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Summary

This chapter includes well-known as well as state-of-the-art statistical modelling tech-

niques for drawing inference on correlated data, wich emerge from a wide range of studies,

for example, in quality control study of products made from various assembly lines, in com-

munity based studies on cancer prevention, and in familial research of linkage analysis.

The �rst section brie
y introduces the statistical models incorporating random e�ect

terms, which have become increasingly popular in analyzing correlated data. An e�ect is

classi�ed as a random e�ect when inferences are to be made on an entire population, and

the levels of that e�ect represent only a sample from that population.

After this introduction, the second section introduces the linear mixed model for clustered

data, which explicitly models the complex covariance structure among observations by adding

random terms into the linear predictor part of a linear regression model. The third section

discusses its extension, generalized linear mixed models, for correlated non-normal data.

The fourth section reviews several commonly estimating techniques for the GLMMs,

including the EM approach, penalized Quasi-likelihood, the Markov chain Newton-Raphson,

the Stochastic Approximation and the S-U algorithm. The �fth section focuses on some

special topics related to hypothesis tests of random e�ects. Speci�cally score tests under
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various models are presented. The last section ends this chapter with discussion and some

other relevant topics in random e�ects models.

Keywords: Random e�ects; Clustered data; Linear Mixed Models; Generalized Linear Mixed

Models; Maximum Likelihood Estimation; EM algorithm; PQL; Stochastic Approximation;

S-U algorithm; Simulated Maximum Likelihood Estimation; Score test; SIMEX; Variance

Components.



1 Introduction

Classical linear regression models are a powerful tool for exploring the dependence of a

response (e.g. blood pressure) on explanatory factors (e.g. weight, height and nutrient

intake). However the normality assumption required for the response variables has severely

limited its applicability. To accommodate a wide variety of independent non-normal data,

Nelder and Wedderburn (1972) and McCullagh and Nelder (1983) introduced generalized

linear models (GLMs), a natural generalization of linear regression models. The GLMs allow

responses to have non-Gaussian distributions. Hence, data of counts and proportions can

conveniently be �tted within this framework. Typically in a GLM, the mean of a response

is linked to the linear predictors via a non-random function, termed link function. For

analytical convenience the link function is often determined by the response's distribution.

As an example, for Poisson data, the link is routinely chosen as log, whereas for Bernoulli

responses, the link is usually chosen to be logit.

In many applications, however, responses are correlated due to unobservable factors, such

as circumstantial or genetic factors. Consider the problem of investigating the strength of

the beams made from randomly selected manufactures. The beams made from the same

factory are likely to be correlated because of the same manufacture procedures. Other

examples include a longitudinal study of blood pressure, where repeated observations taken

from the same individuals are likely be correlated, and a familial study in cardiovascular

disease, where the incidents of heart failure from family members are likely to be dependent.

Random e�ects models have emerged in the last two decades as a major tool for analyzing

such correlated data; see, e.g. Laird and Ware (1982), Stiratelli et al. (1984); Schall (1991),

Zeger and Karim (1991) and McCulloch (1997), among others.

Indeed, the use of random e�ects in modeling correlated data has several bene�ts. First, it

provides a machinery for data modeling in unbalanced designs, especially when measurements

are made at arbitrary irregularly spaced intervals in many observational studies, as opposed

to ANOVA which requires a balanced data set. Secondly, random e�ects can be used to

model subject speci�c e�ects, and o�er a neat means to model separately the within and
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between subject variations. Thirdly, the framework of random e�ects provides a systematic

way to estimate or predict the individual e�ect.

Though conceptually attractive, the GLMMs are often diÆcult to �t, to a large extent,

because of the intractability of the underlying likelihood functions. Only under special cir-

cumstances, such as when both response and random e�ects are normally or conjugately

distributed, will the associated likelihood function have a close-form. Typically cumbersome

numerical integrations have to be performed. To alleviate such computational burden, vari-

ous modeling techniques have been proposed. For example, Stiratelli et al.(1984) proposed

an EM algorithm for �tting serial binary data; Schall (1991) developed an iterative Newton-

Raphson algorithm; Zeger and Karim (1991) and McCulloch (1997) considered Monte Carlo

EMmethods. All these commonly used inferential procedures will be presented and discussed

in this chapter.

The rest of this chapter is structured as follows. Section 2 introduces the linear mixed

model for clustered data and section 3 discusses its extension, generalized linear mixed mod-

els, for correlated non-normal data. Section 4 reviews several commonly estimating tech-

niques for the GLMMs, including the EM approach, penalized Quasi-likelihood, the Markov

chain Newton-Raphson, the Stochastic Approximation and the S-U algorithm. Section 5 fo-

cuses on some special topics related to hypothesis tests of random e�ects. Section 6 concludes

this chapter with discussion and some other relevant topics in random e�ects models.

Throughout in this chapter, f(�) and F (�) denote the probability density (or probability

mass) function (with respect to some dominating measure, e.g. Lebesgue measure) and the

cumulative distribution function respectively. If the context is clear, we do not use separate

notation for random variables and their realized values.

2 Linear Mixed Models

A clustered data structure is typically characterized by a series of observations on each

of a collection of observational clusters. Consider the problem of investigating whether

the beam produced from iron or an alloy metal is more resilient. For this purpose the

2



strength of the beams made of iron and alloy by randomly selected manufactures is mea-

sured. Each manufacture may contribute multiple beams, in which case each manufacture is

deemed as a cluster, while each beam contributes as a unit of observation. Other examples

include the measurements of products produced by a series of assembly lines, and blood

pressure taken weekly on a group of patients, in which cases the clusters are assembly lines

and patients respectively. Typically clustering induces dependence among observations. A

linear mixed model (Laird and Ware, 1982) explicitly models the complex covariance struc-

ture among observations by adding random terms into the linear predictor part of a linear

regression model. Thus both random and �xed e�ects will present in an LMM. In data

analysis, the decision as to whether a factor should be �xed or random is often made on the

basis of which e�ects vary with clusters. That is, clusters are deemed as a random sample

of a larger population and therefore any e�ects that are not constant for all clusters are

regarded as random.

To �x ideas, denote by Yi the response vector for the i-th of a total m clusters, for

example, the ni observations of blood pressure taken on the i-th patient, Xi the known

covariate matrix (ni � p) associated with the observations, e.g. the patient's treatment

assignment and the time when the observation was taken, bi the vector of random e�ects

and Zi the known design matrix associated with the random e�ects. Usually the columns

of Zi are a vector of ones and a subset of those of Xi for modeling random intercepts and

slopes. A linear mixed model can thus be speci�ed as

Yi = Xi� + Zibi + �i; (1)

where typically we assume that the random error vector �i � MVN(0; �2Ini
) and �i is

independent of bi, which is assumed to have expectation 0 for model identi�ability. Here,

Ini
is an identity matrix of order ni. In practice, we often assume bi � MVN(0;�(�)),

where its variance-covariance matrix is dependent on a �xed q-dimensional (a �nite number)

parameter, say, � = (�1; : : : ; �q)
0, termed variance components. These variance components

convey the information about the population where the clusters are randomly selected from

and are often of interest to practitioners, aside from the �xed e�ects.
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To encompass all data, we denote by Y;X;b; � the concatenated collections ofYi's, Xi's,

bi's and �i's. For example, Y = (Y0
1; : : : ;Y

0
m)

0. Denote by Z a block diagonal matrix whose

i-th diagonal block is Zi. Then (1) can be compactly rewritten as

Y = X� + Zb+ �; (2)

where b � MVN(0;D), � � MVN(0; �2IN ) and b and � are independent. Here, D is a

block diagonal matrix whose diagonal blocks are �(�), and IN is an identity matrix of order

N , where N is the total number of observations, i.e. N =
Pm

i=1 ni.

Indeed, model (2) accommodates a much more general data structure beyond clustered

data. For example, with properly de�ned Z and random e�ects b model (2) encompasses

crossed factor data (Breslow and Clayton, 1993) and Gaussian spatial data (Cressie, 1991).

2.1 Estimation

Fitting of model (1) or its generalized version (2) is customarily likelihood based. A typical

maximum likelihood estimation procedure is as follows.

First observe that Y is normally distributed, Y � MVN(X�;V), where V = ZDZ0 +

�2IN , so that the log likelihood for the observed data is

` = �
1

2
(Y �X�)0V�1(Y �X�)�

1

2
log jVj �

N

2
log 2�: (3)

Denote by 
 = (�0;�0; �2)0 the collection of unknown parameters in the model. Setting

@`=@
 = 0 gives the maximum likelihood equation. Speci�cally, a direct calculation of @`=@�

yields the ML equation for �:

� = (X0V�1X)�1X0V�1Y: (4)

Denote by �k the k-th element of the variance components (�; �2), where we label �q+1 = �2.

Equating @`=@�k = 0 gives

�
1

2

�
tr(V�1@V

@�k
)� (Y �X�)0V�1@V

@�k
V�1(Y �X�)

�
= 0; (5)
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where tr(�) denotes the trace of a square matrix. In practice, iterations between (4) and

(5) are required to obtain the MLEs. Furthermore the asymptotic sampling variance are

routinely obtained from the inverse of the information matrix, which is minus the expected

value of the matrix of second derivatives of the log likelihood (3).

It is, however, worth pointing out that the MLEs obtained from (4) and (5) are biased,

especially for the variance components when the sample size is small. This is because the

estimating equation (5) for the variance components fails to account for the loss of degrees of

freedom when the true � is replaced by its estimate, �̂. To address this issue, an alternative

maximum likelihood procedure, called the restricted maximum likelihood procedure, has

been proposed for estimating the variance components (Harville, 1974). The key idea is

to replace the original response Y by a linear transform so that the resulting `response'

contains no information about �. The variance components can then be estimated based on

this transformed response variable.

More speci�cally, choose a vector a such that a0X = 0. For more eÆciency we use the

maximum number, N � p, of linearly independent vectors a and write A = (a1; : : : ; aN�p),

which has a full row rank N � p. The restricted MLE essentially will apply the MLE

procedure on A0Y, in lieu of the original Y.

To proceed, we note that A0Y � MVN(0;A0VA). The ML equations for the variance

components can hence be derived similarly from those for the original Y � MVN(X�;V),

namely, by replacing Y, X and V with A0Y, 0 and AVA0 respectively in (5).

Caution must be exercised if the MLEs or the RMLEs of the variance components fall out

of the parameter space, e.g. a negative estimate for a variance, in which case those solutions

must be adjusted to yield estimates in the parameter space; see a more detailed discussion

in McCulloch and Searle (2001).

2.2 Prediction of Random E�ects

A �xed e�ect di�ers from a random e�ect in that the former is considered as a constant and

is often the main parameter we wish to estimate. In contrast, a random e�ect is considered

as an e�ect coming from a population of e�ects. Consider again the aforementioned study
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of beam strength. Aside from the di�erences between the beams made from iron and alloy,

there should be at least two sources of variability: (1) among beams produced by the same

manufacture (2) among manufactures. A simple random e�ects model can be speci�ed as

E(Yij jbi) = Xij� + bi;

where Yij is the strength of the j-th beam produced by the i-th manufacture andXij indicates

whether iron or alloy was used for producing such a beam. Note bi is the e�ect on the strength

of beams produced in the i-th manufacture; and this manufacture was just the one among

the selected manufactures that happened to be labeled i in the study. The manufactures

had been randomly selected as a representation of the population of all manufactures in the

nation, and the inferences about the random e�ects were to be made about that population.

Hence, estimating the variance components is of substantial interest for this purpose. On

the other hand, one may wish to gain information about the performance of some particular

manufactures. For instance, one may want to rank various manufactures in order to select

the best (or worst) ones. In these cases we will be interested in predicting bi.

In general the `best' prediction of b in (2) based on observed response Y is required to

minimize the mean squared errorZ
(b̂� b)0G(b̂� b)f(Y;b)dYdb; (6)

where the predictor b̂ depends only on Y, f(Y;b) is the joint density function of Y and b,

and G is a given non-random positive de�nite matrix. It can be shown for any given G, the

minimizer is E(bjY), i.e. the conditional expectation of b given the observed response Y.

If the variance components were known, an analytical solution exists based on the linear

mixed model (2). That is, assuming Y and b follow a joint multi-normal distribution, it

follows

E(bjY) = DZ0V�1(Y �X�):

Replacing � by its MLE

�̂ = (X0V�1X)�1X0V�1Y
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would yield the Best linear unbiased predictor (BLUP) of random e�ects (Henderson et al.,

1959). Because D and V are typically unknown, they are often replaced by their MLEs or

RMLEs when calculating the BLUP, namely

b̂ = D̂Ẑ
0
V̂
�1
(Y �X�̂):

Extensive derivation has been given by Henderson et al. (1959) for the variance of the BLUP

when the variance components are known. The variance of the BLUP with unknown variance

components are yet fully available.

3 Generalized Linear Mixed Models

Non-normal data frequently arise from engineering studies. Consider again the beam study,

where now the response is a binary variable, indicating whether a beam has satis�ed the

criteria of quality control. For such non-normal data, statistical models can be traced back as

early as 1934, when Bliss (1934) proposed the �rst probit regression model for binary data. It

was not, however, until four decades later did Nelder and Wedderburn (1972) and McCullagh

and Nelder (1983 1st ed., 1989 2nd ed.) propose Generalized Linear Models (GLMs) to unify

the models and modeling techniques for analyzing more general data (e.g. counted data and

polytomous data). Several authors (Laird and Ware, 1982; Stiratelli et al., 1984; Schall,

1991, among others) have considered a natural generalization of the GLMs to accommodate

correlated non-normal data. Their approach was adding random terms to the linear predictor

parts and the resulting new models are termed Generalized Linear Mixed Models (GLMMs).

As an example, let Yij denote the status (e.g. pass or fail the quality assurance test) of

the j th beam from the i-th manufacture. We might create a model as

Yijjbi
iid
� Bernoulli(�bij); i = 1; : : : ;m; j = 1; : : : ; ni

logit(�bij) = X0
ij� + bi

bi
iid
� N(0; �2u);

where logit(�) = logf�=(1 � �)g is the link function that links together the conditional

probability and the linear predictors. The normal assumption for the random e�ects bi is
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reasonable because the logit link carries the range of the parameter space of �ij from [0; 1]

into the whole real line. Finally we use independent bi's to model the independent cluster

e�ects and the within-cluster correlations among observations.

It is straightforward to generalize the above formulation to accommodate more general

data. Speci�cally, letXij be a p�1 covariate vector associated with response Yij. Conditional

on an unobserved cluster-speci�c random variable bi (an r � 1 vector), Yij are independent

and follow a distribution of exponential family, that is

Yijjbi
iid
� f(Yijjbi) (7)

f(Yij jbi) = expf[Yij�ij � h(�ij)]=�
2 � c(Yij; �)g: (8)

The conditional mean of Yij jbi, �
b
ij , is related to �ij through the identity �

b
ij = @h(�ij)=@�ij, a

transformation of which is to be modeled as a linear model in both the �xed and random e�ects:

g(�bij) = X0
ij� + Z0ijbi; (9)

where g(�) is coined a link function, often chosen as an invertible and continuous function,

and Zij is an r � 1 design vector associated with the random e�ect. The random e�ects bi

are mutually independent with a common underlying distribution F (�;�) (or density f(�;�)),

where the variance components � is an unknown scalar or vector.

Model (9) is comprehensive and encompasses a variety of models. For continuous outcome

data, by setting

h(�) =
1

2
�2; c(y; � 2) =

1

2
y2=� 2 �

1

2
log(2�� 2)

and g(�) to be an identity function, model (9) reduces to a linear mixed model. For binary

outcome data, let

h(�) = logf1 + exp(�)g:

Choosing g(�) = logit(�) yields logit random e�ects model, while choosing g(�) = ��1(�),

where �(�) is the CDF for a standard normal, gives a probit random e�ects model.

From (7) and (8) it is easy to construct the likelihood that the inference will be based
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on. That is,

` =

mX
i=1

log

Z niY
j=1

f(Yijjbi;�)f(bi;�)dbi;

where the integration is over the r-dimensional random e�ect bi and the summation results

from independence across clusters.

We can further reformulate model (9) in such a compact form that it encompasses all the

data from all all clusters. With Y;X;Z;b as de�ned in the previous section, we write

gfE(Yjb)g = X� + Zb: (10)

Hence, the log likelihood function can be rewritten as

`(Y;�;�) = logL(Y;�;�) = log

Z
f(Yjb;�)f(b;�)db; (11)

where f(Yjb;�) is the conditional likelihood for Y and f(b;�) is the density function for

b, often assumed to have mean zero.

Model (10) is not a simple reformat - it accommodates more complex data structure

beyond clustered data. For example, with properly de�ned Z and random e�ects b it en-

compasses crossed factor data (Breslow and Clayton, 1993) and non-normal spatial data

(Diggle et al., 1998). Hence, for more generality, the ensuing inferential procedures in Sec-

tion 4 will be based on (10) and (11).

The GLMM is advantageous when the objective is to make inference about individuals

rather than the population average. Within its framework, random e�ects can be estimated

and each individual's pro�le or growth curve can be obtained. The best predictor of random

e�ects minimizing (6) is E(Yjb), not necessarily linear in Y. But if we con�ne our interest

to the predictors which are linear in Y, or, of the form

b̂ = c+QY

for some conformable vector c and matrix Q, minimizing the mean squared error (6) with

respect to c and Q leads to the best linear predictor

b̂ = E(b) + cov(b;Y)var(Y)fY � E(Y)g; (12)
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which holds true without any normality assumptions (McCulloch and Searle, 2001).

For example, consider a beta-binomial model for clustered binary outcomes such that

Yijjbi � Bernoulli(bi)

and the random e�ect bi � Beta(�; �), where �; � > 0. Using (12) we obtain the best linear

predictor for bi,

b̂i =
� + �Yi

� + � + 1
;

where �Yi =
Pni

j=1 Yij=ni.

4 Computing MLEs for GLMMs

A common theme in �tting a GLMM has been the diÆculty of computation of likelihood-

based inference. Indeed computing the likelihood itself is often challenging for GLMMs,

mostly because of intractable integrals. This section presents various commonly used likelihood-

based approaches to estimating the coeÆcients and variance components in the GLMMs.

4.1 The EM Approach

The EM algorithm (Dempster et al., 1977) is a widely used approach to calculating the

MLEs with missing observation. The basic idea behind its application to the random e�ects

models is to treat the random terms as `missing' data, and to impute the missing information

based on the observed data. Often, imputations are made via conditional expectations.

When drawing inference, our goal lies in maximizing the marginal likelihood of the ob-

served data in order to obtain the MLEs for unknown � and variance components �. If

random e�ects b were observed, we would be able to write the `complete' data as (Y;b)

with a joint log likelihood

`(Y;b;�;�) = log f(Yjb;�) + log f(b;�): (13)

However, since b is unobservable, directly computing (13) is not feasible. Rather the EM

algorithm adopts a two-step iterative process. The Expectation step (`E' step) computes the
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expectation of (13) conditional on the observed data. That is,

~̀= Ef`(Y;b;�;�)jY;�0;�0g;

where �0;�0 are the current values, followed by the Maximization step (`M' step), which

maximizes ~̀ with respect to � and �. The E step and M step are iterated until convergence

is achieved. Generally, the `E' step is much computationally costly, where a need to calculate

a high dimensional integral still exists.

Indeed, since the conditional distribution of bjY involves the marginal distribution f(Y),

which is an intractable integral, a direct Monte Carlo simulation is infeasible to ful�ll the Ex-

pectation step. In view of this diÆculty, McCulloch (1997) utilized the Metropolis-Hastings

algorithm to make random draws from bjY without calculating the marginal density f(Y).

The Metropolis-Hastings algorithm, dated back to the papers by Metropolis et al. (1953)

and Hastings (1970), can be summarized as follows. Choose an auxiliary function q(u;v)

such that q(:;v) is a pdf for all v. This function is often called a jumping distribution from

point v to u. Draw b� from q(:;b), where b is the current value of the Markov chain.

Compute the ratio of importance

! =
f(bjY)q(b�;b)

f(b�jY)q(b;b�)
:

Set the current value of the Markov chain as b� with probability min(1; !) and b with

probability max(0; 1 � !). It can be shown under mild conditions the distribution of b

drawn from such a procedure converges weakly to f(bjY) (see, e.g. Carlin and Louis, 2000).

Since the unknown density f(Y) cancels out in the calculation of !, the Metropolis-Hastings

algorithm has successfully avoided computing f(Y).

The ideal Metropolis-Hastings algorithm jumping rule is to sample the point directly

from the target distribution. That is, in our case, q(b�;b) = f(b�jY) for all b. Then the

ratio of importance, !, is always 1, and the iterates b� are a sequence of independent draws

from f(b�jY). In general, however, iterative simulation is applied to the situations where

direct sampling is not possible. EÆcient jumping rules have been addressed by Gelman et

al. (1995).
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We can now turn to the Monte Carlo EM algorithm, which takes the following form.

1. Choose initial values �0 and �0.

2. Denote by (�s;�s) the updated value at iteration s. Generate n values of b1; : : : ;bn

from f(bjY;�s;�s).

3. At iteration s+ 1, choose �s+1 to maximize 1

n

Pn
k=1 log f(Yjb

k;�).

4. Find �s+1 to maximize 1

n

Pn
k=1 log f(b

k;�).

5. Repeat steps 2-4 until convergence.

While computationally intensive, this algorithm is relatively stable by increasing the log

marginal likelihood at each iteration step and is convergent at a linear rate (Dempster et al.,

1977).

4.2 Simulated Maximum Likelihood Estimation

Implementation of the EM is often computationally burdensome. A naive approach would

numerically approximate the likelihood (11) and maximize it directly. For example, when the

random e�ects b follow a normal distribution, we may use the Gaussian Quadrature to evalu-

ate (11) and its derivatives. But this approach quickly fails when the dimension of b is large.

We now consider a simulation technique, namely, simulated maximum likelihood estimation,

to approximate the likelihood directly and, further, to obtain the MLEs. The key idea be-

hind this approach is to approximate (11) and its �rst two order derivatives by Monte Carlo

simulations while performing the Newton-Raphson iterations.

We begin with the likelihood approximation. Following Geyer and Thompson (1992) and

Gelfand and Carlin (1993), one notices that for any density function h(b) with the same

support as f(b;�),

L(Y;�;�) =

Z
f(Yjb;�)f(b;�)

h(b)
h(b)db: (14)

Hence, Monte Carlo simulations can be applied to evaluate L(Y;�;�). Explicitly, if b1; : : : ;bn

are generated independently from h(b) (termed importance sampling distribution), (14) can
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be approximated by

1=n

nX
i=1

f(Yjbi;�)f(bi;�)

h(bi)
(15)

with an accuracy order Op(n
�1=2). The optimal (in the sense that the Monte Carlo approxi-

mation has 0 variance) importance sampling distribution is f(bjY), evaluated at the MLEs

(Robert and Casella, 1999). But, since the MLEs are unknown and the conditional distri-

bution can not be evaluated, such an optimal distribution is never practically meaningful.

Nevertheless we may �nd a distribution (e.g. normal distribution) to approximate f(bjY).

More speci�cally, notice that

f(bjY) = c� f(Yjb;�)f(b;�) = c� expf�K(Y;b)g;

where c (not depending on b) is to ensure a proper density function. We use

h(b;�;�) = jj2��̂jj�1=2 expf�
1

2
(b� b̂)0�̂

�1
(b� b̂)g;

where jj � jj denotes the determinant of a square matrix, b̂ = argminbfK(Y;b)g and �̂ =

f @

@b@b
0K(Y; b̂)g�1, to approximate the conditional density f(bjY) evaluated at � and �.

Similarly, the derivatives of L(Y;�;�) can also be approximated by Monte Carlo simulations.

Then the algorithm proceeds as follows

1. Choose the initial values 
0 = (�0;�0) for 
 = (�;�).

2. Denote by 
s the current value at the s-th step. Generate b1; : : : ;bn based on h(bj
s),

3. Calculate the approximate derivatives of marginal likelihood function L(Y;�;�) eval-

uated at 
s.

Bs
� =

1

n

nX
k=1

f(bk;�s)

h(bk;
s)

@

@�
f(Yjbk;�)j�

s ;

Bs
� =

1

n

nX
k=1

f(Yjbk;�s)

h(bk;
s)

@

@�
f(bk;�)j�

s;

As
�� =

1

n

nX
k=1

f(bk;�s)

h(bk;
s)

@2

@�@�0
f(Yjbk;�)j�

s ;
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As
�� =

1

n

nX
k=1

f(Yjbk;�s)

h(bk;
s)

@2

@�@�0
f(bk;�)j�

s ;

As
�� =

1

n

nX
k=1

1

h(bk;
s)

@

@�
f(Yjbk;�)j�

s

�
@

@�
f(bk;�)j�

s

�0
;

4. Compute the updated value at the (s+ 1)-th step


s+1 = 
s � (As)�1Bs

where As =

�
As

�� As
��

(As
��)

0 As
��

�
and Bs = (Bs

�
0;Bs

�
0)0.

5. Repeat steps 2-4 until convergent criteria are met. Upon convergence, set 
̂ = 
s and

the Hessian matrix A = As.

The covariance of the resulting 
̂ is approximated (ignoring the Monte Carlo error) by

the inverse of the observed information matrix, given by

�
@2

@
@
 0
logL(Y;�;�)j
̂

:
= �L̂�1A;

where L̂ and A are the approximations of L(Y;�;�) and Hessian matrix evaluated at 
̂ =

(�̂; �̂), respectively.

4.3 Monte Carlo Newton-Raphson (MCNR)/ Stochastic Approx-

imation (SA)

The Monte Carlo Newton-Raphson and Stochastic Approximation ( Moyeed and Baddley,

1991; Rupert, 1991; Gu and Kong, 1998) are two similar approaches to �nding the MLEs for

the GLMMs. They both approximate the score function using the simulated random e�ects

and improve the precision of approximation at each iteration step.

We �rst describe a typical MCNR algorithm. Consider the decomposition of the joint

density of the response vector and random e�ects vector

f(Y;b;
) = f(Y;
)f(bjY;
):

14



Hence
@ log f(Y;b;
)

@

= S(
) +

@ log f(bjY;
)

@

; (16)

where S(
) = @ log f(Y;
)=@
, the score function of main interest. In view of

E

�
@ log f(bjY;
)

@

jY

�
= 0;

(16) can be written in a format of a regression equation

@ log f(Y;b;
)

@

= S(
) + error

where the `error' term substitutes @ log f(bjY;
)=@
, a mean 0 term. Thus, inserting values

of b � f(bjY) into @ log f(Y;b;
)=@
 yields `data' for performing such a regression.

The MCNR algorithm is typically implemented as follows. Denote by 
(s) the value of

the estimate of 
 at iteration step s. Generate via the Metropolis-Hastings algorithm a

sequence of realized values b(s;1); : : : ;b(s;n) � f(bjY;
(s)). At the (s+ 1)-th step, compute


(s+1) = 
(s) � asÊ

�
@ log f(Y;b;
)

@

j
=
(s)

�
: (17)

Here as is a constant, incorporating information about the expectation of the derivative of

@ log f(Y;b;
)=@
 at the root, an unknown quantity. In practice, as is often set to be

the inverse of a Monte Carlo estimate of the expectation based on the realized values of

b(s;1); : : : ;b(s;n).

The SA di�ers from the MCNR in that the SA uses a single simulated value of random

e�ects in (17), that is


(s+1) = 
(s) � as
@ log f(Y;b(s);
)

@

j
=
(s) ;

and as is chosen to gradually decrease to 0. Ruppert (1991) and Gu and Kong (1998) have

recommended

as =
e

(s+ �)�

�
Ê

�
@2 log f(Y;b;
)

@
@
 0

���1
;

where e = 3; � = 50 and � = 0:75 as chosen by McCulloch and Searle (2001). The multiplier

as decreases the step size as the iterations increase in the SA and eventually serves to

15



eliminate the stochastic error involved in the Metropolis-Hastings steps. McCulloch and

Searle (2001) stated that the SA is advantageous in that it can use all of the simulated data

to calculate estimates and only uses the simulated values one at a time, however, the detailed

implementation of both methods have yet been `settled' in the literature.

4.4 S-U Algorithm

The S-U algorithm is a technique for �nding the solution of an estimating equation that can

be expressed as the expected value of a full data estimating equation, where the expectation

is taken with respect to the missing data, given the observed data. This algorithm alternates

between two steps: a simulation step wherein the missing values are simulated based on the

conditional distributions given the observed data, and an updating step wherein parameters

are updated without performing a numerical maximization. An attractive feature of this

approach is that it is sequential, i.e. the number of Monte Carlo replicates does not have to

be speci�ed in advance, and the values of previous Monte Carlo replicates do not have to be

stored or regenerated for later use. In the following, we will apply this approach to solve the

maximum likelihood equations.

Di�erentiating the log likelihood (26) with respect to the unknown parameters, 
 =

(�;�), gives

Sb(�;�) =
@`

@�
=

1

f(Y;
)

Z
Sb(Yjb;�)f(Yjb;�)f(b;�)db; (18)

St(�;�) =
@`

@�
=

1

f(Y;
)

Z
St(b;�)f(Yjb;�)f(b;�)db (19)

where f(Y;
) is the marginal likelihood of the observed data set, and Sb(Yjb;�);St(b;�) are

conditional scores when treating b as observed constants, that is Sb(Yjb;�) = @ log f(Yjb;�)=@�,

and St(b;�) = @ log f(b;�)=@�.

Some algebra gives the second derivatives of the log likelihood, which are needed in the

algorithm. More speci�cally,

Sbb(�;�) =
@2`

@�@�0
= �S
2b (�;�)
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+
1

f(Y;
)

Z
fSbb(Yjb;�) + S


2
b (Yjb;�)gf(Yjb;�)f(b;�)db; (20)

Sbt(�;�) =
@2`

@�@�0
= �Sb(�;�)S

0
t(�;�)

+
1

f(Y;
)

Z
Sb(�;�)S

0
t(b;�)f(Yjb;�)f(b;�)db (21)

Stt(�;�) =
@2`

@�@�0
= �S
2t (�;�)

+
1

f(Y;
)

Z
fStt(b;�) + S


2
t (b;�)gf(Yjb;�)f(b;�)db; (22)

where Sbb(Yjb;�);Stt(b;�) are conditional information when treating b as observed con-

stants, that is Sbb(Yjb;�) = @2 log f(Yjb;�)=@�@�0, and Stt(b;�) = @2 log f(b;�)=@�@�0.

Here for a column vector a, a
2 = aa0.

Hence, one can apply the importance sampling scheme (Tanner and Wong, 1987) to

approximate these functions and their derivatives. We proceed as follows.

Having obtained approximants 
̂1 = (�̂1; �̂1); : : : ; 
̂j = (�̂j; �̂j) to 
̂ = (�̂; �̂), the true

MLE, at the j-th S-step of the algorithm, we simulate b(j;l); l = 1; : : : ; n; independently from

f(b; �̂j). Denote w
(j;l) by

w(j;l) = f(Yjb(j;l); �̂j)

and let

�wj =
1

j � n

jX
j0=1

nX
l=1

w(j0;l):

As j ! 1, the Law of Large Numbers gives that �wj is asymptotically equal to f(Y; 
̂)

provided that 
̂j

p
! 
̂.

We write

�Sb;j =
1

j � n � �wj

jX
j0=1

nX
l=1

w(j0;l)Sb(Yjb
(j0;l); �̂j);

�St;j =
1

j � n � �wj

jX
j0=1

nX
l=1

w(j0;l)St(b
(j0;l); �̂j);

�Sbb;j = ��S

2
b;j +

1

j � n � �wj

jX
j0=1

nX
l=1

w(j0;l)fSbb(Yjb
(j0;l); �̂j) + S


2
b (Yjb(j

0;l); �̂j)g;
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�Stt;j = ��S

2
t;j +

1

j � n � �wj

jX
j0=1

nX
l=1

w(j0;l)fStt(b
(j0;l); �̂j) + S


2
t (b(j

0;l); �̂j)g;

�Sbt;j = ��Sb;j �S
0
t;j +

1

j � n � �wj

jX
j0=1

nX
l=1

w(j0;l)fSb(Yjb
(j0;l); �̂j)S

0
t(b

(j0;l); �̂j)g;

With j suÆciently large, �Sb;j ; �St;j; �Sbb;j ; �Sbt;j; �Stt;j provide good estimates for (18) - (22).

Denote by Sj = (S0b;j ;S
0
t;j)

0 and

Hj =

�
�Sbb;j �Sbt;j
�S
0
bt;j

�Stt;j

�
:

Then at the j-th U-step, the updated value for 
̂ is


(j+1) = 
(j) � ajH
�1
j Sj;

where the tuning parameter aj can be chosen as discussed in the previous section. Note

that each of the quantities required at this step, such as �Sj ; �S�;j
, etc., can be calculated

recursively so that the past values of these intermediate variables never need to be stored.

Following Satten and Datta (2000), as j !1, 
̂j converges to 
̂ almost surely. Denote

by 
̂su the S-U estimate. The total sampling variance of 
̂su around 
0 is the sum of the

variance of 
̂su around 
̂ due to the S-U algorithm and the sampling variance of 
̂ around


0 (Satten, 1996). In most cases, the S-U algorithm should be iterated until the former

is negligible compared to the latter. In theory, the starting value for the S-U algorithm

is arbitrary. However, a poor starting value might cause instability at the beginning of

this algorithm. Hence, in the next section, we consider several approximate methods that

generate a starting value suÆciently close to the true zero of the estimating equations.

4.5 Some Approximate Methods

In view of the cumbersome and often intractable integrations required for a full likeli-

hood analysis, several techniques have been made available for approximate inference in

the GLMMs and other nonlinear variance component models.
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The Penalized Quasi-likelihood (PQL) method introduced by Green(1987) for semipara-

metric models has initially been exploited as an approximate Bayes procedure to estimate re-

gression coeÆcients. Since then, several authors have explored the PQL to draw approximate

inferences based on random e�ects models: Schall (1991) and Breslow and Clayton(1993)

developed iterative PQL algorithms, Lee and Nelder (1996) applied the PQL directly to

hierarchical models. We present below the PQL from the likelihood perspective.

Consider the GLMM (10). For notational simplicity we write the integrand of the likeli-

hood function

f(Yjb;�)f(b;�) = expf�K(Y;b)g: (23)

More generally, if one only speci�es the �rst two conditional moments of Y given b in lieu

of a full likelihood speci�cation, f(Yjb;�) in (23) can be replaced by the quasi-likehood

function expfql(Yjb;�)g, where

ql(Yjb;�) =

mX
i=1

niX
j=1

Z �b
ij

Yij

Yij � t

V (t)
dt:

Here �bij = E(Yij jb;�) and V (�bij) = var(Yij jb;�).

Next evaluate the marginal likelihood. Temporarily we assume that � is known. For any

�xed �, expanding K(Y;b) around its mode b̂ up to the second order term, we have

L(Y;�;�) =

Z
expf�K(Y;b)gdb = jj2�fK

00

(Y; ~b)g�1jj1=2 expf�K(Y; b̂)g;

where K
00

(Y;b) denotes the second derivative of K(Y;b) with respect to b, and ~b lies in

the segment joining 0 and b̂. If K
00

(Y;b) does not vary too much as b changes (for instance,

K
00

(Y;b) = constant for normal data), maximizing the marginal likelihood (11) is equivalent

to maximizing

e�K(Y;
^b) = f(Yjb̂;�)f(b̂;�):

Or, equivalently, �̂(�) and b̂(�) are obtained by jointly maximizing f(Yjb;�)f(b;�) w.r.t

� and b with � being held constant. If � is unknown, it can be estimated by maximizing

the approximate pro�le likelihood of �,

jj2�fK
00

(Y; b̂(�))g�1jj1=2 expf�K(Y; b̂(�))g:
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A more detailed discussion can be found in Breslow and Clayton (1993).

As no close-form solution is available, the PQL is often performed through an iterative

process. In particular, Schall (1991) derived an iterative algorithm when the random e�ects

follow normal distributions. Speci�cally, with the current estimated values of �, � and b, a

working `response' ~Y is constructed by the �rst order Taylor expansion of g(Y) around �b,

or explicitly,

~Y = g(�b) + g0(�b)(Y � �b) = X� + Zb+ g0(�b)(Y � �b); (24)

where g(�) is de�ned in (9).

Viewing the last term in (24) as a random error, (24) suggests �tting a linear mixed model

on ~Y to obtain the updated values of �;b and �, which are used to recalculate the working

`response'. The iteration shall continue until convergence. Computationally, the PQL is

easy to implement, which only requires repeatedly calling in existing software, for example,

SAS `PROC MIXED'. The PQL procedure yields exact MLEs for normally distributed data

and for some cases when the conditional distribution of Y and the distribution of b are

conjugate.

Other approaches, such as the Laplace method and the Solomon-Cox approximation have

also received much attention. The Laplace method (see, e.g. Liu and Pierce (1993)) di�ers

from the PQL only in that the former obtains b̂(�;�) by maximizing the integrand e�K(Y;b)

with � and � being held �xed, and subsequently estimates (�̂; �̂) by jointly maximizing

jj2�fK
00

(Y; b̂)g�1jj1=2 expf�K(Y; b̂)g:

On the other hand, with the assumption of E(b) = 0, the Solomon-Cox technique approx-

imates the integral
R
f(Yjb)f(b)db by expanding the integrand f(Yjb) around b = 0; see

Solomon and Cox (1992).

In general, none of these aforementioned approximate methods produces consistent es-

timates, with exception in some special cases, e.g. normal data. Moreover, these methods

are essentially based on normal approximation, and they typically do not perform well for

sparse data, e.g. binary data, and when the cluster size is relatively small (Breslow and Lin,

1995; Lin and Breslow, 1996).
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5 Special Topics: Testing Random E�ects for Clus-

tered Categorical Data

When (or prior to) �tting random e�ects models, it is of substantial interest to test for

the correlation within clusters and the heterogeneity among clusters. Such tests have been

proposed by using score statistics for the null hypothesis that variance components are zero

for clustered continuous, binary and Poisson outcomes within the random e�ects model

framework (Commenges, et al., 1994; Lin, 1997). However, very few literatures have dealt

with tests for clustered polytomous data.

A recent article by Li and Lin (2003) has considered tests for the within-cluster correlation

for clustered polytomous and censored discrete time-to-event data by deriving score tests for

the null hypothesis that variance components are zero in random e�ects models. Since the

null hypothesis is on the boundary of the parameter space, unlike the Wald and likelihood

ratio tests whose asymptotic distributions are mixtures of chi-squares, the score tests are

advantageous because their asymptotic distributions are still chi-square. Another advantage

of the score tests is that no distribution on the random e�ects needs to be assumed except

for their �rst two moments. Hence they are robust to misspeci�cation of the distributions of

the random e�ects. Further the Wald tests and the LR tests require �tting random e�ects

models which involve numerical integration, in contrast with the score tests, which only

require �tting standard models under the null hypothesis using existing standard software

and do not require numerical integration.

A common problem in the analysis of clustered data is the presence of covariate measure-

ment errors. For example, in 
ood forecasting studies, the radar measurements of precipi-

tation are `highly susceptible' to errors because of improper electronic calibration (Collier,

1996); in AIDS studies, CD4 counts are often measured with error (Tsiatis, et al., 1995).

Valid statistical inference needs to account for measurement errors in covariates. Li and Lin

(2003) have extended the score tests for variance components to the situation where covari-

ates are measured with errors. They applied the SIMEX method (Cook and Stefanski, 1994)

to correct for measurement errors and develop SIMEX score tests for variance components.
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These tests are an extension of the SIMEX score test of Lin and Carroll (1999) to clustered

polytomous data with covariate measurement error.

Random e�ects generalized logistic models and cumulative probability models have been

proposed to model clustered nominal and ordinal categorical data (Harville and Mee, 1984;

Hedeker and Gibbons, 1994). This section focuses on the score tests for the null hypoth-

esis that the variance components are zero in such models to test for the within-cluster

correlation.

5.1 The Variance Component Score Test in Random E�ects Gen-

eralized Logistic Models

Suppose for the jth (j = 1; : : : ; ni) subject in the ith (i = 1; : : : ;m) cluster, a categorical

response Yij belongs to one of N categories indexed by 1; : : : ; N . Conditional on the cluster-

level random e�ect bi, the observations Yij are independent and the conditional probability

Pij;k = P (Yij = kjbi) depends on the p�1 covariate vector Xij through a generalized logistic

model

log

�
Pij;k

Pij;N

�
= �k +X

0
ij�k + bi = X0

ij;k� + bi; k = 1; : : : ; N � 1 (25)

where �k is a p� 1 vector of �xed e�ects, bi � F (bi; �) for some distribution function F that

has mean 0 and variance �, X0
ij;k = e0k 
 (1;X0

ij), 
 denotes a Kronecker product, ek is an

(N � 1)� 1 vector with the kth component equal to 1 and the rest components equal to 0,

and � = (�1;�
0
1; � � � ; �N�1;�

0
N�1)

0.

The marginal loglikelihood function for (�; �) is

`(�; �) =

mX
i=1

log

Z
expf`i(�; bi)gdF (bi; �); (26)

where `i(�; bi) =
Pni

j=1

PN
k=1 yij;k logPij;k, yij;k = I(Yij = k) and I(�) is an indicator function.

The magnitude of � measures the degree of the within-cluster correlation. We are interested

in testing H0 : � = 0 vs H1 : � > 0, where H0 : � = 0 corresponds to no within-cluster

correlation. Since the null hypothesis is on the boundary of the parameter space, neither the
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likelihood ratio test nor the Wald test follows a chi-square distribution asymptotically (Self

and Liang, 1987).

Li and Lin (2003) considered a score test for H0 and showed that it still follows a chi-

square distribution asymptotically. Speci�cally, they showed that the score statistic of �

evaluated under H0 : � = 0 is

U�(�) =
@`(�; �)

@�

����
�=0

=

mX
i=1

1

2

"
@2`i(�; bi)

@b2i
+

�
@`i(�; bi)

@bi

�2
#�����

bi=0

(27)

=
1

2

mX
i=1

2
4
(

niX
j=1

(eYij � ePij)

)2

�

niX
j=1

ePij(1� ePij)

3
5 ; (28)

where eYij =PN�1
k=1 yij;k = I(Yij � N�1), and ePij =

PN�1
k=1 exp(X 0

ij;k�)
.n

1 +
PN�1

k=1 exp(X 0
ij;k�)

o
is the mean of eYij under H0. It is interesting to note that the form of (28) resembles the

variance component score statistic for clustered binary data (Commenges, et al., 1994). It

can be shown that under H0 : � = 0, EfU�(�)g = 0 and m�1=2U�(�) is asymptotically

normal MVN(0; I��), where I�� is given in (30).

To study the properties of U�(�) under H1 : � > 0, they expanded E(eYijjbi) as a quadratic
function of bi, and showed that, under H1 : � > 0,

EfU�(�)g �
1

2

mX
i=1

"
niX
j=1

niX
k 6=j

aijaik +
1

2

niX
j=1

aijfa
0
ijg

2

#
�;

where aij = ePij(1� ePij) and a0ij = 1� 2 ePij. As a result, EfU�(�)g is an increasing function

of �. Hence the test is consistent and one would expect a large value of U�(�) for a large

value of �.

Since � is unknown under H0 and needs to be estimated, the score statistic for testing

H0 is

S = U�(b�). eI1=2�� (b�); (29)

where �̂ is the MLE of � under H0 and can be easily obtained by �tting the generalized

logistic model log(Pij;k=Pij;N) = X0
ij;k�, (e.g., using SAS PROC CATMOD), and eI�� =

I�� � I
��

0I�1
��

0I��
is the eÆcient information of � evaluated under H0 : � = 0. Using
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L'Hôpital's rule, some calculations show that

I�� = E

(�
@`

@�

�2
)

=
1

4

mX
i=1

8<
:

niX
j=1

ePij
eQij(1� 6 ePij

eQij) + 2

 
niX
j=1

ePij
eQij

!2
9=
; ; (30)

I��
0 =

mX
i=1

E

�
@`i

@�

@`i

@�0

�
=

mX
i=1

X0
i�iXi; (31)

I
��

0 =

mX
i=1

E

�
@`i

@�

@`i

@�0

�
=

1

2

mX
i=1

P0
ifIN�1 
GigXi; (32)

where the expectations are taken under H0, IN�1 denotes an (N � 1) � (N � 1) identity

matrix, and Xi = (X0
i1; : : : ;X

0
ini
)0, where Xij = (Xij;1; : : : ;Xij;N�1)

0; ~Qij = 1 � ~Pij, and

�i = f�i;rlg, which is an (N � 1)� (N � 1) block matrix whose (r; l)th block is

�i;rr = diagfPi1;r(1� Pi1;r); : : : ; Pini;r(1� Pini;r)g

�i;rl = diagf�Pi1;rPi1;l; : : : ;�Pini;rPini;lg; r 6= l;

Gi = diag(2 ~P 2
ij � 3 ~Pij + 1; : : : ; 2 ~P 2

ini
� 3 ~Pini

+ 1) and Pi = (P0
i;1; : : : ;P

0
i;N�1)

0, where Pi;r =

(Pij;r; : : : ; Pini;r)
0. Standard asymptotic calculations show that S is asymptotically N(0; 1)

under H0 and one rejects H0 if S is large and the test is one-sided.

The score test S for H0 : � = 0 has several attractive features. First, it can be easily

obtained by �tting the generalized logistic model log(Pij;k=Pij;N) = X0
ij;k�, which is model

(25) under H0, using standard software, e.g., SAS PROC CATMOD. Hence calculations of

S do not involve any numerical integration. Secondly, it is the locally most powerful test.

Finally it is robust as no distribution is assumed for the random e�ect bi. We discuss an

application of the test based on (25) in Section 5.4.

5.2 The Variance Component Score Test in Random E�ects Cu-

mulative Probability Models

For clustered ordinal data, a widely used model is the cumulative probability random e�ects

model by modeling the cumulative probabilities rij;k = P (Yij � k) as

g(rij;k) = �k +X
0
ij�x + bi = X0

ij;k� + bi; k = 1; : : : ; N � 1 (33)
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where g(�) is a link function, Xij;k = (e0k;X
0
ij)

0, � = (�1; � � � ; �N�1;�
0
x), and bi � F (:; �)

for some distribution function F with mean 0 and variance �. For g(�) = logit(�) and

g(�) = logf� log(1� �)g, we have proportional odds and complementary log-log models.

De�ne oij;k = I(Yij � k). Denote by rij = (rij;1; : : : ; rij;N�1)
0, Ri = (r0i1; : : : ; r

0
ini
)0 and

oij, Oi similarly. Some calculations show that the score statistic of � under H0 : � = 0 is

U�(�) =
1

2

mX
i=1

n
(Oi �Ri)

0��1i Hi1i1
0
iHi�

�1
i (Oi �Ri)� 1

0
i
~Wi1i

o
; (34)

where 1i is an ni(N � 1) � 1 vector of ones, the weight matrices of Hi;�i and ~Wi are

given in Appendix A.2 of Li and Lin (2003). Though seemingly complicated, (34) essentially

compares the empirical variance of the weighted responses to its nominal variance.

The score statistic for testing H0 : � = 0 is S = U�(�̂)
. eI1=2�� (�̂), where �̂ is the MLE of

� under H0 and can be easily obtained by �tting the standard cumulative probability model

g(rij;k) = X0
ij;k�, and

eI��(�̂) is the eÆcient information of �. Computing the information

matrices is tedious since the calculations involve the third and fourth cumulants of a multi-

nomial distribution. The explicit expressions of the information matrices are given in Li and

Lin (2003).

Standard asymptotic calculations show that the score statistic S follows N(0; 1) asymp-

totically under H0, and has the same optimality and robustness properties stated at the end

of Section 5.1. It can be easily calculated by �tting the standard cumulative probability

model g(rij;k) = X0
ij;k� using existing software, e.g., SAS PROC CATMOD, and does not

require any numerical integration. Again a one-sided test is used and H0 is rejected for a

large value of S. An application of score test based on (33) is presented in Section 5.4.

5.3 The Variance Component Tests in the Presence of Measure-

ment Errors in Covariates

Li and Lin (2003) extended the variance component score tests to the situation when co-

variates are measured with error. To proceed, we denote by Xij a vector of unobserved

covariates (e.g., the true precipitation level or the true CD4 count) and Cij other accurately

measured covariates (e.g. rainfall location or patients' gender).
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The random e�ects cumulative probability model (33) and the random e�ects generalized

logistic model (25) can be written in a uni�ed form

g(pij;k) = �k +X
0
ij�x;k +C

0
ij�c;k + bi; (35)

where bi follows some distribution F (:; �) with mean 0 and variance �. For the random

e�ects cumulative probability model (33), pij;k = rij;k and �x;1 = : : : = �x;N�1 and �c;1 =

: : : = �c;N�1. For the random e�ects generalized logistic model (25), pij;k = Pij;k=Pij;N and

g(�) = log(�).

Suppose the observed covariates Wij (e.g., the radar measurements of rainfall or the

observed CD4 counts) measure Xij (e.g. the true precipitation amount or the true CD4

counts) with error. It is customary to postulate a non-di�erential additive measurement

error model for Wij (Carroll, et al., 1995),

Wij = Xij +Uij; (36)

where the Uij are independent measurement errors following MVN(0;�u). Suppose that

the measurement error covariance �u is known or is estimated as �̂u, e.g., using replicates

or validation data. We are interested in testing for no within-cluster correlation H0 : � = 0

in the random e�ects measurement error models (35) and (36). Li and Lin (2003) have

proposed using the SIMEX method by extending the results in the previous two sections to

construct score tests for H0 to account for measurement errors.

Simulation extrapolation (SIMEX) is a simulation based functional method for inference

on model parameters in measurement error problems (Cook and Stefanski, 1994), where

no distributional assumption is made about the unobserved covariates Xij. We �rst brie
y

describe parameter estimation in random e�ects measurement error models (35)-(36) using

the SIMEX method, then discuss how to use the SIMEX idea to develop SIMEX score tests

for H0 : � = 0.

The SIMEX method involves in two steps: the simulation step and the extrapolation step.

In the simulation step, one generates data W�
ij by adding to Wij a random error following

N(0; ��u) for some constant � > 0. One then calculates naive parameter estimates by �tting
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(35) with Xij replaced by W�
ij. This would give the naive estimates if the measurement

error covariance is (1 + �)�u. This procedure is repeated for a large number B times (e.g.,

B = 100), and the means of the resulting B naive parameter estimates is calculated. One

does this for a series of values of � (e.g, � = 0:5; 1; 1:5; 2). In the extrapolation step, a

regression (e.g. quadratic) model is �t to the means of these naive estimates as a function

of �, and is extrapolated to � = �1, which corresponds to zero measurement error variance.

These extrapolated estimates give the SIMEX estimates of the model parameters. For details

of the SIMEX method, see Cook and Stefanski (1994) and Carroll, et al., (1995). The SIMEX

idea can be utilized to construct score tests for H0 : � = 0 in the random e�ects measurement

error models (35) and (36) by extending the results in Sections 5.1 and 5.2. The resulting

SIMEX score tests are an extension of the work of Lin and Carroll (1999) to random e�ects

measurement error models for clustered polytomous.

In the absence of measurement error, the score statistics for testing H0 : � = 0 under

(35) take the same form U�(�̂)
. eI1=2�� (�̂), where U�(�̂) is given in (34) for random e�ects

cumulative probability models and in (28) for random e�ects generalized logistic models.

The denominator eI��(�̂) is in fact the variance of U�(�̂). The main idea of the SIMEX

variance component score test is to treat the score statistic in the numerator U�(�) as if it

were a parameter estimator and use the SIMEX variance method (Section 4.3.5 of Carroll, et

al., 1995) to calculate the variance of this \estimator". Speci�cally, in the SIMEX simulation

step, one simply calculates naive score statistics using the score formulae (34) and (28) by

replacing Xij with the simulated data W�
ij. The rest of the steps parallel those in the

standard SIMEX method for parameter estimation. Denoting the results by Usimex(�) andeI��;simex respectively, the SIMEX score statistic is simply

Ssimex = Usimex/ eI1=2��;simex; (37)

which follows N(0; 1) asymptotically when the true extrapolation function is used. Since

the true extrapolation function is unknown in practice, an approximation (e.g., quadratic)

is used. The simulation study reported by Li and Lin (2003) shows that the SIMEX score

tests perform well. The theoretical justi�cation of the SIMEX score tests can be found in
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Lin and Carroll (1999).

The SIMEX score test possesses several important advantages. First, it can be easily

calculated by �tting standard cumulative probability models using available software such

as SAS PROC CATMOD. Secondly, it is robust in the sense that no distribution needs to

be assumed for the frailty bi and for the unobserved covariates X.

5.4 Data Examples

To illustrate the variance component score tests for clustered polytomous data, we examine

data from a longitudinal study on eÆcacy of steam inhalation for treating common cold

symptoms conducted by Macknin, et al., (1990). This study included 30 patients with colds

of recent onset. At the time of enrollment, each patient went through two 20-minute steam

inhalation treatments spaced 60-90 minutes apart. Assessment of subjective response was

made on an individual daily score card by the patient from day 1 (baseline) to day 4. On each

day, the severity of nasal drainage was calibrated into 4 ordered categories (no symptom,

mild, moderate and severe symptom). One was interested in examining whether the severity

improved following the treatment, and testing whether the observations over time for within

each subject were likely to be correlated.

Li and Lin (2003) considered models (25) and (33) with the time from the baseline as a

covariate. They �rst assumed a random e�ects logistic model (25), and obtained a variance

component score statistic 5.32 (p-value<0.001), which provided strong evidence for within-

subject correlation over time. Similar results were found when they �tted a random e�ects

proportional odds model (33) (score statistic =9.70, p-value< 0:001). In these two tests they

assumed no distribution for the random e�ect bi.

To further examine the time e�ect, they �tted (33) by further assuming that the random

e�ect bi followed N(0; �). The MLE of the coeÆcient of time was -0.33 (SE=0.21), which

suggested that the severity improved following the treatment but the improvement was

not statistically signi�cant (p-value=0.11). The estimated variance component was 2.31

(SE=0.45). This result was consistent with the score test results.
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6 Discussion

Central to the idea of mixed modeling is the idea of �xed and random e�ects. Each e�ect in

a model must be classi�ed as either a �xed or a random e�ect. Fixed e�ects arise when the

levels of an e�ect constitute the entire population of interest. For example, if an industrial

experiment focused on the e�ectiveness of three brands of a machine, machine would be a

�xed e�ect only if the experimenter's interest did not go beyond the three machine brands.

On the other hand, an e�ect is classi�ed as a random e�ect when one wishes to make

inferences on an entire population, and the levels in the experiment represent only a sample

from that population. Consider an example of psychologists comparing test results between

di�erent groups of subjects. Depending on the psychologists' particular interest, the group

e�ect might be either �xed or random. For example, if the groups are based on the sex

of the subject, sex would be a �xed e�ect. But if the psychologists are interested in the

variability in test scores due to di�erent teachers, they might choose a random sample of

teachers as being representative of the total population of teachers, and teacher would be

a random e�ect. Returning to the machine example presented earlier, machine would also

be considered as a random e�ect, if the scientists are interested in making inferences on the

entire population of machines and randomly choose three brands of machines for testing.

In summary, what makes a random e�ect unique is that each level of a random e�ect

contributes an amount that is viewed as a sample from a population of random variables.

The estimate of the variance associated with the random e�ect is known as the variance

component because it is measuring the part of the overall variance contributed by that e�ect.

In mixed models, we combine inferences about means (of �xed e�ects) with inferences about

variances (of random e�ects).

Few diÆculties arise from setting up the likelihood function for drawing inference based

on a random e�ects model. The major obstacle lies in computation, as, for practitioners,

the constant theme focuses on how to handle the intractable MLE calculations. This chap-

ter reviews some commonly used approaches to estimating the regression coeÆcients and

the variance components in the (generalized) linear mixed models. We note that the EM
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algorithm can yield maximum likelihood estimates, which are consistent and most eÆcient

under regularity conditions. But its computational burden is substantial and the conver-

gence rate is often slow. Laplace approximation greatly reduces the computational load, but

the resulting estimates are in general biased. The simulated maximum likelihood estimation

is considerably less computationally burdensome compared to the EM. For example, the

rejection sampling is avoided, saving much computing time. But its obvious drawback is

the local convergence - a `good' initial point is required to achieve the global maximizer.

The so-called SA and S-U algorithms seem to be promising as they make a full use of the

simulated data and obtain the estimates recursively. However, the detailed implementation

of both methods have yet been �nalized in the literature.

It is worth brie
y discussing marginal models, another major tools for handling clustered

data. In a marginal model, the marginal mean of the response vector is modeled as a function

of explanatory variables (Zeger et al. 1995). Thus, as opposed to the random e�ect models,

the coeÆcients in a marginal model have population average interpretations. This type

of models are typically �tted via the so-called generalized estimating equation (GEE). An

appealing feature is that, under the right mean structure, even when the covariance structure

of the response is misspeci�ed, the GEE acquires consistent estimates. However, the GEE

method faces several diÆculties, which may easily be neglected. First, the GEE estimator's

eÆciency becomes problematic when the variance function is misspeci�ed. Secondly, the

consistency of the estimator is only guaranteed under noninformative censoring; informative

censoring generally leads to biased estimates. More related discussion can be found in Zeger

et al. (1995).

Last, we point out other active research areas in mixed modeling include evaluating

goodness of �t of the model, choosing the best distribution for the random e�ects and

selecting the best collection of covariates in a model. Readers are referred to some recent

articles on these topics, e.g. Zheng (2000), Verbeke and Lesa�re (1996), Lindsey and Lindsey

(2000) and Houseman et al. (2004).
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