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Abstract

Nonproportional hazards models often arise in biomedical studies, as evidenced by
a recent national kidney transplant study. During the follow up, the effects of baseline
risk factors, such as patients’ commorbidity conditions collected at transplantation,
may vary over time. To model such dynamic changes of covariate effects, time-varying
survival models have emerged as powerful tools. However, traditional methods of
fitting time-varying effects survival model rely on an expansion of the original dataset
in a repeated measurement format, which, even with a moderate sample size, leads
to an extremely large working dataset. Consequently, the computational burden
increases quickly as the sample size grows, and analyses of a large dataset such as our
motivating example defy any existing statistical methods and software. We propose
a novel application of quasi-Newton iteration method to model time-varying effects
in survival analysis. We show that the algorithm converges superlinearly and is
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computationally efficient for large-scale datasets. We apply the proposed methods,
via a stratified procedure, to analyze the national kidney transplant data and study
the impact of potential risk factors on post-transplant survival.

Keywords: Quasi-Newton; Survival analysis; Spline-based methods; Time-varying effects.
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1 Introduction

With the advent of the big data era, there is an emergence in developing computationally

feasible methods. For instance, in large-scale time-to-event data, datasets are often ex-

tremely large in the number of observations. Moreover, the effects of baseline risk factors

may vary during the follow-up period, resulting in a weakening or strengthening of associ-

ations over time. To model the dynamic changes of covariate effects, time-varying survival

models have emerged as powerful tools. However, the difficulty of model construction in-

creases drastically as the sample size grows, prohibiting their use in analyzing large-scale

time-to-event data.

This paper is motivated by the analysis of the national kidney transplant data, support-

ed in part by the Health Resources and Services Administration. Renal failure is one of the

most common and severe diseases in the nation. In 2010, a total of 116,946 new cases were

reported. Kidney transplantation is a preferred treatment for renal failure patients. To

optimize the survival benefit of transplantation, an accurate post-transplant survival mod-

el is needed, for which Cox proportional hazards regression (Cox (1972)) has been widely

employed. This proportional hazards model stipulates that the covariates used in the re-

gression model have a multiplicative effect on the death hazard throughout the follow-up

period. However, such a proportionality assumption is not often practical and may lead

to misleading results. For instance, obesity, generally viewed as a risk factor for mortality,

presents rather dynamic impact on survival (Dekker et al. (2008); Kalantar-Zadeh (2005);

de Mutsert et al. (2007)): it may have a protective effect in the short run, but can be a

risk factor after a long term of exposure. Ignoring the complex time-varying nature of co-

variate effects may obscure more complex associations between risk factors and outcomes.

This problem is fundamentally important for evaluating post-transplant mortality, as the

validity of the fitted model hinges upon correct model structures.

In the framework of survival analysis with time-varying effects, Zucker and Karr (1990)

studied the mathematical properties of a penalized partial likelihood approach and showed

that the solution is a cubic spline with knots at the unique failure times. Gray (1992, 1994)

proposed using spline functions to model time-varying effects. Hastie and Tibshirani (1993)

discussed models with varying coefficients. Verweij and van Houwelingen (1995) suggested

3



fitting time varying effects using a penalty on the likelihood to control the pattern of the

time effect. Berger et al. (2003) proposed time varying effects models with the use of

fractional polynomials as time functions.

These methods are applicable in studies with relatively small sample sizes, but present

either computational or methodological limitations for large-scale survival analysis. Most

existing methods rely on expanding the original dataset in a repeated measurement format,

such as in a counting-process style. The time is divided into small time intervals where

a single event occurs, and for each time interval, the covariate values and outcome in the

interval for each subject still under observation are stacked to form a large working dataset.

Even with a moderate sample size, such an expansion leads to an extremely large working

dataset that overwhelms current computational capacity. For instance, a dataset with 5,000

events (assuming no ties) would lead to an expanded dataset with more than 12 million

records, which would easily overwhelm a computer with an 8G memory.

An alternative approach based on the Kronecker product was suggested by Perperoglou

et al. (2006) to avoid the expansion of a large-scale dataset. When the sample size is small

(e.g., less than 10,000), the Kronecker product based Newton-Raphson algorithm, which

involves computation of the Hessian matrices at each iterative step, can be applied to

optimize the partial likelihood function. However, when the sample size is large (as in our

motivating example), the computation of the Hessian matrix becomes very computationally

expensive. When the number of parameters is also large, the inversion of the Hessian matrix

may be impractical. The iterative computation and inversion of Hessian matrices can be

very cumbersome in the Newton steps.

The remainder of this article is organized as follows. In Section 2, we first summarize

notations and some requisite preliminaries. We then propose a new modeling approach

based on a quasi-Newton method. The proposed algorithm improves upon the traditional

methods by avoiding iterative computation and inversion of Hessian matrices. The ap-

proach is broadly applicable to large-scale time-to-event data with time-varying effects, for

which no effective methods are currently available. Finally, we extend the proposed proce-

dure to incorporate a multicenter data structure. Convergence properties of the proposed

approaches are considered in Section 3. Finite-sample properties are examined in Section
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4 through simulations. The proposed methods are applied to analyze the national kidney

transplant data in Section 5, and we conclude the article with a discussion in Section 6.

2 Method

Let Ti and Ci represent the survival and censoring times, respectively, for the ith patient.

The total number of subjects is denoted by n. Observation times are denoted by Xi =

Ti ∧ Ci, where a ∧ b = min{a, b} and I(A) is an indicator function taking the value 1

when condition A holds and 0 otherwise. The observed death indicators are denoted by

∆i = I(Ti ≤ Ci). Let Zi = (Zi1, . . . , ZiP )
T be a P -dimensional covariate vector. Let β(t) =

(β1(t), . . . , βP (t))
T be a P−dimensional vector of potentially time-varying coefficients. The

observed data consist of n independent vectors, (Xi,∆i,Zi).

Let λ(t|Zi) be the hazard function given Zi and the time-varying effects survival model

is stipulated as

λ(t|Zi) = λ0(t) exp(Z
T
i β(t)),

where λ0(t) is the baseline hazard. The corresponding log-partial likelihood (under nonin-

formative censoring)

ln(β) =
n∑

i=1

∆i

[
ZT

i β(Ti)− log

{∑
ℓ∈Ri

exp
(
ZT

ℓ β(Ti)
)}]

,

where Ri = {ℓ : Tℓ ≥ Ti} is the at-risk set.

2.1 Estimation with B-spline

To estimate β, a commonly applied approximation is to span β(·) by a set of B-splines on

a fixed grid of knots, usually taken to have an equal number of events within each interval

Gray (1992). More specifically, for p = 1, . . . , P , βp(·) is an expansion of the form

βp(t) = θT
pB(t) =

K∑
k=1

θpkBk(t), p = 1, · · · , P,

where B(t) = (B1(t), . . . , BK(t))
T forms a basis for a finite-dimensional space, and θp =

(θp1, . . . , θpK)
T is a vector of coefficients with θpk being the corresponding coefficient vector
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for the kth component of the pth covariate. Consider a length-PK parameter vector θ =

vech(Θ), the vectorization of P ×K-dimensional coefficient matrix Θ = (θ1, . . . ,θP )
T by

row, which is a reparamerization of the original β on a space spanned by a set of B-splines.

With that, the log-partial likelihood function is

ln(θ) =
n∑

i=1

∆i

[
ZT

i ΘB(Ti)− log

{∑
ℓ∈Ri

exp
(
ZT

ℓ ΘB(Ti)
)}]

. (1)

Corresponding to (1), the gradient is

▽ln(θ) =
n∑

i=1

∆i

{
Zi − Zi(Θ, Ti)

}
⊗B(Ti),

where ⊗ is the Kronecker product and

Zi(Θ, Ti) =

∑
ℓ∈Ri

Zℓ exp{ZT
ℓ ΘB(Ti)}∑

ℓ∈Ri
exp{ZT

ℓ ΘB(Ti)}
.

The Hessian matrix is

▽2ln(θ) = −
n∑

i=1

∆iVi(Θ, Ti)⊗
{
B(Ti)B

T (Ti)
}
, (2)

where

Vi(Θ, Ti) =
S
(2)
i (Θ, Ti)S

(0)
i (Θ, Ti)− {S(1)

i (Θ, Ti)}⊗2

{S(0)
i (Θ, Ti)}2

,

and

S
(r)
i (Θ, Ti) =

∑
ℓ∈Ri

exp{ZT
ℓ ΘB(Ti)}Z⊗r

ℓ ,

for r = 0, 1, 2. For a column vector v, v⊗2 denotes the outer product vvT .

It is worth noting that in linear or generalized linear models, estimation of time-varying

effects can be achieved by including interactions between Zi and B(Ti). In survival analysis,

however, it is more challenge due to the cross-terms Zℓ and B(Ti) (for all i and ℓ such

that ℓ ∈ Ri). The iterative computation and inversion of Hessian matrices can be very

computationally demanding in the Newton steps. Numerically, while the computation of a

large Hessian matrix is challenging, the gradients however are often much easier to compute.

Therefore, a low-rank update approach is viable as it avoids computing the Hessian matrix
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iteratively. The Hessian matrix is approximated by adding low-rank updates based on

gradients, as the gradients provide information on the second derivative of the log-partial

likelihood along the search direction. This motivates us to consider an approach based on

the quasi-Newton method.

2.2 Review for Low-rank Update Methods to Approximate Hes-

sian Matrices

Consider a first-order Taylor approximation of the log-partial likelihood at themth iteration

▽ln(θ̂
(m+1)

)− ▽ln(θ̂
(m)

) ≈ ▽2ln(θ̂
(m)

)(θ̂
(m+1)

− θ̂
(m)

).

An update of the approximation to the Hessian matrix is required to be symmetric and

satisfy the secant condition:

H(m+1)d(m) = g(m),

where H(m+1) is the new Hessian approximation,

d(m) = θ̂
(m+1)

− θ̂
(m)

,

g(m) = ∇ln(θ̂
(m+1)

)−∇ln(θ̂
(m)

).

Furthermore, the difference between successive approximation H(m) and H(m+1) is assumed

to be of low rank. Two of the most popular quasi-Newton methods are the rank-one updates

(Davidon (1959)) and rank-two updates. Because the approximation of the Hessian matrix

is not always negative definite with the rank-one updates, we focus on the rank-two updates,

which was proposed by Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno

(1970), known as the BFGS algorithm:

H(m+1) = H(m) + b(m)g(m)(g(m))T + c(m)H(m)d(m)(d(m))TH(m),

where b(m) and c(m) are chosen to satisfy the secant condition

b(m) = 1/{(g(m))Td(m)},

7



c(m) = −1/{(d(m))TH(m)d(m)}.

The BFGS updates generate a negative definite approximation whenever the initial

approximation, H(1), is negative definite and the curvature condition (Nocedal and Wright

(2006)) is satisfied:

(g(m))Td(m) < 0. (3)

2.3 Quasi-Newton Estimation for Time-varying Effects

One important question in applying the quasi-Newton method is how to choose the initial

approximation H(1): an oversimplified matrix is convenient but may be poorly scaled and

result in a slow convergence rate.

For estimating time-varying effects in survival analysis, we propose to estimate H(1) as

follows. Initialize θ̂
(0)

= β̃⊗1K , (e.g., θ̂
(0)
pk = β̃p, for k = 1, . . . , K and p = 1, . . . , P ), where

β̃ = (β̃1, . . . , β̃P ) is a vector of coefficients fitted from the Cox proportional hazards model

and 1K is a K × 1 vector with all element 1. Based on the property of B-splines,

β̂(0)
p (t) =

∑
k

β̃pBk(t) = β̃p.

Therefore, ZT
ℓ Θ̂

(0)
B(Ti) reduces to ZT

ℓ β̃, and Vi(Θ̂
(0)
, Ti) reduces to Vi(β̃), where

Vi(β̃) =
S
(2)
i (β̃)S

(0)
i (β̃)− {S(1)

i (β̃)}⊗2

{S(0)
i (β̃)}2

is the corresponding quantity from the Cox proportional hazards model, with

S
(r)
i (β̃) =

∑
ℓ∈Ri

exp(ZT
ℓ β̃)Z

⊗r
ℓ ,

for r = 0, 1, 2. The initial estimation for the Hessian matrix approximation can be given

by

H(1) ≡ ∇2ln(θ̂
(0)
) = −

n∑
i=1

∆iVi(β̃)⊗ {B(Ti)B
T (Ti)},

which avoids the computation of cross-terms between Zℓ and B(Ti) for ℓ ∈ Ri. Comparing

to (2), the computational effort for H(1) is light.
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Moreover, to avoid inverting a large Hessian matrix, we utilize the quasi-Newton method

which generates an approximation to the inverse of a Hessian matrix directly. With an

initial Hessian matrix, H(1), we use K(1) = {H(1)}−1 to be the initial estimation of the

inverse of the Hessian matrix. Denote the approximation to the inverse of a Hessian matrix

at the current iteration by K(m), the updated approximation of K(m+1) can be given by

K(m+1) = {I− b(m)g(m)(d(m))T}TK(m){I− b(m)g(m)(d(m))T}+ b(m)d(m)(d(m))T . (4)

Based on the BFGS updates (4), the quasi-Newton iteration is then given by

θ̂
(m+1)

= θ̂
(m)

− α(m)(K(m))∇ln(θ̂
(m)

), (5)

where α(m) is positive (i.e., the step size). We implement a line search procedure such that

the step size satisfies the strong Wolfe conditions (Dennis and Morè (1977))

ln(θ̂
(m+1)

) ≥ ln(θ̂
(m)

)− c1α
(m)(K(m))∇ln(θ̂

(m)
), (6)∣∣∣∇L(θ̂

(m+1)
)T (K(m))∇L(θ̂

(m)
)
∣∣∣ ≤ c2α

(m)
∣∣∣∇L(θ̂

(m)
)(K(m))∇ln(θ̂

(m)
)
∣∣∣ , (7)

with 0 < c1 < c2 < 1. As suggested by Lange (2012), typical values of c2 are 0.9 and c1

is chosen to be quite small, say 0.001. Because the log-partial likelihood function is con-

tinuously differentiable and bounded from above, an application of Lemma 3.1 of Nocedal

and Wright (2006) entails that there exist intervals of step lengths that satisfy the strong

Wolfe condition. The first part of the strong Wolfe condition (6) provides a sufficient incre-

ment in the log-partial likelihood function. The second part of the strong Wolfe condition

(7) ensures the curvature condition (3) is satisfied and hence the K(m+1) is negative def-

inite. The iteration in (5) continues until convergence of θ or the relative change in the

log-partial likelihood is less than a convergence threshold (e.g., 1.0e−9). The convergence

property of the quasi-Newton iteration is provided in Section 3. Alternatively, a poten-

tially less optimal line search strategy, backtracking (e.g., if the initial increment of the

parameter estimation does not produce a sufficient increase in the partial likelihood, then

reduce the increment by half, and so forth), can be applied to simplify the computation.

Our numerical experiments indicate that the backtracking approach is more sensitive to

the choice of initial H(1). In some cases, a simple choice of identity matrix may suffer from

non-convergence. In contrast, with the proposed initial estimation of the Hessian matrix,

convergence is often achieved within 10− 20 steps.
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2.4 Testing for Time-varying Effects

An ideal model construction procedure for time-varying effects should distinguish a subset

of variables in the model with time-independent coefficients and those with time-varying

coefficients.

Schoenfeld (1982) introduced Schoenfeld residuals to check proportional hazard assump-

tions. Grambsch and Therneau (1994) proposed scaling and smoothing these residuals for

testing and plots to reveal the functional form of time-varying effects. The resulting method

is the default for checking the proportional hazards assumptions in the statistical package

Survival in R. As noted in Grambsch and Therneau (1994), the scaled Schoenfeld residu-

als are one-step Newton estimators with time-independent coefficients fitted from the Cox

proportional hazards model as initial values. When the magnitude of true time-varying

effects is small (e.g., initial values are close to the optimal), such an one-step estimator

may provide a sound approximation. However, in more general cases the scaled Schoenfeld

residuals may result in misleading estimation (more details are provided in Section 4).

We propose a test for time-varying effects based on quasi-Newton estimators. To test

H0 : βp(t) = βp, we specify a matrix C such that Cθp = 0 corresponds to the contrast

that θp1 = · · · = θpK . A Wald test can be constructed by (Cθp)
TV ar(θp)(Cθp), where

V ar(θp) is obtained through the quasi-Newton methods described in previous sections.

The statistics are approximately chi-square distributed with K−1 degree of freedom under

the null hypothesis. Simulations in Section 4 show that such statistics provide a good

evaluation for the time-varying effects and can be particularly useful for analyzing large-

scale data.

Finally, once we distinguish variables with time-independent coefficients and time-

varying coefficients, we can fit the final model with linear equality constraints. For instance,

with the constraint Cθ = 0, the revised updates can be obtained by the projection of the

unconstrained increment onto the null space of C

θ̂
(m+1)

= θ̂
(m)

− α(m){K(m) −K(m)CT (CK(m)CT )−1CK(m)}∇ln(θ̂
(m)

).
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2.5 Stratified Time-varying Effects Model

Another important consideration in large-scale biomedical studies is that the observations

are often from multiple medical providers with large-scale electronic health records. In our

motivating setting with renal failure patients, data are frequently derived from multiple

dialysis facilities or transplant centers. In these studies, there is often much variation of

practice patterns across medical centers. Some of the variation reflects the differential prac-

tice preferences of physicians from a specific region or center. In the absence of adjustment

for center effects, the estimation of covariate effects may produce a substantially biased

parameter estimates due to uncontrolled confounding by centers (Pan (2002)). Kalbfleisch

and Wolfe (2013) suggested to use stratified models with center-specific baseline hazard-

s to avoid confounding between patient characteristics and center effects. In large-scale

time-to-event data, one advantage of using a stratified model is that it greatly reduces

the number of calculations across the partial likelihood contributions. This advantage is

especially important for large-scale data exemplified in our study.

We now extend the proposed quasi-Newton algorithm to stratified models. To incor-

porate the multicenter data structure, we modify the notations as follows. Let J be the

number of transplant centers. The total number of subjects is denoted by n =
∑J

j=1 nj,

where nj is the number of subjects in center j. The observed data consist of n independent

vectors, (Xij,∆ij,Zij), for i = 1, . . . , nj and j = 1, . . . , J .

Let λj(t|Zij) be the center-specific hazard function for center j given Zij and the strat-

ified time-varying effects survival model is stipulated as

λj(t|Zij) = λ0j(t) exp(Z
T
ijβ(t)),

where λ0j(t) is the center-specific baseline hazard. The corresponding stratified log-partial

likelihood (under noninformative censoring)

ln(β) =
J∑

j=1

nj∑
i=1

∆ij

ZT
ijβ(Tij)− log

∑
ℓ∈Rij

exp
(
ZT

ℓjβ(Tij)
)

 ,

where Rij = {ℓ : 1 ≤ ℓ ≤ nj, Tℓj ≥ Tij} is the center-specific at-risk set.

With the original β spanned by a set of B-splines, the stratified log-partial likelihood
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function is

ln(θ) =
J∑

j=1

nj∑
i=1

∆ij

ZT
ijΘB(Tij)− log

∑
ℓ∈Rij

exp
(
ZT

ℓjΘB(Tij)
)

 .

The remaining algorithms are the same as those in previous subsections.

3 Convergence Properties

The convergence properties of the proposed quasi-Newton algorithms are summarized by

the following proposition. We defer all the regularity conditions and the proof to the

Appendix.

Proposition 1 The sequence θ̂
(m)

generated by the proposed quasi-Newton algorithm pos-

sesses a limit, and that limit is the optimal point, θ⋆, which maximizes the log-partial like-

lihood (1). Moreover, the θ̂
(m)

converges to θ⋆ at a superlinear rate; i.e., ||θ̂
(m+1)

− θ⋆|| ≤

o(||θ̂
(m)

− θ⋆||).

4 Simulation Study

4.1 Evaluation of Computation Speed

We first assess the speed of our algorithm through a simple simulation study. We consid-

ered the sample size within each center nj = 500. The number of center J ranged from

2 to 200 as we increased the total sample size n from 1, 000 to 100, 000. Death times

were generated from the center-specific exponential model, λj(t|Zij) = λ0j(t) exp(Z
T
ijβ(t)).

Twenty covariates were generated from independent normal distributions. Censoring times

were generated from uniform distributions on [0, u], with u chosen to yield approximately

20 − 30% censoring proportions. Ten (K = 10) basis functions were used and the knots

were chosen to have an equal number of events within each interval.

Table 1 compares the computation time for a full-step Newton-Raphson method based

on an extended-data method (termed Unstratified NR and Stratified NR for approaches

without and with stratification on centers), the proposed quasi-Newton approach (termed
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Unstratified quasi-NR and Stratified quasi-NR for versions without and with stratification

on centers). Convergence criterion were chosen as the maximal absolute change of θ is less

than 10−9. These timings were taken on an Dell laptop (model XPS 15) with quad-core

2.1-GHz Intel Core i7-3612QM processor and 8GB RAM.

n J Unstratified NR Stratified NR Unstratified quasi-NR Stratified quasi-NR

1,000 2 7.05 Minutes 2.99 Minutes 0.65 Minutes 0.45 Minutes

5,000 10 Fail 11.96 Minutes 5.74 Minutes 0.86 Minutes

10,000 20 Fail Fail 24.79 Minutes 1.56 Minutes

100,000 200 Fail Fail 36.68 Hours 0.17 Hours

Table 1: Comparisons of computation time: 1 simulation loop; number of covariates P=20;

n=sample size; J=number of centers; The Newton method is based on extended data

approach, and is estimated using R package Survival; Fail means the computation exceeds

the computer’s max memory capacity

4.2 Estimation of Time-varying Effects

Setting 1 We first considered a simulation setting where the hazard functions were equal

across centers, e.g., death times were generated from a exponential distribution with pa-

rameter λj = 1, for centers j = 1, . . . , 5. The number of subjects within each center was

nj = 200. Censoring distribution was the same as those in Section 4.1. Three covariate were

generated from independent standard normal distributions. We let β1 be a time-varying

effect β1(t) = 3 sin(3πt/4). All other covariate effects are time-independent: β2 = 1 and

β3 = −1. Each data configuration was replicated 500 times.

Figure 1 compare the method based on one-step Newton-Raphson, unstratified and

stratified quasi-Newton methods. The one-step Newton method results in biased estima-

tors, especially for covariates with time-independent effects (β2 and β3). The bias increases

as the magnitude of the time-varying effect increases. This is due to that the one-step

Newton method uses constant coefficients (fitted from the Cox model) as initial values,

which does not incorporate the time-varying effects. In contrast, quasi-Newton estimators

13



are much more accurate. The full-step Newton method provides very similar results as the

quasi-Newton. Hence, they are omitted. More results for comparing the unstratified and

stratified quasi-Newton methods are displayed in the first half of Table 2. We report aver-

age bias, average mean square error (MSE), average empirical coverage probabilities (CP),

average computation times, average iterations until convergence, empirical power (aver-

age proportion that the test rejected the null hypothesis for variables with time-varying

effects) and the empirical Type-I error (average proportion that the test rejected the null

hypothesis for variables with time-independent effects) for all estimated coefficients over

500 replicates. The reported bias, CP and MSE are the average of pointwise estimates over

simulated time points. For example, for each simulation replication, the bias is calculated

as the average of pointwise estimates over simulated time points, e.g.,

bias =

∑P
p=1

∑n
i=1(β̂p(Ti)− βp(Ti))

Pn
,

where P = 3, n = 1, 000, β̂p(Ti) and βp(Ti) are the estimated and true coefficients, respec-

tively, for the pth variable at time Ti. Then the average bias reported in Table 2 is the

average of bias over 500 replications.

In terms of the asymptotic approximation, both estimators are sufficiently well-behaved,

in the sense that the empirical CP are generally consistent with the nominal value of 0.95.

The bias and type I errors are slightly larger than expected. One potential explanation is

that in the late stage, the at-risk set is small, causing wide confidence intervals (as shown

in Figure 1). As one would expect, the MSE of stratified method is slightly larger than

the unstratified version, which indicates that the stratified method may suffer from loss of

power when the true hazard functions are center-independent.

Setting 2 We next considered a simulation setting in which the hazard functions differed

by center. Specifically, death times were generated from center-specific Weibull model,

λj(t|Zij) = αjγjt
γj−1 exp(ZT

ijβ(t))

where values of αj = (0.2, 0.5, 1, 1.5, 2) and γj = (0.8, 0.9, 1, 1.1, 1.2) for j = 1, . . . , 5. The

covariate distribution was chosen to be independent normal with center-dependent mean.

Other set ups were the same as those in setting 1. We compare the performance in Table
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Setting quasi-NR Bias MSE CP Time Iteration Power Type-I Error

1 Unstratified 0.13 0.13 0.95 8.93 Seconds 18.51 1 0.08

Stratified 0.12 0.14 0.95 4.80 Seconds 19.16 1 0.07

2 Unstratified 0.50 0.58 0.39 8.92 Seconds 16.82 1 0.56

Stratified 0.11 0.06 0.94 5.48 Seconds 19.59 1 0.08

Table 2: Performance of unstratified and quasi-Newton methods; True effects: β1(t) =

3 sin(3πt/4), β2(t) = 1 and β3(t) = −1; sample size: n=1,000; number of centers: J=5 (200

subjects in each center); all centers have the same baseline hazard functions: exponential

distribution with λ = 1; average bias: average of bias over simulated time points and

across 500 replications; MSE: average mean square error; CP: average empirical coverage

probabilities; Power: average proportion that the test rejected the null hypothesis for

variables with time-varying effects; Type-I Error: average proportion that the test rejected

the null hypothesis for variables with time-independent effects; 500 replications.

2 and Figure 3. The difference between the unstratified quasi-Newton and stratified quasi-

Newton is quite pronounced. Since the unstratified model omits center effects, bias and

MSE are quite large and the CP is notably less than 0.95. In contrast, stratified quasi-

Newton is sufficiently accurate for this setting.

4.3 Testing for Time-varying Effects

Figure 3 shows the empirical power and the empirical Type-I error for tests based on

proposed quasi-Newton and scaled Schoenfeld residuals (implemented by cox.zph in the

R Survival package). The simulation setting up was similar to those in Setting 1, except

for that β1(t) = α sin(3πt/4), where α varied between 0 and 3. The proposed testing

outperforms the traditional method with higher power and smaller Type-I error (e.g., false

positive). Detailed values for average P-values, empirical power and Type-I error can be

found in Table A.3 of supplementary material. Figure A.1 in the supplementary material

further investigated a setting with time-varying effects other than periodic pattern.
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(i) Stratified Quasi-NR

Figure 1: Estimated coefficients for one-step Newton method (scaled Schoenfeld residual-

s), unstratified and stratified quasi-Newton methods. True effects: β1(t) = 3 sin(3πt/4),

β2(t) = 1 and β3(t) = −1; sample size: n=1,000; number of centers: J=5 (200 subjects in

each center); all centers have the same baseline hazard functions: exponential distribution

with λ = 1; 500 replications.
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Figure 2: Estimated coefficients for one-step Newton method (scaled Schoenfeld residual-

s), unstratified quasi-Newton method and stratified quasi-Newton method. True effects:

β1(t) = 3 sin(3πt/4), β2(t) = 1 and β3(t) = −1; sample size: n=1,000; number of centers:

J=5 (200 subjects in each center); centers-specific baseline hazard functions follow Weibull

distributions with parameters varying across centers; 500 replications.
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(a) Power for β1: time-varying effects
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(b) Type-I Error for β2: time-independent

effects
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(c) Type-I Error for β3: time-independent

effects

Figure 3: Power: average proportion that the test rejects the null hypothesis for variables

with time-varying effects; Type-I error: average proportion that the test rejects the null

hypothesis for variables with time-independent effects; True effects: β1(t) = α sin(3πt/4)

where the magnitude of time-varying effects, α, varies from 0 to 3, β2(t) = 1 and β3(t) = −1;

the tests for time-varying effect are described in Section 2.4; Type-I errors for quasi-Newton

methods in Figures 3 (b) and (c) are around 0.05; detailed values for average P-values,

empirical power and Type-I error can be found in Table A.3 of supplementary material.
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5 Analysis

The motivating data were obtained from the Organ Procurement and Transplantation

Network (OPTN), administered under a contract with the U.S. Department of Health

and Human Services (HHS). Included in the analysis were adult renal failure patients

(≥ 18 years of age) who underwent deceased donor kidney transplantation between January

1994 and December 2012. Graft failure was considered to occur when the transplanted

kidney ceased to function. Failure time (recorded in years) was defined as the time from

transplantation to graft failure or death, whichever occurred first, with censoring at the

end of study.

The final sample size is n = 146, 331 from J = 216 centers. The median follow-up time

is 11 years. The overall censoring rate is 62%. Adjustment covariates in this study included

age, race, gender, donation after cardiac death (DCD), Expanded Criteria Donor (ECD),

BMI (underweight, normal, overweight and obesity, where normal is the reference group),

dialysis time, indicator of previous kidney transplant, cold ischemic time, cormorbidity

conditions (e.g., glomerulonephritis, polycystic kidney disease, diabetes, hypertension).

Our analysis is to address two questions. First, we investigate whether the proportion-

al hazards assumption is valid. Second, if the assumption is not valid, we estimate the

appropriate functional form to explain the time-varying effect. As shown in Figure A.2,

center-specific cumulative hazard functions varied across centers. The proposed stratified

quasi-Newton method was implemented with 10 basis functions (knots were chosen to have

an equal number of events within each interval). Figures 4-5 show a subset of fitted time-

varying coefficients with 95% point-wise confidence intervals. The Wald test discussed in

Section 2.4 was used to calculate p-values and identify factors that appear to have nonpro-

portional hazards effects. As a comparison, a test based on scaled Schoenfeld residuals was

carried out for each covariate. The p-values are listed in the caption. These results suggest

that the effect of diabetes, male and black race (Figures 4a-4c) vary over time, resulting in

strengthening associations over time. Conversely, Hispanic and ECD (Figures 4d-4e) have

weakening association over time. Overweight and obesity (Figures 5b-5c) have protective

effects in the short-term and then become risk factors after a long time exposure. Finally,

the results for glomerulonephritis, polycystic kidney disease, and hypertension should be
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interpreted with cautions. Though the tests based on scaled Schoenfeld residuals indicate

that the time-varying effects for these variables are significant, their time-varying effects

turn out to be non-significant based on the quasi-Newton method. As shown in Figures

5d-5f, their effects are constant in the early stage of the follow-up period. In the late stage,

although an increasing trend in the coefficients is observed, the at-risk set is small, causing

wide confidence intervals.

6 Discussion

Statistical analysis of large-scale time-to-event data with potential time-varying effects

presents daunting statistical challenges as well as exciting opportunities. Maximization

of the partial likelihood via the traditional Newton method requires evaluation of the

gradient and the Hessian matrix at each iteration. However, in large-scale analysis with

time-varying effects, the numerical calculations and inversion of the Hessian matrix may

have unreasonable costs, or may even be impractical. To improve computation efficiency,

we propose a quasi-Newton approach that avoids iterative computation and inversion of the

complex Hessian matrix. The proposed methods work efficiently for large-scale problems

where current methods are impractical or even fail completely.

The proposed methods in this study are based on B-splines. A remaining question is how

to choose the number and locations of knots for spline-based functions. Our simulations

(Figures A.3 and A.4 in the Web Supp.pdf file of Supplementary Material) confirm the

advantage of previous recommendation by Gray (1992) to use splines with a moderate

number of knots (e.g., 10). Moreover, our results (Figure A.5 in the Web Supp.pdf file

of Supplementary Material) show that the alternative approach, in which the knots are

chosen to be equally spaced to cover the time-span, tends to be unstable in the right tail

of the follow-up period. In contrast, the approach suggested by Gray (1992), for which the

knots are chosen to include an equal number of events within each interval, offers a more

stable estimation.

The stratified model is a useful tool in some applications, such as in analysis of large-

scale electronic health records, where much variation of practice patterns often arises across

regions or medical centers. In such cases, the stratified model ensures that adjustment
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(b) Male (p-value for time-varying effect based

on quasi-Newton = 0.021; p-value for test based

on scaled Schoenfeld residuals < 0.001)
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(c) Race: Black (p-value for test based on quasi-

Newton< 0.001; p-value for test based on scaled

Schoenfeld residuals < 0.001)
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(d) Race: Hispanic (p-value for test based on

quasi-Newton < 0.001; p-value for test based

on scaled Schoenfeld residuals < 0.001)
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(e) Expanded Criterion Donor (p-value for time-

varying effect based on quasi-Newton < 0.001;

p-value for time-varying effect based on scaled

Schoenfeld residuals < 0.001)
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(f) Previous Kidney Transplant (p-value for test

based on quasi-Newton = 0.207; p-value for test

based on scaled Schoenfeld residuals = 0.790)

Figure 4: Real Data Application: Estimated coefficients are based on the quasi-Newton

method (Section 2.3); 95% confidence interval (CI) is based on the delta method; The tests

for time-varying effects are described in Section 2.4.
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(b) Over-weight (25 <BMI< 30) (p-value for

test based on quasi-Newton < 0.001; p-value
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(c) Obesity (BMI> 30) (p-value for test based

on quasi-Newton < 0.001; p-value for test based

on scaled Schoenfeld residuals = 0.003)

0 5 10 15

−
2

−
1

0
1

2
3

Time after Transplantation (Year)

Estimate
Zero line
CI

(d) Glomerulonephritis (p-value for test based

on quasi-Newton = 0.171; p-value for test based

on scaled Schoenfeld residuals < 0.001)
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(e) Polycystic Kidney Disease (p-value for test

based on quasi-Newton = 0.059; p-value for test

based on scaled Schoenfeld residuals < 0.001)
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(f) Hypertension (p-value for test based on

quasi-Newton = 0.103; p-value for test based

on scaled Schoenfeld residuals < 0.001)

Figure 5: Real Data Application (continued)
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covariate effects are not confounded by center effects. However, as pointed out by one

reviewer, it implicitly introduces center-specific baseline hazards and hence a more compli-

cated model, often leading to power loss compared with the unstratified model. Therefore,

it should be applied with caution. In practice, center-specific baseline hazards can be

assessed to determine whether stratifications are necessary. Finally, we remark that the

proposed quasi-Newton method can be extended to incorporate time-dependent covariates.

We will report this extension elsewhere.

Appendix

A1. Regularity Conditions:

To derive the convergence properties for the proposed algorithm, we impose the follow-

ing regularity conditions. These conditions are commonly assumed in literatures and are

applicable in most practical applications (Lin et al., 2000).

(a) (Xi,∆i,Zi) are independent and identically distributed random vectors.

(b) P (Xi ≥ τ) > 0 where τ is a pre-specified time point.

(c) The support of Z is bounded and θ lies in a compact set.

(d) The Hessian matrix ∇2ln(θ
⋆) is negative definite at the stationary point θ⋆ such that

∇ln(θ
⋆) = 0.

A2. Proof of Proposition 1:

First, conditions (b) and (c) lead to the boundedness of several quantities (e.g., log-

partial likelihood, its gradient and the Hessian matrix). Given the fact that the log-partial

likelihood function is concave and twice continuously differentiable, these boundedness

properties and Condition (d) guarantee that ln has a unique maximizer. In addition,

continuity of the log-partial likelihood function and condition (c) implies that the super-

level set {θ : ln(θ) ≥ ln(θ̂
(0)
)}, for an arbitrary starting point θ̂

(0)
, is a closed subset of a

compact set and hence is compact. With the line search procedure described in Section 2.3,

and the initial estimation for the inverted Hessian matrix approximation, K(1), provided in
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Section 2.3, all the consecutive K(m) is negative definite and the quasi-Newton updates in

(5) is an ascent direction. With Theorem 1 of Powell (1976), the sequence θ̂
(m)

generated by

the proposed quasi-Newton algorithm possesses a limit, and that limit is the optimal point,

θ⋆, which maximizes the log-partial likelihood. Therefore, the fixed point of the quasi-

Newton iteration (i.e., θ̂
(m+1)

= θ̂
(m)

) is the stationary point of the log-partial likelihood

function.

Finally, we show the convergence rate is superlinear. Continuity of the Hessian matrix

and condition (d) imply that for all θ sufficiently close to θ⋆, ∇2ln(θ) is negative definite.

Moreover, convergence and ascent properties of quasi-Newton algorithm guarantee that

there exist an iteration m′ such that ∇2ln(θ) is negative definite for all θ ∈ Γ = {θ :

ln(θ) ≥ ln(θ̂
(m′)

)}, and θ̂
(m)

∈ Γ for all m ≥ m′. An application of Weierstrass’s theorem

guarantees that there exist positive constants K1 and K2 such that

K1I ≼ −∇2ln(θ) ≼ K2I (8)

for all θ ∈ Γ, where matrices A ≼ B denotes that B − A is positive definite. The left

inequality in (8) leads to the strong concavity of the log-partial likelihood.

Using the Taylor’s theorem, we have that

∇ln(θ̂
(m+1)

) = ∇ln(θ̂
(m)

) +∇2ln(θ̂
(m)

)(θ̂
(m+1)

− θ̂
(m)

) + o(||θ̂
(m+1)

− θ̂
(m)

||).

The strong concavity property implies that there exist a positive constant K3 such that

(g(m))Td(m) = {∇ln(θ̂
(m+1)

)−∇ln(θ̂
(m)

)}T (θ̂
(m+1)

− θ̂
(m)

) ≤ −K3||θ̂
(m+1)

− θ̂
(m)

||2 < 0.

Hence, for all m ≥ m′, the curvature condition (3) is satisfied for quasi-Newton θ̂
(m)

with

step size α(m) = 1. In addition, conditions (b)-(d) guarantee that the Hessian matrix ∇2ln

is Lipschitz continuous at the optimal θ⋆, i.e.,

||∇2ln(θ)−∇2ln(θ
⋆)|| ≤ KL||θ − θ⋆||

for all θ sufficiently close to θ⋆, where KL is a positive constant. With Theorem 2 of Powell

(1976), the sequence θ̂
(m)

converges to θ⋆ at a superlinear rate.

SUPPLEMENTARY MATERIAL
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R codes used in Section 4 are contained in the zip file QuasiNewton 1.0.zip available online.

An R package will soon be uploaded to the CRAN repository. Additional results referenced

in Sections 4-6 can be found in the Web Supp.pdf file. For reasons of confidentiality, the

data analyzed in Section 5 is not publishable. The complete data set can be requested from

the Organ Procurement and Transplantation Network (https://optn.transplant.hrsa.gov/).
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