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Abstract Identifying important biomarkers that are predictive for cancer patients’
prognosis is key in gaining better insights into the biological influences on the dis-
ease and has become a critical component of precision medicine. The emergence of
large-scale biomedical survival studies, which typically involve excessive number of
biomarkers, has brought high demand in designing efficient screening tools for select-
ing predictive biomarkers. The vast amount of biomarkers defies any existing variable
selection methods via regularization. The recently developed variable screening meth-
ods, though powerful in many practical setting, fail to incorporate prior information
on the importance of each biomarker and are less powerful in detecting marginally
weak while jointly important signals. We propose a new conditional screening method
for survival outcome data by computing the marginal contribution of each biomarker
given priorily known biological information. This is based on the premise that some
biomarkers are known to be associated with disease outcomes a priori. Our method
possesses sure screening properties and a vanishing false selection rate. The utility of
the proposal is further confirmed with extensive simulation studies and analysis of a
diffuse large B-cell lymphoma dataset. We are pleased to dedicate this work to Jack
Kalbfleisch, who has made instrumental contributions to the development of modern
methods of analyzing survival data.
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1 Introduction

Despite much progress made in the past two decades, many cancers do not have a
proven means of prevention or effective treatments. Precision medicine that takes into
account individual susceptibility has become a valid approach to gaining better insights
into the biological influences on cancers,which is expected to benefitmillions of cancer
patients. A critical component of precision medicine lies in detecting and identifying
important biomarkers that are predictive for cancer patients’ prognosis. The emergence
of large-scale biomedical survival studies, which typically involve excessive number
of biomarkers, has brought high demand in designing efficient screening tools for
selecting predictive biomarkers. The presented work is motivated by a genomic study
of diffuse large B-cell lymphoma (DLBCL) (Rosenwald et al. 2002), with the goal
of identifying gene signatures out of 7399 genes for predicting survival among 240
DLBCL patients. The results may address whether the DLBCL patients’ survival after
chemotherapy could be regulated by the molecular features.

The recently developed variable screening methods, such as the sure independence
screening proposed by Fan and Lv (2008), have emerged as a powerful tool to solve
this problem, but their validity often hinges upon the partial faithfulness assumption,
that is, the jointly important variables are also marginally important. Consequently,
they will fail to identify the hidden variables that are jointly important but have weak
marginal associations with the outcome, resulting in poor understanding of the mole-
cular mechanism underlying or regulating the disease. To alleviate this problem, Fan
and Lv (2008) further suggested an iterative procedure (ISIS) by repeatedly using the
residuals from the previous iterations, which has gained much popularity. However,
the required iterations have increased the computational burden, and the statistical
properties are elusive.

On the other hand, intensive biomedical research has generated a large body of
biological knowledge. For example, several studies have confirmed AA805575, a
germinal-centerB-cell signature gene, is relevant toDLBCLsurvival (Gui andLi 2005;
Liu et al. 2013). Including such prior knowledge for improved accuracy in variable
selection has drawnmuch interest. Barut et al. (2016) proposed a conditional screening
(CS) approach in the framework of a generalized linearmodel (GLM)when some prior
knowledge on feature selection is known, and showed that the CS approach provides
a useful means to identify jointly informative but marginally weak associations, and
Hong et al. (2016) further proposed to integrate prior information using data-driven
approaches.

Development of high dimensional screening tools with survival outcome has been
fruitful. Some related work includes an (iterative) sure screening procedure for Cox’s
proportional hazards model (Fan et al. 2010), a marginal maximum partial likelihood
estimator (MPLE) based screening procedure (Zhao and Li 2012), a censored rank
independence screening method which is robust to outliers and applicable to a general
class of survival models (Song et al. 2014). But to the best of our knowledge, all these
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methods essentially posit the partial faithfulness assumption and do not incorporate
the known prior biological information. As a result, they will be likely to suffer the
inability to identify marginally weak but jointly important signals.

To fill the gap, we propose a new CS method for the Cox proportional hazards
model by computing the marginal contribution of each covariate given priorily known
information. We refer to it as Cox conditional screening (CoxCS). As opposed to
the conventional marginal screening methods, our method is more likely to detect
marginally weak but jointly important signals, which will have important biological
applications as shown in the data example section. Moreover, in contrast with most
screening methods that usually employ subjective thresholds for screening, we also
propose a principled cut-off to govern the screening and control the false positives
in light of Zhao and Li (2012). This will be especially important in the presence of
hidden variables.

To demonstrate the utility of CoxCS in recovering important hidden variables, we
briefly discuss using Example 1 in Sect. 4. By design, variable 6 is the hidden variable
in that example as it is only weakly correlated with the survival time marginally. Let
̂βC, j denote the screening statistics by the CoxCS approach (defined in Sect. 2), where
C indexes variables that are pre-included into the model. When C = ∅, the CoxCS
is equivalent to the marginal screening approach for the Cox proportional hazards
model. Figure 1 summarizes the densities of the screening statistics for the hidden
variable 6 and noisy variables 10–1000 for different sets of conditional variables
based on 400 simulated datasets. The results show that with a high probability the
marginal screening statistic for hidden variable 6 is much smaller than those of noisy
variables.When the conditioning set includes one truly active variable, the density plots
show a clear separation between the hidden variables and the noisy variables. When
we include more truly active variables, this separation becomes larger. Interestingly,
when conditional on noisy variables that are correlated with both active and hidden
variables in the model, the chance of identifying the hidden variable using CoxCS
is still higher than the marginal screening. A similar phenomenon was observed in
the GLM setting (Barut et al. 2016). This is because when such “noisy” variables are
correlated with both marginally important variables and hidden variables, they may
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Fig. 1 Density of the screening statistics |̂βC,6| (red) for the hidden variable compared with a mixture of
densities of screening statistics |̂βC,11:1000| (blue) for the noise variables with different conditioning sets:
a C = {∅} which is equivalent to marginal screening; b C = {1} one truly active variables; c C = {1, 2} two
truly active variables; d C = {7, . . . , 10} four noisy variables (Color figure online)
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effectively function as surrogates for the active variables and conditioning on them
can help detect hidden variables.

The theory of CS for GLMhas been established by Barut et al. (2016). But its exten-
sion to the survival context is challenging and elusive, calling for new techniques. To
this end, we propose two new functional operators on random variables to characterize
their linear associations given other random variables: the conditional linear expecta-
tion and the conditional linear covariance. Both are critical to formulate the regularity
conditions for the population level properties of CoxCS with statistically meaningful
interpretations, and facilitate the development of theory for CS approaches in general
settings. A similar concept of the conditional linear covariance has been introduced by
Barut et al. (2016), but it can not be used for the survival outcome data. In summary,
the proposed method is computationally efficient, adapts to sparse and weak signals,
enjoys the good theoretical properties under weak regularity conditions, and works
robustly in a variety of settings to identify hidden variables.

The remaining of this paper is organized as follows. In Sect. 2, we review the Cox
proportional hazards model and present CoxCS approach with some alternatives. In
Sect. 3, we list the regularity conditions and establish the sure screening properties.
In Sect. 4, we further conduct simulation studies to compare our method with the
major competing methods under under a number of scenarios. In Sect. 4, we apply our
method to study the DLBCL data. We conclude with a brief discussion on the future
work in Sect. 5.

2 Model

2.1 The Cox proportional hazards model

Suppose we have n observations with p covariates. Let i and j be respectively
index subjects and covariates. Denote by Zi, j covariate j for subject i , write Zi =
(Zi,1, . . . , Zi,p)

T. Let Ti be the underlying survival time and Ci be the censoring
time. We observe Xi = min{Ti ,Ci } and δi = I [Ti ≤ Ci ], where I (·) is the indicator
function. Assume that there exists τ > 0, such that P(Xi > τ | Zi ) > 0 and assume
that the event time Ti and the censoring time Ci are independent given Zi . Suppose
Ti follows a Cox proportional hazards model

λ(t;Zi ) = λ0(t) exp(α
TZi ), (1)

where λ0(t) is an-unspecified baseline hazard and α = (α1, . . . , αp)
T is the true-

coefficient. Let �0(t) = ∫ t
0 λ0(s)ds be the baseline cumulative hazard function.

Suppose there is a set of covariates that are known a priori to be related to the
survival outcome. Denote by C the indices of these covariates. Let q = |C| be the
number of covariates in C. Write Zi,C = (Zi, j , j ∈ C)T, Zi,−C = (Zi, j , j /∈ C)T,
αC = (α j , j ∈ C)T and α−C = (α j , j /∈ C)T. Note that in our problem, C is known
but both αC and α−C are unknown. Then the true hazard function in (1) is equivalent
to
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Conditional screening for ultra-high dimensional covariates… 49

λ(t;Zi ) = λ0(t) exp(α
T
CZi,C + αT

−CZi,−C). (2)

To estimate αC and α−C , we introduce the independent counting process Ni (t) =
I (Xi ≤ t, δi = 1) and the at-risk process Yi (t) = I [Xi ≥ t]. When p is small, we
can obtain the partial likelihood estimator α̂ = (̂αT

C, α̂T
−C)T by solving the estimation

equation U(α) = 0p with U(α) = (U1(α), . . . ,Up(α))T and

Uj (α) =
n
∑

i=1

∫ τ

0

{

Zi, j − S(1)
j (t,α)

S(0)
j (t,α)

dNi (t)

}

, (3)

with

S(m)
j (t,α) = 1

n

n
∑

i=1

Zm
i, j Yi (t) exp(α

T
CZi,C + αT

−CZi,−C), (4)

for m ∈ {0, 1, 2, . . .}. When p > n, it is computationally and theoretically infeasible
to directly solve Eq. (3). By imposing sparsity on the coefficients, one may maximize
the penalized partial likelihood to obtain solutions. However, when p � n, we need to
employ a variable screening procedure first before performing regularized regression.
We propose a new CS procedure in the next section.

2.2 Cox conditional screening

Wefit themarginalCox regression by including the known covariates inC. Specifically,
for j /∈ C, we have the following marginal Cox regression model

λ j (t;Zi ) = λ j,0(t) exp(β
T
CZi,C + βZi, j ), (5)

from which the maximum partial likelihood estimation equation (̂β
T
C, j ,

̂β j )
T can be

obtained. It is given by the solution of the following equation:

V j (βC, β) = [Vj,k(βC, β), k ∈ C ∪ { j}]T = 0q+1, (6)

with

Vj,k(βC, β) =
n
∑

i=1

∫ τ

0

{

Zi,k − R(1)
j,k(βC, β, t)

R(0)
j,k(βC, β, t)

dNi (t)

}

, (7)

and

R(m)
j,k (βC, β, t) = 1

n

n
∑

i=1

Zm
i,kYi (t) exp(β

T
CZi,C + βZi, j ), (8)

for k ∈ C∪{ j} andm ∈ {0, 1, 2, . . .}. For a given threshold γ > 0. The selected index
set in addition to set C is given by
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̂M−C = { j /∈ C : |̂β j | ≥ γ
}

. (9)

Namely, we recruit variables with large additional contribution given ZC . We refer to
this method as Cox conditional screening (CoxCS).

3 Theoretical results

We establish the theoretical properties of the proposed methods by introducing a few
new definitions along with the basic properties.

3.1 Definitions and basic properties

Let (Ω,F ,P) be the probability space for all random variables introduced in this
paper, where Ω is the sample space, F is the σ -algebra as the set of events and P is
the probability measure.

For any d ≥ 1, any random variable ξ : Ω → R
d and any operator A, denote

by A[• | ξ ] conditional A of • given ξ . For any vector a = (a1, . . . , ap) ∈ R
p,

let aC = (a j , j ∈ C)T be the subvector where all its elements are indexed in C. Let
‖a‖d = d

√

∑p
j=1 |a|dj be the L-d norm for any vector a ∈ R

p. For a sequence of

random variables indexed by {ξn}, ξn = op(1) if and only if for any ε1 > 0 and
ε2 > 0, there exists N such that for any n > N , P[|ξn| > ε1] < ε2.

For simplicity, let T , C , X , Y (t), Z j , Z and δ represent Ti , Ci , Xi , Yi (t), Zi, j , Zi

and δi respectively, by removing the subject index i . Let ST (t | Z) and SC (t) represent
the survival functions for the event time T and censored time C . Let FT (t | Z) =
1 − ST (t | Z).

Definition 1 Let M−C = { j /∈ C, α j 
= 0} and w = ∑

j /∈C I [α j 
= 0] be the true
set of non-zero coefficients and its cardinality in model (1), aside from the important
predictors known a priori.

To study the asymptotic property of (̂β
T
C, j ,

̂β j )
T, define the population level quantity

as follows:

Definition 2 Let (βT
C, j , β j )

T be the solution of the following equations

v j (βC, β) = [v j,k(βC, β), k ∈ C ∪ { j}]T = 0q+1, (10)

with

v j,k(βC, β) =
∫ τ

0

[

s(1)
k (t) − r (1)

j,k (t,βC, β)

r (0)
j,k (t,βC, β)

s(0)
k (t)

]

dt, (11)

where s(m)
k (t) = E

[

Zm
k dN (t)

]

and r (m)
j,k (t,βC, β) = E[R(m)

j,k (t,βC, β)].

123



Conditional screening for ultra-high dimensional covariates… 51

Definition 3 Let βC,0 be the solution of the following equations

vC(βC) = [v j,k(βC, 0), k ∈ C]T = 0q . (12)

To understand the intuition of the population level properties for the CoxCS, we
need to define a conditional linear expectation. A similar concept has been used to
study the conditional sure independence screening (CSIS) in the GLM setting by Barut
et al. (2016). We provide a formal definition here.

Definition 4 For two random variables ζ : Ω → R
d and ξ : Ω → R

p. The condi-
tional linear expectation of ζ given ξ is defined as

E∗(ζ | ξ) = E[ζ ] + AT{ξ − E(ξ)}, (13)

where A = argminB∈Rd×RpE[(ζ −E[ζ ]−BT{ξ −E(ξ)})2 | ξ ]. Also, define notation
E∗(ζ ) = E(ζ ).

Definition 5 For any random variables ζ 1 : Ω → R
d1 , ζ 2 : Ω → R

d2 and ξ : Ω →
R

p. The conditional linear covariance between ζ 1 and ζ 2 given ξ is defined as

Cov∗(ζ1, ζ2 | ξ) = E∗[{ζ1 − E∗(ζ1 | ξ)}{ζ2 − E∗(ζ2 | ξ)} | ξ ]. (14)

Definition 6 Define

v j (βC, β) = v j, j (βC, β) +
∑

k∈C
akv j,k(βC, β),

where vector aC = [ak, k ∈ C]T such that E∗[Z j | ZC] =∑k∈C ak Zk .

We list all the properties of the conditional linear expectation and the conditional
linear covariance in Propositions 1 and 3 in Appendix. They are quite useful for the
theoretical developments of the sure screening property. Also, combining Propositions
1, 4 and Lemma 1 in Appendix, we show the uniqueness of the solution to score
equations in Definitions 3 and 6.

3.2 Regularity conditions

We list all conditions for the theoretical results.

Condition 1 For each j /∈ C and k ∈ C ∪ { j}, there exists a neighborhood of
(βT

C, j , β j )
T, which is defined as

B j = {(βT
C, β)T : ‖(βT

C, β j )
T − (βT

C, j , β j )
T‖1 < δ j }, with δ j > 0,

such that for each τ < ∞.
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1. For m = 0, 1,

sup
t∈[0,τ ],(βT

C ,β)T∈B j

‖R(m)
j,k (βC, β) − r (m)

j,k (βC, β)‖2 → 0,

in probability as n → ∞.
2. There exists a constant L > 0 such that

L = min
j /∈C

[

inf
t∈[0,τ ],(βT

C ,β)T∈B j

{r (0)
j,k (βC, β, t)}

]

.

Of note, {r (0)
j,k (βC, β, t)} does not depend on k. Let δ = max j /∈C δ j .

Condition 2 The covariates Z j ’s satisfy the following conditions.

1. For j ∈ {1, . . . , p}, E[Z j ] = 0 and there exists a constant K0 such that P(Z j >

K0) = 0.
2. Z j is a time constant variable, for all j .
3. All Z j ’s, j ∈ M−C are independent of all Zk’s, k /∈ M−C given ZC .
4. For constant c1 > 0 and κ < 1/2,

min
j∈M−C

∣

∣E[Cov∗(Z j ,P[δ = 1 | Z] | ZC)])∣∣ ≥ c1n
−κ .

Condition 3 There exists a constant K1 such that

‖α‖1 < K1 and ‖(βT
C, j , β j )

T‖1 < K1,

for all p > 0.

Condition 4 For all j /∈ C, there exists a constant M > 0 such that

M‖(̂βT
C, j ,

̂β j )
T − βT

C, j , β j )
T‖2 ≤ ‖V j (̂βC, j ,̂β j ) − V j (βC, j , β j )‖2,

where V j = n−1V j .

To study the sure screening property of our proposed method, we first link β j in
a joint model to its counterpart in a marginal model. Thus we first understand its
properties on the population as well as the sample level.

3.3 Properties on population level

Theorem 1 Suppose Condition 2 holds, β j = 0 if and only if α j = 0 for all j /∈ C.
To identify covariate j ∈ M−C , |β j | needs to be at least O(n−1/2). The following

Theorem 2 specifies the signal strength j ∈ M−C .
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Theorem 2 Suppose Condition 2 holds. There exist constants c2 > 0 and κ < 1/2
such that

min
j∈M−C

|β j | ≥ c2n
−κ .

3.4 Properties on sample level

Theorem 3 proves the uniform convergence of the proposed estimator and the sure
screening property of the procedure.

Theorem 3 Suppose Conditions 1–4 hold. For any ε1 > 0 and any ε2 > 0, there exits
positive constants c3, c4 and integer N such that for any n > N,

1. For any 0 < κ < 1/2,

P

[

max
j∈M−C

|̂β j − β j | >
c2
2

(n−κ + ε1)

]

≤ 2w(q + 1) exp(−c3n
1−2κ) + ε2,

wherew is the size ofM−C , q is the size of C and c2 is the same value in Theorem 2
and c3 does not dependent on ε1, ε2 and κ , but N depends on ε1 and ε2.

2. If γn = c4n−κ , where κ is the same number in Condition 2, then

P

[

min
j∈M−C

|̂β j | > γn

]

≥ 1 − 2w(q + 1) exp(−c3n
1−2κ) − ε2, (15)

where c4 does not depend on ε1, ε2 and κ , thus

lim
n→∞P

[M−C ⊆ ̂M−C
] = 1. (16)

3.5 Alternative methods

In this section we introduce two alternative methods for controlling the false discovery
rate.

Define the information matrix

I j (βC, β j ) = −
(

∂Vj,k(βC, β j )

∂βk′

)

k,k′∈C∪{ j}
, (17)

which is of q + 1 dimension. Denote σ̂ 2
j = [I j (βC, j ,̂β j )]−1

q+1,q+1 be the variance

estimate of ̂β j . For a given threshold γ > 0, we can have a different way to select the
index which is given by

̂M∗
−C =

{

j /∈ C : |̂β j |
σ̂ j

≥ γ

}

. (18)
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We refer to (18) as “CS-Wald”. Zhao andLi (2012) suggested that γ = Φ−1(1− f/2p)
where f is the number of false positive that one is willing to tolerate and Φ(·) is the
standard normal cumulative distribution function. Another alternative to construct the
screening statistics, which is also scale free, is to utilize the partial log likelihood ratio
statistic. Specifically,

�(βC, β) =
n
∑

i=1

∫ τ

0

{

βT
CZi,C + βZi, j − log

(

R(0)
j,k(βC, β, t)

)

dNi (t)
}

. (19)

Suppose (̂β
T
C, j ,

̂β j )
T maximizes (19) for a given j . Then, for a given threshold

γ > 0, the index set can be chosen by considering the following likelihood ratio
statistic.

̂M∗
−C =

{

j /∈ C : �(β̂C, j , β̂ j ) − �(β̂C,0, β = 0) ≥ γ
}

, (20)

where β̂C,0 maximizes �(βC, 0). Hereafter (20) will be referred to as “CS-PLIK”.

4 Simulation studies

The utility of the proposed methods was evaluated via extensive simulations. Denote
byCS-MPLE, a version of CoxCS that is based on the criteria of (9). For completeness,
we considered two other variations of CoxCS, namely, CS-PLIK and CS-Wald. The
finite sample performance of the proposed methods was compared with the following
marginal screening methods designed for the survival data.

– CRIS: censored rank independence screening proposed by Song et al. (2014).
– CORS: correlation screening, which is an extension of sure independence screen-
ing to the censored outcome data by using inverse probability weighting; see Song
et al. (2014).

– PSIS-Wald: Wald test based on the marginal Cox model fitted on each covariate;
see Zhao and Li (2012).

– PSIS-PLIK: partial likelihood ratio test based on the marginal Cox model fitted
on each covariate, which is asymptotically equivalent to Zhao and Li (2012).

We illustrated our methods and compared them with the competing methods on
data simulated as below.

Example 1 The survival time was generated from a Cox model with baseline hazards
function being set to be 1, i.e.,

λ(t | Z) = exp(βTZ),

where Z were generated from the standard normal distribution with equal correlation
0.5 and β = (1T5 ,−2.5, 0Tp−6)

T.
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Fig. 2 Absolute correlation of the survival time and the covariate variables. The blue short-dashed lines
(· · · · ·) represents the distribution of the inactive variables; the green long-dashed lines (– – –) for the active
variables with relatively strong signals; the red solid lines (——) for the hidden active variable (Color figure
online)

Example 2 The survival time was generated from a Cox model with baseline hazards
function being set to be exp(−1), i.e.,

λ(t | Z) = exp(−1 + βTZ),

where β = (10, 0Tp−2, 1)
T and all covariates were generated from the independent

standard normal distribution.

Example 3 The same as Example 2 except that the first p−1 covariateswere generated
from the multivariate standard normal distribution with an equal correlation of 0.9.

Example 4 The same as Example 1 except that the magnitude of the active variables
were reduced to half, i.e., β = (0.5, 0.5, 0.5, 0.5, 0.5,−1.25, 0Tp−6)

T.

The simulated data examples were designed in such a way that variables Z6 in
Example 1 and Z p in Example 3 possess marginally weak but conditionally strong
signals, which makes marginal screening approaches not ideal for identifying them.
Example 4 exhibits a scenario with smaller signal-to-noise ratios, compared with
Examples 1–3. For theGLM,Barut et al. (2016) provided a similar simulation design in
the context of non-censored regression. Figure 2 depicts the distribution of the absolute
correlation between the survival time and the covariate variables, where uncensored
data were used to compute the marginal correlation between the event time and the
covariate using an inverse probability weighting (Song et al. 2014). In Examples 1–3,
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the magnitude of the marginal correlation between the survival and inactive variables
are sometimes even larger than that of between the survival and active variables.
Therefore, it is expected that the competingmethods such as CORSwhich relies on the
marginal correlation between the survival and covariates would be difficult to identify
active variables. Clearly, in Example 1 the marginal signal strength of Z6 is weaker
than most noisy (inactive) variables (Z7 − Z1000), while the marginal signal strength
of Z1000 in Examples 2 and 3 is similar or even lower than most noisy variables. The
marginal correlation between the survival time and each variable is getting weaker
with heavier censoring.

In all these examples, the censoring times Ci were independently generated from
a uniform distribution U [0, c], with c chosen to give approximately 20% and 60% of
censoring proportions. We set n = 100 and varied p from 1000 (high-dimensional)
to 10, 000 (ultrahigh-dimensional). For each configuration, a total of 400 simulated
datasets were generated.

We considered twometrics to compare the performance between different methods:
the minimummodel size (MMS) which is the minimum number of variables that need
to be selected in order to include all active variables, and the true positive rate (TPR)
which is the proportion of active variables that are included in the first n selected
variables. Hence, a method with small MMS and large TPR can be more efficient to
discover true signals. For a fair comparison, we added the number of conditioning
variable in our examples to MMS for the proposed methods (CS-MPLE, CS-Wald
and CS-PLIK). In practice, identifying conditional sets normally requires some prior
biological information. In our simulations, we simply chose the covariate Z1 as the
conditioning variable. In practice, we propose to choose the variable with the highest
marginal signal strength as the conditioning variable, which can be a practical solution
in the absence of prior biological knowledge. In Examples 1–4, we considered two
sets of conditioning sets. The first choice was C1 = {1} since the signal of the first
variable is strong enough to be easily picked by other marginal screening methods.
Our second choice was C2 that consists of one active variable (the first variable in
our examples) and 4 noisy variables. The purpose was to assess the robustness of the
proposed method when the conditioning set is dominated by noisy variables.

Tables 1 and 2 demonstrate the advantages of our proposed methods under the
difficult scenarios as reflected in Examples 1–4. Although the performance of the pro-
posed methods deteriorates a bit in Example 4 due to small signal-to-noise ratios, in
all examples (including Example 4) the proposed methods outperform the marginal
approaches by largely reducing MMS. Moreover, all the marginal screening meth-
ods have had some difficulties in identifying Z6 in Example 1 and Example 4 and
Z1000 in Examples 2 and 3. Indeed, these variables have the lowest priorities to be
included by using the marginal methods. Moreover, the results with C2 demonstrate
that conditioning can be beneficial even if the conditioning set is dominated by noisy
variables.

The performance by CS-MPLE, CS-Wald and CS-PLIK are quite similar in all the
cases in Examples 1, 2, and 4. In Example 3, there is a very high correlation among the
covariate variables, CS-MPLE has a slightly larger MMS compared to the CS-Wald
and CS-PLIK which well control the false discover rate in this cases.
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Table 1 Median minimum model size (MMS) and median true positive rates (TPR) along with their
corresponding IQRs (in the parentheses) based on 400 simulated data sets

(n, p) = (100, 1000) (n, p) = (100, 10000)

Method MMS TPR MMS TPR

CRIS 1000.0 (3.0) 0.50 (0.17) 9995.0 (37.0) 0.17 (0.17)

CORS 944.0 (168.2) 0.33 (0.33) 9466.0 (1101.8) 0.00 (0.17)

Example 1 PSIS-PLIK 1000.0 (0.0) 0.67 (0.17) 10000.0 (2.2) 0.33 (0.17)

CR ≈ 20% PSIS-Wald 1000.0 (0.0) 0.67 (0.17) 10000.0 (2.2) 0.33 (0.17)

CS-PLIK (C1) 152.5 (272.2) 0.83 (0.17) 1322.0 (2253.8) 0.67 (0.17)

CS-Wald (C1) 154.5 (274.5) 0.83 (0.17) 1286.5 (2287.0) 0.67 (0.17)

CS-MPLE (C1) 143.0 (249.0) 0.83 (0.17) 1321.0 (2305.8) 0.50 (0.17)

CS-PLIK (C2) 109.5 (212.0) 0.83 (0.17) 1012.5 (1906.5) 0.67 (0.33)

CS-Wald (C2) 111.0 (206.8) 0.83 (0.17) 1021.0 (1906.0) 0.67 (0.33)

CS-MPLE (C2) 110.0 (199.8) 0.83 (0.17) 1070.0 (1892.8) 0.67 (0.17)

CRIS 926.5 (151.8) 0.33 (0.17) 9429.0 (1405.0) 0.00 (0.17)

CORS 898.0 (152.2) 0.00 (0.17) 8976.0 (1610.0) 0.00 (0.00)

Example 1 PSIS-PLIK 1000.0 (2.0) 0.67 (0.17) 9999.0 (17.0) 0.33 (0.17)

CR ≈ 60% PSIS-Wald 1000.0 (2.0) 0.67 (0.17) 9999.0 (17.0) 0.33 (0.17)

CS-PLIK (C1) 227.0 (351.2) 0.83 (0.17) 2383.5 (3331.5) 0.50 (0.33)

CS-Wald (C1) 227.5 (348.2) 0.83 (0.17) 2403.5 (3233.2) 0.50 (0.33)

CS-MPLE (C1) 228.5 (320.5) 0.83 (0.17) 2229.5 (3046.8) 0.50 (0.17)

CS-PLIK (C2) 206.0 (279.2) 0.83 (0.17) 1012.5 (1906.5) 0.67 (0.33)

CS-Wald (C2) 207.0 (278.0) 0.83 (0.17) 1021.0 (1906.0) 0.67 (0.33)

CS-MPLE (C2) 207.5 (267.2) 0.83 (0.17) 1070.0 (1892.8) 0.67 (0.17)

CRIS 262.5 (401.8) 0.50 (0.00) 2871.0 (4314.0) 0.50 (0.00)

CORS 490.5 (510.8) 0.50 (0.00) 4878.5 (5099.8) 0.50 (0.00)

Example 2 PSIS-PLIK 318.0 (492.8) 0.50 (0.00) 3777.0 (5690.8) 0.50 (0.00)

CR ≈ 20% PSIS-Wald 318.5 (494.2) 0.50 (0.00) 3786.5 (5707.8) 0.50 (0.00)

CS-PLIK (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-Wald (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-MPLE (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-PLIK (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (0.0) 1.00 (0.00)

CS-Wald (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (0.0) 1.00 (0.00)

CS-MPLE (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (0.0) 1.00 (0.00)

CRIS 399.5 (478.0) 0.50 (0.00) 3601.0 (4894.2) 0.50 (0.00)

CORS 603.5 (390.5) 0.00 (0.00) 5988.0 (4353.0) 0.00 (0.00)

Example 2 PSIS-PLIK 325.0 (498.5) 0.50 (0.00) 3942.5 (5679.5) 0.50 (0.00)

CR ≈ 60% PSIS-Wald 322.0 (501.0) 0.50 (0.00) 3915.5 (5679.5) 0.50 (0.00)

CS-PLIK (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (1.0) 1.00 (0.00)

CS-Wald (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (2.0) 1.00 (0.00)
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Table 1 continued

(n, p) = (100, 1000) (n, p) = (100, 10000)

Method MMS TPR MMS TPR

CS-MPLE (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (4.0) 1.00 (0.00)

CS-PLIK (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (4.0) 1.00 (0.00)

CS-Wald (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (5.0) 1.00 (0.00)

CS-MPLE (C2) 6.0 (0.0) 1.00 (0.00) 7.0 (7.2) 1.00 (0.00)

CRIS 1000.0 (0.0) 0.50 (0.00) 10000.0 (0.0) 0.50 (0.00)

CORS 1000.0 (0.0) 0.50 (0.50) 10000.0 (0.0) 0.00 (0.00)

Example 3 PSIS-PLIK 1000.0 (0.0) 0.50 (0.00) 10000.0 (0.0) 0.50 (0.00)

CR ≈ 20% PSIS-Wald 1000.0 (0.0) 0.50 (0.50) 10000.0 (0.0) 0.00 (0.50)

CS-PLIK (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-Wald (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-MPLE (C1) 3.0 (4.0) 1.00 (0.00) 7.5 (33.0) 1.00 (0.00)

CS-PLIK (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (0.0) 1.00 (0.00)

CS-Wald (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (0.0) 1.00 (0.00)

CS-MPLE (C2) 24.0 (29.0) 1.00 (0.00) 168.5 (266.8) 0.50 (0.50)

CRIS 1000.0 (0.0) 0.50 (0.00) 10000.0 (0.0) 0.50 (0.00)

CORS 783.0 (463.8) 0.00 (0.50) 7967.0 (4972.2) 0.00 (0.00)

Example 3 PSIS-PLIK 1000.0 (0.0) 0.50 (0.00) 10000.0 (0.0) 0.50 (0.00)

CR ≈ 60% PSIS-Wald 1000.0 (0.0) 0.00 (0.00) 10000.0 (0.0) 0.00 (0.00)

CS-PLIK (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-Wald (C1) 2.0 (0.0) 1.00 (0.00) 2.0 (0.0) 1.00 (0.00)

CS-MPLE (C1) 20.0 (55.2) 1.00 (0.00) 161.5 (553.5) 0.50 (0.50)

CS-PLIK (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (2.0) 1.00 (0.00)

CS-Wald (C2) 6.0 (0.0) 1.00 (0.00) 6.0 (3.0) 1.00 (0.00)

CS-MPLE (C2) 105.0 (127.5) 0.50 (0.50) 973.5 (1303.2) 0.50 (0.00)

Figure 3 shows that the proposed methods with C1 efficiently identify all active
variables by including much fewer variables than the other methods. Specifically, in
Example 1 the proposed methods are capable of achieving a 100% TPR by choosing
at most one fifth of the variables. In contrast, other competing methods have to include
almost all the variables in order to discover all active variables. In Examples 2 and 3
the proposed methods quickly detect the remaining active variable (Z p) conditioning
on the active variable (Z1), as opposed to the marginal screening approaches that have
to include far more variables to ensure a 100% TPR.

5 Application

We illustrated the practical utility of the proposed method by applying it to analyze
the DLBCL dataset of Rosenwald et al. (2002). The dataset, which was originally
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Table 2 Median minimum model size (MMS) and median true positive rates (TPR) along with their
corresponding IQRs (in the parentheses) based on 400 simulated data sets

(n, p) = (100, 1000) (n, p) = (100, 10000)

Method MMS TPR MMS TPR

CRIS 997.0 (17.0) 0.33 (0.17) 9954.5 (205.0) 0.17 (0.17)

CORS 947.5 (180.5) 0.33 (0.33) 9566.0 (1618.2) 0.00 (0.17)

Example 4 PSIS-PLIK 1000.0 (4.0) 0.67 (0.17) 9997.0 (47.2) 0.33 (0.17)

CR ≈ 20% PSIS-Wald 1000.0 (4.0) 0.67 (0.17) 9997.0 (47.2) 0.33(0.17)

CS-PLIK (C1) 252.0 (383.0) 0.83 (0.17) 2428.0 (3387.2) 0.50 (0.33)

CS-Wald (C1) 253.0 (385.2) 0.83 (0.17) 2451.0 (3394.0) 0.50 (0.33)

CS-MPLE (C1) 250.0 (349.5) 0.83 (0.17) 2320.5 (3354.5) 0.50 (0.17)

CS-PLIK (C2) 237.5 (387.0) 0.83 (0.17) 2248.5 (3610.2) 0.50 (0.17)

CS-Wald (C2) 241.0 (388.8) 0.83 (0.17) 2258.0 (3629.2) 0.50 (0.17)

CS-MPLE (C2) 232.0 (366.5) 0.83 (0.17) 2139.0 (3554.8) 0.50 (0.33)

CRIS 918.0 (144.2) 0.17 (0.33) 9137.0 (1529.2) 0.00 (0.00)

CORS 895.0 (155.0) 0.00 (0.17) 8876.5 (1514.2) 0.00 (0.00)

Example 4 PSIS-PLIK 998.0 (26.0) 0.50 (0.33) 9972.5 (206.0) 0.17 (0.17)

CR ≈ 60% PSIS-Wald 998.0 (26.0) 0.50 (0.33) 9972.5 (212.2) 0.17(0.17)

CS-PLIK (C1) 387.0 (418.8) 0.67 (0.33) 4082.5 (4522.8) 0.33 (0.17)

CS-Wald (C1) 389.0 (423.5) 0.67 (0.33) 4076.5 (4553.5) 0.33 (0.17)

CS-MPLE (C1) 365.5 (377.2) 0.67 (0.33) 3906.5 (4356.5) 0.33 (0.33)

CS-PLIK (C2) 375.5 (472.2) 0.67 (0.33) 4298.5 (4557.8) 0.33 (0.17)

CS-Wald (C2) 373.0 (471.5) 0.67 (0.33) 4283.5 (4585.5) 0.33 (0.17)

CS-MPLE (C2) 373.0 (448.2) 0.67 (0.33) 4151.5 (4479.5) 0.33 (0.17)

collected for identifying gene signatures relevant to the patient survival from time
of chemotherapy, included a total of 240 DLBCL patients with 138 deaths observed
during the followup and a median survival time of 2.8 years. Along with the clinical
outcomes, the expression levels of 7399 genes were available for analysis. In our
subsequent analysis, each gene expression was standardized to have mean zero and
variance 1.

To facilitate the use of our method, we identified the conditional set by resorting
to the medical literature. As gene AA805575, a Germinal-center B-cell signature
gene, has been known to be predictive to DCBCL patients’ survival in the literature
(see Liu et al. 2013; Gui and Li 2005), we used it as the conditional variable in
our proposed procedure. For comparisons, we also analyzed the same data using
various competing methods introduced in the simulation section and computed the
corresponding concordance statistics (C-statistics) (Uno et al. 2011).

Specifically, we randomly assigned 160 patients to the training set and 80 patients
to the testing set, while maintaining the censoring proportion roughly the same in
each set. For each split, we applied each method to select top 31(= 160/ log(160))
variables as suggested by Fan and Lv (2008) using the training set. LASSO was
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Fig. 3 Median number of active variables that are included in the model with different thresholds by
different methods

performed subsequently for refined modeling, with the tuning parameter selected by
the 10-fold cross-validation. The risk score for each subject was obtained by using the
finalmodel selected by LASSO in the training dataset and the C-statistics was obtained
in the testing dataset. A total of 100 splits were made and the average C-statistics and
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Table 3 Summary of C-statistics and the model size for different methods

CRIS CORS PSIS-PLIK PSIS-Wald

C-statistics 0.54 (0.21) 0.58 (0.20) 0.58 (0.19) 0.55 (0.20)

Model size 14.41 (3.00) 6.83 (3.70) 15.22 (2.93) 15.65 (2.89)

CS-MPLE CS-PLIK CS-Wald

C-statistics 0.63 (0.18) 0.63 (0.18) 0.62 (0.19)

Model size 16.74 (3.26) 15.90 (3.01) 16.28 (3.41)

the model size (MS) were reported in Table 3. By the criterion of C-statistics, the
proposed method seemed to have more predictive power.

Our further scientific investigation focused on identifying the relevant genes
by utilizing the full dataset. Applying our proposed method, we selected top
240/ log(240) = 44 genes before using LASSO to reach the final list. It follows
that CS-MPLE, CS-PLIK and CS-Wald selected 20, 16 and 16 genes, respectively.
Among the 22 uniquely selected genes by either of them, 14 genes were overlapped
and were reported in Table 4. Twelve genes among these 22 genes belong to lymph-
node signature group, proliferation signature group, and germinal-center B-cell group
defined byRosenwald et al. (2002).We observed that 13 of these 22 genes were chosen
by at least one of CRIS, CORS, PSIS-PLIK, and PSIS-Wald. On the other hand, gene
AB007866, Z50115, S78085, U00238, AL050283, J03040, U50196, and AA830781,
and M81695 were only identified by using our methods.

In fact, only a few studies have suggested an important role of M81695 (Deb and
Reddy 2003; Chow et al. 2001; Mikovits et al. 2001; Stewart and Schuh 2000) or
AA830781 (Li and Luan 2005; Binder and Schumacher 2009; Schifano et al. 2010)
in predicting DLBCL survival. As the marginal correlation between M81695 and
the survival time and between AA830781 and the survival time are markedly low at
0.008 and 0.097, respectively, these two genes are highly likely to be missed by using
the conventional marginal screening approaches. Indeed, AA830781 was identified
by Schifano et al. (2010) only because of its co-expression or correlation with other
relevant genes. Amore detailed investigation of the functions of the identified genes in
the context of a broader class of blood cancers, including lymphoma, may shed light
on preventing, treating and controlling the lethal blood cancers.

6 Discussion

In this paper, we have proposed a new conditional variable screening approach for the
Cox proportional hazards model with ultra-high dimensional covariates. The proposed
partial likelihood based CS approaches are computationally efficient, with a solid
theoretical foundation. Our method and theory are extensions of the conditional sure
independence screening (CSIS) (Barut et al. 2016), which is designed for the GLM.
In the development of theory, we introduce the new concept of the conditional linear
covariance for the first time, which is useful to specify the regularity conditions for
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the model identifiability and the sure screening property. This also provides a building
block for a general theoretical framework of conditional variable screening in the
context of other semi-parametric models, such as the partially linear single-index
model.

We havemainly focused on studying the theoretical properties of CS-MPLE, which
extends the work of Barut et al. (2016) in the GLM setting, though development of the
inference procedures for the two variants of the proposed method, namely, CS-PLIK
and CS-Wald, will be more involved and out of scope of this paper. However, as indi-
cated by the simulation studies, these twovariantsmay induce substantial improvement
especially when the variables are highly correlated. More research is warranted.

Our work also enlightens a few directions that are worth ensuing effort. First, as
our proposal requires the prior information to be known and informative, it remains
statistically challenging to develop efficient screening methods in the absence of such
information. Recently, in the context of GLM, Hong et al. (2016) has proposed a
data-driven alternative when a pre-selected set of variables is unknown. It is thus
of substantial interest to develop a data-driven CS for the survival model. Second,
even with prior knowledge, an open question often lies in how to balance it with the
information extracted from the given data. There has been some recent work on how
to incorporate prior information. For example,Wang et al. (2013) developed a LASSO
method by assigning different prior distributions to each subset according to amodified
Bayesian information criterion that incorporates prior knowledge on both the network
structure and the pathway information, and Jiang et al. (2015) proposed “prior lasso”
(plasso) to balance between the prior information and the data. A natural extension of
the current work is to develop a variable screening approach that incorporates more
complex prior knowledge, such as the network structure or the spatial information of
the covariates. We will report the progress elsewhere.

Acknowledgements This research was partially supported by a grant from NSA (H98230-15-1-0260,
Hong), an NIH grant (R01MH105561, Kang) and Chinese Natural Science Foundation (11528102, Li).

Appendix

The basic properties of the conditional linear expectation are listed in the following
proposition.

Proposition 1 v j (βC,0, 0) = 0q+1 if and only if v j, j (βC,0, 0) = 0, for all j ∈ C.
The proof is straightforward based on Definitions 2 and 3.

Proposition 2 Let ζ , ζ 1, ζ 2 and ξ be any four random variables in the probability
space (Ω,F ,P). The following properties hold for the conditional linear expectation
E∗[• | ξ ] given ξ :

1. Closed form: E∗(ζ | ξ) = E[ζ ] + Cov(ζ , ξ)Var[ξ ]−1{ξ − E(ξ)}.
2. Stability: E∗[ξ | ξ ] = ξ .
3. Linearity: E∗[A1ζ 1 + A2ζ 2 | ξ ] = A1E∗[ζ 1 | ξ ] + A2E∗[ζ 2 | ξ ], where A1 and

A2 are two matrices that are compatible with the equation.
4. Law of total expectation: E∗[E∗(ζ | ξ)] = E[E∗(ζ | ξ)] = E[ζ ].
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Remark 1 In general, E∗(ζ | ξ) 
= E(ζ | ξ). Also, ζ and ξ are independent does not
imply E∗(ζ | ξ) = 0, unless ζ and ξ are jointly normally distributed.

Remark 2 By Proposition 2, we can easily verify the following properties.

Proposition 3 The conditional linear covariance defined in Definition 5 has the fol-
lowing properties:

1. Linear independence and linear zero correlation:

Cov∗(ζ 1, ζ 2 | ξ) = 0 ⇔ E∗(ζ 1ζ 2 | ξ) = E∗(ζ 1 | ξ)E∗(ζ 2 | ξ).

2. Expectation of conditional linear covariance:

E[Cov∗(ζ 1, ζ 2 | ξ)] = Cov(ζ 1, ζ 2) − Cov(ζ 1, ξ)Var(ξ)−1Cov(ξ , ζ 2).

3. Sign: for any increasing function h(·) : R → R and random variable η : Ω → R,
then

Cov∗(h(η), η | ξ) ≥ 0.

Combining Propositions 1–3 and based on Definition 6, we have the following
property.

Proposition 4 v j, j (βC,0, 0) = 0 if and only if v j (βC,0, 0) = 0.

Lemma 1 The solution of v j (βC, β) = 0q+1 and the solution of vC(βC) = 0q are
both unique, for any j /∈ C.

Proof of Theorem 1

Proof First we make the connection between β j to the expected conditional linear
covariance between Z j and P[δ = 1 | Z] given ZC , that is

E[Cov∗(Z j ,P[δ = 1 | Z] | ZC)],

then by Condition 2, we relate it to α j . For any j /∈ C and k ∈ C, it is straightforward
to see that

s(m)
k (t) = E[Zm

k λ0(t) exp(ZTα)ST (t | Z)SC (t)], (21)

and

r (m)
j,k (t,βC, β) = E[Zm

k exp(ZT
CβC + Z jβ)ST (t | Z)SC (t)], (22)

for m = 0, 1. Then

v j,k(βC, β)
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=
∫ τ

0
E
[

Wj,k(t,βC, β) exp(ZTα)ST (t | Z)SC (t)λ0(t)
]

dt, (23)

where

Wj,k(t,βC, β) = Zk − E[Zk exp(ZT
CβC + Z jβ)ST (t | Z)SC (t)]

E[exp(ZT
CβC + Z jβ)ST (t | Z)SC (t)] .

By Proposition 2,

E
[

Wj,k(t,βC, β) exp(ZTα)ST (t | Z)SC (t)
]

= E
{

E∗ [Wj,k(t,βC, β) exp(ZTα)ST (t | Z)SC (t)
]}

.

By Definition 6,

v j (βC, β) = v j, j (βC, β) −
∑

k∈C
akv j,k(βC, β)

= E
[

Cov∗(Z j ,P[δ = 1 | Z] | ZC)
]− g j (βC, β),

where

E
[

Cov∗(Z j ,P[δ = 1 | Z] | ZC)
]

=
∫ τ

0
E
[

(Z j − E∗[Z j | ZC]) exp(ZTα)ST (t | Z)SC (t)λ0(t)
]

dt,

and

g j (βC, β)

=
∫ τ

0

E[(Z j − E∗[Z j | ZC]) exp(ZT
CβC + Z jβ)ST (t | Z)SC (t)]

E[exp(ZT
CβC + Z jβ)ST (t | Z)SC (t)]

×E
[

exp(ZTα)ST (t | Z)λ0(t)SC (t)
]

dt.

By Definition 2, v j (βC, j , β j ) = 0q+1,

g j (βC, j , β j ) = E
[

Cov∗(Z j ,P[δ = 1 | Z] | ZC)
]

.

When α j = 0, then E
[

Cov∗(Z j ,P[δ = 1 | Z] | ZC)
] = 0 by Condition 2.3. Thus

g j (βC, j , β j ) = 0. Also, by Propositions 1 and 2, g j (βC,0, 0) = 0, then v j (βC,0, 0) =
0q+1. By uniqueness in Lemma 1, β j = 0.

When α j 
= 0, by Condition 2, we have

|g j (βC, j , β j )| = |E [Cov∗(Z j ,P[δ = 1 | Z] | ZC)
] | > c1n

−κ .
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This implies that g j (βC, j , β j ) and E
[

Cov∗(Z j ,P[δ = 1 | Z] | ZC)
]

are both nonzero
and have the same signs since they are equal. Next we show for any βC , g j (βC, 0) and
E
[

Cov∗(Z j ,P[δ = 1 | Z] | ZC)
]

have the opposite signs unless they are equal to zero.
This fact implies that β j 
= 0. Specifically, note that P(δ = 1 | Z) is the probability
of occurring the event and ST (t | Z)SC (t) = P(X > t | Z) represents the probability
at risk at time t . Based on Model (1), for any t ,

∂P(X > t | Z)

∂Z j
× ∂P(δ = 1 | Z)

∂Z j
≤ 0.

By Proposition 3, Cov∗(Z j ,P[δ = 1 | Z] | ZC) and Cov∗[Z j , ST (t | Z)SC (t) | ZC]
have the opposite signs unless they are zero. This further implies that for any βC ,

g j (βC, 0) =
∫ τ

0

E[exp(ZT
CβC)Cov∗[Z j , ST (t | Z)SC (t) | ZC]]
E[exp(ZT

CβC)ST (t | Z)SC (t)]
×E
[

exp(ZTα)ST (t | Z)λ0(t)SC (t)
]

dt,

andE
[

Cov∗(Z j ,P[δ = 1 | Z] | ZC)
]

have opposite signs unless they are equal to zero.
Therefore, β j 
= 0. ��

Proof of Theorem 2

Proof For any j ∈ M−C , we have β j 
= 0 by Theorem 1, by mean value theorem,
for some ˜β j ∈ (0, β j ),

|v j (βC, j , 0)| = |v j (βC, j , β j ) − v j (βC, j , 0)| =
∣

∣

∣

∣

∂v j

∂β
(βC, j ,˜β j )

∣

∣

∣

∣

|β j |.

Next we show that
∣

∣

∣

∂v j
∂β

(βC, j ,˜β j )

∣

∣

∣ is bounded. For given any βC , consider g j (βC, β)

as a function of β, Then

∂g j

∂β
(βC, β) = E

[∫ τ

0
Hj (t,βC, β)SC (t)dFT (t | Z)

]

,

where

Hj (t,βC , β) =
E[exp(ZT

CβC)Cov∗[Z2
j exp(Z jβ), ST (t | Z) | ZC ]]

E[exp(ZT
CβC + Z jβ)ST (t | Z)]

−E[exp(ZT
CβC)Cov∗[Z j exp(Z jβ), ST (t | Z) | ZC ]]E[Z j exp(ZT

CβC + Z jβ)ST (t | Z)]
[E[exp(ZT

CβC + Z jβ)ST (t | Z)]]2 .
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By Condition 2.1, P(|Z | < K0) = 1, then supβC ,β |Hj (t,βC, β)| ≤ 2K 2
0 . Thus,

∣

∣

∣

∣

∂v j

∂β
(βC, j ,˜β j )

∣

∣

∣

∣

≤ sup
βC ,β

∣

∣

∣

∣

∂g j

∂β
(βC, β)

∣

∣

∣

∣

≤ 2K 2
0 |E[E[SC (T ) | Z]] ≤ 2K 2

0 .

By the proof in Theorem1, g(βC, j , 0) andE
[

Cov∗(Z j ,E{FT (C | Z) | Z} | ZC)
]

have
the opposite signs, and by Condition 2,

|v j (βC, j , 0)| = |E [Cov∗(Z j ,P[δ = 1 | Z] | ZC)
] | + |g j (βC, j , 0)| > c1n

−κ .

Taking c2 = 0.5K−2
0 c1, β j > 0.5K−2

0 |v j (βC, j , 0)| > c2n−κ . This completes the
proof. ��

Proof of Theorem 3

Proof For any j /∈ C and k ∈ C ∪ { j}, by Lin and Wei (1989), we have

V j (βC, β) = En{Wi, j (βC, β)} + op(1),

where En[·] denotes the empirical measure, which is defined as En[ξ i ] = n−1∑n
i=1 ξ i

for any random variables ξ1, . . . , ξn , and Wi, j (βC, β) are independent over i , and
writeWi, j (βC, β) = [Wi, j,k(βC, β), k ∈ C ∪ { j}]T with

Wi, j,k(βC , β) =
∫ τ

0

⎧

⎨

⎩

Zi,k −
r (1)
j,k (βC , β, t)

r (0)
j,k (βC , β, t)

⎫

⎬

⎭

dNi (t)

−
∫ τ

0

Yi (t) exp(Zi,CβT
C + Zi, jβ)

r (0)
j,k (βC , β, t)

⎧

⎨

⎩

Zi,k −
r (1)
j,k (βC , β, t)

r (0)
j,k (βC , β, t)

⎫

⎬

⎭

dE[Ni (t)].

Note that given any i, j, k, with probability one |Wi, j,k(βC, β)| are uniformly bounded.
Specifically, by Conditions 1.2, 2.1 and 3, with probability one, for all t ∈ [0, τ ],
(βT

C, β)T ∈ B j ,

∣

∣

∣

∣

∣

Zi,k − r (1)
j,k (βC, β, t)

r (0)
j,k (βC, β, t)

∣

∣

∣

∣

∣

≤ |Zi,k | + K0,

∣

∣

∣

∣

∣

Yi (t) exp(Zi,CβT
C + Zi, jβ)

r (0)
j,k (βC, β, t)

∣

∣

∣

∣

∣

≤ exp{K0(K1 + δ) − log(L)},

and

∣

∣

∣

∣

∫ τ

0
dE[Ni (t)]

∣

∣

∣

∣

≤ �0(τ ) exp(K0K1).
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Thus, with probability one,

|Wi, j,k(βC, β)| ≤ K2,

where K2 = 2K0(1 + �0(τ ) exp(2K0K1 + K0δ − log L)). By the fact that
E[Wi, j,k(βC, β)] = 0,

Var[Wi, j,k(βC, β)] = E[|Wi, j,k(βC, β)|2] < K 2
2 .

By Lemma 2.2.9 (Bernsterin’s inequality) of Vaart and Wellner (1996), for any
t > 0, for all j, k, βC and β, we have

P

(

|En(Wi, j,k(βC, β))| >
t

n

)

≤ 2 exp

(

−1

2

t2

nK 2
2 + K2t/3

)

.

Note that the above inequality holds for every j /∈ C and k ∈ C ∪ { j}. By Bonferroni
inequality,

P

(

‖En(Wi, j (βC, β))‖2 >
t

(q + 1)n

)

≤ 2(q + 1) exp

(

−1

2

t2

nK 2
2 + K2t/3

)

.

Since,

‖V j (βC, β) − En(Wi, j (βC, β))‖2 = op(1).

Then for any ε1 > 0 and ε2 > 0, there exits N1, such that for any n > N1,

P(‖V j (βC, β) − En(Wi, j (βC, β))‖2 > Mε1/2) < ε2,

where M is the same value in Condition 4. By Triangle inequality and Bonferroni
inequality, we have

P

(

‖V j (βC, β)‖2 >
t

(q + 1)n

)

≤ P

(

‖En(Wi, j (βC, β))‖2 >
t

(q + 1)n
− Mε1/2

)

+P(‖V j (βC, β) − En(Wi, j (βC, β))‖2 > Mε2/2).

When n → ∞, take t = c2M(q+1)n1−κ/2 > 0 on both side of the inequality, where
c2 is the same value in Theorem 2, we have
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P

(

‖V j (βC, β)‖2 >
Mc2
2

(n−κ − ε1)

)

≤ 2(q + 1) exp

(

− M2c22
8(q + 1)2

n1−2κ

K 2
2 + K2n−κ/3

)

+ ε2.

Take N = max{�(K2/3)1/κ�, N1}, then for any n > N , n−κ < 3/K2, and

P

(

‖V j (βC, β)‖2 >
Mc2
2

(n−κ − ε1)

)

≤ 2(q + 1) exp

(

− M2c22
8(q + 1)2

n1−2κ

K 2
2 + 1

)

+ ε2.

Note that the above inequality holds for all (βT
C, β)T ∈ B j , particularly for

(βT
C, j , β j )

T, j /∈ C. Also, we have V j (̂βC, j ,̂β j ) = 0q+1. By Condition 4, we have

P
(

|̂β j − β j | >
c2
2

(n−κ − ε1)
)

≤ P
(

‖(̂βT
C, j ,

̂β j )
T − (βT

C, j , β j )
T‖2 >

c2
2

(n−κ − ε1)
)

≤ 2(q + 1) exp

(

− M2c22
8(q + 1)2

n1−2κ

K 2
2 + 1

)

+ ε2.

Taking c3 = M2c22
8(q+1)2(K 2

2+1)
and by Bonferroni completes the proof for part 1.

For part 2, by Theorem 2,

min
j∈M−C

|β j | > c2n
−κ .

Note that, for any j ∈ M−C , event

{|̂β j − β j | ≤ c2n
−κ/2 − ε1

}

⊆ {|̂β j | ≥ |β j | − c2n
−κ/2 + ε1

}

⊆ {|̂β j | ≥ c2n
−κ/2 + ε1

}

.

Take γn = c4n−κ with c4 = c2/4,

{

max
j∈M−C

|̂β j − β j | ≤ c2n
−κ/2 − ε1

}

⊆
{

min
j∈M−C

|̂β j | ≥ c2n
−κ/2 + ε1

}

⊆
{

min
j∈M−C

|̂β j | ≥ γn + ε1

}

.
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Thus,

P
[M−C ⊆ ̂M−C

]

= P

[

min
j∈M−C

|̂β j | > γn

]

≥ P

[

min
j∈M−C

|̂β j | > γn + ε1

]

≥ 1 − P

[

max
j∈M−C

|̂β j − β j | ≤ c2n
−κ/2 − ε1

]

≥ 1 − 2w(q + 1) exp(−c3n
1−2κ) − ε2.

Let n → ∞, we have for any ε2 > 0,

lim
n→∞P

[M−C ⊆ ̂M−C
] ≥ 1 − ε2.

Note that the left side of the above equation does not depends on n any more. Taking
ε2 → 0 completes proof. ��
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