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Abstract. The choice of weights in estimating equations for multivariate survival data is considered.

Specifically, we consider families of weight functions which are constant on fixed time intervals, including the

special case of time-constant weights. For a fixed set of time intervals, the optimal weights are identified as the

solution to a system of linear equations. The optimal weights are computed for several scenarios. It is found that

for the scenarios examined, the gains in efficiency using the optimal weights are quite small relative to simpler

approaches except under extreme dependence, and that a simple estimator of an exchangeable approximation to

the weights also performs well.
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1. Introduction

Wei, Lin and Weissfeld (1989) introduced marginal proportional hazards analysis of

multivariate failure time data. Their approach was to fit separate marginal proportional

hazards models to each failure type and draw inferences using the joint distribution of the

separate estimates. In the clustered data setting with common regression effects and

baseline hazards across clusters, Lee, Wei and Amato (1992) showed that estimators of the

regression parameters obtained from fitting the standard partial likelihood for independent

data were consistent. Cai and Prentice (1995) extended this approach to general multi-

variate failure time data, and proposed modifying the partial likelihood scores by

incorporating weight matrices to improve efficiency. Cai and Prentice (1997) considered

similar equations for the clustered data setting, and Prentice and Hsu (1997) considered

joint weighted estimating equations for marginal regression parameters and association

parameters.

Here the clustered data setting of Lee, Wei and Amato (1992) and Cai and Prentice

(1997) is considered. Let Tij, Cij and zij be the failure time, censoring time, and (fixed)

covariate vector for subject j in cluster i, j = 1,. . ., ni, i = 1,. . ., N. We assume the Cij are iid

and independent of the Tij, and set G(t) = P(Cij > t). The observed data are right censored

with only Xij = min{Tij, Cij} and �ij = I(Tij � Cij) observed. The marginal proportional
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hazards model specifies that the hazard rate for Tij, conditional on covariate information,

but not on failure information for other subjects, is �(tjzij) = �0(t) exp(zij0 �), where � is a

vector of unknown parameters and �0(t) is an unknown baseline hazard function. Clusters

are assumed to be independent, but failure times within a cluster can be correlated. We also

assume that the bivariate distribution of any within cluster pair of observations can be

written in the form

Sijkðs; tÞ ¼ PðTij > s; Tik > tÞ ¼ H �0ðsÞez
0
ij�;�0ðtÞez

0
ik
�

n o
, ð1Þ

for a symmetric bivariate survival function H(�,�), where �0(t) =
R
0
t �0(u) du. This model

assumes that the dependence on the covariates is only through the marginal proportional

hazards model, and that there is no additional structure that would imply different

association models for different pairs. Such a model would usually not be appropriate for

repeated event data, for example, but might be suitable for modeling center effects in

clinical trials. We also note that (1) is equivalent to the standard formulation of joint

distributions in terms of copula functions (see Genest and MacKay, 1986, and Marshall

and Olkin, 1988), which express the joint distribution in terms of the marginal

cumulative distribution functions, since the cumulative hazard � and CDF F are related

through �(x) = �log{1�F(x)}.

Define the standard counting processes by Nij(t) = I(Xij� t, �ij = 1) and Yij(t) = I(Xij 	 t),

the marginal martingale process byMij(t, �) = Nij(t)�
R
0
t Yij(u) �(u|zij) du, and the estimated

martingale process by M̂̂ij(t, �) = Nij(t)�
R
0
tYij(u) exp(zij

0 �) d�̂̂0(u), where �̂̂0(t) =R
0
t �i,j dNij(u) /�k,lYkl (u)exp(zkl

0 �). Then the family of weighted estimating equations of

Cai and Prentice (1997) can be written

Dð�Þ ¼
X
i

X
j

X
k

Z
zik!ikjðt; �ÞdM̂̂ ijðt; �Þ ¼ 0, ð2Þ

where the !ikj(t, �) are arbitrary weight functions. The regression parameter estimator �̂̂ is

defined as the solution to this system of equations.

Ideally, the weight functions would be chosen to minimize the variance of �̂̂. However,
the form of the optimal weights is not known. Cai and Prentice (1995, 1997) and Prentice

and Hsu (1997) restrict attention to constant functions of time in their numerical results,

but even within that class the optimal choice of weights was not identified.

In this paper we consider families of weights which are constant on time intervals. We

give the explicit form of the large sample variance of �̂̂ for such weights, and identify

approximately optimal piecewise constant and time-constant weights as solutions to

systems of linear equations. Although these weights are not practically useful because

of their dependence on the true distribution, it is of interest to compare their performance

to simpler approaches to see how much efficiency could be gained. We investigate this

question by comparing the performance of estimating equations using the optimal

piecewise constant weights, piecewise constant weights that are optimal for ‘exact’

martingale estimating equations, the optimal constant weights, the constant weights
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optimal for the exact martingale equation, and the independence working model. We also

consider a simple empirical weight matrix estimator based on an exchangeable approxi-

mation to the covariance structure. In asymptotic relative efficiency calculations and

simulations, it is found that for the scenarios examined, the gains in efficiency using the

optimal weights are typically quite small relative to the other weights, suggesting that it

may not be useful in practice to attempt to estimate the optimal weights. The simple

empirical weights are also found to have good efficiency, and thus provide a practically

useful estimator of �.
In the next section the piecewise constant family of weights is defined and the optimal

weights in the family derived. A simpler version based on an ‘exact’ martingale equation

is also given, and found to be equivalent to the optimal weights at � = 0. Constant

weights are discussed in Section 3, the empirical weight estimator is given in Section 4,

and formulas for specific models are given in Section 5. Numerical results are given in

Section 6.

2. Optimal Weights

For a simpler presentation, we hereafter consider the case where zij and � are scalar and the

cluster size is constant (ni 
 n). Most results can be extended to higher dimensional

covariates and non-constant ni, though the computations become substantially more

complicated. Define aij(t, �) = �k zik !ikj (t, �), and restrict the integral to a finite time

interval [0, T ], where T is a fixed constant, giving the equations

Dð�Þ ¼
X
i

X
j

Z T

0

aijðt; �ÞdM̂̂ ijðt; �Þ ¼ 0: ð3Þ

In this formulation, the problem of choosing the unknown weight functions is equivalent

to choosing the functions aij(t, �). We restrict attention to functions aij(t, �) which are

constant on prespecified time intervals [Tr, Tr+1), with T1 = 0 < T2 < : : : <TL+1 = T. That is,

aij(t, �) = �L
r=1aij

r I(Tr � t < Tr+1) for scalars aij
r = aij

r(�).
We assume that the true � is in the interior of a compact set B � R1, that the aij

r are

bounded and differentiable on B, and that the covariates zij are bounded. The main

objective of this paper is to to calculate the values of the aij
r that minimize the asymptotic

variance of the solution �̂̂ of (3), and to study the performance of other weights relative to

these optimal weights. The asymptotic framework considered is as N ! 1 with n held

fixed.

2.1. Asymptotic Variance

Define a(t, �) = �i=1
N �j=1

n �ij(t)e
zij�aij(t, �) /�i=1

N �j=1
n �ij(t)e

zij�, where �ij(t) = P(Xij 	 t) =

E{Yij(t)}, and set Di = �j=1
n
R
0
t{aij(t, �) � a(t, �)} dMij(t, �). Under the assumptions

listed earlier and the regularity assumptions outlined in Cai and Prentice (1997),
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N�1/2jD(�)��iDij ! 0 in probability, so D(�) and �iDi are asymptotically equivalent,

and the asymptotic variance of
ffiffiffiffi
N

p
ð�̂̂ � �Þ is

lim
N!1

NA�1
XN
i¼1

VarðDiÞ
( )

A�1; ð4Þ

where

A ¼
X
i;j

Z T

0

aijðt; �Þ � aðt; �Þ
	 


zij�ijðtÞezij�d�0ðtÞ: ð5Þ

Since the aij(t, �)�a(t, �) are fixed functions, it is straightforward to show that

VarðDiÞ ¼
X
j;k

Z T

0

Z T

0

aijðu; �Þ � aðu; �Þ
	 


aikðv; �Þ � aðv; �Þf gCijkðdu; dvÞ; ð6Þ

where Cijk(u, v) = Cov{Mij(u, �), Mik(v, �)}.
For H from (1), define

�rlðu; vÞ ¼ ð�1Þrþl

Hðu; vÞ
@rþlHðu; vÞ
@ur@vl

; r; l ¼ 0; 1: ð7Þ

From standard martingale results (eg Theorem 2.5.3 of Fleming and Harrington, 1991),

Cijjðs; tÞ 
 E Mijðs; �ÞMijðt; �Þ
	 


¼
Z s^t

0

ezij��ijðuÞ�0ðuÞdu;

and it is shown in the Appendix A that

Cijkðs; tÞ 
 E Mijðs; �ÞMikðt; �Þ
	 


¼
Z s

0

Z t

0

�ijkðu; vÞcijkðu; vÞd�0ðuÞd�0ðvÞ ð8Þ

for j 6¼ k, where

cijkðu; vÞ ¼ ½�11 �ijðuÞ;�ikðvÞ
	 


� �10 �ijðuÞ;�ikðvÞ
	 


��01 �ijðuÞ;�ikðvÞ
	 


þ 1�ezij�þzik�,

�ijk(u, v) = P(Xij > u, Xik > v), and �il(w) = �0(w)e
zij�. The function cijk(u, v) is the

conditional martingale covariance rate function of Prentice and Cai (1992). If failure times

within a cluster are independent, then cijk(u, v) = 0.
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2.2. Time-Dependent Optimal Weights

To get tractable formulas, we approximate a(t, �) ¼: ar 
 a{(Tr + Tr+1) / 2, �} for

Tr� t < Tr+1 throughout the following. When the lengths of the intervals are suffi-

ciently small, the effect of this approximation will be small. Also, define a~~ij
r = aij

r� ar,

Cijj
r = Cijj(Tr+1, Tr+1)�Cijj(Tr, Tr),

C
r1;r2
ijk ¼

Z Tr1þ1

Tr1

Z Tr2þ1

Tr2

�ijkðu; vÞcijkðu; vÞd�0ðuÞd�0ðvÞ

for j 6¼ k, and z~~ij
r = zijCijj

r. In the numeric calculations later, the Cijj and Cijk are evaluated

using Gaussian quadrature. In addition, let a~~ik = (a~~ik
1, . . . ,a~~ik

L), a~~i = (a~~i1
0 ,. . .,a~~in

0 )0 and

a~~ = (a~~1
0 , . . . ,a~~N

0 )0, and similarly define z~~ik, z~~i and z~~ in terms of the z~~ik
r. Then from

(6),

VarðDiÞ ¼
Xn
j¼1

XL
r¼1

ðarij � arÞ2Cr
ijj þ

X
k 6¼j

X
r1; r2

ðar1ij � ar1Þðar2ik � ar2ÞCr1; r2
ijk

¼
X
j; k

a~~0ijQijka~~ik ¼ a~~0iQia~~i,

where Qijj = diag(C1
ijj, . . . ,C

L
ijj), Qijk = (C

r1;r2
ijk )L�L for j 6¼ k, and

Qi ¼

Qi11
: : : Qi1n

..

. ..
. ..

.

Qin1
: : : Qinn

0
BBBB@

1
CCCCA,

and from (5), A = �i,j �r a~~ij
r z~~ij

r = a~~0z~~. Note that each Qi is symmetric and positive

definite, subject to mild regularity conditions on the composition of the clusters. Hence,

the asymptotic variance (4) can be approximated by

Na~~0Qa~~=ða~~0z~~Þ2, ð9Þ

where Q = diag(Q1,. . ., QN). We only consider this expression for finite N. This can

either be thought of as an approximation to the limiting variance when clusters are

sampled from an infinite population of possible clusters, or as the limiting variance

when the population contains only a finite number of possible cluster types in the same

proportions as in (9).

Since the elements of a~~ have the form aij
r� ar, a~~must satisfy the constraints�ij a~~ij

r�ij
rezij� =

Wr
0a~~ = 0, r = 1. . ., L, where �ij

r = �ij{(Tr + Tr+1)/2} and the [r + {(i � 1)n + j � 1}L]th

element of Wr is �ij
r ezij�, j = 1, . . . , n, i = 1, . . . , N, with the other elements = 0. Since the
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scaling of a~~ is arbitrary, the piecewise constant optimal weights can thus be found by first

finding the solution to

min
a~~

a~~0Qa~~; ð10Þ

subject to a~~0z~~ = 1 and Wr
0a~~ = 0, r = 1,. . ., L. Then any set of aij

r giving this a~~ will be an

optimal set of piecewise constant weights. In particular, we can take aij
r = a~~ij

r.

Solving the constrained optimization problem (10) is equivalent to solving the linear

system

2Qa~~þ
PL
r¼1

 rWr þ  Lþ1z~~ ¼ 0

W 0
ra~~ ¼ 0, r ¼ 1, . . . , L

a~~0z~~ ¼ 1,

where the  r, r = 1,. . ., L + 1, are Lagrange multipliers. The values of  = ( 1, . . . ,  L+1)
0

can be obtained from F 0Q�1F = �2b, where F = (W1,. . ., WL, z~~) and b = (0, . . . , 0, 1)0.
Then a~~ ¼ � 1

2
Q�1F . The estimator computed from these weights will be denoted �̂̂Opt.

When the observations are independent, cijk(u, v) = 0 for j 6¼ k, and the Qi are diagonal

matrices. In this case, it is easily verified from (9) that the optimal weight functions are

aij(t, �) / zij, giving the usual partial likelihood scores for independent data. This is not

surprising, since it is well-known that the partial likelihood is semiparametric efficient for

independent data. The estimator computed from the independence working model will be

denoted �̂̂Ind.
Simpler weights can be obtained by considering the ‘exact’ martingale estimating

equation

0 ¼ D0ð�Þ ¼
XN
i¼1

Z T

0

Xn
j¼1

aijðt; �ÞdMijðt; �Þ: ð11Þ

This is not a practically useful equation because of the dependence of the Mij on �0. It is

easily verified that for this equation the asymptotic variance of N1/2(�̂̂��) is lim

NVar{D0(�)}/E{r D0(�)}
2, and that

E rD0ð�Þf g ¼
X
ij

Z T

0

aijðt; �Þzij�ijðtÞezij�d�0ðtÞ:

Again using the step function approximations given above, it follows that the asymptotic

variance is �0Q�/(�0z~~)2, where the vector � has components aij
r. From the Cauchy-Schwarz

inequality, �0Q�/(�0z~~)2 	 1/(z~~0Q�1z~~), and since this bound is attained when � = Q�1z~~, it
follows that these are the optimal weights for (11). These weights can also be used in the
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estimated martingale equation, and the solution to (3) using these weights will be denoted

�̂̂EM. It is shown in Appendix B that at � = 0, and under equal censoring (as assumed

throughout), the centered weights a~~ obtained from � = Q�1z~~ are also a solution to (10). It

will also be seen in the numerical results later that �̂̂EM is highly efficient for nonzero �,
too.

3. Time Independent Weights

In this section, we consider the time independent weights in the estimating equation. That

is, aij(t, �) 
 aij(�), or equivalently aij
1 = . . . = aij

L = aij*. We continue to use the piecewise

constant approximation for a(t, �) defined in the previous section.

Let a* = (a11*, a12*,. . ., aNn* )
0 and Ur = (�ij�ij

rezij�)�1(�11
rez11�, �12

rez12�,. . .,�Nn
rezNn�)0, and

note ar = Ur
0a*. Also, let 1l denote a length l vector of 1’s, and Il the l � l identity matrix.

Then

a~~ij ¼ a�ij � a1; . . . ; a�ij � aL
� �0

¼ a�ij � 1L � U 0a�;

where U = (U1,. . ., UL) and � denotes the tensor product, and a~~ = a* � 1L � 1Nn � U0a*

= Pa*, where P = INn � 1L � 1Nn � U0. Thus in this setting we can express (9) as

N(a*)0P0QPa*/(z~~0Pa*)2, and the optimization problem is to find a* minimizing

(a*)0P0QPa* subject to z~~0Pa* = c.

Equivalently, we need to solve for a* in

2P0QPa� þ  P0z~~ ¼ 0

z~~0Pa� ¼ c; ð12Þ

where again  is a Lagrange multiplier. The rank of P is Nn � 1, so P0QP is singular. Since

Q is positive definite, the range space of P0QP is the same as that of P0, so solutions exist to

the first of these equations, and a particular solution is a* = (� /2)(P0QP)�P0z~~, where
(P0QP)� is the Moore-Penrose generalized inverse of P0QP (see Rao and Mitra, 1971).

Since the scaling of a* is arbitrary, the value of c 6¼ 0, and hence of  , is arbitrary, and we

set  = 1. The estimator defined from these weights will be denoted �̂̂OC.
For the exact martingale equation (11), the optimal constant weights are given by

a�i ¼ V�1
i z�i ; i ¼ 1; . . . ;N ; ð13Þ

where ai* = (ai1*, . . . ,ain*)
0, zi* = (zi1*, . . . , zin*)

0, zij* = zijCijj(T, T), and Vi has j, j0 component

Cov{Mij(T, �), Mij0(T, �)}. Since Vi is a covariance matrix, and zi* = E{@Mi(T, �) /@�},
these are similar in form to the optimal weights in standard generalized estimating

equations (Liang and Zeger, 1986). It can again be shown that (13) is equivalent to the

solution to (12) at � = 0, and thus are optimal constant weights in that case. The estimator

defined from these weights will be denoted �̂̂EMC.
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4. Empirical Weights

In this section, empirical weights that could be used in practice are given. We base these on

the constant exact martingale weights (13), but further approximate Vi with an equal

variance exchangeable covariance structure:

V ¼ 2 ð1� �ÞIn þ �1n1
0
n

	 

:

Since the variances and covariances do depend on the covariates, unless � = 0,

this is a further approximation, but reduces the number of parameters to be

estimated. The quantities Mij(t) and zij*, defined in the previous section, can be

estimated by

M̂̂ijðtÞ ¼ NijðtÞ � ezij �̂̂ �̂̂0ðXij ^ tÞ

and

ẑ̂�ij ¼ zij

Z T

0

�̂̂ijðtÞezij �̂̂d�̂̂0ðtÞ;

where �̂̂ij(t) = exp{��̂̂0(t)e
zij�̂̂}Ĝ̂(t), �̂̂ and �̂̂0(�) are the standard estimators for �

and �0 obtained from fitting the marginal proportional hazards model, and Ĝ̂(t) =

exp{��̂̂c(t)}, with �̂̂c the Nelson estimator of the cumulative hazard of the

censoring distribution based on pairs (Xij, 1 � �ij). Then 2 in V is estimated by

�ij M̂̂ij(T)
2/(Nn), and the covariance �2 by

X
i

X
j<k

M̂̂ ijðTÞM̂̂ ikðTÞ Nnðn� 1Þ=2f g:

Finally, we apply (13), with Vi and zi* replaced by these estimates, to obtain the

empirical weights â̂i*. The estimator obtained from these weights is denoted by

�̂̂Emp. We note that these weights are consistent for the optimal constant weights

when � = 0.

5. Specific Survival Models

Specifying a joint distribution for clustered data is most easily accomplished using an

Archimedean copula model. We consider two special cases, the Clayton and positive

stable models.

In Clayton’s (1978) model (see also Oakes, 1982, and Clayton and Cuzick, 1985), the

function H in (1) is H(u, w) = b(u, w)�1/�, where b(u, w) = e�u + e�w � 1. Then from (7),

�10(u, w) = e�u/b(u, w), �01(u, w) = e�w/b(u, w) and �11(u, w) = (1 + �) e�ue�w/b(u, w)2.
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Let S(tjz) = exp{��0(t)e
z�} be the marginal survivor function. Defining Bijk(u, w) =

S(ujzij)�� + S(wjzik)���1, the joint survival function from Clayton’s model is Sijk(u, w) =

Bijk(u, w)�1/�. Also, �ijk(u, w) = Sijk(u, w)G(u)G(w). Then from (8), the martingale

covariance function can be written

Cijkðs; tÞ ¼
Z s

0

Z t

0

Sijkðu;wÞGðuÞGðwÞ

� ð1þ �Þ SðujzijÞ
��
SðwjzikÞ��

Bijkðu;wÞ2
� SðujzijÞ��

Bijkðu;wÞ
� SðwjzikÞ��

Bijkðu;wÞ
þ 1

( )

�ezij� þ zik�d�0ðwÞd�0ðuÞ:

Kendall’s � , defined as the probability that the components of the difference of

independent bivariate pairs (T11, T12) � (T21, T22) have the same sign minus the

probability that they have opposite signs, is equal to �/(� + 2) for this model. The

natural multivariate extension, which has the bivariate marginals given above, is given

by

PðTi1 > t1; . . . ; Tin > tnjzi1; . . . ; zinÞ ¼
Xn
j¼1

SðtjjzijÞ�� � nþ 1

( )�1=�

ð14Þ

For the positive stable model, H(u, w) = exp{�(u1/� + w1/�)�}, where 0 < � < 1.

Smaller values of � indicate stronger association, and � = 1 yields independence. Also,

Kendall’s � for this model is 1 � �. Here �10(u, w) = (u1/� + w1/�)��1u1/��1, �01(u, w) =
(u1/� + w1/�)��1w1/��1, and

�11ðu;wÞ ¼ u1=��1w1=��1ðu1=� þ w1=�Þ��2fðu1=� þ w1=�Þ� � ð�� 1Þ=�g:

The martingale covariance function can again be obtained by substituting these

expressions in (8), as above.

6. Numerical Results

We first compute asymptotic relative efficiencies ARE(�̂̂, �̂̂Opt) = Var(�̂̂Opt) / Var(�̂̂) for the
estimators �̂̂ using various weight functions. It is only possible to compute the optimal

weights with a finite number of possible cluster configurations. We used a population of

80 clusters, and generated random U(0, 1) covariate values within each cluster. Each of

these 80 possible clusters is then assumed to occur with equal probability as N ! 1. The

calculations were repeated for ten different populations of covariate values for each
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scenario. We used �0(u) = u and exponential censoring with G(u) = e�u. We also truncate

follow-up at T = 3 to restrict attention to a finite interval. Cluster sizes of n = 2 and 3 were

considered.

In the calculations, we set L = 50 and Tr = (r � 1)T/L, r = 1, . . . , L + 1. The Cijj
r and C

r1;r2
ijk

were evaluated using 4 point Gauss-Legendre quadrature, except for the positive stable

model with smaller values of �, where a 25 point rule was used in the first interval because
the integrand has substantial mass along a narrow ridge there.

Table 1 gives results for � = 1. The ARE’s show that �̂̂Ind can lose substantial

efficiency as the degree of dependence increases, and even in the Clayton model with

� = 1 (Kendall’s � = 1/3), �̂̂Ind is only 80% as efficient as the optimal and optimal

constant weights. Except under very strong dependence, ARE(�̂̂OC, �̂̂Opt) > .9,

suggesting that typically there is little to be gained by considering nonconstant weights.

The asymptotic variances were also computed for �̂̂EM and �̂̂EMC. In all scenarios

considered, ARE(�̂̂EM, �̂̂Opt) 	 .99 and ARE(�̂̂EMC, �̂̂OC) 	 .99, suggesting that the

simpler weights obtained from the exact martingale equations should be adequate in

general. Similar calculations were also done for � = 0. The patterns were generally

similar, with slightly higher ARE’s for both �̂̂EM and �̂̂IND in the Clayton model and

slightly lower ARE’s for both in the stable model. As noted above, at � = 0,

ARE(�̂̂EM, �̂̂Opt) = ARE(�̂̂EMC, �̂̂OC) = 1.00.

We next used simulations to examine finite sample performance of the estimators for

different weight functions. Data was generated from the models specified above, with

N = 80 clusters used in each scenario, and the same iid U(0, 1) set of covariate values

used throughout for each value of n. The estimators �̂̂Opt, �̂̂EM, �̂̂EMC, �̂̂OC, �̂̂Emp,
and �̂̂Ind were computed for each sample, and their variances estimated with the

empirical variances of the estimators computed from 10,000 simulated samples. The

results are given in Table 2 for � = 1. The variances for �̂̂OC are always very close to

those for �̂̂EMC, and are omitted. The results indicate that the efficiency gains suggested

by the ARE’s can largely be obtained with moderate size samples, although the gains are

slightly smaller with this sample size. The performance of �̂̂Emp is nearly as good as

�̂̂EMC, suggesting that it would often be adequate in practice. Results for � = 0 (omitted)

were generally similar, again with slightly higher efficiencies for �̂̂EMC, �̂̂Emp and �̂̂Ind

Table 1. Asymptotic efficiencies of �̂̂OC (optimal constant) and �̂̂Ind (independence weights) relative to �̂̂Opt
(optimal weights); � = 1. Entries are the range of the AREs over 10 random covariate configurations.

n = 2 n = 3

Model ARE(�̂̂OC; �̂̂Opt) ARE(�̂̂Ind; �̂̂Opt) ARE(�̂̂OC; �̂̂Opt) ARE(�̂̂Ind; �̂̂Opt)

Clayton � = 1 (1.00,1.00) (.86,.86) (1.00,1.00) (.79,.82)

Clayton � = 2 (.99,.99) (.73,.74) (.99,.99) (.64,.68)

Clayton � = 3 (.97,.97) (.64,.65) (.96,.97) (.56,.60)

Clayton � = 4 (.95,.95) (.59,.60) (.94,.94) (.50,.55)

Stable � = .9 (1.00,1.00) (.99,.99) (.99,.99) (.97,.98)

Stable � = .6 (.93,.94) (.79,.81) (.92,.93) (.72,.76)

Stable � = .3 (.77,.78) (.49,.50) (.78,.79) (.43,.47)
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relative to the optimal weights in the Clayton model and slightly lower efficiencies in

the stable model.

7. Discussion

In this paper we have considered the choice of weight function in estimating equations for

marginal proportional hazards models for clustered data. The optimal and optimal constant

weights and the corresponding weights derived from the exact martingale equation require

knowledge of the true distributions, and are thus not practically useful. The main purpose

of this investigation was to see what gains in efficiency might be possible if the optimal

weights were known, and also to gain some insight into what types of weight functions we

should be trying to estimate.

In ARE calculations, we found that the gains in efficiency of the weighted equations

relative to the standard partial likelihood scores can be substantial with moderate

dependence. This is consistent with the results of other investigations, such as those of

Cai and Prentice (1995, 1997). The differences between �̂̂Opt and �̂̂EM and between �̂̂OC
and �̂̂EMC were very small in all scenarios examined. The estimators based on constant

weights performed well except in the positive stable model with strong dependence. A

simple empirical weight estimator also performed nearly as well as �̂̂OC. This suggests that
in many settings there may be little advantage to attempting to estimate the more complex

optimal weights. While the particular form of the estimated weights used here performed

well in our simulations, we suspect that other approaches, such as those of Cai and

Prentice (1995, 1997), will also often perform well in practice.

Our results have several limitations. We assumed that covariates affect the joint

distributions only through the marginal proportional hazards model, and assumed

exchangeable symmetry of generalized residuals within a cluster. The effect of more

complex forms of dependence is unknown, but it would likely be even more difficult to

calculate and estimate optimal weights under more complex models. The distribution of

covariates used in the calculations was also independent of cluster membership. Generally

the covariate configuration will affect the efficiency of the weighted estimating equations,

with higher efficiency with large intra-cluster covariate differences and lower efficiency

when covariate values have positive intra-cluster correlation. Finally, throughout only

fixed covariates were considered. The theoretical results on optimal weights in Section 2

are easily extended to time-varying covariates that are approximately constant on short

time intervals, but this would require specification of full covariate trajectories for the

computations. The consideration of constant weights and the form of the empirical

estimator do not generalize to time-varying covariates, though.
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Appendix A. Derivation of Cijk(u, v)

For j 6¼ k,

E MijðsÞMikðtÞ
	 


¼ PðXij � s;Xik � t; �ij ¼ 1; �ik ¼ 1Þ

�
Z s

0

PðXij 	 u;Xik � t; �ik ¼ 1Þezij�d�0ðuÞ

�
Z t

0

PðXij � s;Xik 	 w; �ij ¼ 1Þezik�d�0ðwÞ

þ
Z s

0

Z t

0

PðXij 	 u;Xik 	 wÞezij�þ zik�d�0ðwÞd�0ðuÞ: ð15Þ

Now P(Xij 	 u, Xik 	 w) = �ijk(u, w). Using (1) and (7),

PðXij � s;Xik � t; �ij ¼ 1; �ik ¼ 1Þ ¼
Z s

0

Z t

0

GðuÞGðwÞSijkðdu; dwÞ

¼
Z s

0

Z t

0

�ijkðu;wÞ�11 �0ðuÞezij�;�0ðwÞezik�
	 


ezij�þ zik�d�0ðuÞd�0ðwÞ:

Similarly,

PðXij 	 u;Xik � t; �ik ¼ 1Þ ¼
Z t

0

GðuÞGðwÞSijkðu; dwÞ

¼
Z t

0

�ijkðu;wÞ�01 �0ðuÞezij�;�0ðwÞezik�
	 


ezik�d�0ðwÞ,

and

PðXij � s;Xik 	 w; �ij ¼ 1Þ ¼
Z s

0

GðuÞGðwÞSijkðdu;wÞ

¼
Z t

0

�ijkðu;wÞ�10 �0ðuÞezij�;�0ðwÞezik�
	 


ezij�d�0ðuÞ:

Substituting these expressions in (15) then gives (8). This can also be obtained from

formula (2) of Prentice and Cai (1992).

OPTIMAL WEIGHT FUNCTIONS FOR MARGINAL PROPORTIONAL HAZARDS 17



Appendix B. Optimality of Q�1zzzzzzzz~~ at ������ = 0.

Define z (t, �) = �N
i=1�

n
j=1�ij(t)zij e

zij� /�N
i=1�

n
j=1�ij(t)e

zij� and zij
r = z{(Tr + Tr+1) / 2, �}, and

let � be the vector with components �ij
r = (zij � zr)Cijj

r. Since (5) equals

X
i;j

Z T

0

aijðt; �Þ � aðt; �Þ
	 


zij � zðt; �Þ
	 


�ijðtÞezij�d�0ðtÞ,

the piecewise constant approximation also leads to the formula

a~~0Qa~~=ða~~0�Þ2 ð16Þ

for the asymptotic variance. In this appendix it is shown that if � = 0, and under equal

censoring, a~~ obtained from � = Q�1z~~ minimizes (16) subject to the constraints Wr
0a~~ = 0.

This is done by showing first that a~~ = Q�1� minimizes (16) and satisfies the constraints,

and then that � = Q�1z~~ gives a~~ = Q�1�.
From the Cauchy-Schwarz inequality, the global minimum of (16) is attained by a~~ =

Q�1�. To show that this value also satisfies the constraints, first, when � = 0, and under

equal censoring, �ij, Cijj
r and C

r1; r2
ijk do not depend on i, j, k, so ar = �i,j aij

r / (Nn) and z r =

�i,jzij / (Nn), and the Qijj and Qijk, j 6¼ k, do not depend on i, j, k. Thus �ij a~~ij = 0 and �ij �ij
r =

�ij (zij � z r ) Cijj
r = 0. Also, the nonzero components of Wr are all equal to some constant c.

Since the Qijj0 matrices do not depend on i,j, the matrices Qi
�1 are all equal, and each is of

the form

E B : : : B

B E : : : B

..

. ..
. . .

. ..
.

B B : : : E

0
BBBBBBBB@

1
CCCCCCCCA
,

where E and B are L � L matrices. Thus setting �ij = (�ij
1, . . . ,�ij

L )0,

Q�1� ¼

ðE � BÞ�11 þ B
P

j0 �1j0

..

.

ðE � BÞ�Nn þ B
P

j0 �Nj0

0
BBBBB@

1
CCCCCA:

Letting Er
0 and Br

0 be the rth rows of E and B,
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W 0
rQ

�1� ¼ c
P
i;j

E0
r � B0

r

� �
�ij þ

P
i;j;j0

B0
r�ij0

 !

¼ c E0
r � B0

r

� �P
i;j
�ij þ ncB0

r

P
i;j0
�ij0

¼ 0: ð17Þ

Thus a~~ = Q�1� satisfies Wr
0a~~ = 0, r = 1, . . . , L, and thus minimizes (16) subject to these

constraints.

Now consider � = Q�1z~~. Similar to (17), for these aij
r,

arij � ar ¼ arij � 1
Nn

P
hk

arhk

¼ ðE0
r � B0

rÞz~~ij þ B0
r

P
j0
z~~ij0 � 1

Nn

P
hk

ðE0
r � B0

rÞz~~hk � 1
Nn

P
h;k;k 0

B0
rz~~hk 0

¼ ðE0
r � B0

rÞ�ij þ B0
r

P
j0
�ij0 ;

so starting from � = Q�1z~~ gives a~~ = Q�1�.
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