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Abstract: The C-statistic, measuring the rank concordance between predictors and outcomes, has

become a standard metric of predictive accuracy and is therefore a natural criterion for variable

screening and selection. However, as the C-statistic is a step function, its optimization requires

brute-force search, prohibiting its direct usage in the presence of high-dimensional predictors. We

develop a smoothed version of the C-statistic to facilitate variable screening and selection. Specif-

ically, we propose a smoothed C-statistic sure screening (C-SS) method for screening ultrahigh-

dimensional data, and a penalized C-statistic (PSC) variable selection method for regularized

modeling based on the screening results. We have shown that these two coherent procedures form

an integrated framework for screening and variable selection: the C-SS possesses the sure screen-

ing property, and the PSC possesses the oracle property. Specifically, the PSC achieves the oracle

property if mn = o(n1/4), where mn is the cardinality of the set of predictors captured by the C-

SS. Our extensive simulations reveal that, compared to existing procedures, our proposal is more

robust and efficient. Our procedure has been applied to analyze a multiple myeloma study, and

has identified several novel genes that can predict patients response to treatment.
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1. Introduction

Modern technologies have yielded abundant data with ultrahigh-dimensional risk pre-

dictors from diverse scientific fields. Developing sound risk score systems, that can func-

tion as accurate diagnostic tools, has become a requirement. For example, in microarray-

based risk prediction studies, arrays usually number in the tens, while the potential

predictors can be tens of thousands of gene expressions.

Traditional variable selection methods include Bridge regression in Frank and Fried-

man (1993), Lasso in Tibshirani (1996), SCAD in Fan and Li (2001), the Elastic net in

Zou and Hastie (2005), and the Dantzig selector in Candes and Tao (2007). When the

number of covariates far exceeds the sample size, these traditional methods incur difficul-

ties in speed, stability, and accuracy (Fan and Lv, 2008). Sure independence screening

methods, e.g. those proposed by Fan and Lv (2008) and Fan et al. (2009), have emerged

as a powerful means to effectively eliminate unimportant covariates.

As successful as they are, the validity of these proposals hinges upon the proximity

of the working models to the truth. To relax such restrictions, Hall and Miller (2009)

extended the Pearson correlation learning by considering polynomial transformations of

predictors. Fan et al. (2011) considered nonparametric independence screening in sparse

ultrahigh-dimensional additive models, and Li et al. (2012) proposed a robust screening

method by Kendall τ rank correlation (RRCS) and its iterative version (IRRCS) for

transformation models. Within a fully nonparametric model framework, Li et al. (2012)

developed a sure independence screening procedure based on the distance correlation

(DC-SIS). Other screening methods, for ultrahigh dimensional discriminant analysis, can

be found in Mai and Zou (2013), among many others.
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In summary, the parametric methods are stable but rely heavily on the assumption,

hence have potentially high bias. On the other hand, the nonparametric methods do not

rely on any stringent assumptions about the underlying data, and can adapt to various

types of situation, but the nonparametric estimators depend heavily on a handful of input

observations, are thus unstable. As a reasonable compromise between fully parametric

and fully nonparametric modeling, in the paper, we consider feature screening and variable

selection in a semiparametric framework. A typical semiparametric model is the index

model, in which the response is associated with predictors through an unknown function

of linear combinations. Zhu et al. (2011), Zhong et al. (2012), among many others, have

developed various methods to simultaneously perform dimension reduction and variable

selection for index models. However, these shrinkage-based variable-selection methods

that rely on estimates of principal directions often perform poorly for the index model

when p is large, in which the p× p covariance matrices among predictors cannot be well

estimated.

In this paper, we propose to conduct variable screening and selection based on the

C-statistic. The C-statistic (Harrell and Davis, 1982), measuring the rank concordance

between predictors and outcomes, has become a standard measure of predictive accuracy.

However, because the C-statistic is a step function, its optimization requires a brute-force

search. We propose a smoothed C-statistic through a two-step method. We employ a

smoothed C-statistic screening (C-SS) for ultrahigh-dimensional data, followed by a pe-

nalized smoothing C-statistic (PSC) based on the screening results to further select and

estimate the regression coefficients. We show that these two coherent procedures form

an integrated framework for screening and variable selection: the C-SS possesses the sure

screening property of Fan and Lv (2008) and the PSC possesses the oracle property of

Fan and Li (2001) under sparse assumption. We prove that the PSC achieves oracle
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properties if mn = o(n1/4), where mn is the cardinality of the set of predictors captured

by the C-SS. Compared with the existing procedures, our procedure has practical ap-

peal. Firstly, C-SS and PSC are semiparametic, allowing the link function relating the

outcomes to the covariates to be unspecified. In contrast, the existing SIS for the linear

regression model (Fan and Lv, 2008) and the ISIS for the generalized linear model (Fan

et al., 2009) typically assume a linear link for continuous outcomes, and a logit or log link

for ordinal outcomes. These parametric assumptions are restrictive, and misspecifications

can result in improper feature screening and estimation (Hettmansperger and McKean,

2010). Secondly, the nonparametric screening methods, such as SIRS (Zhu et al., 2011),

RRCS (Li et al., 2012) and DC-SIS (Li et al., 2012), can be unstable, especially with

ultrahigh-dimensional data, as they depend heavily on a small number of input obser-

vations. Moreover, the basic assumption of the RRCS method might fail when either

the response or the predictor is discrete, narrowing the applicability of the method. In

contrast, our semiparametric C-SS method is stable and is applicable to various types of

data (continuous, count, ordinal and categorical). Furthermore, our procedure naturally

leads to a selection of significant risk predictors, without calling for additional modelling

as required by nonparametric approaches. Finally, our method improves sparse index

models; it does not require the linearity condition on the predictors and does not require

calculation of the p × p covariance matrix and its inverse. The linearity condition is

only slightly weaker than the condition of elliptical symmetry of the distribution of the

predictor vector (Li, 1991) and may be unfeasible in practice. It is well understood that

when linearity condition does not hold, blindly using it may lead to inconsistency and

inefficiency (Ma and Zhu, 2013).

This article is organized as follows. In Section 2, we develop the C-SS for feature

screening by ranking a semi-robust measure of marginal utility. Sure screening property
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and model selection consistency under certain technical conditions are also established. In

Section 3, the PSC for selection and estimation of the regression coefficients is proposed.

In this section, we allow the dimension of variables after screening to diverge to infinity.

Development of iterative procedures (namely PC-SS and GC-SS) is discussed in Section 4.

In Section 5, we describe a set of numerical studies conducted to evaluate the performance

of our proposed methods. We report in Section 6 an analysis of a multiple myeloma study

using the proposed methods. We provide concluding remarks in Section 7, and defer all

proofs to the online supplementary materials.

2. Screening Method Based on Smoothed C-Statistic

Consider a study with n independent subjects, where Yi denotes the response variable

(continuous, binary, ordinal or count) and Xi = (Xi1, · · · , Xip)
T is a length p covariate

vector containing, for example, all gene expressions for individual i. We assume that

each component of Xi has been standardized such that E(Xij) = 0, V ar(Xij) = 1 for

j = 1, . . . , p. We aim to find a feature XT
i β that predicts the response Yi as accurately

as possible, by the criterion of commonly used C-statistic, i.e., C(β) = Pr(XT
i β >

XT
j β|Yi > Yj), which can be estimated by Ĉ(β) =

∑
i,j I(Yi>Yj)I(X

T

i β>X
T

j β)∑
i,j I(Yi>Yj)

, where I(·) is

the indicator function. An estimator of β can be obtained by maximizing Ĉ(β) or

Cn(β) =
1

n(n− 1)

∑
i 6=j

I(Yi > Yj)I(XT
i β > XT

j β). (2.1)

The Cn(β) is also called the maximum rank correlation (MRC) defined in Han (1987).

For the binary response, Cn(β) is the Wilcoxon-Mann-Whitney statistic, and is identical

to the area under a receiver operating characteristic curve for comparing predictions in

the two groups. As β is only identifiable up to a constant multiplier, we restrict ‖β‖ = 1.

2.1. Smoothed C-Statistic

The indictor I(XT
i β > XT

j β) in objective function (2.1) is discrete, presenting com-
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putational as well as theoretical challenges; see Han (1987) and Sherman (1993). The

optimization requires brute-force search, which grows at the order of np and becomes

impossible for ultra-high p. We propose a smoothed approximation to (2.1). Let Φ(·)

be the distribution function of the standard normal variable. We use the local distribu-

tion function Φ
{

(XT
i β −XT

j β)/h
}

as a smooth approximation to the indicator function

I(XT
i β > XT

j β), where the bandwidth h converges to zero as the sample size increases.

A smoothed Cn(β) is thus

Cs(β) =
1

n(n− 1)

∑
i 6=j

I(Yi > Yj)Φ
{

(XT
i β −XT

j β)/h
}
. (2.2)

When p is finite, it can be shown that when h is small enough the difference between Cs(β)

and Cn(β) can be ignored. Hence the maximizer of Cs(β) would agree well with those of

Cn(β). Because Cs(β) is a smoothing function of β, the computation of the maximizer of

Cs(β) is straightforward and accomplished through the Newton-Raphson iteration. Other

approximation methods, including the sigmoid approximation proposed by Ma and Huang

(2005), can also be used to approximate the indicator function I(XT
i β > XT

j β).

Under some regular conditions for the binary response (Lin et al., 2011), the estimator

based on maximizing (2.2) is consistent when p is finite. Li et al. (2012) considered a

penalized version of Cs(β) when p goes to infinity. However, when log(p) = O(nρ) for

some ρ > 0, the penalized estimator fails due to lack of speed, stability, and accuracy, even

with the use of variable selection techniques. This increases demand for screening methods

that can reduce the number of the covariates quickly. Li et al. (2012) proposed RRCS

(Robust Rank Correlation Screening) to deal with ultra-high dimensional problems. This

method stems from the marginal rank correlation coefficient between Y and Xk, that

is, ωk = 1
n(n−1)

∑n
i 6=j I(Yi > Yj)I(Xik > Xjk) − 1/4. However, when either Y and Xk is

discrete, it can be shown that E{I(Yi > Yj)I(Xik > Xjk)} < 1/4 even when Y and Xk



CONCORDANCE FEATURE SCREENING AND VARIABLE SELECTION 7

are uncorrelated. Hence, the RRCS may not work well for discrete data. This has been

confirmed by our simulation studies.

2.2. Screening Method Based on the Smoothed C-Statistic

Assume that the parameter β is sparse, and letM0 = {k : βk 6= 0} be the true sparse

model with size s0 = |M0|, where s0 is small or grows slowly with n. We allow p to grow

with n and denote it by pn whenever necessary.

We propose to estimate β by maximizing (2.2) or solving

∂Cs(β)

∂β
=

1

n(n− 1)

∑
i 6=j

I(Yi > Yj)φ
{

(XT
i β −XT

j β)/h
}

(Xi −Xj)/h = 0,

where φ(·) is the standard normal density function. Let ĝk(β) be the kth componen-

t of h
√

2π∂Cs(β)/∂β, i.e. ĝk(β) = h
√

2π∂Cs(β)/∂βk for k = 1, · · · , pn. Therefore,

(ĝ1(β), · · · , ĝpn(β)) = 0 are estimating equations for β.

Now, for the k-th covariate, we construct an estimating equation for βk, assuming a

marginal model that all other covariates are unrelated to the outcome. That is, Uk(βk) =

ĝk(0, . . . , βk, . . . , 0) = 0. Therefore, each |Uk(0)| ≡ |ĝk(0p)|, where 0p is a p-dimensional

zero vector, is the numerator of the score statistic for a hypothesis: βk = 0 under the k-th

marginal model and therefore can be a sensible screening statistic. The general theory

for such score-test based screening statistics has been given by Zhao and Li (2014).

Then for a given thresholding value γn, we screen the covariates as follows

M̂γn = {1 ≤ k ≤ p : |ĝk(0p)| ≥ γn}.

Denote by gk(β) = E[ĝk(β)]. Note that ĝk(0p) = 1
n(n−1)

∑n
i 6=j I(Yi > Yj)(Xik −Xjk).

We obtain that gk(0p) = E[I(Y1 > Y2)(X1k − X2k)]. Hence, gk(0p), then ĝk(0p), can

be regarded as a surrogate measure of the nonparametric rank correlation between the

response Y and the kth covariate Xk. For example, the independence between Y and

Xk implies gk(0p) = 0. Under some regularity conditions, the smoothed C-statistic sure
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screening (C-SS) procedure will effectively reduce the full model of size p to a submodel

M̂γn with size less than n. In addition, the proposed procedure only requires a single

evaluation of the smoothed C-statistic at β = 0 instead of p separate models that is

commonly used by the existing screening methods, hence rendering great computational

convenience. Furthermore, compared to the existing model-free sure screening methods

such as SIRS (Zhu et al., 2011), RRCS (Li et al., 2012) and DC-SIS (Li et al., 2012),

our proposed method utilizes the linear structure of the predictors, X′β, and hence is

more efficient. As we aim to predict the status of a new subject with high predictive

accuracy, we impose that the mean of Y increases with X′β, implying greater efficiency

and interpretability of C-SS as compared to that of the sure screening method based

on the single-index model, which does not make such a monotonic assumption. Finally,

our method does not need to specify the link function between the response and the

predictors, and therefore will be more stable than the parametric methods.

2.3. Sure Screening Properties

Before establishing the sure screening properties of the proposed method, we first

assume conditions as follows:

(C.1) For all 1 ≤ k ≤ p, there exists a positive constant K1 and r1 ≥ 1, such that

Pr(|Xk| > t) ≤ exp(1− (t/K1)r1), for any t ≥ 0. (2.3)

(C.2) For all k ∈ M0, there exist positive constants δ and κ < 1, such that |E[I(Y1 >

Y2)(X1k −X2k)]| > δn−κ.

(C.3) Denote β0 to be the true value of β. We suppose that there exists a monotonic

increasing function m(·) such that

E(Y |X) = m(XTβ0). (2.4)
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Condition (C.1) pertains to the tail distribution of each covariate Xj, j = 1, · · · , p,

which is much weaker than the common assumption that covariates are uniformly bound-

ed or that the conditional mean function is bounded. Condition (C.2) guarantees that

the marginal signal of the active components {gk(0p)}k∈M0 does not vanish as the sample

size grows. In Condition (C.3), we require m(·) to be monotonic increasing to support

the idea of using ĝk(0p) to screen covariates based on the C-statistic C(β) = Pr(XT
i β >

XT
j β|Yi > Yj). The C-statistic essentially employs the idea that larger Yi values are

more likely associated with larger XT
i β values, which means the link function m(·) in

E(Y |X) = m(XTβ) to be a monotonic increasing function of XTβ. In addition, the

monotonic property of m(·) makes β take on the same general meaning as the effect

parameters in ordinary linear models. The model (2.4) is the generalized linear model if

m(·) is known; the known monotonic link function m(·) is commonly used in the normal,

binary, Poisson, Gamma or inverse Gaussian exponential families.

Theorem 1. Assume conditions (C.1) and (C.3) hold,

(1) If 0 < κ < 1/2, then for any c1 > 0, there exist positive c2 and c3 such that

P

(
max

1≤k≤pn
|ĝk(0)− Eĝk(0)| > c1n

−κ
)
≤ 4pn exp

{
− c2

1n
1−2κ

2(2c2 + c1c3n−κ)

}
. (2.5)

(2) If condition (C.2) also holds, then by taking γn = δn−κ/2,

P
(
M0 ⊂ M̂γn

)
≥ 1− 4s0 exp

{
− δ2n1−2κ

4(4c2 + δc3n−κ)

}
According to Theorem 1, the sure screening property holds for the non-polynomial

(NP) dimensionality of covariates with log pn = o(n1−2κ), which is identical to the rate

for the linear regression model in Fan and Lv (2008).

Theorem 1(1) reveals that the signal level of the important effectors is of the same rate

as that of their approximations, i.e., O(n−κ). The ideal case for a vanishing false-positive
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rate is when E[I(Y1 > Y2)(X1k −X2k)] = o(n−κ) for k /∈ M0, so that there is a natural

separation between important and unimportant variables. When pn exp{− c21n
1−2κ

4(4c2+c1c3n−κ)
}

tends to zero, we have, with a probability going to 1, that max
k/∈M0

|ĝk(0p)| ≤ cn−κ, for any c >

0. Thus, under this ideal situation, by choosing γn as in Theorem 1(2), the proposed

screening method can achieve the model selection consistency, i.e. P
(
M0 = M̂γn

)
= 1−

o(1). Furthermore, by Condition (C.3), we have E[I(Y1 > Y2)|X1,X2] =
∫∞
−∞

∫∞
y∗
dF (y|Z1)dF (y∗|Z2),

where Zi = XT
i β0 and F (·|Z) is a cumulative distribution function of Y given Z = XTβ0.

Hence, for k /∈M0, gk(0p) = E
[
(X1k −X2k)

∫∞
−∞

∫∞
y∗
dF (y|XT

1M0
βM0

)dF (y∗|XT
2M0

βM0
)
]
,

where XkM0 = {Xkj}j∈M0 and βM0
= {βj}j∈M0 . This ideal situation occurs under the

partial orthogonality condition, that is {Xk}k∈M0 is independent of {Xk}k/∈M0 , which

implies gk(0p) = 0 for all k /∈ M0. In general, the marginal probes cannot separate im-

portant variables from unimportant variables, particularly when {Xk}k∈M0 and {Xk}k/∈M0

are not independent, and hence false positives will incur. However, the following Theorem

2 bounds the size of the selected model by relating the size to the correlationship of the

outcome and the predictors, and to the thresholding parameter γn.

Theorem 2. Under conditions in Theorem 1, for any γn = c4n
−κ there exist positive

constants c2 and c3, such that

Pr

{
‖M̂γn‖0 ≤ O(nκ

p∑
k=1

|E[I(Y1 > Y2)(X1k −X2k)]|)

}
≥ 1− 4p exp

{
− c2

4n
1−2κ

4(4c2 + c4c3n−κ)

}
.

Here, ‖ · ‖0 denotes the cardinality of a set.

Theorem 2 shows that as long as
∑p

k=1 |E[I(Y1 > Y2)(X1k − X2k)|, the size of the

correlationship of the outcome and the predictors, is of a polynomial order of sample size,

the number of selected variables is also of polynomial order of sample size. Therefore, a

further variable selection procedure is conducted for parameters of a polynomial order.
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3. Variable Selection and Parameter Estimation Based on the Penalized S-

moothed C-Statistic

For variable selection with finite covariates, penalization methods such as LASSO,

SCAD, and adaptive LASSO, among others, have routinely been used. Fan and Peng

(2004) extend the SCAD penalized likelihood estimation to the situation where the num-

ber of parameters is of the order o(n1/5).

Without loss of generality, we suppose that the first mn variables are kept after screen-

ing, defined as X̃ = (X1, · · · , Xmn)T , with coefficients β̃ = (β1, · · · , βmn)T . According to

Theorem 1, we further assume that the first s0 variables of X̃ are the important selectors,

defined as X̃
(1)

= (X1, · · · , Xs0)
T , and corresponding to coefficients β(1) = (β1, · · · , βs0)T .

In the remainder of this section, we propose a penalized smoothed C-statistic for variable

selection and parameter estimation, and show that as long as mn = o(n1/4), the oracle

property still holds.

3.1. Penalized Smoothed C-Statistic

To avoid confusion, we rewrite the smoothed C-statistic after screening as

C̃s(β̃) =
1

n(n− 1)

∑
i 6=j

[
I(Yi > Yj)Φ

{
(X̃

T

i β̃ − X̃
T

j β̃)/h
}]

, (3.1)

and estimate β̃ by

β̂ = arg max
˜β∈Ω,‖ ˜β‖=1

{C̃s(β̃)−
mn∑
j=1

pλn(|βj|)},

where pλn(·) is a prespecified penalty function with a regularization parameter λn.

As the SCAD penalty satisfies all three properties of unbiasedness, sparsity and con-

tinuity (Fan and Li 2001), we chose SCAD as the penalty function, which for some a > 0

and β > 0 satisfies p′λn(β) = λn

{
I{β ≤ λn}+ (aλn−β)+

(a−1)λn
I{β > λn}

}
, with p′λn(0) = 0.

3.2. Oracle Property

We establish the asymptotic theory for the penalized smoothed estimation of β̃
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where mn diverges. Let β̃0 = (β
(1)T
0 ,β

(2)T
0 )T be the true values of coefficients. Then

β
(2)
0 = 0mn−s0 . We consider a generalized nonconcave penalty function, and let an =

max{p′λn(|βj0|) : βj0 6= 0} and bn = max{p′′λn(|βj0|) : βj0 6= 0}.

Lin et al. (2011) has shown the penalized smoothed estimation of β̃ to be n1/2−consistent,

asymptotically normal, and oracle when mn is finite and the outcome is binary. Here we

are considering a much more difficult case with mn tending to infinite as n→∞.

Theorem 3. (Consistency) Under Conditions (C.1∗)-(C.4∗) in the Supplementary Ma-

terials, suppose the penalty function pλn(·) satisfies conditions (P.1) and (P.2) in the

Supplementary Materials, if nh→∞, nh4 → 0, m4
n/n→ 0 as n→∞, then there exists

a maximizer β̂ of PCs(β̃) satisfying ‖β̂‖ = 1 and

‖β̂ − β̃0‖ = Op{
√
mn(n−1/2 + an)}.

According to Theorem 3, if an = O(n−1/2), then the penalized smoothed estimator is

root-(n/mn) consistent. This consistent rate is the same as the result of the M-estimator

with diverging parameters presented by Huber (1973). Actually, for the SCAD penalty,

by Condition (C.5∗) in the Supplementary Materials, an = 0 when n is large enough.

Hence, there indeed exists the root-(n/mn)-consistent penalized smoothed estimator with

probability tending to 1, and no requirements for the convergence rate of λn. This is also

true for the hard thresholding penalty. However, for the usual convex penalties, such as

Lq penalty with q ≥ 1, the converging rate of the penalized smoothed estimator highly

depends on λn, and requires λn = O(n−1/2) to achieve root-(n/mn) consistency (Fan and

Peng, 2004). In addition, estimation of β̃ at the rate (n/mn)−1/2 requires undersmoothing

with h = o(n−1/4) to ensure that the bias can be ignored. The necessity of undersmoothing

to obtain consistent estimation with optimal rate is standard in semiparametric regression;

see, for example, Carroll et al. (1997).
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Denote G(Z1, Z2) =
∫∞
−∞

∫∞
y∗
dF (y|Z1)dF (y∗|Z2), I∗(β

(1)
0 ) = E[G2(Z,Z)Cov(X̃

(1)|Z)],

Σλn(β
(1)
0 ) = diag{p′′λn(|β10|), · · · , p′′λn(|βs00|)}, and b =

(
p′λn(|βj0|)sgn(βj0), j = 1, · · · , s0

)T
.

Theorem 4. (Oracle property). Under Conditions (C.1∗)-(C.5∗) and (P.1)-(P.4) in the

Supplementary Materials, if λn → 0,
√
n/mnλn →∞, nh→∞, nh4 → 0 and m4

n/n→ 0

as n → ∞, then with probability tending to 1, the
√
n/mn-consistent local maximizer

β̂ = (β̂
(1)T

, β̂
(2)T

)T in Theorem 3 must satisfy:

(i) (Sparsity) β̂
(2)

= 0, and

(ii) (Asymptotic normality)

√
n[I(β

(1)
0 ) + Σλn(β

(1)
0 )]

(
β̂

(1)
− β

(1)
0 + [I(β

(1)
0 ) + Σλn(β

(1)
0 )]−1b

)
L→ N(0s0 , I

∗(β
(1)
0 )).

Theorem 4 shows that the sparsity and the asymptotic normality are still valid when

the number of parameters after screening diverges. For the SCAD penalty, Condition

(C.5∗) implies that Σλn = 0 and b = 0 for large enough n. Then Theorem 4(ii) becomes

√
nI(β

(1)
0 )
(
β̂

(1)
− β

(1)
0

)
L→ N(0s0 , I

∗(β
(1)
0 )), which implies that the penalized smoothed

estimator of β(1) performs as well as a maximized rank correlation estimator when β
(2)
0 = 0

is known. This demonstrates that the penalized smoothed estimator with diverging mn

parameters possesses the oracle property. The Lq-penalty with q ≥ 1 cannot satisfy the

condition
√
n/mnλn → ∞ as n → ∞ and the conditon λn = O(n−1/2) simultaneously

(Fan and Li, 2001). Thus these penalties cannot generate estimators with the oracle

property.

4. Iterative Algorithm and Relative Issues

When the correlations among covariates are large, it is difficult to differentiate be-

tween the marginal utilities of the true and false variables. To further reduce false nega-

tives (i.e., missing some important predictors that are marginally weakly correlated but
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jointly correlated with the response), and false positives (i.e., selecting some unimpor-

tant predictors that are highly correlated with important ones), we adopt an iterative

framework to enhance model performance by repeatedly applying the variable screening

discussed in Section 2, and the variable selection in Section 3. These result in a condi-

tional random permutation C-SS (PC-SS) method, which performs conditional random

permutation in the screening steps to determine the threshold; and a Greedy C-SS (GC-

SS) method, which is a greedy version of the iterative screening-SCAD procedure. These

iterative algorithms are similar to the INIS procedure of Fan, Ma and Dai (2014), the

details are present in the supplementary materials for saving spaces here.

We need to select the tuning parameters, (λn, a) for the SCAD penalty function, and

h for smoothing function C̃s(β̃). To reduce the computational burden in our simulation

studies and examples, we let a = 2
√

3, as recommend by Fan and Li (2001). The selection

of λn is governed by the bic-criterion - we choose λn as the maximizer of BICλn =

log{C̃s(β̂)} − 1
2
dfλn log n/n, where dfλn is the number of nonzero coefficient estimates.

Regarding the selection of h, we choose h = n−1/3 in the same way as Lin et al. (2011),

and simulations have confirmed the utility.

5. Simulation Studies

We examine the finite sample performance of the proposed method. First, we inves-

tigate the screening capacity by comparing it with the parametric methods of SIS (Fan

and Lv, 2008) for the linear regression model and GLM-SIS (Fan et al., 2009) for the

Generalized linear models, the nonparametric methods including RRCS (Li et al., 2012),

SIRS (Zhu et al., 2011) and DC-SIS (Li et al., 2012), and robust screening methods QaSIS

(He et al., 2013) and DC-RoSIS (Zhong et al., 2016). Second, we compare the estimation

accuracy of the proposed selection method with that of SIS-SCAD (Fan and Lv, 2008)

for the linear model, and of vanilla-SIS-SCAD and permutation-SIS-SCAD (Fan et al.,
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2009) for generalized linear models.

5.1. Comparison of Screening Methods

The performance of screening is assessed using the criterion of the minimum model

size (MMS) needed to include all the true variables. The response variable Y was gener-

ated from either a linear regression model Y = X ′β + ε with a normal error (Model 1),

or a nonlinear regression model Y = exp(X ′β) + ε with a normal error (Model 2). The

variance of the error in Models 1 and 2 was taken to make the SNR between 8 and 10.

To check the effect of misspecification of link functions in generalized linear models, we

also generated ordinal responses via a 3-class ordinal model P (Y < j) = g−1(cj + X ′β)

(j = 1, 2) with g(x) = − log(− log(x)) and cut-off points c1 = −3 and c2 = 2 (Model 3).

In addition, we also consider the case with discrete covariates. The configuration is based

on Model 1 but with binary covariates I(X > 0), where each component of X is a original

continuous covariate (Model 4). Finally, we conduct a simulation study with a weak vari-

able or signal, which is similar to the setting of Example III of Fan and Lv (2008). This

simulation setup is based on Model 1 except that the last two nonzero coefficients are set

as the same value as the standard deviation of the error to investigate the performance

of the proposed method in the case of weak signal (Model 5). In order to investigate

the screening performance for both independent and dependent predictors, the predictors

were set as follows for all of the models: Xij =
tUi+εij√

1+t2
, i = 1, . . . , n, j = 1, . . . , p, where Ui,

εij are independent standard normal variables and t was chosen to control the correlation

among predictors in which 0 represents the independent case. We chose n = 100, 200,

p = 1000, 4000, and the sizes s of the true models (i.e. the numbers of non-zero co-

efficients) to be 4 and 8. The non-zero components of the p-vectors β were randomly

chosen as follows. We set a = 4 log(n)/n1/2 and picked non-zero coefficients of the form

(−1)u(a+ |z|) for each model, where u was drawn from a Bernoulli distribution with pa-



16 YUNBEI MA, YI LI, HUAZHEN LIN AND YI LI

SIS(8) C−SS(9) RRCS(10) DC−SIS(11) SIRS(12) QaSIS(29.5) DC−RoSIS(13)

0
50

10
0

15
0

20
0

SIS(31) C−SS(33) RRCS(46) DC−SIS(53) SIRS(41.5) QaSIS(182) DC−RoSIS(58.5)

0
20

0
40

0
60

0
80

0
10

00

SIS(9) C−SS(12) RRCS(13) DC−SIS(14.5) SIRS(15) QaSIS(36.5) DC−RoSIS(16.5)

0
50

10
0

15
0

20
0

SIS(143) C−SS(178.5) RRCS(190.5) DC−SIS(219) SIRS(226.5) QaSIS(437) DC−RoSIS(249)

0
50

0
10

00
15

00
20

00
25

00

Figure 1: Boxplot of the minimum number of selected variables that are required to include the

true linear regression model (Model 1) by using SIS, proposed C-SS method, RRCS, DC-SIS,

SIRS, QaSIS and DC-RoSIS when (a) n = 100,p = 1000,s = 4,Cor(Xj , Xk) = 0,(j 6= k); (b)

n = 200,p = 4000,s = 8,Cor(Xj , Xk) = 0,(j 6= k); (c) n = 100,p = 1000,s = 4 Cor(Xj , Xk) =

0.2,(j 6= k) and (d) n = 200,p = 4000,s = 8,Cor(Xj , Xk) = 0.2,(j 6= k). The number in brackets

is the median of distribution for the minimum number of selected variables.

rameter 0.4 and z was drawn from the standard Gaussian distribution. For each model,

we simulated 200 data sets. The boxplots of the minimum number of selected variables

that are required to include the true model are reported in Fig. 1-Fig. 5. Fig. 4 and

Fig. 5 are present in the supplementary materials for saving spaces here. We estimated

the generalized linear model with the correct link as well as the mis-specified probit link.

From Fig. 1-Fig. 5, we observe that:

(1) The proposed C-SS performed slightly worse than the SIS when the estimators

were implemented under the linear regression model; see Fig. 1, Fig. 4 and Fig. 5. This is

not surprising as the SIS was carried out under the true model. However, if the true model

was not a linear regression model, the SIS performed the worst among all the competing

methods as shown by Fig. 2, suggesting that the SIS was sensitive to the specification of

the model. The comparison of Fig. 1 and Fig. 5 suggests that the relative performance
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of various methods is similar in the cases of weak and strong signal.

(2) The RRCS failed for Models 3 and 4 (see Fig. 3 and Fig. 4) because the response

or the covariates are discrete, which confirmed our conjecture in the introduction. Our

method performs better than the QaSIS for all of the considered simulations.
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Figure 2: Boxplot of the minimum number of selected variables that are required to include

the true nonlinear regression model (Model 2) by using SIS, proposed C-SS method, RRCS,

DC-SIS, SIRS, QaSIS and DC-RoSIS with outliers excluded when (a) n = 100,p = 1000,s =

4,Cor(Xj , Xk) = 0,(j 6= k); (b) n = 200,p = 4000,s = 8,Cor(Xj , Xk) = 0,(j 6= k); (c) n =

100,p = 1000,s = 4 Cor(Xj , Xk) = 0.15,(j 6= k) and (d) n = 200,p = 4000,s = 8,Cor(Xj , Xk) =

0.5,(j 6= k). The number in brackets is the median of distribution for the minimum number of

selected variables.

(3) The DC-SS and DC-RoSIS performed worse than the C-SS for all of the considered

simulations, worse than the SIS for the linear regression model and the GLM-SIS for the

generalized linear regression model (see Fig. 1, Fig. 3 and Fig. 5). This is not surprising as

the DC-SS and DC-RoSIS were designed to accommodate fully nonparametric settings,

while the other methods were designed under the semiparametric or parametric settings.

Fig. 1-Fig. 5 also illustrate that our method was superior to the SIRS under the linear

regression, and was slightly better than the SIRS under the generalized linear model and

the nonlinear regression model. This is because (a) the SIRS is based on the estimating
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Figure 3: Boxplot of the minimum number of selected variables that are required to include

the true ordinal model (Model 3) by using proposed C-SS method, RRCS, DC-SIS, SIRS, DC-

RoSIS, GLM-SIS with correct link function (named GLM1 in the graph) and GLM-SIS with link

function misspecified to probit link (named GLM2 in the graph) when (a)n = 100,p = 1000,s =

4,Cor(Xj , Xk) = 0,(j 6= k),(b)n = 200,p = 4000,s = 8,Cor(Xj , Xk) = 0,(j 6= k),(c)n = 100,p =

1000,s = 4, Cor(Xj , Xk) = 0.2,(j 6= k) and (d)n = 200,p = 4000,s = 8,Cor(Xj , Xk) = 0.2,(j 6=
k). The number in brackets is the median of distribution for the minimum number of selected

variables.

equation while the proposed C-SS is based on the generally more efficient rank method,

and (b) the SIRS uses the structure of the index model, but does not require the link

function to be monotonic, while our method does.

(4) Fig. 3 shows that the C-SS performed similarly to the GLM-SIS if the link func-

tion was correctly specified, and outperformed the GLM-SIS if the link function was

misspecified, suggesting that the C-SS is both robust and efficient.

We have also compared the computing time of various methods. For example, for

Model 1 with n = 100,p = 1000 and s = 4, the average computing time of SIS, C-SS,

SIRS, DC-SIS, RRCS, QaSIS and DC-RoSIS for each simulation is 1.38s, 1.95s, 1.75s,

2.75s, 1.73s, 2.22s and 2.78s, respectively. It appears that our method is in par with these

methods in terms of computing time.



CONCORDANCE FEATURE SCREENING AND VARIABLE SELECTION 19

5.2. Comparison of Estimation Accuracy for the Variable Selection

We used s = 5 as the size of the true models (i.e. the numbers of non-zero coefficients),

that, without loss of generality, are β1, · · · , β5. The non-zero components of the p-vectors

β were randomly chosen as those in Section 5.1. To let β have a unit norm, we set the

final non-zero parameters as β/‖β‖. To generate covariates, we first randomly generated

an s × s symmetric positive definite matrix A with a condition number n1/2/ log(n),

and took s predictors X1, · · · , Xs ∼ N(0, A). Then, by letting r = 1 − 4 log(n)p, we

generated Zs+1, · · · , Zp from N(0, Ip−s) and defined the predictors Xs+1, · · · , Xp as Xi =

Zi + rtXi−s, i = s+ 1, · · · , 2s, and Xi = Zi + (1− r)tX1, i = 2s+ 1, · · · , p, with t = 0 for

independent predictors, and t = 1 for correlated predictors. If not otherwise stated, the

common parameters for the following simulations are: sample size n = 200, the number

of covariates p = 1000, and Monte Carlo repetitions N = 100.
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Figure 4: Boxplot of the minimum number of selected variables that are required to

include the true model with discrete covariates (Model 4) by using SIS, the proposed

C-SS method, RRCS, DC-SIS, SIRS, QaSIS and DC-RoSIS when (a)n = 100,p =

1000,s = 4,Cor(Xj, Xk) = 0,(j 6= k),(b)n = 200,p = 4000,s = 8,Cor(Xj, Xk) = 0,(j 6=
k),(c)n = 100,p = 1000,s = 4 Cor(Xj, Xk) = 0.2,(j 6= k) and (d)n = 200,p = 4000,s =

8,Cor(Xj, Xk) = 0.2,(j 6= k). The number in brackets is the median of distribution for

the minimum number of selected variables.
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Figure 5: Boxplot of the minimum number of selected variables that are required to

include the true model with weak signal (Model 5) by using SIS, the proposed C-SS

method, RRCS, DC-SIS, SIRS, QaSIS and DC-RoSIS when (a)n = 100,p = 1000,s =

4,Cor(Xj, Xk) = 0,(j 6= k),(b)n = 200,p = 4000,s = 8,Cor(Xj, Xk) = 0,(j 6= k),(c)n =

100,p = 1000,s = 4 Cor(Xj, Xk) = 0.2,(j 6= k) and (d)n = 200,p = 4000,s =

8,Cor(Xj, Xk) = 0.2,(j 6= k). The number in brackets is the median of distribution

for the minimum number of selected variables.

We considered a linear regression model, Y = β1X1 +β2X2 +β3X3 +β4X4 +β5X5 +e,

where the noise e was generated from normal distribution N(0, σ2), X2
1 · N(0, σ2) with

σ = 0.5, or 0.1 · t(1). Here t(1) denotes the t distribution with degree of freedom 1. Thus,

our comparisons were made under different circumstances, including normal distribution,

heteroskedasticity, and fat-tailed noise. Four methods were compared, which included

conditional permutation screening-SCAD methods based on smoothed C-statistic (PC-

SS) as in Section 1.1 of supplementary materials with K = 0 (i.e., takeM0 = ∅), Greedy

screening-SCAD methods based on smoothed C-statistic (GC-SS) as in Section 1.2 of

supplementary materials with p0 = 1, Permutation-SIS-SCAD (PSIS) as in Fan and

Lv (2008), and Vanilla-SIS-SCAD (VSIS) as in Fan et al. (2009). Several performance

measures are reported in Table 1. The first row lists percentages that include all of the
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Table 1: Simulation results for linear regression model

e ∼ N(0, σ2), med.‖β̂oracle − β‖ = 0.074

t = 0 t = 1

PC-SS GC-SS PSIS VSIS PC-SS GC-SS PSIS VSIS

perc.incl.true 0.96 0.93 1.00 1.00 0.96 0.90 1.00 1.00

med. model size 5 5 5 5 5 5 5 5

aver. model size 5.02 4.81 5.30 5.17 4.99 4.99 5.18 5.14

med.‖β̂ − β‖ 0.082 0.078 0.087 0.145 0.083 0.084 0.081 0.135

e ∼ 0.1 · t(1), med.‖β̂oracle − β‖ = 0.031

t = 0 t = 1

PC-SS GC-SS PSIS VSIS PC-SS GC-SS PSIS VSIS

perc.incl.true 1.00 0.95 0.23 0.48 0.99 0.97 0.27 0.40

med. model size 5 5 3 37 5 5 4 37

aver. model size 5.01 4.81 3.69 29.23 4.99 4.90 4.20 28.92

med.‖β̂ − β‖ 0.031 0.033 0.556 2.905 0.032 0.030 0.666 2.840

e ∼ X2
1N(0, σ2), med.‖β̂oracle − β‖ = 0.060

t = 0 t = 1

PC-SS GC-SS PSIS VSIS PC-SS GC-SS PSIS VSIS

perc.incl.true 0.97 0.93 0.84 0.94 0.96 0.93 0.76 0.87

med. model size 5 5 5 7 5 5 5 7

aver. model size 4.95 4.80 5.44 10.76 4.89 4.80 5.43 11.77

med.‖β̂ − β‖ 0.060 0.058 0.289 0.788 0.056 0.063 0.280 0.788

important predictors in the model. The second and the third rows show the median

and average final numbers of variables selected, while the Forth reports the median L2

estimation errors. The oracle value of med.‖β̂ − β‖, that is, med.‖β̂oracle − β‖, is also

presented. In Table 1, both β and β̂ had been normalized to have unit 1 norm.

Table 1 reveals that the proposed PC-SS and GC-SS methods yielded results similar to

PSIS and VSIS under the normal noise of the same distribution. However, when the noise

was heteroskedastic, PSIS had a low true-positive rate and missed important predictors,

while VSIS had a high false-positive rate and identified a large number of unimportant
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predictors. Both PSIS and VSIS failed when the noise is fat-tailed. In contrast, our

proposed methods had a high true-positive rate, a low false-positive rate, and a small

prediction error for either heteroskedasticity or fat-tailed noise. Finally, the closeness of

med.‖β̂−β‖ and med.‖β̂oracle−β‖ confirms the oracle property of our proposed methods.

In further research, we conducted more simulation studies on several generalized

linear models, including a non-linear regression model, a poisson regression model and an

ordinal regression model. All simulation results verified that among the four compared

methods, our proposed methods had the best performance. For more details, please see

the supplementary materials.

6. A Study of the Intergroupe Francophone du Myelome

Multiple myeloma is a progressive blood cancer often diagnosed through the presence

of excessive numbers of abnormal plasma cells in the bone marrow, and overproduc-

tion of intact monoclonal immunoglobulin. Myeloma patients are typically characterized

with wide clinical and pathophysiologic heterogeneities, and exhibit various levels of re-

sponse to the same treatments. Extensive studies have revealed that the achievement of

complete or partial response to treatment will substantially prolong progression-free and

overall survival. Gene expressions of patients have been offered as effective prognostic

tool for treatment response, and have informed the design of appropriate gene therapies.

Further identifying genes that predict treatment efficacy can boost our capabilities for

personalized medicine.

For previously untreated multiple myeloma patients, high-dose therapy with autolo-

gous stem cell transplantation (HDT-ASCT) is the standard of care. Bortezomib-based

therapy has recently emerged as a useful induction treatment prior to HD-ASCT. A recent

trial by the Intergroupe Francophone du Myelome investigated the efficacy of receiving

bortezomib therapy before HDT-ASCT. A total of 136 newly-diagnosed patients were en-
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rolled and, for each patient, gene expression files with 44,280 probes were obtained. The

goal of the study was to identify genes that were predictive of the response to treatment

(coded values of 0=no response, 1=partial response, 2=complete response were assigned).

We applied both the proposed PC-SS and GC-SS methods to analyze the data and ob-

tained similar results; we only report the results of GC-SS. In comparison, we also applied

the Vanilla-SIS-SCAD (VSIS-G) method proposed by Fan, Samworth and Wu (2009) for

generalized linear models. The selected genes and their descriptions are presented in

Table 2. It appears that GC-SS has selected several novel genes that were predictive

of response to treatment such as CD74, major histocompatibility complex/class II, and

NFkB, which have all been known to regulate the proliferation of multiple myeloma cells;

see Burton et al. (2004) and Demchenko et al. (2010). In contrast, these important genes

have been missed by the VSIS-G method.

To study the predictive performance of selected genes, we applied a K-fold cross-

validation method to compare the estimated predictive accuracy, i.e. the estimated C-

statistic. Our approach was similar to Tian et al. (2007), which assessed model perfor-

mance based on absolute prediction error. We randomly split the data into K disjoint

subsets of equal sizes and labeled them as Ik, k = 1, ..., K. For each k, we used all the

observations excluding Ik to obtain an estimate β̂(−k) for the final set of genes shown in

Table 2, by maximizing the smoothed C-statistic (3.1). We then computed the estimated

C-statistic Ĉ(k)(β̂(−k)) via (2.1) based on observations in Ik. An average C-statistic can

be computed as Ĉ = K−1
K∑
k=1

Ĉ(k)(β̂(−k)). Taking K = 32, we obtained that the averaged

C-statistic as ĈGC−SS = 0.84 and ĈV SIS−G = 0.81, based on the GC-SS and VSIS-G

methods, respectively. Both sets of genes gave very high predictive power, though the

genes identified using our proposed method showed even higher predictive accuracy than

those identified using the VSIS-G method.
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Table 2: Gene selection for the Intergroupe Francophone du Myelome Study

GC-SS
Probeset Gene name
228093 at Zinc finger protein 599
243695 at Transcribed locus
1567628 at CD74 molecule, major histocompatibility complex, class II invariant chain
206094 x at UDP glucuronosyltransferase 1 family, polypeptide A1 A3-10
208306 x at Major histocompatibility complex, class II, DR beta 1,3,4
205004 at NFKB repressing factor
217389 s at Activating transcription factor 5
1554161 at Solute carrier family 25, member 27
230499 at Baculoviral IAP repeat containing 3
206408 at Leucine rich repeat transmembrane neuronal 2

VSIS-G
Probeset Gene name
205549 at Purkinje cell protein 4
222285 at Immunoglobulin heavy constant delta
241226 at Transcribed locus
229941 at Family with sequence similarity 166, member B
206094 x at UDP glucuronosyltransferase 1 family, polypeptide A1 A3-10
220622 at Leucine rich repeat containing 31
206679 at Amyloid beta (A4) precursor protein-binding, family A, member 1
228093 at Zinc finger protein 599
217389 s at Activating transcription factor 5
214608 s at Eyes absent homolog 1 (Drosophila)
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7. Discussion

We have proposed an integrated framework that combines screening and variable se-

lection based on the smoothed C-statistic, a rank concordance measure between predictors

and outcomes. We have established the sure screening properties and model consisten-

cy property of the proposed method. We have also proposed iterative C-SS procedures,

namely PC-SS and GC-SS, which can substantially reduce the false selection rate. The

proposed method has several appealing properties. First, our framework is general, ac-

commodating a variety of outcomes, such as continuous, binary and ordinal responses.

Second, our extensive simulation studies suggested that our method is more efficient than

the existing nonparametric and semiparametric methods, and is more stable than the

existing parametric methods. Third, we have applied a smoothing technique to optimize

the C-statistic and our method merely requires a single evaluation of the smoothed C-

statistic at β = 0, enhancing computation enormously. Finally, we have developed the

oracle properties under the premise that the number of predictors captured by the C-SS

can be of polynomial order of sample size, which have further advanced the theoretical

results for screening and variable selection.

Future research lies in extending the results to encompass censored outcome data,

with applications in identifying novel biomarkers that can predict disease progression or

risk of death. We will report the results elsewhere.

Supplementary Materials

The supplementary materials consist of: (i) some details of iterative screening-SCAD

procedure; (ii) further simulation studies; (iii) some technical lemmas used in the proofs

of Theorem 1 and 2; (iv) the proofs of Theorems 1 and 2; (v) the conditions and the proof

for the oracle property.
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