of the two models (1) and (3). When model (1)
is true, it follows that

n�
3
2

X

i;j

IðZi 6¼ ZjÞ½n0ðbbÞ � n0ðbÞ�

¼ n�
3
2

X

i;j:Zi 6¼Zj

ZijfDjIðXi � XjÞg
bGZi
ðXjÞ bGZj

ðXjÞ
þ 1

2

X

i;j

IðZi 6¼ ZjÞ � n0ðbÞ
X

i;j

IðZi 6¼ ZjÞ

8
<

:

9
=

;

¼ n�
3
2U0ðbÞ:

It also follows from Cheng et al. (1995) that the distribution of n�
3
2U0ðbÞ can

be approximated by N(0,G0), where

C0 ¼ lim
n!1

1

n3

Xn

i¼1

Xn

j¼1

Xn

k¼1;k 6¼j

fe0;ijðbÞ � e0;jiðbÞg
"

�fe0;ikðbÞ � e0;kiðbÞgZijZik � 4

Z 1

0

qðtÞqðtÞ0

pðtÞ dKGðtÞ
�
;

e0;ijðbÞ ¼
DjIðXi � XjÞ
bGZi
ðXjÞ bGZj

ðXjÞ
� n0ðZijbÞ; pðtÞ ¼ lim

n!1

1

n

Xn

i¼1

IðXi � tÞ;

qðtÞ ¼ lim
n!1

1

n2

Xn

i¼1

Xn

j¼1

Zij
DjIðXi � XjÞ
bGZi
ðXjÞ bGZj

ðXjÞ
IðXj � tÞ;

and LG is the common cumulative hazard function of the censoring variable, C.
Combining these two results through an application of the Slutsky theorem

and the delta method yields the asymptotic distribution of bb as

ffiffiffi
n
p
ðbb � bÞ !distribution

N 0;
C0

4p2ð1� pÞ2fn00ðbÞg
2

 !
: ð6Þ
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Similarly, under the frailty model (3), it follows that

n�
3
2

X

i;j

IðZi 6¼ ZjÞ½n0ðbbÞ � nhðbÞ�

¼ n�
3
2

X

i;j:Zi 6¼Zj

Zij
DjIðXi � XjÞ
bGZi
ðXjÞ bGZj

ðXjÞ

8
<

:

þ 1

2

X

i;j

IðZi 6¼ ZjÞ � nhðbÞ
X

i;j

IðZi 6¼ ZjÞ
)

¼ n�
3
2UhðbÞ:

Also as in Cheng et al. (1995), n�
3
2UhðbÞ is approximately N (0, Gh), where

Ch ¼ lim
n!1

�
1

n3

Xn

i¼1

Xn

j¼1

Xn

k¼1;k 6¼j

feh;ijðbÞ � eh;jiðbÞg

� feh;ikðbÞ � eh;kiðbÞgZijZik � 4

Z 1

0

qhðtÞqhðtÞ0

phðtÞ
dKGðtÞ

�
;

eh;ijðbÞ ¼
DjIðXi � XjÞ
bGZi
ðXjÞ bGZj

ðXjÞ
� nhðZijbÞ;

ph(t), qh(t) and LG are defined in a similar fashion as before.
Another application of the Slutsky theorem and delta method yields the

asymptotic distribution of bb under model (3) as

ffiffiffi
n
p
ðbb � n�1

0 ½nhðbÞ�Þ !distribution
N 0;

Ch

4p2ð1� pÞ2fn0hðbÞg
2

 !
: ð7Þ

To investigate the behavior of the ARE, we consider a sequence of alter-
natives that converge to the null hypothesis at the appropriate rate as sample
size goes to infinity, which allow the estimators to be asymptotically unbiased
under both models. The result is stated in the following theorem and its proof
can be seen in the Appendix.

Theorem 2 Consider a sequence of local alternatives HA;n : bn ¼ cffiffi
n
p , where c

is a constant, and further assume that n0 and nh are survival functions with
continuous second derivatives in a small neighborhood of 0. Then, under the
linear transformation model (1), the ARE of bb under the frailty model (3)
versus bb under the linear transformation model (1) is

n0hð0Þ
n00ð0Þ

� �4C0

Ch
: ð8Þ
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We remark that, in the particular setting this paper concerns, (8) will not exceed
one. Indeed, since G0 £ Gh by definition, we only need to show nh¢(0) £ n0¢(0). To
see this, recall that n0¢(Æ) is the density function of ei – ej at point 0 and nh¢(Æ) is the
density function of bi – bj + ei – ej at point 0. Consider two generic independent
random variables X and Y. Let f be the probability density function and F the
corresponding CDF of X, and g be the probability density function and G the
corresponding CDF of Y. It follows that fXþYðtÞ ¼

R1
�1 f ðt � yÞdGðyÞ. For

symmetric density function of X, fXþYð0Þ ¼
R1
�1 f ðyÞdGðyÞ ¼ EðfXðYÞÞ. Hence,

nh¢(0) ¼ E {n0¢(bi–bj)}. On the other hand,

Efn00ðbi � bjÞg � n00ð0Þ;

holds when n0¢(x) attains its maximum at 0. This is satisfied by the common
random error variable e in linear transformation models, including extreme
value distribution, standard logistic distribution.

We are now ready to study the actual power of a clinical trial designed
assuming the simple linear transformation model (1) when, in fact, the frailty
model (3) is true. For a sequence of local alternatives bn ¼ c n–1/2, the dis-
tribution of bb under the linear transformation model (1) is approximated by

N bn;
C0

4np2ð1� pÞ2fn00ð0Þg
2

 !
; ð9Þ

and the distribution of bb under the frailty model (3) is approximated by

N bn

n0hð0Þ
n00ð0Þ

;
Ch

4np2ð1� pÞ2fn0hð0Þg
2

 !
: ð10Þ

Suppose that we design a clinical trial based on the wrong model (1). For
simplicity we assume that the censoring distributions for the two treatment
groups are the same, and there is equal number of subjects in the two treat-
ment groups. It then follows that the approximate sample size needed to
detect Ha: b ¼ b*> 0 vs H0: b ¼ 0 under the wrong model (1) with power d
and one-sided type I error a is

n0 ¼
ðZ1�a þ ZdÞ2C0

b�24p2ð1� pÞ2fn00ð0Þg
2
: ð11Þ

Hence, for a study design based on the incorrect simple linear transformation
model (1) when in fact the model with frailty (3) holds, the actual power is

1� U
n0hð0ÞC

1
2

0

n00ð0ÞC
1
2

h

�
Z1�a �

n0hð0Þ
n00ð0Þ

ðZ1�a þ ZdÞ
�0

@
1
A; ð12Þ
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where F is the cumulative distribution function of a standard normal
distribution. Note that the power does not depend on b* because the relative
power depends only on the ratio of the variances and the non-centrality
parameters of bb under the two different models.

5. Numerical studies

In this section, we numerically evaluate, under several parameter configura-
tions, the ARE of the simple (i.e. via (2)) treatment estimate based on the
simple linear transformation model to that based on the frailty model, and the
power of the test statistics for a study designed assuming model (1). Specifi-
cally, we study the special case of the proportional odds model, a popu-
lar alternative to the proportional hazards model, for which these
investigations have not been previously carried out. We examine the ARE
and power under three distributions for the frailty b: 1) b ~ N(l, h), 2)
expðbÞ � gammaðh�1; h�1Þ, 3) b � Inverse Gaussianðl ¼ 1; k ¼ h�1Þ. In par-
ticular, we note when b is inverse Gaussian with mean l and precision
parameter k, its variance is given by l3/k. All the simulations are conducted
using R (http://www.r-project.org/).

For a proportional odds model, e has a standard logistic distribution,
n0ðxÞ ¼ 1� FeðxÞ ¼ e�x

1þe�x. To obtain the density functions of bi – bj + ei – ej

and ei – ej, which usually do not have closed form solutions, we first calculate
their characteristic functions and then use the inverse formula to transform
the characteristic functions back into density functions. Letting /b(t) denote
the characteristic function of b and /e(t) denote that of e, the characteristic
functions of bi – bj + ei – ej and ei – ej are simply /b,e(t) ¼ /b(t)/b(–t)/e(t)/e

(–t) and /0,e(t) ¼ /e(t)/e(–t). These are real valued functions because the
distributions of bi – bj + ei – ej and ei – ej are symmetric about 0. Then the
density functions nh¢(x) and n0¢(x) are obtained by the inverse formula
n0ðxÞ ¼ 1

2p

R1
�1 e�itx/ðtÞdt. The values of nh¢(0) and n0¢(0) can be readily

obtained by numerical integration for virtually any distributions of b and e.
We fix b0 ¼ 0.3 and generate 500 data sets with n ¼ 100 subjects and 500

data sets with n ¼ 200. We examine values of h ranging from 0.1 to 2 in
increments of 0.2. We then generate values of b from the three frailty distri-
butions. We generate uniform censoring times U(0,Cj), (j ¼ 1,2,3), and Cj is
so chosen that censoring rate of 10%, 20% and 50% for each parameter
configuration are achieved, i.e., the proportion of Tij\Cij; i ¼ 1; . . . ; n is 10%,
20% and 50% for j ¼ 1,2,3. For the ARE formula (8) and power calculation

(12), the values of
n0hð0ÞC

1=2

0

n00ð0ÞC
1=2

h

are difficult to compute numerically. Since they are

equal to the square root of the ratio of the variances in Eqs. (9) and (10), we
estimate them using the ratio of the empirical variances of the estimated value
of b from the simulations.

Figure 1 displays the lowess smoothed ARE and power as a function of h for the
three frailty models when n ¼ 100. The graphs for n ¼ 200 (not shown) display
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similar patterns. Figures a1–c2 display the ARE and power comparisons based on
the normal frailty model, the log–gamma frailty model and the inverse Gaussian
frailty model, respectively, all of which demonstrate that the ARE and power
decrease as h, the variance of the frailty term, increases. Additionally, Fig. 2
indicates that the bias of the estimates increases as h increases. The bias associated
with heavy censoring, e.g., 50%, is obviously larger than those with moderate
censorings. Also of note is that the effect of censoring on the ARE and actual
power is negligible. This is not surprising as the ARE and power are related to the
ratio of the variances of bb between the simple model (1) and the frailty model (3),
and it is likely that the censoring affects both variances in a similar magnitude.

6. Summary

We have considered unobserved heterogeneity in the estimation of the linear
transformation model with censored data in the clinical trials setting.
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Fig. 1 (a1) ARE of normal frailty model, (a2)Power of normal frailty model, (b1) ARE of
log-gamma frailty model, (b2) Power of log-gamma frailty model, (c1) ARE of inverse-Gaussian
frailty model, (c2) Power of inverse-Gaussian frailty model
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The unobserved heterogeneity is represented by a frailty term in the model.
An estimate of the treatment effect is obtained when such unobserved
heterogeneity is ignored. We obtained the bias of the estimate when the frailty
distribution is known, and we investigated the asymptotic relative efficiency of
the estimate when data arises from the linear transformation model for cen-
sored data without the frailty as compared to data from the model with frailty.
We further investigated the loss of power when a clinical trial is designed
assuming the model without frailty when in fact the model with frailty is true.
For a proportional odds model, it is shown through numerical studies that the
loss of efficiency and the loss of power are substantial when the frailty model
is true but the simple model is assumed. This is a real concern for many
clinical trials that are designed assuming homogeneity among patients when,
in fact, they are heterogeneous. If there are suggestions of heterogeneity in the
patient population, an adaptive design might be implemented to maintain
proper power of the test.
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Fig. 2 (a) Bias of normal frailty model, (b) Bias of log-gamma frailty model, (c) Bias of
inverse-Gaussian frailty model
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Appendix 1: Proof to Theorem 1

First note

Zij ¼ Zi � Zj ¼
0 with probability ð1� pÞ2 þ p2

1 with probability pð1� pÞ
�1 with probability pð1� pÞ;

8
<

:

using standard asymptotic theory of multivariate U-statistics, it can be shown
that

n�2
X

i;j

xðZijbÞZij
DjIðXi�XjÞ

GZi
ðXjÞGZj

ðXjÞ
�!a:s: pð1�pÞf½xðbÞþxð�bÞ�nhðb0Þ�xð�b0Þg:

It follows that

n�2
Xn

i¼1

Xn

j¼1

xðZijbÞZij
DjIðXi � XjÞ

GZi
ðXjÞGZj

ðXjÞ
� n0ðZijbÞ

( )

¼ n�2
X

Zij¼1

xðbÞ DjIðXi � XjÞ
GZi
ðXjÞGZj

ðXjÞ
� n0ðbÞ

( )

� n�2
X

Zij¼�1

xð�bÞ DjIðXi � XjÞ
GZi
ðXjÞGZj

ðXjÞ
� n0ð�bÞ

( )
;

�!a:s: pð1� pÞfxðbÞ þ xð�bÞgfnhðb0Þ � n0ðbÞg:

Replacing G with its consistent estimate bG and

n�2U0ðbÞ�!
P

pð1� pÞfxðbÞ þ xð�bÞgfnhðb0Þ � n0ðbÞg:

When x(Æ) > 0,

pð1� pÞfxðbþ xð�bÞgfnhðb0Þ � n0ðbÞg ¼ 0

iff

nhðb0Þ � n0ðbÞ ¼ 0:

Hence the unique asymptotic solution to U0(b) ¼ 0 is b ¼ n0
–1{nh(b0)}. This

implies that bb obtained by solving equation (2) is a unique consistent estimate
of n0

–1{nh(b0)}.

Appendix 2: Proof to Theorem 2

For the local alternatives HA;n : bn ¼ cffiffi
n
p , when the linear transformation

model (1) is true, (6) shows that
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ffiffiffi
n
p bb � bn

� �
¼

ffiffiffi
n
p bb � c �approx:

N 0;
C0

4p2ð1� pÞ2fn00ð0Þg
2

 !
:

A Taylor expansion of n0
–1(nh(bn)) yields

n�1
0 ðnhðbnÞÞ ¼ n�1

0 nh
cffiffiffi
n
p
� 	� 	

¼ cffiffiffi
n
p n0hð0Þ

n00ð0Þ
þ oðn�1

2Þ:

Under the frailty model (3), (7) shows that

ffiffiffi
n
p bb� n�1

0 ½nhðbnÞ�
n o

¼
ffiffiffi
n
p bb� c

n0hð0Þ
n00ð0Þ

þ oð1Þ �approx:
N 0;

Ch

4p2ð1� pÞ2fn0hð0Þg
2

 !
:

Hence the ARE of bb under the frailty model (3) versus bb under the linear
transformation model (1) is simply the ratio of the two non-centralities,

n0hð0Þ
n00ð0Þ

� �2C0

Ch

fn0hð0Þg
2

fn00ð0Þg
2
¼ n0hð0Þ

n00ð0Þ

� �4C0

Ch
:
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