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A Dirichlet Process Mixture Model for Survival
Outcome Data: Assessing Nationwide Kidney
Transplant Centers
Lili Zhaoa∗, Jingchunzi Shia, Tempie H. Shearona, Yi Lia

Mortality rates are probably the most important indicator for the performance of kidney transplant centers.
Motivated by the national evaluation of mortality rates at kidney transplant centers in the United States, we seek
to categorize the transplant centers based on the mortality outcome. We describe a Dirichlet process model and
a Dirichlet process mixture model with a half-cauchy prior for the estimation of the risk-adjusted effects of the
transplant centers, with strategies for improving the model performance, interpretability as well as classification
ability. We derive statistical measures and create graphical tools to rate transplant centers and identify outlying
groups of centers with exceptionally good or poor performance. The proposed method was evaluated through
simulation, and then applied to assess kidney transplant centers from a national organ failure registry. Copyright
c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Monitoring and tracking the performance of health care providers, such as hospitals, nursing homes, dialysis facilities or
surgical wards, ensures the delivery of high quality care to the vulnerable patient population [1]. This article is in response
to the urgent need for the evaluation of kidney transplant centers in the United States with respect to their mortality rates
after transplantation. The data include patients in the Scientific Registry of Transplant Recipients (SRTR) who received
their kidney from 2008 to 2011. A total of 56455 kidney transplants were performed at 242 transplant centers.

There is a large amount of literature describing methods for the evaluation of center performances and identification
of outlying centers with extremely good or poor performance. Data used to evaluate performance include binary
(standardized) mortality data, counts of adverse events, or continuous data measuring quality of life. Some examples of
using parametric approaches can be found in [2, 3, 4, 5]. Among these articles, Liu et al. [2] and Jones and Spiegelhalter
[3] used a normal hierarchical (random effects) model for the center effects. As we know, random effects models improve
estimation by borrowing information across transplant centers, and thus shrinking estimates of the center effects toward
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the overall mean and leading to a reduced variation of the estimates. However, the smaller variance is achieved at the cost
of bias and inappropriate shrinkage could prevent the centers with exceptionally good or poor performance from being
identified. For this reason, He et al. [5] and Kalbfleisch and Wolfe [4] prefer a model with center effects being considered
as fixed, leading to independent (no shrinkage) center estimates. It seems that a desirable model would combine the
advantages of both the fixed and random effects models, in the sense that it would allow borrowing strength across similar
centers, but avoid shrinking outlying centers towards the population mean.

Moreover, in both random or fixed effects models, it is not immediately clear how unusual centers, i.e., any with
exceptionally good or poor performance, can be identified. An common strategy is to measure the deviation of each
transplant center relative to the population average using a p-value or an (adjusted) Z-score derived from an assumed
parametric or empirical null distribution [6, 4]. However, ideally a model would provide an in-built diagnostic measure
for centers with unusual outcomes.

Ohlssen et al. [7] applied a Dirichlet process (DP) model and a Dirichlet process mixture (DPM) model to the problem
of hospital comparisons using mortality rates. The non-parametric Bayesian approach satisfies the above requirements. It
allows for a more flexible distribution of hospital effects and accommodates outlying hospitals. Furthermore, the embedded
clustering feature in Dirichlet process models provides inherent diagnostic measures to identify outlying centers.

However, Ohlssen et al. [7] considered binary mortality data. In our application, majority of data are censored; as of
Jan 31, 2013, 93% patients were still alive. Therefore, we extend the work of Ohlssen et al. to estimate center effects
with survival outcomes (i.e., time-to-death), in which center effects are represented as random effects (frailties) in a Cox
proportional hazards model. The model with a mixture of points (DP) or mixture of normals (DPM) provides a more
flexible distribution for the center effects compared to a parametric frailty model. More importantly, the model classifies
centers into different subgroups (clusters) and centers within the same cluster have similar mortality rates (performance).
To our knowledge, this would be the first attempt to apply such an approach to evaluate survival outcomes of nationwide
transplant centers.

The remaining of the article is organized as follows. In Section 2 we describe a DP model and a DPM model for
the estimation of center effects in a Cox proportional hazards model, propose strategies to improve model performance
and create graphical tools to evaluate centers. In Section 3 we present simulation studies to investigate the clustering
performance and shrinkage effects for data with different clustering structures. In Section 4 we illustrate the analysis on
the Kidney transplant data. Section 5 is the concluding discussion.

2. MODEL

2.1. Cox Proportional Hazards Model

The data are denoted by {(tij , δij , xij), i = 1, · · · , N ; j = 1, · · · , ni}, where tij is the observed event time for patient j in
transplant center i; δij = 1 if tij is an observed failure time and 0 if the failure time is right censored at tij , and xij is a
p-dimensional vector of covariates.

Under the proportional hazards model, we have

λ(tij) = λ0(tij) exp{αxij + βi},

where α denotes the effects of patient-level covariates, and βi is the effect associated with center i after adjusting for
patient-level covariates. The baseline hazard, λ0(t), is assumed to be piecewise constant on a partition comprised of K
disjoint intervals, yielding the piecewise exponential model [8, 9]. That is, λ0(t) =

∑K
k=1 λkI(ak−1 < t ≤ ak), where
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a0 = 0 and aK = max{tij}. Let λ = (λ1, · · · , λK), the likelihood for (α,λ, β) is given by

L(α,λ, β) =

N∏
i=1

ni∏
j=1

f(N ij , xij ,∆ij ;α,λ, β)

and

f(N ij , xij ,∆ij ;α,λ, β) =

K∏
k=1

exp{− exp{log λk + αxij + βi}∆ijk}

{exp{log{λk}+ αxij + βi}∆ijk}Nijk , (1)

where N ij = (Nij1, · · · , NijK), and Nijk takes a value of one if tij ∈ (ak−1, ak] and δij = 1 and Nijk is zero otherwise.
Define ∆ij = (∆ij1, · · · ,∆ijK), and ∆ijk = (min{ak, tij} − ak−1)+ with x+ as max(x, 0).

In this article the attention is focused on modelling random center effects, β1, · · · , βN , which characterize
heterogeneities of transplant centers. A large value of βi corresponds to a high mortality rate (poor performance) associated
with center i. Often β′is are assumed to be generated from some parametric distribution such as log-normal, gamma,
positive stable, etc. In the next section, we propose to estimate the random effects by a non-parametric Bayesian model.

2.2. Truncated Stick-breaking Process

To model the random center effects of β1, · · · , βN , we first consider a model of a mixture of point masses using a Dirichlet
process prior,

β1, · · · , βN ∼ G

G ∼ DP(a,G0),

where G0 corresponds to a best guess for G as a priori and a expresses confidence in this guess.
The stick-breaking representation [10] implies that G ∼ DP(a,G0) is equivalent to

G =

∞∑
h=1

πhδβh
, βh ∼ G0, and

∞∑
h=1

πh = 1, (2)

where G is a mixture of countably but infinite atoms, and these atoms are drawn independently from the base distribution
G0, and δβ is a point mass at β. In our study, an atom is like a cluster (i.e., a subgroup of centers), πh is the probability
assigned to the hth cluster, βh is the value of that cluster, and all transplant centers in a cluster share the same βh. In
(2) πh = Vh

∏
l<h(1− Vl), which is formulated from a stick breaking process, with Vh ∼ Beta(1, a) for h = 1, · · · ,∞.

In this stick breaking process, V1 is the proportion of the stick broken off and assigned to β1, and V2 is the proportion
of the remaining 1− V1 length stick assigned to β2, and so on. For values of a close to zero, V1 ≈ 1, so πh ≈ 1, which
essentially assign all probability weight to a single cluster, while for large a, each of the clusters is assigned a vanishingly-
small weight, so the number of clusters could be as many as the number of centers. In this article, we fix α = 1, a widely
used choice in applications that favors a few clusters [11].

One potential issue with this representation of a mixture of point masses is that it assumes a discrete distribution for
the random effects so that different centers in a cluster have exactly the same random effect values. It may be more
realistic to assume that centers in a cluster have similar, but not identical, random effect values. To accomplish this, let
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βi ∼ N(µh, σ
2
h) and (µh, σ

2
h) ∼ G. That is, (2) becomes

G =

∞∑
h=1

πhN(µh, σ
2
h), (µh, σ

2
h) ∼ G0, and

∞∑
h=1

πh = 1 (3)

In this case, the random distribution, G, is characterized as a DP mixture (DPM) of normals [12]. A mixture of normals
allow a flexible continuous random-effects distribution of the center effects. (Readers can refer to a book by Dunson [11]
for a detailed review of the DP and DPM model).

Recent research has focussed on using the constructive definition of the DP to produce practical MCMC algorithms
[13]. The principle is to approximate the full process by truncating the DP(M) at a maximum number of clusters H , so
that

G =

H∑
h=1

πhδβh
in DP and G =

H∑
h=1

πhN(µh, σ
2
h) in DPM

A large H provides an accurate approximation to the full DP(M) but requires a large computation effort. Strategies have
been proposed to specify H[14, 7]. In this study, we are interested in detecting subgroups (clusters) of centers with
exceptionally good or poor performance compared to the population average, so we set the maximum number of clusters
to be 5 (i.e., H = 5) in both simulation studies and the real case example. We also evaluate the sensitivity of the model
with a larger H .

2.3. Classify Centers into Different Clusters

The blocked Sampler of Ishwaran and James [13] is used to allocate each center to one of the clusters by sampling the label
Zi (i = 1, · · · , N ) from a multinomial conditional posterior. In the DP model, probabilities in the multinomial distribution
are :

Pr(Zi = h|−) =
{Vh

∏
l<h(1− Vl)}

∏ni

j=1 f(N ij ,∆ij , xij ;α,λ, βh)∑H
r=1{Vr

∏
l<r(1− Vl)}

∏ni

j=1 f(N ij ,∆ij , xij ;α, λ, βr)
,

where f(N ij ,∆ij , xij ;α,λ, β) is defined in (1).
In the DPM, the probabilities are

Pr(Zi = h|−) =
{Vh

∏
l<h(1− Vl)}

∏ni

j=1{N(βi;µh, σ
2
h)}η∑H

r=1{Vr
∏
l<r(1− Vl)}

∏ni

j=1{N(βi;µh, σ2
h)}η

(4)

Motivated by the work of Hofmann [15], we introduce an tempering parameter η in (4). Similar strategies have been used
in simpler mixture models for efficient Gibbs sampling [16]. When η = 1, the allocation probability is weighted by the
regular likelihood; when η > 1, the contribution of each observation is strengthened. Our simulation studies reveal that an
η of 2 leads to significantly improved clustering performance compared to an η of 1, especially when the prior for cluster
parameters (such as σ2

1 = σ2
2 = · · · = σ2

H ) are weak. In different contexts, such as in adaptive randomization trials [17],
a similar annealing parameter (η < 1) has been found useful in making randomization more balanced between treatment
groups.

2.4. Centered Stick-breaking Process

In parametric hierarchical models, it is a standard practice to place a mean constraint on the latent variable distribution
for sake of identifiability and interpretability [18, 19]. In this article we center the Dirichlet process to have zero mean.
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Following Yang et al. [18], we estimate the mean of the process, µmG , at the mth MCMC iteration as

µmG =

H∑
h=1

V mh
∏
l<h

(1− V ml )βmh ,

where V mh and βmh are the posterior samples from the un-centered process defined in (2), and βmi − µmG (h = 1, · · · , H) is
the “centered” estimate for center i at the mth iteration. The same idea applies to the DPM model.

Centering the process improves model performance in two aspects. First, it improves MCMC convergence and mixing
rates. Second, an “centered” estimate can be interpreted as a deviation from the population average.

2.5. Prior Specification

In model (2) and (3), G0 is often chosen to have a normal distribution. In DP model βh ∼ N(µ0, σ
2
0) (h = 1, · · · , H). The

hyperparemters (µ0, σ
2
0) can be fixed, or assigned a normal-inverse gamma hyperprior. A hyperprior would allow the base

distribution having unknown mean and variance and provide a shrinkage of center effects towards the overall mean. In
DPM model we assumed that µh ∼ N(µ0, σ

2
0), (h = 1, · · · , H), with a normal hyperprior for µ0 and a half-cauchy prior

for σ0 [20], i.e., f(σ0) ∝
(
1 + (σ0

A )2
)−1

, with a smaller A indicating a stronger prior information and a greater shrinkage.
This Cauchy prior behaves well for a small number of clusters and it restricts σ2

0 away from very large values and have
better behavior near zero, compared to the inverse-gamma family [20]. We also assume that 1/σ2

h ∼ Gamma(e0, f0) and
fix hyperparemters (e0, f0) to be weakly informative, since fully non-informative priors are not possible in a mixture
context [21].

In the Cox Proportional Hazards model, the gamma process is used as a prior for the cumulative baseline hazard function
Λ0 [22], i.e., Λ0 ∼ GP(c0Λ∗0, c0), where Λ∗0 is often assumed to be a known parametric function. For example, Λ∗0 = b0y

k0

corresponds to the Weibull distribution, and c0 represents the degree of confidence in this prior guess. Normal priors are
used for the effect of covariates, α, and gamma priors are used for precision parameters.

2.6. Statistical Measures to Rate Centers

In this section, we propose metrics to evaluate and cluster N transplant centers by modelling random effects βi · · · , βN .
A simple metric to rate transplant centers is their ranks. At each MCMC iteration, βi (i = 1, · · · , N) is ranked; without
ties, the smallest βi has rank 1 and the largest βi has rank N . Over all MCMC iterations, we obtain a distribution of
ranks for each center. Another useful metric to assess pairwise clustering between centers is a N ×N matrix of posterior
probabilities of two centers being classified into the same cluster [7, 23]. This posterior probability between any two
centers is calculated as the number of times two centers are assigned into the same cluster across all MCMC iterations.
We combine the above two measures and graphically represent the N ×N probability matrix using a heat map where
transplant centers are ordered by their posterior means of the ranks. This heat map reveals a clustering structure of the
studied centers that facilitates rating centers, as well as identifying outlying groups of centers.

Additionally, in order to visually detect outlying centers, we calculate the proportion of centers in the same cluster as
center i, denoted by PS. Together with the rank (percentile) statistics, we create a graph that helps identify centers that
are in isolated small clusters with exceptionally low or high ranks.

3. SIMULATION STUDIES

In this section we conduct simulation studies to investigate performance of the proposed DP and DPM models, in
terms of accurately estimating center effects β1, · · · , βN and correctly identifying true clustering structures. We generate
patient survival data for N = 48 transplant centers. Specifically, survival times are generated from a Cox model [24],
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S(t|centeri) = exp[−Λ0(t) exp(βi)], where Λ0 is the cumulative hazard function of a Weibull distribution, with a scale
parameter of one and a shape parameter of 0.8, suggesting the population mortality rate decreases over time, which is
observed in the Kidney transplant data. For illustration purposes, we do not include covariates in the simulation. Center
effects β1, · · · , β48 are generated from a normal distribution, and a value of βi larger (smaller) than zero represents the
mortality rate of center i below (above) the population average. Different values of βi allocate 48 centers into 3 subgroups
(true clusters) as shown in Table 1. For example, in Scenario I, the first 16 centers, β1, · · · , β16, are simulated from a
normal distribution with a mean −0.69 and a standard deviation of 0.2, which form a cluster (denoted by C1) with the
above-average performance; likewise, the next 16 centers form a cluster (C2) with the population-average performance
and the last 16 centers form a cluster (C3) with the below-average performance. βi of −0.69 and 0.69 correspond to a
hazard ratio of 0.5 and 2 relative to the population average, respectively. These clinically meaningful ratios are expected
to be detected in the real data analysis. In Scenario IV, we generate all βi (i = 1, · · · , 48) from N(0, 0.3) to investigate if
the model can correctly assign all centers into a single cluster. In all scenarios, within each cluster, the first half centers
have 20 patients (n = 20) and the other half centers have 40 patients (n = 40).

Table 1. Data generated for 48 transplant centers with 3 clusters

Scenario C1 C2 C3
I ] centersa 16 16 16

βi N(−0.69, 0.22) N(0, 0.22) N(0.69, 0.22)

II ] centers 8 24 16
βi N(−0.69, 0.22) N(0, 0.22) N(0.69, 0.22)

III ] centers 4 40 4
βi N(−0.69, 0.12) N(0, 0.22) N(0.69, 0.12)

a ] centers denotes number of centers; the first half centers consist of
20 patients and the other half centers consist of 40 patients.

We use three models described in section 2.5 below to estimate center effects for the above simulated data:

1. DP: a DP model with fixed hyperparameters, i.e., (µ0, σ
2
0) are fixed.

2. DP-HP: a DP model with a random normal-inverse gamma hyperprior for (µ0, σ
2
0).

3. DPM: a DPM model with µh ∼ (µ0, σ
2
0), where µ0 has a normal hyperprior and σ0 has a half-cauchy prior with

A = 1.

The DP model, with fixed hyperparameters, does not induce shrinkage between clusters, but shrinks centers within the
same cluster to a single estimate. In contrast, DPM allows shrinkage between- and within-clusters with a smaller A
indicating a stronger shrinkage (A of 1 is chosen to be higher than we expect for the standard deviation of the underlying
µ′hs, so that the model will constrain σ0 only weakly). Intuitively, DP-HP could have a stronger shrinkage than DPM since
DP-HP has the strongest shrinkage within cluster by forcing all centers within a cluster having the same estimate, as well
as a between-cluster shrinkage that is induced by a hyperprior for (µ0, σ

2
0).

We compute three Bayesian model comparison criteria for selecting the best model: modified Deviance Information
Criterion (DIC3) [25], Watanabe-Akaike information criterion (WAIC) [26] and log-pseudo marginal likelihood (LPML)
[9]. DIC3 is preferred in our setting over the standard DIC proposed by Spiegelhalter [27] since it correctly reflects the
effective number of parameters in mixture models. WAIC was proposed recently and can also be viewed as an improvement
over the standard DIC and it also approximates Bayesian cross-validation. It is invariant to parametrization and also works
for singular model [28]. LPML is a cross-validated leave-one-out measure of a models ability to predict the data. It is valid
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Table 2. Parameter estimation with respect to the absolute bias (Bias), standard deviation (SD) and mean square error
(MSE), based on 1000 simulated datasets.

DP DPM
Scenario n C1 C2 C3 C1 C2 C3

I

Bias 20 0.15 0.03 0.12 0.11 0.02 0.08
40 0.08 0.02 0.06 0.06 0.02 0.02

SD 20 0.24 0.28 0.25 0.30 0.27 0.27
40 0.23 0.21 0.22 0.26 0.18 0.24

MSE 20 0.08 0.08 0.08 0.10 0.07 0.09
40 0.06 0.04 0.05 0.07 0.03 0.06

II

Bias 20 0.11 0.09 0.25 0.05 0.09 0.21
40 0.02 0.11 0.17 0.01 0.10 0.15

SD 20 0.31 0.21 0.26 0.33 0.22 0.28
40 0.29 0.15 0.25 0.28 0.17 0.25

MSE 20 0.11 0.05 0.13 0.11 0.06 0.12
40 0.09 0.04 0.09 0.08 0.04 0.08

III

Bias 20 0.35 0.00 0.30 0.28 0.01 0.25
40 0.21 0.01 0.15 0.16 0.01 0.15

SD 20 0.30 0.12 0.27 0.34 0.14 0.26
40 0.31 0.09 0.26 0.30 0.12 0.25

MSE 20 0.21 0.01 0.16 0.20 0.02 0.13
40 0.14 0.01 0.09 0.12 0.01 0.09

for small and large samples and does not suffer from a heuristic justification based on large sample normality. The best
model should have the smallest DIC3 and WAIC and largest LPML.

We also calculate the mean classification error to evaluate the clustering performance. In section 2.6, we define aN ×N
matrix of posterior probabilities of two centers being classified into the same cluster. If the true clustering structure
is known (such as in the simulation studies), a N ×N (0, 1)−matrix would represent a true probability matrix with 1
indicating a pair of centers in the same cluster and 0 indicating they are not in the same cluster. The deviation of the
posterior probability matrix from the true probability matrix depicts a N ×N matrix with classification errors. First we
calculate the average error for all pairs of centers in the same cluster and for all pairs of centers not in the same cluster
separately, then we average these two types of errors to obtain the mean classification error (MCE). The smaller the mean
classification error (0 ≤ MCE ≤ 1), the better the clustering performance.

Posterior computation is presented in the Appendix (item 2-8). The models are implemented in R. All normal priors are
assumed to have a mean of zero and variance of 100. The baseline hazard is assumed to have an exponential distribution
with b0 = 1 and c0 = 0.1 (a robust prior used in [29]) and the time axis is partitioned into 5 intervals based on the observed
quantiles. All the priors are set to be quite weak. With a burn-in of 1000 iterations, an additional 2000 iterations are used
for inference. In calculation of allocation probabilities in the DPM model of (4), we observe that η = 2 significantly
improved clustering performance compared to η = 1; when η = 2, the mean classification error is 0.29, 0.27 and 0.25 in
Scenario I, II and III, respectively, which are much smaller than the that of 0.49, 0.49 and 0.47 observed when η = 1. The
mean classification error with η = 3 is very similar to η = 2. Additionally, estimates of center effects are very close for
different values of η. Since the setting of our simulation mimics of the real example, we present the results based on η = 2

in both simulation studies and the real case study as followed.
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Table 3. Diagnosis statistics under four studied scenarios.

Scenario DP DP-HP DPM

I DIC3 6157 6154 6142
WAIC 6170 6167 6155
LPML -3062 -3061 -3055

II DIC3 6414 6418 6394
WAIC 6430 6433 6407
LPML -3189 -3196 -3181

III DIC3 6311 6318 6316
WAIC 6323 6433 6327
LPML -3139 -3142 -3142

IV DIC3 6382 6386 6380
WAIC 6382 6386 6383
LPML -3182 -3184 -3179
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Figure 1. Pairwise posterior probabilities of two centers assigned to the same cluster under four scenarios using the DP model (the first row) and the DPM model (the second row),
with H = 5 and η = 2. White, red and blue color corresponds to a probability of equal to, larger and less than 0.5, respectively; The darker the red, the closer the probability is
to 1; the darker the blue, the closer the probability is to 0. The heat map of DP-HP is very similar to DP, so their heat maps are not presented.

Table 2 shows the parameter estimations in Scenario I-III, with respect to the absolute bias (Bias), standard deviation
(SD) and mean square error (MSE), based on 1000 repeated datasets. As expected, centers with n = 40 have more
accurate estimates compared to centers with n = 20, as evidenced by a smaller bias, SD and MSE. Surprisingly, parameter
estimations are very similar between DP-HP and DP models, so we only present the DP for illustration. It is also interesting
to note that, in both DP and DPM models, estimate in a small clusters can be significantly biased toward a large cluster.
In Scenario IV, the mean estimate of center effect is very close to the true mean of zero (-0.0002 and 0.0004 for centers
with n = 20 and n = 40, respectively). Similarly, centers with a larger sample size have smaller SD and MSE (results
not shown here). As indicated by the diagnostic statistics in Table 3, when data consist of a few clusters, and each with
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Table 4. Mean classification errors under four studied scenarios.

Scenario n DP DPM

I 20 0.32 0.36
40 0.26 0.31

II 20 0.29 0.31
40 0.24 0.26

III 20 0.27 0.29
40 0.22 0.25

IV 20 0.19 0.21
40 0.19 0.21

a decent number of centers (such as Scenario I and II), DPM is a better choice. A DP model is slightly better if a cluster
consisting of a large number of centers is accompanied by a few small outlying clusters (such as Scenario III). In the last
scenario when there is only a single cluster, DP and DMP perform similarly.

Next, we look at the clustering performance. Figure 1 displays the estimated clustering structure for the DP and DPM
model under four scenarios over 1000 repeated datasets. Each heat map is created based on 48× 48 matrix, containing
pairwise posterior probabilities between centers as defined in section 2.6. Since we know the true cluster status for each
center, centers are ordered by their true IDs. It is apparent that the true clustering structure is well represented in all
scenarios in both DP and DPM models. For example, in Scenario I, the model correctly identifies three clusters (subgroups)
as characterized by 3 red squares, and each red square consists 16 centers having high probabilities of being classified into
the same cluster; the blue square represents small probabilities of the 16 below-average centers being classified into the
same cluster as the 16 population-average centers, and the probabilities are even smaller (darker blue) between the 16
below-average and the 16 above-average centers. Furthermore, centers with a large sample size (n = 40) are more likely
to be classified correctly than centers with a small sample size (n = 20), as evidenced by smaller mean classification errors
in Scenario I-III as shown in Table 4. It is interesting to note that the DP model seems to have (slightly) better clustering
performance compared to the DPM model. In Scenario IV, all centers are correctly assigned to a single cluster (see the
last column of Figure 1), but the clustering performance is similar with different sample sizes (mean classification errors
are the same for n = 20 and n = 40).

4. APPLICATION

We apply our model to evaluate nationwide transplant centers in the US. We exclude all centers with less than 10 patients
in total, leaving data for 213 transplant centers. The number of patients per center has a median of 198 and an interquartile
range of (111, 356). Survival outcome is defined from the time of kidney transplantation to death; patients who are alive
at the last follow-up time point were considered to be right centered. A total of nine patient-level covariates are selected
using a forward selection algorithm and also per relevant medical literature, including Cold ischemia time, Peak renal
reactive antibody level (PRRA), Body mass index, Time on renal replacement therapy (TRRT), Donor race, Recipient
race, Donor history of Diabetes, Previous Solid Organ Transplant, Recipient Diagnosis. Due to the retrospective nature of
the analysis, values are missing for some of those characteristics. For instance, there are 16.47% missing data in TRRT
and 2.14% missing in PRRA. In order to include patients with partially missing covariates while reserving the original
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covariate distributions, we create a binary variable for each covariate indicating if the data is missing for each subject.
For example, a continuous covariate is created into two variables with one variable containing the original value and the
other variable containing one if the data is missing and zero otherwise. By doing so, we create 18 covariates. Due to the
large number of transplants (> 50000) and the large dimension of patient-level covariates, Kalbfleisch and Wolfe [4] used
a two-stage approach to obtain the risk-adjusted center effects. In the first stage, they estimated patient-level covariates
from a Cox model stratified by transplant centers; in the second stage, they derived center effects by fixing the covariate
effects obtained from the first stage. However, we apply a fully Bayesian approach, in which we use a Gibbs algorithm that
alternates between (1) updating effects of covariates with a Metroplis-Hasting algorithm conditional on estimated center
effects, and then (2) updating center effects conditional on estimated covariate effects using a DP or DPM model. Further
details on MCMC sampling is given in the Appendix.

The priors used in the application are the same as in the simulation studies except that 1/σ2
h ∼ Gamma(3, 0.5), which

is also weak relative to the likelihood. Again, H = 5 and η = 2 are used. With a burn-in of 10000 iterations, an additional
20000 iterations were used for posterior inference. It takes about four hours for data to run on an Intel Xeon 3.10 GHz
4GB RAM, x64 Linux computer. We observe that the chain mixes well and the results are robust to different choices of
the initial values.

As a comparison, we also fit a fixed effects model and a normal random effects (NRE) model to the transplant data.
In the NRE model, β1, · · · , βN are assumed to be generated from N(µβ , σ

2
β), and µβ has a normal prior with mean zero

and variance 100 and 1/σ2
β ∼ Gamma(3, 0.5) (same priors as in the DPM model). Figure 2 presents caterpillar plots of

posterior estimates of the 213 centers. Among the four models, the NRE, DP and DPM model have very similar ordering
of the 213 posterior means; for example, three centers with the largest βi and two centers with the smallest βi are exactly
the same for the three models. In Table 5, diagnostic statistics show that a normal random effects model is better than the
fixed effects model, and the DPM model is the best among four models. Compared to the fixed and normal random effects
model, an important feature of the DP and DPM model is to classify centers into subgroups (clusters) and centers in the
same cluster have similar performance (similar β′is). Based on the statistical measures described in section 2.6, we present
discovery steps below for the detection of outlying subgroups of centers.

Table 5. Diagnosis statistics for the kidney transplant data

Model DIC3 WAIC LPML
Fixed effects 41752 41834 -20787
Normal random effects 41718 41764 -20788
DP 41755 41793 -20803
DPM 41692 41723 -20781

Figure 3 depicts outlying centers at two tails, i.e., centers with very low and high percentiles and small probabilities of
being in the same cluster as other centers. In both DP and DPM models, two transplant centers (with id 116 and 178) have
the worst outcomes, that is, the two centers have high ranks (Percentile> 0.8) and having small probabilities (PS< 0.2) of
being assigned to the same cluster as other centers. It is also interesting to note that a few centers with exceptionally good
performance are observed in DPM model but not in DP model.

Next, we illustrate a way to detect outlying groups of centers using the heat map (see Figure 4). This figure is based
on pairwise probabilities and ordered by rank statistics as described in Section 2.6. Using a threshold of 0.5 on the
probabilities, m centers form a cluster if all probabilities in the m×m matrix are larger than 0.5. At the upper right
corner, centers 178 and 116, in both the DP and DPM model, appear to form a cluster (pairwise probability is 0.63 in DP
and 0.71 in the DPM model), which performs significantly worse than the population average; at the lower left corner,
71 centers in the DP model and 24 centers in the DPM model appear to form a cluster that performs above average (all
pairwise probabilities in the 71× 71 and 24× 24 matrix are larger than 0.5). Additionally, another cluster seems to arise
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that performs better than the previously mentioned small outlying cluster at the upper right corner, but still worse than the
population average (37 such centers in the DP and 57 in the DPM model). Compared to the DP model, the DPM model
has more centers that do not clearly belong to a unique cluster, as demonstrated by many overlapping (light) red squares
along the 45 degree diagonal.

We also did sensitivity analysis for the parameters in the model. In this application, we tried a larger H (H = 20 and
H = 50) and considered a random a . We find that a large H does not improve the model performance (DIC3, WAIC and
LPML are the same as fixingH = 5), and data seem to contain little information about estimating the parameter a, leading
to the same, or slightly worse diagnostic statistics, compared to a fixed a (data not shown). We also increased the A to 5

in the half-cauchy prior, this weaker prior provides similar model performance statistics as with A = 1 (DIC3, WAIC and
LPML are similar).

5. DISCUSSION

We proposed a non-parametric Bayesian approach to model random transplant center effects using a Dirichlet process
model and a Dirichlet process mixture model. Random center effects are estimated using either a model of mixture of
points (DP) or a model of mixture of normals (DPM). Compare to parametric frailty models, the proposed DPM (DP)
model is capable of classifying centers into subgroups (clusters), and centers within the same cluster have similar (same)
estimates of center effects. The work has been applied to evaluate long-term mortality rates of kidney transplant centers
from a national organ failure registry. In a Cox Proportional Hazards model, we update patient-level covariates effects
and risk-adjusted center effects in a fully Bayesian framework while classifying centers with different performance. Using
statistical measures and graphical tools (such as rank statistics and heat maps), we first depict outlying individual centers
with exceptional good and poor performance and then make use of the clustering feature of the model to detect outlying
groups of centers with unusual outcomes. In the transplant study, we found that a small cluster of two centers has the worst
performance and a bigger cluster of more than 30 centers has the best performance. These findings will help policy-makers
make detailed inspection of the outlying groups and propose strategies to improve the performance.

To improve the model performance and interpretability for the survival data, we center the Dirichlet process. Without
centering, MCMC chains exhibit very high autocorrelation which has no hope of yielding any meaningful estimates.
Centering the DP process by constraining the mean to zero dramatically improved model convergence and interpretability
of the estimates of the center effects. To increase model’s classification ability, we introduce a tempering parameter in
calculating the allocation probability and observe that η = 2 is a good choice in studied cases.

During the study, we also tried to implement the proposed method in WinBUGS and JAGS. However, it is not
straightforward to incorporate the annealing parameter η in the modeling. We will continue working on it and meanwhile
the R codes will be made available to the public through the author’s web site once it is published.
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Appendix

The Markov chain Monte Carlo procedure for estimating the posterior distributions is implemented by repeatedly drawing
samples from the full conditional distributions of the parameters.

1. The vector of covariates was divided into 3 groups with 6 covariates per group, and α was updated by groups.
Within each group, the corresponding α was updated using the adaptive Metropolis-Hastings algorithm [30]. The
initial estimates of αwas calculated from a Cox model stratified by centers. The multivariate normal proposal density
centered at the previous value, and the covariance in the proposal was “refined” by using the empirical covariance
from an extended burn-in period.

2. Update baseline hazard in interval k(k = 1, · · · , 5) from Gamma(1× 0.1 +Dk, 0.1 +
∑

i∈Rk
exp{αxij +

βi}∆ijk), and Dk and Rk represents the number of death and the number subjects at risk in interval k.

Updates specific to DP Model:
3. Update cluster indicator Zi as specified in 2.3.
4. Update the stick-breaking weights from conditionally conjugate beta posterior distributions:

Vh|− ∼ Beta

(
1 +

N∑
i=1

I(Zi = h), a+

N∑
i=1

I(Zi > h)

)
, h = 1, · · · , H

5. Given the centers with labels specific to cluster h,, update βh by the adaptive rejection algorithm and βh ∼ N(0, 100)

as a priori [9, 31].
6. Update a from a Gamma distribution

a ∼ Gamma

(
1, a0 +H − 1, b0 −

H−1∑
r=1

log(1− Vr)

)
I(0.3, 10)

The prior for a is gamma with hyperparameters a0 and b0, which are constrained in the range from 0.3 to 10.
7. In DP-HP, given β1, · · · , βh, · · · , βH , update (µ0, σ

2
0) using the normal-inverse-gamma conjugacy form Carlin et.

al [32].

Compared to the DP model, there are some changes in the DPM model,

5. Update βi by the adaptive rejection algorithm and with βi ∼ (µZi
, σ2
Zi

) as a priori.
8. Gibbs sampling of cluster-specific parameters and hyperparameters in G0 using the half-cauchy prior can be found

in [20].
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(b) Normal random effects
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(d) DPM

Figure 2. Caterpillar plots of 95% credible intervals for estimates of the 213 center effects in kidney transplant data. The transplant centers were placed in the order of their posterior
means. The dotted vertical line corresponds to the population average.
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Figure 3. The x axis is the mean percentile and the y axis is the mean percentage of centers being in the same cluster as center i for the kidney transplant data using the DP model
(a) and DPM model (b). Isolated data points in the lower left (right) corner depict outlying centers with exceptionally good (poor) performances.
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Figure 4. Heat maps representing pair-wise posterior probabilities of the two centers are classified into the same cluster when H = 5; centers are ordered based on their mean
ranking scores. (a) and (b) are from the DP and DPM model, respectively.
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