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weighting method appropriate for integrative analyses. We develop new weighted estimators for unconfounded

inferences on wide-ranging population-level features and estimands relevant to group comparisons of quantitative,

categorical, or multivariate outcomes. Asymptotic properties of these estimators are examined. Through simulation

studies and meta-analyses of TCGA datasets, we demonstrate the versatility and reliability of the proposed weighting

strategy, especially for the FLEXOR pseudo-population.
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1. Introduction

The study of differential patterns of oncogene expression levels across cancer subtypes has

aroused great interest because it unveils new tumorigenesis mechanisms and can improve

cancer screening and treatment (Kumar et al., 2020). In a multi-site breast cancer study

conducted at seven medical centers, including, for example, Memorial Sloan Kettering, Mayo

Clinic, and University of Pittsburgh, the goal was to compare the mRNA expression levels of

eight targeted breast cancer genes, namely, COL9A3, CXCL12, IGF1, ITGA11, IVL, LEF1,

PRB2, and SMR3B (e.g., Christopoulos et al., 2015) in the disease subtypes infiltrating

ductal carcinoma (IDC) and infiltrating lobular carcinoma (ILC), which account for nearly

80% and 10% of breast cancer cases in the United States (Wright, 2022; Tran, 2022). The data

reposited at The Cancer Genome Atlas (TCGA) portal (NCI, 2022) include demographic,

clinicopathological, and biomarker measurements; some study-specific attributes are sum-

marized in Web Table 2 of Supplementary Materials. Each breast cancer patient’s outcome

is a vector of mRNA expression measurements for these eight targeted genes.

Inference focuses on interpreting biomarker comparisons between the disease subtypes IDC

and ILC in the context of a larger disease population in the U.S., e.g., SEER breast cancer

patients (Surveillance Research Program, NCI, 2023). The estimands of interest include

contrasts and gene-gene pairwise correlations, alongside disease subtype-specific summaries

(e.g., means, standard deviations, and medians). Understanding gene expression and co-

expression patterns in different subtypes of breast cancer among national-level patients

is crucial for developing feasible guidelines for regulating targeted therapies and precision

medicine (Schmidt et al., 2016). As revealed by Web Table 2 of Supplementary Materials,

naive group comparisons based on the TCGA patient cohorts are severely confounded by

the high degree of covariate imbalance between the IDC and ILC subtypes.

More broadly, covariate balance is vitally important in observational studies where inter-
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est focuses on unconfounded causal comparisons of group potential outcomes (Robins and

Rotnitzky, 1995; Rubin, 2007) in a large natural population such as the U.S. population.

The observed populations of convenience samples such as observational studies are usually

unrepresentative of this natural population. Theoretical and simulation studies have demon-

strated the conceptual and practical advantages of weighting over other covariate-balancing

techniques like matching and regression adjustment (Austin, 2010). As a result, weighting

methods have widespread applicability in diverse research areas such as political science,

sociology, and healthcare (Lunceford and Davidian, 2004). For analyzing cohorts consisting

of two groups, the propensity score (PS) (Rosenbaum and Rubin, 1983) plays a central role.

In these studies, the average treatment effect (ATE) and average treatment effect on the

treated group (ATT) are overwhelmingly popular estimands (Robins et al., 2000). However,

the inverse probability weights (IPW) on which these estimators rely may be unstable when

some PSs are near 0 or 1 (Li and Li, 2019).

Several researchers have proposed variations of ATE based on truncated subpopulations

of scientific or statistical interest (Crump et al., 2006; Li and Greene, 2013). Most weighting

methods, implicitly or explicitly, provide unbiased inferences for a specific pseudo-population,

a covariate-balanced construct that often differs substantially from the real but mostly

unknown natural population of interest. For example, Li et al. (2018) showed that IPWs

correspond to a combined pseudo-population and introduced the overlap pseudo-population,

wherein the weights minimize the asymptotic variance of the weighted average treatment

effect for the overlap pseudo-population (ATO). For single observational studies comprising

two or more groups, Li and Li (2019) proposed the generalized overlap pseudo-population

that minimizes the sum of asymptotic variances of weighted estimators of pairwise group

differences. For multiple observational studies with two groups, Wang and Rosner (2019)

developed an integrative approach for Bayesian inferences on ATE. For single observational



Causal Meta-Analysis by Integrating Multiple Observational Studies with Multivariate Outcomes 3

studies with two groups, Mao et al. (2019) obtained analytical variance expressions of

modified IPW estimators adjusted for the estimated PS and augmented the estimators with

outcome models for improved efficiency. Zeng et al. (2023) explored weighting procedures in

single study, multiple group settings with censored survival outcomes.

However, these methods have several limitations. First, they are theoretically guaranteed

to be effective for a specific set of outcome types and estimands under certain theoretical

conditions (e.g., equal variances of univariate group-specific outcomes). As study endpoints

may be continuous, categorical, or multivariate, inference procedures for disparate outcome

types have been inadequately explored. Further, scientific interests may necessitate alterna-

tive estimands than ATE, ATT or ATO, such as distribution percentiles, standard deviations,

pairwise correlations of multivariate outcomes, and unplanned estimands suggested during

post hoc analyses. Second, these methods may imply group assignment changes for some sub-

jects that are sometimes difficult to justify for a meaningful, generalizable pseudo-population

(Li et al., 2018; Li and Li, 2019). Lastly, very few methods can accommodate the integration of

multiple observational studies with multiple unbalanced groups as encountered in the TCGA

datasets. One potential use of the existing weighing methods to achieve covariate balance is

by creating a new categorical variable that combines study and group information. However,

it is unclear how to conduct unconfounded group comparisons independent of the “nuisance”

study factor. Furthermore, the pseudo-populations generated by this approach are often

impractical, and inferential accuracies for common estimands are frequently suboptimal.

There is a critical need for developing efficient approaches that enable the integration

of multiple observational studies and multiple unbalanced groups and the construction of

pseudo-populations that resemble the natural population of interest.

To fill this gap, we extend the propensity score to the multiple propensity score and

propose a new class of pseudo-populations and multi-study balancing weights to effectuate
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data integration and causal meta-analyses. Compared to the existing weighting methods, our

work presents two main advances. First, our framework enables unconfounded inferences on

a wide variety of population-level group features as well as planned or unplanned estimands

relevant to group comparisons. Second, the framework allows us to derive efficient estimators

within this proposed family of pseudo-populations. Specifically, by maximizing the effective

sample size, we further obtain a FLEXible, Optimized, and Realistic (FLEXOR) weighting

method and derive new weighted estimators which are efficient for a variety of quantitative,

categorical, and multivariate outcomes, are applicable to different weighting strategies, and

effectively utilize multivariate outcome information. For example, the estimators yield effi-

cient estimates of various functionals of group-specific potential outcomes, e.g., contrasts of

means and medians, correlations, and percentiles.

The rest of the paper is organized as follows. Section 2 introduces some basic notation,

theoretical assumptions, and a general covariate-balancing framework for meta-analysis. We

further introduce FLEXOR, an optimized pseudo-population, as its special case. Section

3 develops unconfounded integrative estimators applicable to different weighting methods,

estimands, and response types, and establishes asymptotic properties. Section 4 presents the

finite sample performance of the proposed methodology, especially when used in conjunction

with the FLEXOR weights. Section 5 meta-analyzes the aforementioned TCGA studies and

detects differential targeted gene expression and co-expression patterns across the two major

breast cancer subtypes in the Unites States. Section 6 concludes with some final remarks.

2. Integration of Observational Studies with Multiple Unbalanced Groups

2.1 Notation and basic assumptions

We aim to compare K subpopulations or groups (e.g., disease subtypes) of participants

belonging to a large natural population such as the U.S. patient population. Beyond basic
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summaries (e.g., group prevalences) from preexisting registries, no additional information is

available about the natural population. The investigation comprises J observational studies.

We assume J and K are not large. For i = 1 . . . , N , let Zi ∈ {1, . . . , K} denote the group

and Si ∈ {1, . . . , J} denote the observational study. We assume that each participant belongs

to exactly one observational study and each study includes at least one participant in each

group. Additionally, there are p covariates shared by all the studies and denoted by Xi ∈

X ⊂ Rp for the ith participant. The motivating TCGA database comprises K = 2 groups

corresponding to breast cancer subtype IDC and ILC, and p = 30 covariates of N = 450

breast cancer patients in J = 7 observational studies. The ith participant’s potential outcome

is Y
(z)
i = (Y

(z)
i1 , . . . , Y

(z)
iL )′ ∈ RL, i.e., the outcome had the patient belonged to group z =

1, . . . , K. The observed outcome is Yi = Y
(Zi)
i . In the TCGA example, vectors Y

(1)
i and Y

(2)
i

represent counterfactual mRNA measurements of disease subtypes IDC and ILC on L = 8

targeted genes, and the observed Yi ∈ R8 contains mRNA measurements of breast cancer

subtype Zi with which participant i is actually diagnosed.

The participant-specific measurements are a random sample from an observed distribution,

p[S, Z,X,Y]+, where p[·]+ generically represents distributions or densities with respect to

the observed population. Extending Rubin (2007) and Imbens (2000), we assume (A) Stable

unit treatment value assumption (SUTVA): Given subjects’ covariates, the study and

group memberships do not influence the potential outcomes, and no two versions of grouping

lead to different potential outcomes; (B) Study-specific weak unconfoundedness: Given

study S and covariate vector X, group membership Z is independent of the potential out-

comes Y(1), . . . ,Y(K); and (C) Positivity: Joint density p[S = z, Z = z,X = x]+ is strictly

positive for all (s, z,x). Assumption (B) states that p[Y(z) | S, Z,X]+ = p[Y(z) | S,X]+.

Assumption (C) guarantees that the study and group memberships and covariates do not

have deterministic relationships and often holds when J and K are not large.
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2.2 A new family of pseudo-populations

We first extend variations of the propensity score (e.g., Rosenbaum and Rubin, 1983) to the

multiple propensity score (MPS) of the vector (S, Z). For x ∈ X ⊂ Rp, the MPS

δsz(x) = p
[

S = s, Z = z | X = x
]

+
for (s, z) ∈ Σ ≡ {1, . . . , J} × {1, . . . , K}. (1)

It then follows that the joint density p
[

S = s, Z = z,X = x
]

+
= δsz(x)f+(x), where f+(x) =

p[X = x]+ represents the marginal covariate density in the observed population. As the MPS

is unknown in observational studies, we can estimate it by regressing the combinations of

(Si, Zi) on covariate xi (i = 1, . . . , N). In single studies with two groups, the PS is usually

estimated using logistic regression (Mao et al., 2019). For estimating MPS, we recommend

multinomial logistic regression: log
(

δsz(x)/δ11(x)
)

= ω′
szx for (s, z) 6= (1, 1), so that ω =

{

ωsz : (s, z) 6= (1, 1)
}

is a (JK − 1)p-dimensional parameter. If we define ω11 to be the

vector of p zeros, then δsz(x) = exp(ω′
szx)/

∑J

s∗=1

∑K

z∗=1 exp(ω
′
s∗z∗x) for all (s, z) ∈ Σ.

Consider a pseudo-population with attributes fully or partially prescribed by the inves-

tigator via two probability vectors: (i) relative amounts of information extracted from the

studies, quantified by probability tuple γ = (γ1, . . . , γJ); and (ii) relative group prevalence,

θ = (θ1, . . . , θK). For instance, in the TCGA breast cancer studies, setting γj = 1/7 extracts

equal information from each study, whereas θ = (8/9, 1/9) constrains the pseudo-population

to the known U.S. proportions of breast cancer subtypes IDC and ILC (Wright, 2022; Tran,

2022). If some or all components of γ or θ are unknown, subsequent inferences can optimize

the pseudo-population over the multiple possibilities for these quantities.

For multiple observational studies, the participant study memberships S1, . . . , SN are

primarily influenced by the J study designs and unknown factors driving participation;

moreover, study participant characteristics can differ substantially across studies, especially

in cancer investigations. To address these issues, we aim to design a pseudo-population for

achieving theoretical covariate balance between the K groups. In other words, we construct
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a pseudo-population wherein the study memberships, the group memberships and patient

characteristics are mutually independent, i.e., S ⊥ Z ⊥ X, so that

p
[

S = s, Z = z,X = x
]

= γs θz fγ,θ(x), for (s, z,x) ∈ Σ×X . (2)

Here and hereafter, p[·] denotes a distribution or density with respect to the designed pseudo-

population, whereas p[·]+ corresponds to the observed population, as mentioned earlier.

Equation (2) further emphasizes that although S, Z, and X are independent in the pseudo-

population, they may share some distributional parameters. More explicitly, the subscripts

of fγ,θ(x) emphasize that the pseudo-population density of X may depend on γ and θ.

Next, consider the relationship between the pseudo-population covariate density, fγ,θ(x),

and the marginal observed covariate density, f+(x). Assuming a common dominating measure

for the densities and a common support, X , there exists without loss of generality a positive

tilting function (e.g., Li et al., 2018) denoted by ηγ,θ such that fγ,θ(x) ∝ ηγ,θ(x)f+(x)

for all x ∈ X . Therefore, fγ,θ(x) = ηγ,θ(x)f+(x)/E+[ηγ,θ(X)] where X ∼ f+ and E+(·)

denotes expectations under the observed distribution. Intuitively, high tilting function values

correspond to covariate space regions with high pseudo-population weights. Let SJ denote

the unit simplex in RJ . Different choices of γ ∈ SJ , θ ∈ SK , and tilting function ηγ,θ identify

different pseudo-populations with structure (2).

Balancing weights for integration of multiple studies. To efficiently meta-analyze multiple

studies (with J > 1), we propose the multi-study balancing weight, defined as the ratio of

the joint densities with respect to the pseudo-population and observed population. More

specifically, for any (s, z,x) ∈ Σ×X , the multi-study balancing weight

ργ,θ(s, z,x) =
p
[

S = s, Z = z,X = x
]

p
[

S = s, Z = z,X = x
]

+

=
γs θz fγ,θ(x)

δsz(x) f+(x)
=

γs θz ηγ,θ(x)

δsz(x)E+[ηγ,θ(X)]
. (3)

As ργ,θ(s, z,x)× p
[

S = s, Z = z,X = x
]

+
= p

[

S = s, Z = z,X = x
]

, the balancing weight

serves to redistribute the observed distribution’s relative mass to match that of the pseudo-
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population. Defining the unnormalized weight function as ρ̃γ,θ(s, z,x) = γsθzηγ,θ(x)/δsz(x),

the unnormalized weight of the ith participant is ρ̃i = ρ̃γ,θ(si, zi,xi). For a general pseudo-

population (e.g., FLEXOR pseudo-population introduced in the sequel), the unnormalized

weights, even within a study-group combination, may depend on γ and θ through the tilting

function. As discussed later, the unnormalized weights can be utilized to provide uncon-

founded inferences on various potential outcome features for a general pseudo-population.

The proposed pseudo-populations and balancing weights are general, encompassing many

well-known weighting methods in single-study settings. For example, in single studies, assume

equally prevalent pseudo-population groups (θz = 1/K) in expression (2). A constant tilting

function yields IPWs whenK = 2 and generalized IPWs (Imbens, 2000) whenK > 2. On the

other hand, ηγ,θ(x) = 1/
∑

z δ
−1
z (x) produces overlap weights (Li et al., 2018) when K = 2,

and generalized overlap weights (Li and Li, 2019) when K > 2. Again, if ηγ,θ(x) = δz′(x)

for a group z′, then the pseudo-population’s covariate density, fγ,θ(x), matches the observed

covariate density of the group z′ participants.

The choice of different tilting functions in (2) naturally extends several weighting meth-

ods designed for single studies to meta-analytical settings. For example, assuming equally

weighted studies and equally prevalent groups, i.e., γs = 1/J and θz = 1/K, a constant tilting

function ηγ,θ(x) ∝ 1 and ηγ,θ(x) = 1/
∑

s

∑

z δ
−1
sz (x), respectively, produces extensions of

the combined (Li et al., 2018) and generalized overlap (Li and Li, 2019) pseudo-populations

appropriate for meta-analyzing multiple studies with multiple groups. We refer to these

proposed pseudo-populations as the integrative combined (IC) and integrative generalized

overlap (IGO) pseudo-populations, respectively. Similarly, for a fixed group z′, the tilting

function ηγ,θ(x) =
∑

s δsz′(x) gives a pseudo-population whose marginal covariate density

equals the observed covariate density of group z′ participants irrespective of their study
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memberships. Given the availability of different tilting functions, an important question

arises: which choice is optimal and in what sense? We address this below.

Effective sample size. A widely used measure of a pseudo-population’s inferential ac-

curacy is the effective sample size (ESS), Q(γ,θ, ηγ,θ) = N/
[

1 + Var+
{

ργ,θ(S, Z,X)
}]

=

N/E+

{

ρ2γ,θ(S, Z,X)
}

, which relies on the second moment (provided it exists) of the balancing

weights in the observed population (e.g., McCaffrey et al., 2013). The ESS is asymptotically

equivalent to the sample ESS, Q̃(γ,θ, ηγ,θ) = N2(
∑N

i=1 ρ̃i)
2/

∑N

i=1 ρ̃
2
i . Informally, the ESS is

the hypothetical sample size from the pseudo-population containing the same information

as N samples from the observed population, and it is always less than N unless the pseudo-

population and observed population are identical.

An optimized case: FLEXOR pseudo-population. We propose FLEXOR as a member of

pseudo-population family (2) that maximizes the ESS or minimizes the variation of the

balancing weights, subject to any problem-dictated constraints on the vectors γ and θ. That

is, if the triplet (γ̆, θ̆, η̆γ̆,θ̆) identifies the FLEXOR pseudo-population and (γ,θ) is known

to belong to a subset, Υ, of SJ × SK , then Q(γ̆, θ̆, η̆γ̆,θ̆) = sup(γ,θ)∈Υ supηγ,θ
Q(γ,θ, ηγ,θ).

A two-step procedure for constructing the FLEXOR pseudo-population. Starting with an

initial (γ,θ) ∈ Υ, we iteratively perform the following steps until convergence:

• Step I For a fixed (γ,θ), maximize sample ESS Q̃(γ,θ, ηγ,θ) over all tilting functions,

ηγ,θ. This gives the best fixed-(γ,θ) pseudo-population identified by (γ,θ, η̆γ,θ). The analyt-

ical form of η̆γ,θ for the theoretical ESS is given in Theorem 1 below. Set function η = η̆γ,θ.

• Step II For a fixed tilting function η, maximize Q̃(γ,θ, η) over all (γ,θ) ∈ Υ to

obtain the best fixed-η pseudo-population, identified by the triplet (γ̃, θ̃, η). This parametric

maximization over Υ ⊂ SJ ×SK can be quickly performed in R using the optim function or

by Gauss-Seidel or Jacobi algorithms. Set (γ,θ) = (γ̃, θ̃).

In our experience, convergence is attained within only a few iterations. The converged
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pseudo-population with the largest ESS yields the FLEXOR pseudo-population. The fol-

lowing theorem gives the analytical expression for the global maximum of Q(γ,θ, ηγ,θ)

mentioned in Step I. See Web Appendix A.1 of Supplementary Materials for the proof.

Theorem 1: Suppose probability vectors γ and θ have strictly positive elements and are

held fixed. Let Ξ be the set of tilting functions for which the ESS, Q(γ,θ, ηγ,θ), of pseudo-

population (2) is finite. Maximizing Q(γ,θ, ηγ,θ) over all tilting functions ηγ,θ ∈ Ξ, the

optimal fixed-(γ,θ) pseudo-population’s tilting function, denoted by η̆γ,θ, has the expression:

η̆γ,θ(x) =

( J
∑

s=1

K
∑

z=1

γ2sθ
2
z

δsz(x)

)−1

, x ∈ X . (4)

The unnormalized weight function for the optimal fixed-(γ,θ) pseudo-population is then

ρ̃γ,θ(s, z,x) =
1

γsθz

(

γ2sθ
2
z/δsz(x)

∑J

t=1

∑K

u=1 γ
2
t θ

2
u/δtu(x)

)

, for (s, z) ∈ Σ and x ∈ X . (5)

The optimal fixed-(γ,θ) pseudo-population’s balancing weights, evaluated as in (3), are uni-

formly bounded. The ESS of the optimal fixed-(γ,θ) pseudo-population is NE+

[

η̆γ,θ(X)
]

with

the expectation taken over X ∼ f+(x), the observed population’s covariate density.

It can be shown that the optimal tilting function η̆γ,θ(x) apportions low importance to

outlying regions of covariate space X where δsz(x) is approximately 0 for some (s, z) ∈

Σ. Furthermore, the optimal tilting function emphasizes covariate regions where the group

propensities δ1(x), . . . , δK(x) match the group proportions θ1, . . . , θK of the larger natural

population. In particular, in pseudo-populations with equally prevalent groups, the tilting

function promotes covariate regions where the group propensities are approximately equal.

3. Meta-analyses of Group Potential Outcomes

Causal meta-analyses generally follow a two-stage inferential procedure (e.g., Rubin, 2007).

In Stage 1, the “outcome free” analysis only utilizes covariate information to estimate the

propensity scores, as done in Section 2. In Stage 2, for the pseudo-population of interest, the
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procedure makes unconfounded comparisons of group potential outcomes via estimands such

as pairwise difference of group means. For any known pseudo-population belonging to family

(2), the procedure accommodates wide-ranging group-level features of the endpoints using the

available multivariate outcome information. Additionally, we derive analytical expressions for

the asymptotic variances of the proposed multivariate estimators.

Suppose potential outcome vectors Y(1), . . . , Y(K) have a common support, Y ⊂ RL. To

ensure that SUTVA, weak unconfoundedness, and positivity of the observed population also

hold for the pseudo-population, we assume identical conditional distributions:

p[Y(z) | S, Z,X] = p[Y(z) | S, Z,X]+ for group z = 1, . . . , K, (6)

where p[·|·]+ and p[·|·] denote the observed and pseudo-population conditional densities, re-

spectively. Unlike the observed population, the covariate-balanced pseudo-population entails

p[Y | Z = z] = p[Y(z)], enabling us to construct weighted estimators of various features of

the pseudo-population potential outcomes.

Let E[·] denote expectations with respect to the pseudo-population. Let Φ1, . . . ,ΦM be real-

valued functions having domain Y . We wish to infer pseudo-population means of transformed

potential outcomes, E[Φ1(Y
(z))], . . . ,E[ΦM (Y(z))] for z = 1, . . . , K. Appropriate choices of

Φm correspond to pseudo-population inferences about group-specific marginal means, medi-

ans, variances, and CDFs of potential outcome components. Equivalently, writing Φ(Y(z)) =

(

Φ1(Y
(z)), . . . ,ΦM(Y(z))

)′ ∈ RM , the inferential focus is the vector, λ(z) = E[Φ(Y(z))].

For real-valued functions ψ with domain RM , we estimate ψ(λ(z)). For example, if the first

two components of Y(z) are quantitative, then defining Φ1(Y
(z)) = Y

(z)
1 , Φ2(Y

(z)) = Y
(z)
2 ,

Φ3(Y
(z)) = Y

(z)
1 Y

(z)
2 , and ψ(t1, t2, t3) = t3 − t1t2, we obtain ψ(λ(z)) = cov(Y

(z)
1 , Y

(z)
2 ) as

the pseudo-population covariance of Y
(z)
1 and Y

(z)
2 in the zth group. The pseudo-population

correlation of pairwise components of Y(z) can be estimated from estimates of the covariance

and standard deviations, as in the motivating breast cancer studies, where the goal is to
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estimate the pairwise correlations of the eight targeted genes in groups z ∈ {1, 2} (i.e., IDC

and ILC subtypes). For a second example, let y11, . . . , y1M be a fine grid of prespecified

points in the support of the first component Y
(z)
1 and Φm(Y

(z)) = I(Y (z)
1 6 y1m). For

ψ(t1, . . . , tM) = tm, the pseudo-population CDF of Y
(z)
1 evaluated at y1m equals ψ(λ(z)).

Similarly, for ψ(t1, . . . , tM) = tm∗ where m∗ = argminm |tm − 0.5|, the approximate pseudo-

population median of Y
(z)
1 is given by ψ(λ(z)).

Using the unnormalized weights ρ̃1, . . . , ρ̃N [defined underneath equation (3)] of a pseudo-

population, we estimate E[Φ(Y(z))] as random vector

Φ̄z =

∑N

i=1 ρ̃i Φ(Yi) I(Zi = z)
∑N

i=1 ρ̃i I(Zi = z)
. (7)

The following theorem and corollaries study asymptotic properties of random vector Φ̄z as

an estimator of multivariate feature E[Φ(Y(z))]. Part 2(a) of the theorem considers a simpler

situation where the MPS is known. As discussed in Mao et al. (2019) and Zeng et al. (2023),

Part 2(b) considers a more realistic situation in which the MPS is estimated. The proofs are

available in Web Appendix A.2 of Supplementary Materials.

Theorem 2: Let E+[·] and E[·] respectively denote expectations with respect to the ob-

served population and a pseudo-population of the form (2). Let observed probability P+[S = s]

be strictly positive for study s = 1, . . . , J . Suppose the conditional distributions of the potential

outcomes are weakly unconfounded, as described in Section 2, and satisfy assumption (6).

Suppose the multi-study balancing weight (3) is such that E+[ρ
2
γ,θ(S, Z,X)] is finite. For m =

1, . . . ,M , let Φm be a real-valued function with domain Y such that E+[ρ
2
γ,θ(S, Z,X)Φm(Y)]

is finite. For group z = 1, . . . , K, interest focuses on the pseudo-population moment, E[Φ(Y(z))],

also denoted by vector λ(z) = (λ
(z)
1 , . . . , λ

(z)
M )′. For estimator Φ̄z defined in (7), as N → ∞:

(1) Consistency: Φ̄z
p→ λ(z).

(2) Asymptotic normality: Consider the following situations:
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(a) Known MPS: Suppose multiple propensity score (1) is known. Let variance matrix

Σ
(z)
1 =

1

θ2z
E+

(

ρ2γ,θ(S, Z,X) I(Z = z)
(

Φ(Yi)− λ(z)
)(

Φ(Yi)− λ(z)
)′
)

.

Then
√
N
(

Φ̄z − λ(z)
) d→ NM

(

0,Σ
(z)
1

)

.

(b) Estimated MPS: Suppose the MPS is estimated using multinomial logistic regres-

sion as outlined after definition (1). Let ω̂ be the MLE of parameter ω that determines

the unnormalized weights ρ̃1, . . . , ρ̃N in estimator (7). We denote the variance matrix

of Part 2(a) by Σ
(z)
1 (ω) to make explicit its dependence on ω. Define variance matrix

Σ
(z)
2 (ω) = Σ

(z)
1 (ω)+D(z)(ω), where D(z)(ω) is given in Web Appendix A.2 of Supplemen-

tary Materials. Then
√
N
(

Φ̄z − λ(z)
) d→ NM

(

0,Σ
(z)
2 (ω)

)

.

Corollary 1: Suppose the MPS is estimated using multinomial logistic regression.

Let ψ be a real-valued differentiable function with domain RM . Let ∇ψ(λ) = ∂ψ(λ)/∂λ

denote the gradient vector of length M at λ. With λ(z) = E[Φ(Y(z))], suppose gradient

vector ∇ψ(λ(z)) is non-zero at λ(z). With matrix estimator G
(z)
2 (ω) defined as in Part 2(b)

of Theorem 2, set τz(ω) = ∇′ψ(λ(z))G
(z)
2 (ω)∇ψ(λ(z)). Then ψ(Φ̄z) is an asymptotically

normal estimator of ψ(λ(z)):
√
N
(

ψ(Φ̄z)− ψ(λ(z))
) d→ N

(

0, τ 2z (ω)
)

.

Remark. Theorem 2 and its corollaries summarize several noteworthy features of esti-

mator (7), in that it: (i) is applicable to the balancing weights of any pseudo-populations,

including IC, IGO, and FLEXOR weights; (ii) generalizes plug-in sample moment estimators

(Li and Li, 2019) to multiple groups and studies, while accommodating mixed-type multi-

variate outcomes, (iii) exploits known or researcher-supplied information about the group

proportions of the pseudo-population; as mentioned, the FLEXOR weights are typically set

θz equal to the known group prevalences of the larger population. By contrast, θz = 1/K

for most other weighting methods, and (iv) extends Mao et al. (2019) by quantifying the

sampling errors in multiple group settings; matrix D(z)(ω) in Part 2(b) represents the
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adjustment due to MPS estimation, and in the event that parameter ω is known, this

adjustment term vanishes and matrix Σ
(z)
2 (ω) of Part 2(b) equals Σ

(z)
1 of Part 2(a).

Group comparisons. Consider estimation of the pseudo-population moment E[Φm(Y
(z))]

using Φ̄zm. Applying standard results (e.g., Johnson et al., 2002, Chapter 5), we can construct

approximate 100(1 − α)% confidence intervals simultaneously for all possible linear combi-

nations of E[Φm(Y
(1))], . . . , E[Φm(Y

(K))]. In particular, for large N , using the mth diagonal

element of Σ̂
(z)

defined in Theorem 2, the interval
∑K

z=1 az Φ̄zm±
√

χ2
K(α)

∑K

z=1 a
2
z

(

s
(z)
mm

)2
/N

contains
∑K

z=1 az E[Φm(Y
(z))] with approximate probability (1 − α) simultaneously for all

scalars a1, . . . , aK . Various pseudo-population features can then be compared between the

K groups. Writing λ(zm) = E[Y
(z)
m ], we could estimate λ(1m) − λ(2m) (e.g., average difference

between the mth gene’s mRNA expression levels for IDC and ILC breast cancer patients)

and, when K > 2, λ(1m)− 1
K−1

∑K

z=2 λ
(zm) (e.g., for the mth gene, average difference between

the mRNA expression levels for a reference group and the average of the other groups).

We could also estimate ratios of means such as λ(zm)/λ(1m), ratios of mean differences such

as
(

λ(3m) − λ(1m)
)

/
(

λ(2m) − λ(1m)
)

, group-specific standard deviations, percentiles, ratios

of medians, and ratios of coefficients of variation. Under mild conditions, these estimators

are consistent and asymptotically normal, and their asymptotic variances are available by

applying Corollary 1 and the delta method. If Nz is small for some groups, such as rare or

undersampled treatments, the asymptotic confidence intervals may not have proper coverage

and we could employ bootstrap methods to construct confidence intervals.

In single studies (J = 1), Hirano et al. (2003) and Zeng et al. (2023) have shown that

treating IPWs as known counter-intuitively overestimates the variance of pairwise group

mean comparisons. However, with multiple studies and arbitrary functions of group-specific

features ψ(λ(1)), . . . , ψ(λ(K)), this is not generally guaranteed because matrixD(z)(ω) of The-

orem 2 may be neither positive nor negative definitive for a general pseudo-population (2).
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4. Simulation Study

We used simulated datasets to evaluate different weighting strategies for inferring the population-

level features of two subject groups and assessed the accuracy of the Section 3 asymptotic

variance expression for the mean group differences. Mimicking the motivating TCGA breast

cancer studies, we simulated R = 500 independent datasets, each consisting of J = 7

observational studies, K = 2 groups, and L = 1 (i.e., univariate) outcomes for Ñ subjects

whose covariate vectors were sampled with replacement from the N = 450 TCGA breast

cancer patients. We first took Ñ = 500 subjects in two simulation scenarios, labeled “high”

and “low,” to represent the relative degrees of covariate similarity or balance among the

JK = 14 study-group combinations; in other words, the low similarity scenario represented

higher confounding levels. We then applied the Section 3 procedure to meta-analyze the four

studies in each artificial dataset. Additionally, by increasing Ñ from 125, to 250, and then

to 500 subjects, we compared the asymptotic and bootstrap-based variances of the group

mean difference, (λ(1) − λ(2)), where λ(z) = E[Y (z)].

As a common initial step to all 500 artificial datasets, we performed k-means clustering of

the covariates, X1, . . . ,XN , of the TCGA datasets and detected lower-dimensional structure

by aggregating them into Q = 10 clusters with centers q1, . . . ,qQ ∈ Rp and m1, . . . ,mQ

allocated number of covariates. Independently for the artificial datasets r = 1, . . . , 500

comprising Ñ patients each, we generated the data as follows:

(1) Natural population Generate cluster relative weights, π(r) = (π
(r)
1 , . . . , π

(r)
Q ) ∼ DQ(1Q),

denoting the Dirichlet distribution on the unit simplex SQ and 1Q representing the vector

of Q ones. Let the number of patients in the large natural population be N0 = 106. For the

natural population patients, sample their cluster memberships from the mixture distribution

of integers: c
(0)
ir

i.i.d.∼
∑Q

u=1 π
(r)
u ζu where ζu represents a point mass at u. Thence, pick covariate

x
(0)
ir uniformly from the m

c
(0)
ir

TCGA covariates allocated previously to the c
(0)
ir th k-means
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cluster. Generate the “known” relative group proportions in the natural population: θ(r) ∼

DK(1K), for K = 2 groups. Fix the association between group memberships and covariates:

δ
(r)
z (x) ∝ 1 if z = 1 and δ

(r)
z (x) ∝ exp

(

ω
(r)
0 + ω

(r)
1

∑p

t=1 xt/
1
N0

∑N0

i=1

∑p

t=1 x
(0)
irt

)

if z = 2. Here,

ω
(r)
1 equals 1 and 0.1 in the high and low similarity scenarios respectively, with ω

(r)
0 chosen

so that δ
(r)
z (x

(0)
ir ), averaged over the natural population, equals θ

(r)
z .

(2) Covariates For subject i = 1, . . . , Ñ , sample covariate vector x̃
(r)
i = (x̃

(r)
i1 , . . . , x̃

(r)
ip )

′ with

replacement from the N = 450 TCGA covariate vectors.

(3) Study and group memberships Study s
(r)
i and group z

(r)
i were generated as follows:

(a) Multiple propensity score Define the group-specific study propensities as follows:

log
(

δS=s|Z=z(x)/δS=1|Z=z(x)
)

= szω(r)
∑p

t=1 x̃
(r)
it /

1
Ñ

∑Ñ

i′=1

∑p

t=1 x̃
(r)
i′t for s = 2, . . . , J and

z = 1, 2. We set similarity parameter ω(r) equal to 0.5 (0.05) in the high and low similarity

scenario, respectively. Assuming the same group PS as the natural population, the MPS

is available as δsz(x) = δs|z(x)δz(x). For patient i = 1, . . . , Ñ , evaluate their probability

vector δ(r)(xi) =
(

δ
(r)
11 (xi), . . . , δ

(r)
JK(xi)

)

(b) Study-group memberships For patient i = 1, . . . , Ñ , generate (s
(r)
i , z

(r)
i ) from the cate-

gorical distribution with parameter δ(r)(xi).

(4) Subject-specific observed outcomes Generate Y
(r)
i | Zi = z

(r)
i

indep∼ N
(

z
(r)
i

∑p

t=1 x̃
(r)
it , τ

2
r

)

,

with τ 2r chosen to achieve an approximate R-squared of 0.9.

Subsequently, we disregarded knowledge of all simulation parameters and analyzed each

artificial dataset using the proposed methods. As discussed in Section 3, during Stage 1

of the inferential procedure, we estimated the MPS of each dataset. We then evaluated

the unnormalized balancing weights, ρ̃1, . . . , ρ̃Ñ , for the IC, IGO, and FLEXOR pseudo-

populations. The computational costs of evaluating the FLEXOR weights were negligible.

[Table 1 about here.]
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Define percent ESS as the ESS for 100 participants. For Ñ = 500 subjects, Table 1 presents

summaries of the percent ESS of the FLEXOR, IGO, and IC pseudo-populations in the low

and high similarity scenarios. Unsurprisingly, all three pseudo-populations had substantially

higher ESS in the less challenging high similarity scenario in which the covariates were almost

balanced even before applying the weighting methods. In both scenarios, the IC and IGO

pseudo-populations had similar ESS and a median ESS of approximately 32% (74%) in the

low (high) simulation scenarios. The FLEXOR pseudo-population had substantially higher

ESS in every dataset and scenario, and median ESS of 87.26% (95.19%%) in the low (high)

scenarios corresponding to 436.3 and 475.95 subjects, respectively.

We applied the Section 3 strategy to make weighted inferences about functionals of the

group-specific means λ(z) and standard deviations σ(z) of the zth group’s potential out-

comes. The sufficient conditions of Theorem 2 and its corollaries are satisfied by the poten-

tial outcome features and pseudo-populations. Since the estimands depend on the pseudo-

population, we evaluated each estimator’s accuracy relative to the true value of its corre-

sponding estimand computed using Monte Carlo methods.

[Table 2 about here.]

For various estimands and both similarity scenarios, and averaging over the 500 artificial

datasets comprising Ñ = 500 subjects each, Table 2 displays the absolute biases, variances,

and coverages of nominally 95% confidence intervals for the FLEXOR, IGO, and IC pseudo-

populations. For each artificial dataset and weighting method, the three performance mea-

sures were estimated using 500 independent bootstrap samples. For each potential outcome

feature (row), and separately for the absolute bias and variance performance measures

(three-column block), a pseudo-population (column) is marked in bold if it significantly

outperforms the other competing pseudo-populations. In general, the IGO and IC weights

had comparable performances for these data. The three methods had somewhat similar



18 Biometrics, December 2008

accuracies and reasonable coverages in the high similarity scenario where the covariates were

almost balanced across the study-group combinations. However, in the more realistic and

challenging low similarity simulation scenario, the best results typically corresponded to the

FLEXOR pseudo-population, which often substantially outperformed the other methods.

Somewhat unexpectedly, this included the mean group difference (λ(1)−λ(2)), for which IGO

weights are theoretically optimal under additional assumptions such as homoscedasticity (see

Li and Li, 2019, for single studies); the simulation mechanism did not comply with these

sufficient conditions. The results demonstrate the advantages of the FLEXOR strategy which

focuses on stabilizing the balancing weights rather than inferences about specific estimands.

Finally, we compared the bootstrap-based and asymptotic variances of estimator (7) for

unconfounded inferences about the mean group difference, λ(1) − λ(2). For an increasing

number of subjects, i.e., Ñ = 125, 250, and 500, we generated 500 artificial datasets in

the high and low similarity scenarios. For any dataset, the asymptotic variance of weighted

estimator λ̂(1) − λ̂(2) is available by applying Theorem 2 and the subsequently discussed

group comparison strategies. This theoretical limiting value can be compared to the variance

estimate based on B = 500 bootstrap samples. Web Table 1 of Supplementary Materials

compares these numbers for the simulation scenarios and sample sizes. We find that when

the sample size is relatively small (i.e., Ñ 6 250), there is a substantial difference between

the asymptotic and bootstrap-based variances. This difference indicates that a sufficiently

large number of samples may be required for the asymptotic variance to be reliable. However,

for Ñ = 500 subjects, the two variances match very well, giving us the confidence to use

asymptotic variances in the TCGA data analysis with a comparable number of patients.

5. Data Analysis

To understand breast cancer oncogenesis, we analyzed the J = 7 motivating TCGA studies

using mRNA expression measurements on L = 8 targeted genes and p = 30 demographic
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and clinicopathological covariates for N = 450 patients. The participants are partitioned

into K = 2 groups determined by cancer subtypes IDC and ILC, constituting approximately

80% and 10% of U.S. breast cancer cases (Wright, 2022; Tran, 2022); the study-specific

percentages in Web Table 2 of Supplementary Materials are significantly different.

The ESS of the IC weights was 25.7% or 115.7 patients. The IGO weights had a similar

ESS of 26.4% or 118.7 patients. The FLEXOR population had a higher ESS of 40.9% or

183.9 patients, while also guaranteeing that the weight-adjusted composition of IDC and

ILC patients in each TCGA study matched the composition of U.S. breast cancer patients.

Applying the Section 3 procedure, we estimated population-level functionals of the group

potential outcomes for the FLEXOR, IC, and IGO pseudo-populations. For example, for

the lth biomarker, the group-specific mean λ
(z)
l and standard deviation σ(z) were estimated

by setting Φ(y) = (yl, y
2
l )

′ in Theorem 2 and ψ(t1, t2) =
√

t2 − t21 in Corollary 1. Median

M
(z)
l was estimated by first estimating the CDF of potential outcome Y

(z)
l for a fine grid of

points. Group comparison estimands like λ
(1)
l −λ(2)l and σ(1)/σ(2) were estimated by applying

appropriately defined functionals to the estimates of λ
(1)
l , λ

(2)
l , σ

(1)
l , and σ

(2)
l . The estimate

and 95% confidence interval based on B = 100 bootstrap samples are displayed in Table

3 for each feature (row), pseudo-population (column), and genes COL9A3, CXCL12, IGF1,

and ITGA11 (block). The results for the genes IVL, LEF1, IC, and SMR3B are displayed in

Web Table 3 of Supplementary Materials. For each gene-estimand combination, a confidence

interval for the IC or IGO pseudo-population is marked in bold whenever the FLEXOR

pseudo-population’s confidence interval was narrower ; we find that the FLEXOR pseudo-

population often provided the most precise (narrowest) confidence intervals.

For FLEXOR, the confidence intervals for λ
(1)
l − λ

(2)
l reveal that the mean potential

outcomes were significantly different between the disease subtypes for genes CXCL12, IGF1,

LEF1, PRB2, and SMR3B. Additionally, the standard deviation of the IDC and IDL poten-
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tial outcomes for FLEXOR were substantially different for the genes COL9A3, PRB2, and

IVL; the respective confidence intervals for σ
(1)
l /σ

(2)
l excluded 1. If required, the group-specific

medians could be compared by inferences on M
(1)
l /M

(2)
l or M

(1)
l −M

(2)
l .

[Table 3 about here.]

Next, we estimated the correlation between the potential outcomes of the l1th and l2th

biomarker in the zth group: for M = 3 and y ∈ R8, we assumed an M -variate function,

Φ(y) = (Φ1(y),Φ2(y),Φ3(y))
′, with component functions, Φ1(y) = yl1 , Φ2(y) = yl3 , and

Φ3(y) = yl1yl2 . For the zth group, we estimated λ(z) =
(

E[Y
(z)
l1

], E[Y
(z)
l2

], E[Y
(z)
l1
Y

(z)
l2

]
)′

for a

pseudo-population by applying Theorem 2. Setting ψ(t1, t2, t3) = t3 − t1t2, we then applied

Corollary 1 to estimate pseudo-population covariance, ψ(λ(z)) = cov(Y
(z)
l1
, Y

(z)
l2

). Using the

estimated standard deviations σ
(z)
l1

and σ
(z)
l2

for the pseudo-population, as described above, we

estimated the correlation. Independent estimates from B = 100 bootstrap samples were used

to compute 95% confidence intervals of the true correlation between the l1th and l2th gene

pair in the zth group. Web Tables 4-6 of Supplementary Materials present 95% confidence

intervals of the group-specific correlations for each gene pair and weighting method.

[Table 4 about here.]

Table 4 lists the significantly correlated gene pairs for each disease subtype. For the

FLEXOR pseudo-population and IDC disease subtype, gene CXCL12 was significantly co-

expressed with the IGF1, ITGA11, and LEF1; gene IGF1 was co-expressed with ITGA11

and LEF1; gene COL9A3 was co-expressed with LEF1 and PRB2; and gene LEF1 was co-

expressed with IVL and ITGA11. For disease subtype ILC, only the CXCL12 - IGF1 gene pair

was significantly correlated according to FLEXOR. The differential correlation pattern for

the FLEXOR pseudo-population was, therefore, the gene pairs (CXCL12, ITGA11), (IGF1,

ITGA11), (COL9A3, LEF1), (CXCL12, LEF1), (IGF1, LEF1), (ITGA11, LEF1), (IVL,

LEF1), and (COL9A3, PRB2). Detecting these variations in gene co-expression patterns
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between the IDC and ILC subtypes of breast cancer patients in the United States is crucial

for informing precision medicine and targeted therapies (Schmidt et al., 2016).

[Figure 1 about here.]

By contrast, Table 4 shows that the differential correlation pattern of the IC pseudo-

population comprised just five gene pairs, and was identical to the IGO pseudo-population’s

pattern. Although these gene pairs were also detected by the FLEXOR pseudo-population,

the latter detected additional co-expressed gene pairs. Figure 1 graphically summarizes the

number of differentially correlated gene pairs discovered by the weighting methods and

(biased) unadjusted analyses. Recent literature on breast cancer gene ontology substantiates

the distinctive findings of FLEXOR. The genes IVL and LEF1 are highly expressed in basal

and metaplastic human breast cancers, and the cell adhesion and ECM receptor pathways,

containing the genes ITGA11 and LEF1, are deregulated (Williams et al., 2022). The focal

adhesion and cell cycle pathways, containing the genes COL9A3 and LEF1, are affected by

WNT signaling gene set mutations caused by breast cancer metastases (Paul, 2020).

6. Conclusion

In multiple retrospective cohorts, the integrative analysis of mixed-type multivariate out-

comes to accurately compare multiple groups is a challenging problem. We formulate new

frameworks for covariate-balanced pseudo-populations that extend existing weighting meth-

ods to meta-analytical investigations and design a novel, estimand-agnostic FLEXOR pseudo-

population that maximizes the effective sample size by a cost-effective iterative procedure.

We propose generally applicable weighted estimators for a wide variety of population-level

univariate or multivariate features relevant to multigroup comparisons, e.g., contrasts and

ratios of means, medians, and standard deviations, and correlation coefficients.

The methodology has a wide range of meta-analytical applications, including multi-arm
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RCTs. A component of the multi-study balancing weights is considerably simplified if the s∗th

study is an RCT, in which case the study-specific group MPS δz|s∗(x) equals 1/K. In general,

the theoretical results hold for a mix of observational studies and RCTs, although the study

MPS must still be estimated because the subject-study allocations are usually non-random

for multiple studies. The methodology may be generalized in several other directions, such

as increased efficiency by adding an outcome modeling component (Mao et al., 2019; Zeng

et al., 2023); transportability (Westreich et al., 2017) and data-fusion (Bareinboim and Pearl,

2016; Dahabreh et al., 2023) problems, which incorporate additional information in the form

of random samples from the natural population; flexible machine learning methods for MPS

estimation that achieve achieving
√
N inference (Chernozhukov et al., 2018). Furthermore,

in recent years, weighting approaches are frequently challenged and rendered ineffectual by

high-dimensional genetic or genomic measurements. Our future research will explore these

avenues.
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Figure 1: Venn diagram of the differential correlation pattern of the targeted gene pairs for
the three weighting methods and unweighted analysis.
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Low similarity High similarity

FLEXOR IGO IC FLEXOR IGO IC

Minimum 78.37 20.52 20.61 85.81 30.80 30.62
First quartile 85.51 29.91 29.83 94.08 55.67 55.61
Median 87.26 32.07 31.92 95.19 73.73 73.70
Mean 87.20 31.97 31.87 95.03 70.21 69.90
Third quartile 89.02 34.46 34.50 96.17 86.09 85.62
Maximum 93.92 42.56 42.87 98.59 94.52 94.61

Table 1: For the 500 simulated datasets, percentage ESS summaries for the three pseudo-
populations in the low and high simulation scenarios with Ñ = 500 subjects.
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Low similarity scenario

Absolute bias×102 Standard deviation×10 Coverage (%)

Estimand FLEXOR IGO IC FLEXOR IGO IC FLEXOR IGO IC

λ(1) 2.9 (0.1) 4.1 (0.1) 3.8 (0.1) 2.9 (0.0) 3.6 (0.0) 3.4 (0.0) 97 93 95

λ(2) 4.5 (0.1) 8.4 (0.2) 6.6 (0.1) 4.6 (0.1) 6.5 (0.1) 5.7 (0.1) 98 88 89

σ(1) 2.6 (0.1) 3.0 (0.1) 3.1 (0.1) 2.6 (0.1) 2.6 (0.0) 2.8 (0.1) 95 90 90

σ(2) 4.4 (0.1) 6.0 (0.1) 6.2 (0.1) 3.8 (0.1) 4.5 (0.1) 4.8 (0.1) 93 89 89

λ(1) − λ(2) 4.6 (0.1) 7.9 (0.2) 7.4 (0.2) 4.4 (0.1) 6.1 (0.0) 6.1 (0.0) 96 89 90

High similarity scenario

Absolute bias×102 Standard deviation×10 Coverage (%)

λ(1) 2.8 (0.1) 3.3 (0.1) 2.7 (0.1) 2.8 (0.0) 3.2 (0.0) 2.8 (0.0) 97 96 96

λ(2) 4.4 (0.1) 5.7 (0.1) 4.2 (0.1) 4.5 (0.0) 5.5 (0.0) 4.6 (0.0) 97 95 97

σ(1) 3.0 (0.1) 2.9 (0.1) 2.7 (0.1) 2.2 (0.0) 2.3 (0.0) 2.5 (0.0) 94 94 94

σ(2) 6.1 (0.2) 5.9 (0.1) 5.2 (0.1) 3.9 (0.0) 4.1 (0.1) 4.5 (0.1) 93 94 94

λ(1) − λ(2) 4.3 (0.1) 4.7 (0.1) 4.5 (0.1) 4.1 (0.0) 4.4 (0.0) 4.4 (0.0) 97 95 96

Table 2: In the two simulation scenarios with Ñ = 500 subjects each, averaging over 500
artificial datasets, the absolute biases, variances, and 95% confidence interval coverages
of some potential outcome features for the FLEXOR, IGO, and IC pseudo-populations.
For each artificial dataset and weighting method, the three performance measures were
estimated using 500 independent bootstrap samples. The estimated standard errors are
displayed in parentheses. For each feature (row), and separately for the absolute bias and
variance measures (three-column block), a weighting strategy (column) is marked in bold if
it significantly outperforms the other two strategies.
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COL9A3 (l = 1)
Estimand FLEXOR IC IGO

λ
(1)
l

−0.05 (−0.27, 0.23) −0.11 (−0.33, 0.21) −0.09 (−0.25, 0.22)

λ
(2)
l

−0.11 (−0.36, 0.20) −0.16 (−0.44, 0.21) −0.19 (−0.49, 0.27)

σl
(1) 1.03 (0.87, 1.26) 0.97 (0.84, 1.31) 0.93 (0.83, 1.36)

σl
(2) 0.68 (0.54, 0.86) 0.69 (0.47, 0.90) 0.69 (0.49, 0.91)

M
(1)
l

−0.19 (−0.47, 0.07) −0.23 (−0.46, 0.13) −0.23 (−0.40, 0.11)

M
(2)
l

−0.05 (−0.52, 0.37) 0.07 (−0.57, 0.49) −0.05 (−0.54, 0.48)

λ
(1)
l

− λ
(2)
l

0.06 (−0.33, 0.43) 0.05 (−0.48, 0.54) 0.09 (−0.36, 0.59)

σ
(1)
l

/σ
(2)
l

1.52 (1.15, 2.09) 1.41 (1.11, 2.24) 1.35 (1.09, 2.24)

CXCL12 (l = 2)
Estimand FLEXOR IC IGO

λ
(1)
l

−0.03 (−0.22, 0.21) −0.03 (−0.23, 0.29) 0.02 (−0.31, 0.22)

λ
(2)
l

0.59 (0.23, 0.88) 0.55 (0.11, 1.01) 0.58 (0.26, 1.01)

σl
(1) 0.91 (0.84, 1.16) 0.97 (0.84, 1.21) 0.94 (0.83, 1.21)

σl
(2) 0.80 (0.52, 1.10) 0.83 (0.49, 1.27) 0.82 (0.54, 1.20)

M
(1)
l

−0.15 (−0.20, 0.36) −0.16 (−0.32, 0.36) −0.09 (−0.35, 0.38)

M
(2)
l

0.68 (0.44, 1.01) 0.69 (0.10, 1.16) 0.58 (0.21, 1.08)

λ
(1)
l

− λ
(2)
l

−0.62 (−1.00,−0.12) −0.58 (−1.18,−0.08) −0.56 (−1.08,−0.17)

σ
(1)
l

/σ
(2)
l

1.14 (0.87, 1.99) 1.17 (0.71, 2.32) 1.14 (0.75, 1.94)

IGF1 (l = 3)
Estimand FLEXOR IC IGO

λ
(1)
l

0.04 (−0.21, 0.23) 0.10 (−0.28, 0.31) 0.13 (−0.30, 0.30)

λ
(2)
l

0.82 (0.54, 1.09) 0.84 (0.52, 1.16) 0.82 (0.52, 1.17)

σl
(1) 0.81 (0.80, 1.12) 0.86 (0.78, 1.18) 0.87 (0.75, 1.16)

σl
(2) 0.76 (0.47, 0.95) 0.82 (0.45, 1.13) 0.76 (0.45, 1.02)

M
(1)
l

−0.01 (−0.18, 0.34) 0.06 (−0.23, 0.47) 0.10 (−0.26, 0.45)

M
(2)
l

0.95 (0.60, 1.22) 0.95 (0.43, 1.28) 0.88 (0.52, 1.32)

λ
(1)
l

− λ
(2)
l

−0.77 (−1.22,−0.43) −0.74 (−1.19,−0.33) −0.69 (−1.18,−0.31)

σ
(1)
l

/σ
(2)
l

1.06 (0.94, 2.03) 1.05 (0.83, 2.33) 1.14 (0.82, 2.26)

ITGA11 (l = 4)
Estimand FLEXOR IC IGO

λ
(1)
l

0.01 (−0.28, 0.22) 0.03 (−0.37, 0.24) 0.07 (−0.29, 0.17)

λ
(2)
l

0.01 (−0.48, 0.26) −0.02 (−0.53, 0.27) 0.07 (−0.63, 0.28)

σl
(1) 0.92 (0.83, 1.10) 0.96 (0.80, 1.16) 0.94 (0.83, 1.19)

σl
(2) 0.81 (0.60, 1.03) 0.93 (0.54, 1.07) 0.98 (0.56, 1.15)

M
(1)
l

0.14 (−0.28, 0.41) 0.19 (−0.49, 0.48) 0.20 (−0.36, 0.39)

M
(2)
l

−0.02 (−0.54, 0.32) −0.22 (−0.72, 0.26) −0.09 (−0.55, 0.35)

λ
(1)
l

− λ
(2)
l

0.01 (−0.28, 0.49) 0.05 (−0.41, 0.56) 0.00 (−0.44, 0.60)

σ
(1)
l

/σ
(2)
l

1.14 (0.89, 1.62) 1.03 (0.86, 2.01) 0.96 (0.82, 1.84)

Table 3: For four targeted genes, estimates and 95% bootstrap confidence levels (shown in
parenthesis) of different population-level estimands of the potential outcomes of group 1
(IDC cancer subtype, denoted by superscript 1) and group 2 (ILC cancer subtype, denoted
by superscript 2) with FLEXOR, IC, and IGO weights. An IC or IGO confidence interval
is highlighted in bold if it is wider than the FLEXOR confidence interval. All numbers are
rounded to 2 decimal places. See Section 5 for further explanation.
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Infiltrating Ductal Carcinoma

Pseudo-population Significantly correlated gene pairs

FLEXOR CXCL12-IGF1, CXCL12-ITGA11, IGF1-ITGA11,
COL9A3-LEF1, CXCL12-LEF1, IGF1-LEF1,
ITGA11-LEF1, IVL-LEF1, COL9A3-PRB2

IC CXCL12-IGF1, CXCL12-ITGA11, IGF1-ITGA11,
CXCL12-LEF1, IGF1-LEF1, COL9A3-PRB2

IGO CXCL12-IGF1, CXCL12-ITGA11, IGF1-ITGA11,
CXCL12-LEF1, IGF1-LEF1, COL9A3-PRB2

Infiltrating Lobular Carcinoma

Pseudo-population Significantly correlated gene pairs

FLEXOR CXCL12-IGF1

IC CXCL12-IGF1

IGO CXCL12-IGF1

Table 4: Co-expressed gene pairs for each pseudo-population and breast cancer subtype.


