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Abstract: Generalized varying coefficient models have emerged as a powerful tool for

modeling nonlinear interactions between covariates and an index variable when the out-

come follows a non-normal distribution. The model often stipulates a link function as

well as a variance function, which may not be valid in practice. For example, in a large-

scale study of delinquency of loan payment for the purchase of expensive smart phones in

China, it has been found that parametric functions may not adequately characterize the

data and may yield biased results. We propose a generalized varying coefficient models

with unknown link and variance functions. With such a massive dataset, simultaneous

estimation of link and variance functions as well as a large number of varying coefficient

functions poses challenges. We further propose a global kernel estimator, along with a

series of linear approximations, which achieves computational and statistical efficiency.
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The estimators can be explicitly expressed as a linear function of outcomes and are

proven to be semiparametrically efficient in the sense of Bickel et al. (1993). Extensive

simulations demonstrate the superiority of the method compared to the other competing

methods, and the proposal is applied to analyze the aforementioned smart phone loan

payment study.

Key words and phrases: Generalized varying coefficient models; Local linear smoothing;

Quasi-likelihood; Asymptotic properties; Semiparametric efficiency.

1. Introduction

With non-normal response data, generalized varying coefficient models (GVCMs)

have been widely used to model the nonlinear interactions between an index vari-

able (or effect modifier) with the other important covariates. Relevant works

include Hastie and Tibshirani (1993), Xia and Li (1999), Cai et al. (2000), Zhang

and Peng (2010), Kuruwita et al. (2011), Xue et al. (2012), Huang et al. (2014)

and Zhang et al. (2015). The models have been applied in longitudinal data analy-

sis (Hoover et al., 1998; Wu et al., 1998; Fan and Zhang, 2000; Lin and Ying, 2001;

Fan et al., 2007; Lin et al., 2007), time series analysis (Chen and Tsay, 1993; Cai

et al., 2000; Huang and Shen, 2004), survial analysis (Zucker et al., 1990; Murphy

and Sen, 1991; Gamerman, 1991; Murphy, 1993; Marzec and Marzec, 1997; Mar-

tinussen et al., 2002; Cai and Sun, 2003; Tian et al., 2005; Fan et al., 2006; Chen

et al., 2012) and functional data analysis (Ramsay and Silverman, 2002). Like

generalized linear models, GVCMs specify link and variance functions to associate
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the means and variances of outcomes with predictors. The functions are typically

specified according to the data type of outcomes and out of mathematical con-

venience. For binary outcomes, a logit link and variance µ(1 − µ) as a function

of mean µ are chosen; for count data, a logarithmic link and identity variance

function of mean are specified; and for continuous outcomes, an identity link and

a constant variance are taken. An overlooked fact, however, is that misspecified

link and variance functions may cause biased and inefficient estimates and lead

to erroneous conclusions.

Our study is motivated by a large-scale dataset on loan payment delinquency

of young customers for the purchase of expensive smart phones in a major city

of China. The dataset consists of the records of payment delinquency from year

2015 to 2016 (recorded as Y = 1 if the loan was not paid back on time, and 0

otherwise) for 105, 548 customers, along with credit score, age, monthly income,

downpayment ratio, loan amount, and the number of credit cards owned. Prelim-

inary analyses found the effects of risk factors may depend on the loan amount.

For example, the effect of age increases with the loan amount, and the effect of

credit score is significant only when the loan amount is between (2000, 4000). It

is of interest to examine if and how these factors affect the loan payment behav-

ior by applying a generalized varying coefficient model. Using the nonparametric

methodology developed in this paper, the estimated link and variance functions
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(see Figures 3 and 4) deviates much from the commonly used link and variance

functions for binary data, suggesting their unsuitability for this dataset. Fur-

ther, Table 4 shows that the method with data-driven link and variance functions,

performs better with smaller prediction errors than the logistic varying coefficient

model in the independent testing data. In many applications, the estimation of

variance structures is of interest per se. Some recent examples include the study

of the variability on propensity-score matching (Austin and Cafri, 2020), the

evaluation of variabilities in aggregate stock returns(Pyun, 2019), the effects on

employment with several state-level policy shifts (Pustejovsky and Tipton, 2018;

Deriso et al., 2007), and analyses of several functional or longitudinal datasets(Lin

et al., 1997; Wang and Lin, 2005; Zhang and Paul, 2014).

There are two related works that nonparametrically estimate link functions for

varying coefficient models (Kuruwita et al., 2011; Zhang et al., 2015). Kuruwita

et al. (2011) considered a model Y = g{X′β(U)} + ε for continuous response

data with a constant variance. For non-continuous response data, Zhang et al.

(2015) proposed a class of generalized varying coefficient models with an unknown

link but a known variance function. Those methods focus on estimation of mean

functions, while specifying variance functions to be constant or with a known

structure. However, our simulation (see Example 3 in Section 4) shows that

misspecifications of variance functions will lead to considerably large biases for
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the link and varying-coefficient functions. In addition, as Zhang et al. (2015)

used a local likelihood method to estimate the link and coefficient functions, the

number of parameters to be estimated is of the same order of the sample size. This

method is not applicable to our loan payment dataset with more than 100,000

samples. Moreover, Zhang et al. (2015) and (Kuruwita et al., 2011; Zhang et al.,

2015) estimated g(·) through a two-dimensional kernel, which may not be efficient.

This paper proposes a new class of generalized varying coefficient models with

unspecified link and variance functions (GVULV). Let Y be the response variable,

X = (X1, . . . , Xd)
′ the vector of covariates, and U a univariate index variable, for

example, the loan amount. A GVULV model is specified as

µ = E(Y |X, U) = g{X′β(U)},

V ar(Y |X, U) = V (µ), (1.1)

where g(·) and V (·) are the unknown link and variance functions, and β(·) is a

vector of unknown varying coefficient functions.

Using one-dimensional kernel functions, we propose a quasi-likelihood based

approach to estimate g(·) and β(·) and show that the proposed estimators are

uniformly consistent, asymptotically normal, and semiparametrically efficient in

the sense of Bickel et al. (1993). To our knowledge, semiparametric efficiency

has never been established for similar models. In addition, with a series of lin-

ear approximations, we propose an iterative algorithm, which is computationally
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efficient and easily implementable as each step involves only closed-form one-

dimensional smoothing.

The paper is organized as follows. Section 2 presents the model formulation

and introduces the local quasi-likelihood estimation, and Section 3 establishes the

asymptotic results. Sections 4 gives numerical comparisons with the competing

methods, and Section 5 applies the proposed method to analyze the loan payment

data. We conclude the paper with a discussion in Section 6. Technical proofs are

relegated to the Supplementary Material.

2. Estimation of a GVULV model

2.1 Model formulation

With n random samples from an underlying population, the observed data, (Yi,Xi, Ui),

i = 1, · · · , n, are i.i.d copies of (Y,X, U), satisfying (1.1). Following Zhang et al.

(2015), we specify the following identifiability conditions:

β1(u) > 0 for any u, and ‖β(Un)‖ = 1, (2.2)

where ‖β(u)‖ = {β(u)Tβ(u)}1/2 and β1(·) is the first component of β(·).

We fit model (1.1) by using maximum quasi-likelihood and kernel smoothing.

To proceed, let µi = g{X′iβ(Ui)} and write the log quasi-likelihood function of
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β(·), g(·) and V (·) as

Q(β, g, V ) =
n∑
i=1

L(µi, Yi) (2.3)

with L(µi, Yi) being defined through

∂L(µi, Yi)/∂µi = V (µi)
−1(Yi − µi). (2.4)

The following three subsections detail the proposed approach, which alter-

nately estimates β(·), g(·) and V (·).

2.2 Estimation of β(·) when g(·) and V (·) are given

Applying the Taylor expansion to β(·) yields

β(Ui) ≈ β(u) + β̇(u)(Ui − u), (2.5)

when Ui is in a small neighborhood of u. With (2.4), the quasi-likelihood

estimator of δ = (ζ, γ)′ ≡ (β(u), β̇(u))′ solves

Sβ(δ;g, V )=̂
1

n

n∑
i=1

[
Yi − g

{
X′i
(
ζ + γ(Ui − u)

)}]
Υi(u)

×ġ
{
X′iβ(Ui)

}
Kh1(Ui − u)/V (µi) = 0, (2.6)

where Υi(u) = (X′i,X
′
i(Ui − u))′, Kh(·) = K(·/h)/h, K(·) is a non-negative sym-

metric kernel function on [−1, 1] and h1 is a bandwidth.

Using the Newton-Raphson iteration to compute δ = (ζ, γ)′ is intensive

because of repetitions over all u in the support of Ui given g(·) and V (·). We
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explore a local linear approximation. Applying Taylor’s expansion to g(·) at

X′β(Ui) for Ui around u, we have that

g
[
X′i
{
ζ + γ(Ui − u)

}]
= g
[
X′iβ(Ui) + X′i

{
ζ + γ(Ui − u)

}
−X′iβ(Ui)

]
≈ g{X′iβ(Ui)}+ġ{X′iβ(Ui)}

[
X′i
{
ζ + γ(Ui − u)

}
−X′iβ(Ui)

]
. (2.7)

Plugging (2.7) into (2.6), we obtain an explicit expression for the estimators of

(β(u), β̇(u))′, β̂(u)

ˆ̇β(u)

 =
{ n∑

i=1

ρ2iΥi(u)Υi(u)′Kh1(Ui − u)/V (µi)
}−1

×
n∑
i=1

[
Yi − g{X′iβ(Ui)}+ ρiX

′
iβ(Ui)

]
Υi(u)ρiKh1(Ui − u)/V (µi), (2.8)

where ρi = ġ
{
X′iβ(Ui)

}
.

2.3 Estimation of g(·) when β(·) and V (·) are given

A Taylor expansion gives that

g
{
X′iβ(Ui)

}
≈ g(z) + ġ(z)

{
X′iβ(Ui)− z

}
, (2.9)

when X′iβ(Ui) is in a small neighborhood of z. With (2.4) and (2.9), the quasi-

likelihood estimator of g = (g1, g2) ≡ (g(z), ġ(z))′ solves

Sg(g;β, V )=̂
1

n

n∑
i=1

{
Yi −Wi(z;β)′g

}Wi(z;β)

V (µi)
Kh2

{
X′iβ(Ui)− z

}
= 0, (2.10)
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where Wi(z; β) =
(
1, X′iβ(Ui) − z

)′
, and h2 is the bandwidth. A closed-form

expression is available with

(
ĝ(z), ˆ̇g(z)

)′
=
[∑n

i=1Wi(z;β)Wi(z;β)′Kh2

{
X′iβ(Ui)− z

}/
V (µi)

]−1
×
∑n

i=1Wi(z;β)Kh2

{
X′iβ(Ui)− z

}
Yi
/
V (µi). (2.11)

2.4 Estimation of V (·) when β(·) and g(·) are given

As E(Y 2
i |Xi, Ui) = V ar(Yi|Xi, Ui)+E2(Yi|Xi, Ui) = V (µi)+µ2

i ≡ Ṽ (µi), it suffices

to estimate Ṽ (·) for V (·). Using the Taylor expansion gives

Ṽ (µi) ≈ Ṽ (ω) + ˙̃V (ω)(µi − ω), (2.12)

when µi = g
{
X′iβ(Ui)

}
is in a small neighborhood of ω. Then the estimating

equation for V = (Ṽ (ω), ˙̃V (ω))′ becomes

SV (V;β, g)=̂
1

n

n∑
i=1

[
Y 2
i − Ṽ (ω)− (µi − ω) ˙̃V (ω)

]
Ωi(ω;β, g)Kh3(µi − ω) = 0,(2.13)

with Ωi(ω;β, g) = (1, µi − ω)′ and h3 being the bandwidth. The estimator for

(Ṽ (ω), ˙̃V (ω))′ is

(
ˆ̃V (ω),

ˆ̃̇
V (ω)

)′
=
[∑n

i=1 Ωi(ω;β, g)Ωi(ω;β, g)′Kh3(µi − ω)
]−1

×
∑n

i=1 Ωi(ω;β, g)Kh3 (µi − ω)Y 2
i . (2.14)

The estimator for V (ω) is V̂ (ω) = ˆ̃V (ω) − ω2. As (2.13) uses the squared

observations, Y 2
i , rather than the squared residuals (Yi − µi)

2, the procedure,
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by avoiding using the unknown mean function, offers added robustness for the

estimation of V (·) (Lin and Song, 2010).

2.5 An algorithm for estimating g(·), β(·) and V (·)

We choose the initial values of β(0)(u), g(0)(z), ġ(0)(z), with u and z in the support

of U and X′β(U), respectively. As the variance estimation does not affect the

asymptotical distribution of the estimator for the mean structure, we choose the

initial values based on a model with a constant variance. For the same reason,

as long as the estimate of V (0)(µ
(0)
i ) is consistent, the variance function V (µi)

in (2.6) and (2.10) does not need to be updated in the iterative process. The

estimate of V (·) only needs to be updated after the final estimates of g(·) and

β(·) are obtained. This further reduces computational burden. In addition, as

the objective function for estimating g(·) and β(·) is different from that for V (·)’s,

the iterative algorithm may not guarantee convergence Boyd and Vandenberghe

(2004). We indeed have conducted simulations by updating β(·), g(·) and V (·)

iteratively and found that the algorithm fails to converge frequently.

Using a local linear smoothing technique presented in Section 2.4, we estimate

the initial values V (0)(ω) of V (ω) for ω in the support of µ(0) = g(0){X′β(0)(U)},

which, by the kernel theory (Fan et al., 2006), are the consistent estimates of

V (g{X′β(U)}). Let β(r−1)(·), g(r−1)(·) and ġ(r−1)(·) be the estimators of β(·), g(·)

and ġ(·) at the (r−1)th iteration, respectively, and µ
(r−1)
i = g(r−1)

{
X′iβ

(r−1)(Ui)
}

,
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ρ
(r−1)
i = ġ(r−1)

{
X′iβ

(r−1)(Ui)
}
. We obtain the updated values of β(·) and g(·) at

the rth iteration as follows.

• For each u in the choosen grid points {u1, · · · , un1}, we estimate β(u) and

β̇(u) by using (2.8), with all the unknown quantities on the right side of

(2.8) replaced by their updated values at the (r − 1)th iteration, such as

β(r−1)(·), g(r−1)(·), ġ(r−1)(·), µ(r−1)
i , ρ

(r−1)
i , except that V (µi) is replaced by

V (0)(µ
(0)
i ). We then standardize β̂(u) to obtain β(r)(u) = β̂(u)/‖β̂(Un)‖

with β
(r)
1 (u) > 0.

• Let Zi = X′iβ
(r)(Ui) for i = 1, · · · , n. We choose n2 points in the support

of Z, denoted as {z1, · · · , zn2}. For each z ∈ {z1, · · · , zn2}, as outlined

in Section 2.3, we estimate (g(z), ġ(z))′ by using (2.11). Again, we replace

all the unknown quantities on the right side of (2.11) by their updated

values, except that we replace V (µi) by V (0)(µ
(0)
i ). We denote the updated

estimates of g(z) and ġ(z) by g(r)(z) and ġ(r)(z).

• The convergence is defined as supu ||β(r)(u)−β(r−1)(u)|| < ε0 and supz |g(r)(z)−

g(r−1)(z)| < ε0, where ε0 > 0 is a pre-specified small number. Denote the

final estimators for β(u) and g(z) as β̂(u) and ĝ(z).

• Let {ω1, · · · , ωn3} be the grid points in the support of {ĝ(X′iβ̂(Ui)) : i =

1, · · · , n}. For each ω ∈ {ω1, · · · , ωn3}, we use (2.14) to obtain the estimate
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of V (ω) with β and g replaced by β̂ and ĝ, respectively.

Remark 1. We calculate g(·), β(·) and V (·) at fine grids and use linear

interpolation to fill the rest. In contrast, Zhang et al. (2015) needed to estimate

g(·) at all of the observed data points, which is infeasible for a large-scale dataset.

Remark 2. If g(·) were known, the estimator of β̂(u) based on (2.6) would

be reduced to the existing local quasi-likelihood estimator (Carroll et al., 1997a;

Chiou and Müller, 1998). If β(·) were known, the proposed estimator of ĝ(z)

would be the estimator for the generalized nonparametric regression model. As

such, the asymptotic properties could have been easily established by the kernel

theory (Fan and Gijbels, 1996). However, since both β(·) and g(·) are unknown,

our estimator is defined implicitly as the limit of an iterative algorithm, which

needs substantial work for establishing the asymptotic theory.

Remark 3. We substitute the local approximations (2.5) and (2.9) into the

quasi-likelihood function, respectively, avoiding the use of two-dimensional kernels

and improving the efficiency of the estimator. In fact, the proposed estimator

is shown to be semiparametrically efficient in the sense of Bickel et al. (1993).

On the other hand, the local approximation (2.7) yields a closed-form expression

when updating the estimate of β(·), which expedites and simplifies computation.

Hence, the proposed estimators possess theoretical and computational efficiency.

The proposed estimation of β(·), g(·), V (·) involves the selection of the band-
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widths h1, h2, h3, which can be achieved by using K-fold cross-validation (Cai

et al., 2000; Fan et al., 2006). Specifically, denote the full dataset by B, and

partition the samples to K parts, denoted by Bk, k = 1, · · · , K. First, for the

link function and coefficient functions, we minimize

PE(h1, h2) =
1

K

K∑
k=1

1

nk

∑
i∈Bk

∣∣∣Yi − ĝ(−k){X′iβ̂(−k)
(Ui)}

∣∣∣ ,
where nk is the number of the observations in set Bk, and the estimators ĝ(−k)(·)

and β̂
(−k)

(·) for g(·) and β(·), respectively, are estimated by the training set

B −Bk. For the variance function, we minimize

PE(h3) =
1

K

K∑
k=1

1

nk

∑
i∈Bk

∣∣∣(Yi − µ̂(−k)
i )2 − V̂ (−k)(µ̂

(−k)
i )

∣∣∣ ,
where the estimators µ̂

(−k)
i and V̂ (−k)(·) for µi = g{X′iβ(Ui)} and V (·), respec-

tively, are estimated by the training set B−Bk. The number K is usually chosen

to be K = 5 or K = 10. The bandwidths (h1, h2) and h3 are selected separately,

resulting in less computation. In the ensuing simulation studies and real data

analysis, K = 5 is used and is found to work well.

3. Large sample properties

We denote by β, g and V the true coefficient, link and variance functions, respec-

tively. This section establishes the uniform consistency, asymptotic normality and

semiparametric efficiency with the following regularity conditions.
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(A1) The kernel function K(·) is a symmetric density function with a compact

support and a bounded derivative.

(A2) Xi and Ui are bounded in Rd and R. Without loss of generality, we

assume that Xi ∈ [−1, 1]d and Ui ∈ [−1, 1].

(A3) The second derivatives of β(·), g(·) and V (·) on [−1, 1] are all bounded

and the variance function V (·) are bounded away from zero on [−1, 1].

(A4) The conditional distribution of Yi has sub-exponential tails. That is,

there exist constants C and M > 0 such that E[|Yi|`|Xi] ≤ C`!M `, ∀ 2 ≤ ` ≤ ∞.

(A5) Denote by g(z) = (g1(z), g2(z))′ and δ(u) = (ζ(u), γ(u))′, f1 the density

function of Ui, and f2(·; ζ) the density of the random variable X′iζ(Ui) associated

with ζ, f3(·; g1, ζ) the density of the random variable g1 {X′iζ(Ui)}. Let

sβ(ζ,g, V1;u) = E

(
Xi

[
g
{
X′iβ(Ui)

}
− g1{X′iζ(u)}

] g2
{
X′iζ(Ui)

}
V1
[
g1 {X′iβ(Ui)}

]∣∣∣Ui = u

)
f1(u),

sg(ζ, g1, V1; z) = E
([
g
{
X′iβ(Ui)

}
− g1(z)

]/
V1
[
g1 {X′iβ(Ui)}

]∣∣X′iζ(Ui) = z
)
f2(z; ζ),

sV (ζ, g1, V1;w) = E

(
V
[
g {X′iβ(Ui)}

]
+ g2 {X′iβ(Ui)} − V1(ω)− ω2

∣∣∣g1 {X′iζ(Ui)} = ω

)
f3(ω; g1, ζ).

Define s(ζ,g, V1;u, z, ω) = (sβ(ζ,g, V1;u)′, sg(ζ, g1, V1; z), sV (ζ, g1, V1;ω))′. Then,

one shall assume that s(ζ,g, V1;u, z, ω) = 0 has a unique root over ζ ∈ Cd, g1 ∈ C1,

V1 ∈ C2, where Ck, C1 and C2 are defined in the Supplementary Materials.

(A6) hj → 0 andnhj/(log n)→∞, j = 1, 2, 3, as n→∞.

(A7) Ψ−1 and (Hβ −HgoHβg)
−1 exist and are bounded uniformly, where Ψ is

an operator-type matrix, Hβ, Hg and Hβg are operator-type vectors. The explicit
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forms of these operators are given in Section 1 of the Supplementary Material.

Conditions (A1)-(A4) are commonly assumed conditions for kernel functions,

covariates, functions of interest and distributions (Fan et al., 2006; Chen et al.,

2010, 2012). The condition of a bounded support for Xi and Ui is meant to

simplify the proof, which has been extensively assumed in the nonparametric lit-

erature, for example, in Zhang et al. (2015), Horowitz and Härdle (1996), Horowitz

(2001), Carroll et al. (1997b), Chen et al. (2012) and Zhou et al. (2018). The con-

dition may be relaxed as suggested by our simulation studies, where we generate

Xi with unbounded multivariate normal random vectors. Conditions (A5) and

(A7) ensure identifiability. Condition (A6) has been assumed in the literature for

bandwidths (Fan et al., 2006; Chen et al., 2012).

Theorem 1 Under Conditions (A1)-(A6), as n→∞, we have

supu∈[−1,1] |β̂(u)− β(u)| p→ 0, supz∈[−1,1] |ĝ(z)− g(z)| p→ 0,

supω∈[−1,1] |V̂ (ω)− V (ω)| p→ 0.

Theorem 1 shows the proposed estimators β̂(·), ĝ(·) and V̂ (·) are all uniformly

consistent.
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Theorem 2 Under Conditions (A1)-(A7), we have

Ψ


β̂(u)− β(u)

ĝ(z)− g(z)

V̂ (ω)− V (ω)

 = (nH)−1/2M(u, z, ω)−1/2ϕ+H2B(u, z, ω)

+op{h21 + h22 + h23 + (nh1)
−1/2 + (nh2)

−1/2 + (nh3)
−1/2},

uniformly on u ∈ [−1, 1], z ∈ [−1, 1], , ω ∈ [−1, 1], where H = diag(h1 ×

1d, h2, h3), 1d is a d-dimension vector with all elements equal to 1, ϕ is a standard

normal random vector, and both B(u, z, ω) and M(u, z, ω) are defined in Section

1 of the Supplementary Material.

Theorem 2 shows the asymptotic bias of
(
β̂(u)′, ĝ(z), V̂ (ω)

)′
is of order h2 =

(max{h1, h2, h3})2, while the asymptotic variance is of order (nh)−1. Hence, the

optimal bandwidth is of order n−1/5, and the convergence rate of the estimator is of

order n−2/5. Theorem 2 implies the following asymptotically normal distribution.

Corollary 1 Under Conditions (A1)-(A7), for any given u, z and ω in [−1, 1],

if nh5 = O(1), we have

(nH)1/2




β̂ − β

ĝ − g

V̂ − V

 (u, z, ω)−H2Ψ−1(B)(u, z, ω)


d→ N(0,V(u, z, ω)),

where V(u, z, ω) = [Ψ−1(M−1/2)(u, z, ω)][Ψ−1(M−1/2)(u, z, ω)]′.
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Linear functionals are pivotal because any smooth functions can be approx-

imated by linear combinations of orthonormal basis functions ψ0, ψ1, · · · (e.g.

Fourier bases). Estimators for f(·) are obtained by a truncated expansion of these

bases, with the coefficients being projections of f(·) to ψj(·),
∫ 1

−1 f(u)ψj(u)du, j =

0, 1, · · · . As a result, the properties of f̂(·) can be expressed by those for (
∫ 1

−1 f̂(u)ψj(u)du, j =

0, 1, · · · )′.

If the conditional distribution of Yi given Xi belongs to the exponential fam-

ily, we prove in the Supplementary Material that τ̂ =
∑d

j=1

∫ 1

−1 β̂j(u)ψj(u)du +∫ 1

−1 ĝ(z)ψg(z)dz for the linear functionals τ =
∑d

j=1

∫ 1

−1 βj(u)ψj(u)du+
∫ 1

−1 g(z)ψg(z)dz

has the same asymptotic variance as the maximum likelihood estimator for τ

within a family of parametric submodels. This means semiparametrically effi-

ciency in the sense of Bickel et al. (1993). More specifically, let

D = {ψ(z) have a continous derivative over [−1, 1] and

∫ 1

−1
ψ(z)dz = 0}.

Theorem 3 presents the results of semiparametric efficiency.

Theorem 3 Under Conditions (A1)-(A7), if nh4k → 0, h2kh
−1
j log(n) → 0 and

nhkhj/(log(n))2 → ∞ for any k, j ∈ {1, 2, 3}, then for any functions ψj(·) ∈ D,

j = 1, · · · , d, and ψg(z) which having a continuous derivative, we have

d∑
j=1

∫ 1

−1
(β̂j − βj)(u)ψj(u)du+

∫ 1

−1
(ĝ − g)(z)ψg(z)dz

d→ N(0, σ2
v).

In particular,
∑d

j=1

∫ 1

−1 β̂j(u)ψj(u)du +
∫ 1

−1 ĝ(z)ψg(z)dz is an efficient estimator



3. LARGE SAMPLE PROPERTIES18

of
∑d

j=1

∫ 1

−1 βj(u)ψj(u)du +
∫ 1

−1 g(z)ψg(z)dz if the conditional distribution of Yi

given Xi and Ui belongs to the exponential family, where σ2
v is defined in Section

1 of the Supplementary Material.

Theorem 3 implies that the estimator of
∑d

j=1

∫
βj(x)ψj(x)dx+

∫
g(z)ψg(z)dz

is
√
n−consistent with h = o(n−1/4), which amounts to undersmoothing. Using

undersmoothing to achieve
√
n-consistency is not unusual in the semi-parametric

regression settings (Carroll et al., 1997a; Hastie and Tibshirani, 1993).

The use of quasi-likelihood function is key for achieving semiparametric effi-

ciency. To see this, we consider the estimation of g = (g(z), ġ(z))′. Substitute

(2.9) into the quasi-likelihood function

Q(β, g, V ) =
n∑
i=1

L(µi, Yi)Kh2 (Zi − z) +
n∑
i=1

L(µi, Yi) {1−Kh2 (Zi − z)}

≈
n∑
i=1

L(µ̄i, Yi)Kh2 (Zi − z) +
n∑
i=1

L(µi, Yi) {1−Kh2 (Zi − z)} , (3.15)

where Zi = X′iβ(Ui) and µ̄i = g(z) + ġ(z)(Zi − z). The µi in the second term of

(3.15) is not approximated by the linear function µ̄i = g(z)+ ġ(z)(Zi−z) because

Zi is out of the neighborhood of z, dictated by the weight 1 − Kh2 (Zi − z).

Differentiating the likelihood function Q(β, g, V ) with respect to g = (g(z), ġ(z))′

and setting the derivatives to zero lead to

n∑
i=1

(
Yi − µ̄i

)Wi(z;β)

V (µ̄i)
Kh2(Zi − z) = 0. (3.16)
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As V (µ̄i) ≈ V (µi) when Zi is in the neighborhood of z, the proposed estimating

equation (2.10) is exactly the same as the score (3.16) for estimating g.

4. Simulation studies

The proposed method is compared with the methods in Zhang et al. (2015) and

Kuruwita et al. (2011), which are termed ZLX and KKG, respectively. To

investigate the impact of misspecifications of variance functions on estimation,

we also compare the generalized varying coefficient models with correctly speci-

fied variance functions (GVCM-CV) and the GVCM with misspecified variance

function (GVCM-MV). GVCM-CV and the GVCM-MV are implemented by the

proposed method with specified variance functions. The Epanechnikov kernel

is used in simulations as well as in the real data analysis in Section 5. For

each configuration, a total of N replications are made. Following Zhang et al.

(2015) and Kuruwita et al. (2011), the performance of the estimators for ĝ(·)

and β̂(·) is assessed via MISEβ = E

(∑d
j=1

1
n

∑n
i=1

{
β̂j(Ui)− βj(Ui)

}2
)
, and

MISEg = E

(
1
n

∑n
i=1

[
ĝ{X′iβ(Ui)} − g{X′iβ(Ui)}

]2)
. Here, Ui (i = 1, . . . , n)

are the samples of the simulated data, and the expectation is obtained by the

sample mean based on the N simulated datasets. We consider three settings,

where the first two settings were used by Zhang et al. (2015) and Kuruwita et al.

(2011). The replication number of simulations is 1000 for Example 1 and 500
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for Examples 2 and 3.

Example 1 (Normal cases with known variances). Ui, i = 1, . . . , n are inde-

pendently generated from Uniform[0, 1], Xi, i = 1, . . . , n are independently gen-

erated from N(0p, Ip), with Ip being a p × p identity matrix, ε ∼ N(0, 0.01).

Set p = 3, β(U) = (β1(U), β2(U), β3(U))′, where β1(U) = U2 + 1, β2(U) =

cos2(πU) + 0.5, β3(U) = 2sin2(πU) − 0.5. Y is generated by Y = X′β(U) + ε

(Case 1), Y = (X′β(U))2 + ε (Case 2) and Y = sin(2X′β(U)) + ε (Case 3). We

set n = 100, 200 and 400 and choose the bandwidths to be h1 = 0.1, h2 = 0.3

for Case 1, h1 = 0.2, h2 = 0.35 for Case 2 and h1 = 0.1, h2 = 0.2 for Case 3.

With this setup, we aim to investigate the efficiency of our method by assuming

a known variance function as in Zhang et al. (2015) and Kuruwita et al. (2011).

h 1 = 0.15,h 2 = 2 for Case 1 and h 1 = 0.2,h 2 = 1 for Cases 2 and 3.

Table 1 summarizes the MISEs for the estimators of the functional coefficients,

obtained by the three methods. Table 1 shows the robustness of the proposed

method toward the link function and its efficiency when the link function is not

linear. This can be attributed to that we use one-dimension smoothing and quasi-

likelihood based approach while both ZLX and KKG use two kernels technique.

Figure 1 displays the estimates of each unknown function and its 95% pointwise

confidence intervals based on the proposed method. With the estimated link and

coefficient functions, we also give the estimation for the variance function with
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h3 = 0.1, 0.5, 0.7 for Cases 1-3, respectively. Figure 1 reveals that the estimators

close to the truth, hinting at the good performance of our proposed method.

Table 1: MISE for coefficient functions of Example 1

n
Case 1 Case 2 Case 3

ZLX KKG Proposed ZLX KKG Proposed ZLX KKG Proposed

100 0.034 0.965 0.003 0.354 2.623 0.236 0.202 2.460 0.176

200 0.018 0.359 0.002 0.228 1.385 0.134 0.098 0.627 0.022

400 0.007 0.177 0.001 0.127 0.360 0.079 0.012 0.241 0.003

Example 2 (Binary Cases). Ui and Xi, i = 1, . . . , n are generated in the same

way as in Example 1. Set p = 2, g(t) = exp(t)
1+exp(t)

, β1(U) = sin(πU), β2(U) =

cos(πU). Yi is independently generated by a Bernoulli distribution with suc-

cess probability g{Xi1β1(Ui) + Xi2β2(Ui)}. We set n = 800, 1100, 1500 or 2000,

and choose the bandwidths for our proposed method to be h1,β1 = 0.48, h1,β2 =

0.5, h2 = 1.98 and h3 = 0.1.

Example 2 focuses on the impact of specification of variance functions on

estimation. We compare the MISE among the proposed GVULV and the methods

with correctly specified variance functions, including ZLX and the GVCM-CV.

Table 2 shows that the GVCM-CV is slightly more accurate than the proposed

estimator, and the difference between GVCM-CV and GVULV decreases when

the sample size grows. In addition, the proposed GVULV outperforms ZLX with

smaller MISE, even though the variance function is correctly specified in ZLX and
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(a) Case 1. (b) Case 2. (c) Case 3.

Figure 1: (a)-(c): The estimated functions (dotted-lines) of β1(u), β2(u), β3(u),

g(z) and V (ω), as well as their 95% pointwise confidence interval (dashed lines),

and the true functions (solid lines) for Example 1 with n = 400.
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Table 2: MISE for Example 2

GVULV GVCM-CV ZLX

n β1(u) β2(u) g(z) V (µ) β1(u) β2(u) g(z) β1(u) β2(u) g(z)

800 0.0784 0.0493 0.0024 0.0017 0.0644 0.0412 0.0019 0.1189 0.0821 0.0142

1100 0.0656 0.0402 0.0019 0.0014 0.0542 0.0314 0.0014 0.0698 0.0730 0.0048

1500 0.0505 0.0305 0.0014 0.0013 0.0438 0.0247 0.0012 0.0695 0.0479 0.0036

2000 0.0479 0.0329 0.0014 0.0012 0.0414 0.0233 0.0012 0.0581 0.0387 0.0025

is unspecified in GVULV. Figure 2(a) further shows that the GVULV estimates

are close to the truth with reasonable precision, suggesting that the proposed

methods work well for the binary case.

Example 3 (Normal outcomes with non-constant variances): Ui, i = 1, . . . , n are

independently generated from Uniform[0, 1], Xi, i = 1, . . . , n are independently

generated from N(0p, Ip), and ε ∼ N(0, 1). Set p = 2,β(U) = (β1(U), β2(U))′

with β1(U) = sin(0.5πU) and β2(U) = cos(0.5πU). Y is generated by

Y = 5Φ{X′β(U)}+ exp
[
− 5Φ{X′β(U)}+ 1

]
ε,

where Φ(·) is the cumulative distribution function of standard normal. We set the

sample size to be n = 8000, 15000 and 20000 and choose the bandwidths to be
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(h1, h2, h3) = (0.25, 0.75, 0.45), (0.25, 0.5, 0.38), and(0.25, 0.5, 0.30), respectively.

We compare the MISE among the proposed GVULV, GVCM-MV with the vari-

ance being misspecified as 1, and GVCM-CV. Table 3 shows that GVCM-MV has

considerably larger prediction errors, while the proposed estimators are compa-

rable with GVCM-CV. This suggests that misspecifications of variance functions

may bias predictions, and the uncertainty associated with the estimation of vari-

ance functions decreases when the sample size becomes larger. Figure 2(b) display

the β1(u), β2(u), g(z) and V (ω) estimated by our method as well as their 95%

pointwise confidence intervals. It appears that these estimates are close to the

truth.

Table 3: MISE for Example 3

GVULV GVCM-MV GVCM-CV

n 8000 15000 20000 8000 15000 20000 8000 15000 20000

β1(u) .0027 .0015 .0014 .0200 .0099 .0081 .0025 .0012 .0012

β2(u) .0021 .0012 .0013 .0136 .0086 .0074 .0023 .0012 .0012

g(z) .0034 .0021 .0018 .0226 .0106 .0081 .0025 .0019 .0016

V (µ) .1258 .0721 .0665 − − − − − −
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(a) Example 2

(b) Example 3

Figure 2: The GVULV estimators (dotted-lines) for β1(u), β2(u), g(z) and V (ω),

as well as their 95% pointwise confidence interval (dashed lines), and the true

functions (solid lines) for Examples 2 and 3 with n = 2000 and n = 20000,

respectively
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5. Data Analysis

Mobile phones have become an indispensable part of life for young Chinese. To

keep pace with the rapidly updated phones or just in pursuit for fashion, some

young adults resort to personal loan for the purchase of newly marketed mobile

phones. Credit check has become an important step for financial providers before

approving the loan. We aim to build a risk prediction model to predict payment

delinquency, i.e. whether a loanee pays loan on time, based on personal charac-

teristics collected by the financial provider. The dataset that we are analyzing

records the personal information of 105, 548 borrowers and their repayment sta-

tus, denoted by Yi for the ith borrower. In the dataset, Yi is coded to 1 if the loan

was not fully repaid on time, and 0 otherwise. The other recorded characteristics

are age (Xi1), credit score (Xi2), the downpayment ratio (Xi3), the number of

owned credit cards (Xi4), monthly income (Xi5), and the loan amount (Ui). All

the covariates have been standardized to have mean 0 and variance 1.

As the covariates are not uniformly distributed, we use an adaptive approach

(Brockmann et al., 1993) to select the bandwidth. Specifically, at each design

point, we choose the bandwidth adaptively such that the “window” covers a given

portion (q) of neighboring samples. We use 5-fold cross-validation described in

Section 2 to determine q and end up with q = 0.5.

With the binary response, it is natural to adopt a logistic link function and
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Figure 3(1) presents the estimates of varying coefficient functions with the logistic

link. Figure 3(2) and Figure 4, which depict the estimated link, coefficient and

variance functions using the GLULV, reveals that the link and variance functions

deviate much from the commonly used link and variance functions for binary

response. Particularly, the link function by the GLULV features a unimodal

shape with a peak around 35 and is much different from the monotone logistic

function. Moreover, the prediction error in Table 4 shows that the proposed

method performs better than the logistic varying coefficient model in both the

training and testing data.

Figure 3(2) implies that persons with a combined risk score, X′iβ̂(Ui), around

35 will be most likely to commit payment delinquency. In addition, Figure 3(2)

clearly shows nonlinear and significant trends with all the covariates. Specifically,

age and the number of owned credit cards are associated with the payment behav-

ior (see Figures 3(2a) and 3(2d)), the age effect increases along with the loan sum,

while the effect of the number of owned credit cards decreases as the loan amount

increases. Figures 3(2b) and 3(2e) suggest quadratic impacts of credit score and

monthly income. The former shows the effect of credit score increases until the

loan amount increase to about 3800RMB and then decreases. The latter shows

the impact of monthly income achieves peak when the loan amount is about

1800RMB and gets insignificant when the loan sum is larger than 2500RMB.
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Downpayment ratio acts similarly as age, but the effect switches signs when the

loan sum reaches around 3300 RMB.

Table 4: Prediction accuracy for generalized varying coefficient models with a lo-

gistic link and variance functions and generalized varying coefficient models with

unspecified link and variance functions (GVULV) for the mobile phone microfi-

nance data

Logistic GV ULV

prediction error prediction error

Train set 0.1312094 0.1074576

Test set 0.1312547 0.1074741

6. Discussion

We propose a generalized varying coefficients model for non-normal response data.

As opposed to the existing methods, our method is a univariate kernel estimator

which accounts for heteroscedastic data, and, hence, is more flexible and efficient.

Moreover, the proposed estimator has a closed form in the iterative algorithm,

which has reduced the computational burden. For example, with 105, 548 sam-

ples in our motivating dateset, it is not feasible to apply the existing methods,

but our method can converge within a minute. Finally, the proposed method is
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(1) Generalized varying coefficient models with a logistic link function

(2) GVULV and their 95% confident interval with q = 0.5

Figure 3: Estimated varying coefficient and link functions for the mobile phone

loan payment data
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Figure 4: Estimated variance functions (solid-black) for the mobile phone micro-

finance data and its 95% confident interval (dashed-black) by proposed method

with q = 0.5. The red-dashed line is the variance function of logistic method

shown to be uniformly consistent, asymptotically normal and semiparametrically

efficient when the conditional distribution belongs to an exponential family. The

simulation study show that our estimator is more efficient than those obtained by

the existing methods.

When the covariates outnumber the sample size, we need to estimate the

coefficient functions and select the significant covariates simultaneously. A nat-

ural approach is to perform regularized regression by adding a penalty term to

the objective function. However, since the proposed method is kernel based and

estimates unknown functions point-wise, it may not be straightforward to com-

bine the proposed method with penalized regression. In this case, using spline

approximations may be more feasible and we will explore this elsewhere.
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Supplementary Material

The online Supplementary Material contains additional notation, lemmas and

proofs.
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