Web-based Appendix 1

Asymptotic Equivalence of $W_{loc}(x_1, x_2|b)$ and $\hat{W}_{loc}(x_1, x_2|b)$, given the observed data, for the Cumulative Geographic Martingale Residual

We will begin by first showing the asymptotic equivalence of $W_{loc}(x_1, x_2|b)$ and another process $\tilde{W}_{loc}(x_1, x_2|b)$, assuming the Cox's proportional hazards model (Equation 3 in Paper),

$$\lambda(t|\mathbf{X}_{\mathbf{i}}) = \lambda_0(t) \exp[\boldsymbol{\beta} \mathbf{X}_{\mathbf{i}}].$$

Consider the following one-term Taylor series expansion of $W_{loc}(x_1, x_2|b)$ (Equation 6 in Paper) at β ,

$$\begin{split} W_{loc}(x_{1}, x_{2}|b) &= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} I_{i}(x_{1}, x_{2}, b) \hat{M}_{i}(\tau) \\ &\approx \frac{1}{\sqrt{n}} \sum_{i=1}^{n} I_{i}(x_{1}, x_{2}, b) \left[N_{i}(\tau) - \int_{0}^{\tau} \frac{V_{i}(u) \exp(\beta \mathbf{X}_{i})}{\sum_{l=1}^{n} V_{l}(u) \exp(\beta \mathbf{X}_{l})} \right] d\bar{N}(u) \\ &- \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{0}^{\tau} \left[\frac{I_{i}(x_{1}, x_{2}, b) V_{i}(u) \exp(\beta \mathbf{X}_{i})}{S^{0}(\beta, u)} \left[\mathbf{X}_{i} - \bar{\mathbf{X}}(\boldsymbol{\beta}, u) \right] \right] d\bar{N}(u) \\ &\times (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{0}^{\tau} \left[I_{i}(x_{1}, x_{2}, b) - g(\boldsymbol{\beta}, u, x_{1}, x_{2}, b) \right] dM_{i}(u) \\ &- \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} \left[I_{i}(x_{1}, x_{2}, b) V_{i}(u) \exp(\boldsymbol{\beta} \mathbf{X}_{i}) \left[\mathbf{X}_{i} - \bar{\mathbf{X}}(\boldsymbol{\beta}, u) \right] \right] d\hat{\Lambda}(u) \\ &\times \sqrt{n} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \end{split}$$

where $\bar{N}(t) = \sum_{i=1}^{n} N_i(t)$, $I_i(x_1, x_2, b) = I[x_1 - b < s_i \le x_1 + b, x_2 - b < r_i \le x_2 + b]$, $g(\boldsymbol{\beta}, t, x_1, x_2, b)$ defined as equation 8 in paper, and τ is the pre-specified length of the study period. Then, by performing a Taylor series expansion of $U(\hat{\boldsymbol{\beta}})$ (Equation 4 in paper) around $\boldsymbol{\beta}$ yields that $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$ is asymptotically equivalent to $\sqrt{n}\mathbf{I}^{-1}(\boldsymbol{\beta})U(\boldsymbol{\beta})$, where $\mathbf{I}(\boldsymbol{\beta}) = -\partial U(\boldsymbol{\beta})/\partial \boldsymbol{\beta}$. By further invoking the property that $\hat{\Lambda}(u)$ converges almost surely to $\Lambda(u)$, the process $W_{loc}(x_1, x_2|b)$ is asymptotically equivalent to the process $\tilde{W}_{loc}(x_1, x_2|b)$,

$$\tilde{W}_{loc}(x_1, x_2|b) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \int_0^\tau \left[I_i(x_1, x_2, b) - \tilde{g}(\boldsymbol{\beta}, u, x_1, x_2, b) \right] dM_i(u)
- \sum_{i=1}^n \int_0^\tau \left[I_i(x_1, x_2, b) V_i(u) \exp(\boldsymbol{\beta} \mathbf{X}_i) \left[\mathbf{X}_i - \tilde{\mathbf{X}}(\boldsymbol{\beta}, u) \right] \right] d\Lambda(u)$$

$$\times \frac{1}{\sqrt{n}} \mathbf{I}^{-1}(\boldsymbol{\beta}) \sum_{i=1}^n \int_0^\tau \left[\mathbf{X}_i - \tilde{\mathbf{X}}(\boldsymbol{\beta}, u) \right] dM_i(u).$$
(1)

where $\tilde{X}(\boldsymbol{\beta},t)$ is the limit of $\bar{X}(\boldsymbol{\beta},t)$ and $\tilde{g}(\boldsymbol{\beta},t,x_1,x_2,b)$ is the limit of $g(\boldsymbol{\beta},t,x_1,x_2,b)$.

Now that it has been shown that $W_{loc}(x_1, x_2|b)$ is asymptotically equivalent to $\tilde{W}_{loc}(x_1, x_2|b)$ it is sufficient to show that $\tilde{W}_{loc}(x_1, x_2|b)$ and $\hat{W}_{loc}(x_1, x_2|b)$ are asymptotically equivalent. We will first prove the tightness of $\tilde{W}_{loc}(x_1, x_2|b)$. The first term in (1) is tight since $[I_i(x_1, x_2, b) - \tilde{g}(\boldsymbol{\beta}, t, x_1, x_2, b)]$ is bounded (Lemma 1 from ?). By the law of large numbers,

$$\mathbf{I}^{-1}(\boldsymbol{\beta}) \sum_{i=1}^{n} \int_{0}^{\tau} \left[I_{i}(x_{1}, x_{2}, b) V_{i}(u) \exp(\boldsymbol{\beta} \mathbf{X}_{i}) \left[\mathbf{X}_{i} - \tilde{\mathbf{X}}(\boldsymbol{\beta}, u) \right] \right] d\Lambda(u)$$

converges to some non-random function and since $\left[\mathbf{X}_{i} - \tilde{\mathbf{X}}(\boldsymbol{\beta}, u)\right]$ is a deterministic function, implies $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{0}^{\tau} \left[\mathbf{X}_{i} - \tilde{\mathbf{X}}(\boldsymbol{\beta}, u)\right] dM_{i}(u)$ converges in distribution implying tightness. Therefore, the entire stochastic process, $\tilde{W}_{loc}(x_{1}, x_{2}|b)$, is tight.

For fixed t and (x_1, x_2) , $\tilde{W}_{loc}(x_1, x_2|b)$ is essentially the sum of n independent and identically distributed zero-mean random vectors. By the multivariate central limit theorem, the finite-dimensional distributions of $\tilde{W}_{loc}(x_1, x_2|b)$ are asymptotically zero-mean normal, implying the same for $W_{loc}(x_1, x_2|b)$. This fact, together with the tightness of $W_{loc}(x_1, x_2|b)$, implies that $W_{loc}(x_1, x_2|b)$ converges weakly to a zero-mean Gaussian process with covariance function, $E\left(\frac{1}{n}\tilde{W}_{loc}(x_{1a}, x_{2a}|b)\tilde{W}_{loc}(x_{1b}, x_{2b}|b)\right)$ equals

$$E\left(\int_{0}^{\tau} h_{k}(\boldsymbol{\beta}, x_{1a}, x_{2a}, u)h_{k}(\boldsymbol{\beta}, x_{1b}, x_{2b}, u)V_{k}(u)\exp(\boldsymbol{\beta}\mathbf{X}_{k})d\Lambda(u)\right),$$
(2)

where

$$\begin{aligned} h_k(\boldsymbol{\beta}, x_1, x_2, u) &= \begin{bmatrix} I_i(x_1, x_2, b) - \tilde{g}(\boldsymbol{\beta}, t, x_1, x_2, b) \end{bmatrix} \\ &- \begin{bmatrix} I_i(x_1, x_2, b) V_i(u) \exp(\boldsymbol{\beta} \mathbf{X}_i) \left[\mathbf{X}_i - \tilde{\mathbf{X}}(\boldsymbol{\beta}, u) \right] \end{bmatrix} d\Lambda(u) \\ &\times \mathbf{I}^{-1}(\boldsymbol{\beta}) \sum_{i=1}^n \int_0^t \left[\mathbf{X}_i - \tilde{\mathbf{X}}(\boldsymbol{\beta}, u) \right]. \end{aligned}$$

Next we will establish the weak distribution of $\hat{W}_{loc}(x_1, x_2|b)$. Conditional on the data $(T_i, \delta_i, \mathbf{X}_i, s_i, r_i)(i = 1, ..., n)$, the only random components in $\hat{W}_{loc}(x_1, x_2|b)$ are the independent mean 0 variance 1 variables $(G_1, ..., G_n)$. Thus it follows from the multivariate central limit theorem that, conditional on the data, the finite-dimensional distributions of $\hat{W}_{loc}(x_1, x_2|b)$ are asymptotically zero-mean normal. Since $\hat{W}_{loc}(x_1, x_2|b)$ consists of monotone functions in (x_1, x_2) , which are manageable, the functional central limit theorem implies that $\hat{W}_{loc}(x_1, x_2|b)$ is tight. By the strong consistency of $\hat{\boldsymbol{\beta}}$ and $\hat{\Lambda}_0(.)$ (?) and ?)),

$$E\left(\hat{W}_{loc}(x_1, x_2|b) - \hat{W}^*_{loc}(x_1, x_2|b)^2\right) \to 0$$

almost surely, conditional on the data, $((T_i, \delta_i, \mathbf{X}_i, s_i, r_i))$, where

$$\hat{W}_{loc}^*(x_1, x_2|b) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \int_0^\tau h_i(\boldsymbol{\beta}, x_1, x_2, u) dN_i(u) G_i.$$

Therefore, conditional on $(T_i, \delta_i, \mathbf{X}_i, s_i, r_i)$, the asymptotic covariance function for $\hat{W}_{loc}(x_1, x_2|b)$ is

$$\frac{1}{n}\sum_{i=1}^{n}\int_{0}^{\tau}h_{i}(\boldsymbol{\beta}, x_{1a}, x_{2a}, u)h_{i}(\boldsymbol{\beta}, x_{1b}, x_{2b}, u)dN_{i}(u)$$

which converges almost surely to (2) by the law of large numbers since $V_i(u) \exp(\boldsymbol{\beta} \mathbf{X}_i) \lambda_0(u)$ is the intensity function of $N_i(u)$.

References

- Lin, D., Wei, L. and Ying, Z. (1993). Checking the Cox model with cumulative sums of martingale-based residuals. *Biometrika* 80, 557–572.
- Shorack, G. and Wellner, J. (1986). *Empirical Processes with Applications in Statistics*. Wiley, New York.
- Tsiatis, A. (1981). A large sample study of Cox's regression model. Annal of Statistics 9, 93–108.