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Zeng and Lin are to be congratulated for a wonderful work on nonparametric maximum

likelihood estimation for semiparametric frailty regression models. In this comment, I concentrate

on the interpretation of frailties.

In the framework of random e�ects models, the frailties have been introduced to model the

clustering e�ect and will be useful for prediction as illustrated in Section 5.2. On the other

hand, they are meant to model the within-cluster dependence as the variance components of

the frailties typically gauge the magnitude of such dependence (Diggle, Liang and Zeger, 1994).

This, however, was not elucidated in this paper. This note bridges the frailty parameters with

within-cluster dependence measures and highlight a challenge in interpreting these parameters.

To convey the idea, consider a (much) simpli�ed version of model (7) in Zeng and Lin for bivariate

failure times (T1; T2) with no covariates, namely,
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where b � f(�; 
). Our goal is to link the variance component 
 to a `model free' and standardized

dependence measure commonly used for bivariate survival. One such device is the Kendall's

coeÆcient of concordance (Kendall's �), which can be evaluated by
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where p(t1; t2) and S(t1; t2) are the joint bivariate density and survival functions respectively (see,

e.g. Hougaard, 2000) . It follows that the joint survival under (1) is S(t1; t2) =
R
exp[�Gfeb�(t1)g�

Gfeb�(t2)g]f(b; 
)db, and p(t1; t2) can be conveniently evaluated by p(t1; t2) = @2S(t1; t2)=@t1@t2.

Therefore, 
 can be viewed to characterize the bivariate dependence through
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It is worth noting that � does not depend on the baseline function �(t) in (1) and its eÆcient

estimate can be obtained by replacing 
 with its MLE 
̂, whose variance estimate will be immedi-

ately available via the delta method. In a similar fashion, the relationship of variance component


 with the other global dependence measures, e.g. Spearman correlation, integrated hazard ratio

and median concordance, and the local dependence measure, i.e. local cross ratio, can also be

established.
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However, a serious challenge of interpreting 
 as a dependence measure lies in its dependence

on the link function G in (1). This can be illustrated by Figure 1, which depicts Kendall's �

against various 
 when b � N(0; 
), under the proportional hazards (PH) model [with G(x) = x]

and the proportional odds (PO) model [with G(x) = log(1 + x)], respectively. For example,


 = 1:8 corresponds to Kendall's � of 0.40 under the PH model, almost twice as much as that of

0.21 under the PO model, begging the cliche question of \how large is large" when viewing the

variance component as a measurement for dependence under various transformation models. I

would welcome the authors' comments on this issue.
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