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Suppose T is the survival time, e.g. time from the diagnosis of prostate cancer, and U is the

potential random censoring time, e.g. study duration or death from other causes (e.g. cardiac

failure), with only X = min(T;U) and censoring indicator Æ = I(X = T ) observed in practice.

Denote by FT (t) = P (T � t); FU (t) = P (U � t) the cumulative distribution functions, and

ST (t) = P (T > t); SU(t) = P (U > t); the survival functions, for T and U , respectively. The

scienti�c research often centers on discerning FT (t) while treating FU (t) as nuisance.

The mixture cure model assumes FT to be an improper distribution over the entire real line

and speci�es

FT (t) = pF0(t) (1)

or, equivalently,

ST (t) = 1� p+ pS0(t); (2)

where 0 < p < 1, S0(t) = 1� F0(t), and F0(t) is a proper distribution such that limt!1 F0(t) = 1.

Models (1) and (2) consider the study population as an unobservable mixture of patients deemed

susceptible (non-cured) and non-susceptible (cured) . Note that (1� p) corresponds to the fraction

of cured, that is, the point mass that T puts on 1 and F0(t) is the distribution for the non-cured

patients, often termed as the latency distribution.

We complete the model by specifying the dependence of the failure time T and censoring time

U via an strict Archimedean copula model,

C(t; u)
def
= P (T > t; U > u) = ��1[�fST (t)g+ �fSU (u)g]; (3)

where � : [0; 1]! [0;1] is a nonincreasing function such that �(1) = 0 and �(0) =1. Examples of

� include �(t) = � log t, corresponding to independent censoring, the family of Clayton's models

with �(t) = (t�a � 1)=a (for a > 0), and the Frank family with �(t) = � log((1� exp(�at))=(1�

exp(�a)) (for a > 0). We adopt the Archimedean copula formulation to emphasize the functional

independence of the parameterizations of the marginal distribution functions, governed by ST and

SU , and the dependence structure, governed by a class of copula functions �. This formulation

facilitates a derivation of the estimator for ST , our main interest.
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Suppose that we observe n i.i.d data, (Xi; Æi); i = 1; : : : ; n and consider the counting processes

Ni(t) = I(Xi � t; Æi = 1) and the at-risk processes Yi(t) = I(Xi � t). Denote by N(t) =
P
Ni(t)

and Y (t) =
P
Yi(t). Introduce the �ltration Fn

t = �fNi(s); Yi(s+); 0 � s � t; i = 1; : : : ; ng;

which contains the survival information up to time t for all n subjects and to which all the ensuing

martingales and stopping times adapt. We denote the survival function for the observed times Xi

by �(t) = P (Xi > t) = C(t; t).

The following heuristically discusses an estimator based on (3), whose large sample properties

will be considered in the next section. Denote by ŜT , which will be de�ned in (5), and ŜU the

estimates for ST and SU respectively, which are right continuous and piecewise constant functions

with jumps only occurring at the observed failures and censorings, respectively. Denote by �̂(t) the

empirical estimate of �(t), which is �̂(t) =
P

i I(Xi > t)=n = Y (t+)=n:

By (3), at each observed time points Xi, i=1, . . . , n,

�fŜT (Xi)g+ �fŜU (Xi)g = �f�̂(Xi)g:

Assume that P (T = U) = 0 (i.e. the censoring and failure cannot occur at the same time almost

surely). Then at each observed failure time point Xi (such that Æi = 1), we have ŜU (X
�
i ) = ŜU (Xi)

and

�(ŜT (Xi))� �(ŜT (X
�
i )) = �(�̂(Xi))� �(�̂(X�

i ))

= �

�
Y (Xi)

n
�

1

n

�
� �

�
Y (Xi)

n

�
: (4)

Applying (4) recursively, the estimator ŜT can be written using the form of counting processes

ŜT (t) = ��1
�Z t

0

I(Y (s) > 0)

�
�

�
Y (s)

n
�

1

n

�
� �

�
Y (s)

n

��
dN(s)

�
; (5)

which corresponds to the estimator derived by Rivest and Wells (2001) in the absence of cure

fraction. When computing (5), we invoke the convention of 0=0 = 0 if necessary.

To facilitate the theoretical development, introduce the crude hazard function de�ned by

d~�(t) = ~�(t)dt = P (t < T � t+ dtjT > t; U > t); (6)

along with the martingale processes

Mi(t) = Ni(t)�

Z t

0

Yi(s)d~�(t):
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We further impose the following regularity conditions on ST (t) (or FT (t)), �(t) and the copula

function �.

(c.1) � is strictly decreasing on (0; 1] and is suÆciently smooth in the following sense: the �rst two

derivatives of �(s) and  (s)
def
= �s�0(s) are bounded for s 2 [�; 1] where � > 0 is arbitrary. In

addition, the �rst derivative of �(s) is bounded away from 0 on [0; 1].

(c.2) 0 <
R �X
0
f (�(s))gkd~�(s) <1 for k = 0; 1; 2

(c.3)
R �X
0

j( 0(�(s))jd~�(s) <1

(c.4) lim supt!�X
R �X
t

( (�(s))2

�(s)
d~�(s) = 0

(c.5) ST (t) and S0(t) are continuous over [0; �X ] if �X <1. Otherwise, de�ne ST (1) = limt!1 ST (t).

(c.6) limt!�F0

1�F0(t)
�(t)

< 1.

Lemma 1 �(ŜT (t)) converges to �(ST (t)) uniformly on [0; �X ]. Moreover, ŜT (t) converges to

ST (t) uniformly on [0; �X ] and the Nelson-Aalen estimator
R t
0
I(Y (s) > 0)

dN(s)

Y (s)
converges to ~�(t)

in probability uniformly on [0; �X ].

Proof: First show that for any �xed t0 such that �(t0) > 0; supt2[0;t0] j�(ŜT (t)) � �(ST (t))j
pr:
! 0:

Using a Taylor expansion and the regularity condition (c.1) on � gives,

�(ŜT (t)) = �

Z t

0

1

n
�0
�
Y (s)

n

�
dN(s) + en

for t 2 [0; t0], where en = op(1) uniformly over [0; t0]. As it can be shown that �(ST (t)) =

�
R t
0
�0(�(s))�(s)d~�(s); hence,

�(ŜT (t))� �(ST (t))

= �
1

n

Z t

0

I(Y (s) > 0)�0
�
Y (s)

n

�
dM(s) +

Z t

0

I(Y (s) > 0)

�
 

�
Y (s)

n

�
�  (�(s))

�
d~�(s)

�

Z t

0

I(Y (s) = 0)�0(�(s))�(s)d~�(s) + en

= Z1(t) + Z2(t) + Z3(t) + en;

where M(s) =
Pn

i=1Mi(s) is a martingale.

3



When t 2 [0; t0],

0 < Z3(t) � I(Y (t) = 0)

Z t

0

 (�(s))d~�(s)

< I(Y (t0) = 0)

Z �X

0

 (�(s))�(s)d~�(s):

By the strong law of large numbers Y (t0)=n ! �(t0)(> 0) almost surely. Hence Y (t0) !

1 almost surely. From this, coupled with the regularity condition (c.2), we have the uniform

convergence of Z3(t) over [0; t0]. It remains to demonstrate the convergence of Z1(t) and Z2(t).

Consider the variation process of Z1(t),

< Z1; Z1 > (t) =

Z t

0

I(Y (s) > 0)

�
�0
�
Y (s)

n

��2
Y (s)

n2
d~�(s)

=

Z t

0

I(Y (s) > 0)

Y (s)

�
 

�
Y (s)

n

��2
d~�(s):

Then it follows that Z2
1(t)� < Z1; Z1 > (t) is a martingale. By Lenglart's inequality ( see, e.g.,

Fleming and Harrington (1991))

P ( sup
t2[0;t0]

jZ1(t)j > �)

<
�

�2
+ P (

Z t0

0

I(Y (s) > 0)

Y (s)
( (

Y (s)

n
))2d~�(s) > �)

<
�

�2
+ P

�
1

Y (t0)

Z t0

0

( (
Y (s)

n
))2d~�(s) > �

�
:

Since the empirical process
Y (s)

n
! �(s) in probability uniformly on [0;1) and because of the

boundness regularity conditions on  (�) and  0(�) on [�(t0); 1],  
2(
Y (s)

n
) converges to  2(�(s)) un-

formly on [0; t0]. Hence
R t0
0
( (

Y (s)

n
))2d~�(s)!

R t0
0
( (�(s))2d~�(s) <1 (by the regularity condition

(c.2) ). So 1
Y (t0)

R t0
0
( (

Y (s)

n
))2d~�(s)

pr
! 0 as Y (t0)

pr
! 1. Hence, P (sup0�t�t0 jZ1(t)j > �) ! 0

for any � > 0. Now consider Z2(t) =
R t
0
I(Y (s) > 0) 0(�(s))

n
Y (s)

n
� �(s)

o
d~�(s) + en where en =

op(1=n) uniformly on [0; t0]. Further note that sup jZ2(t)j � sup jenj+
nR t0

0
j 0(�(s))jd~�(s)

o
sup0�s�t0 j

Y (s)

n
�

�(s))j; which leads to, under the regularity condition (c.3), sup0�t�t0 jZ2(t)j
pr:
! 0: Thus we have

proved that

sup0�t�t0 j�(ŜT (t))� �(ST (t))j
pr:
! 0

for any t0 such that �(t0) > 0.

Now we show that

sup0�t��X j�(ŜT (t))� �(ST (t))j
pr:
! 0:
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We only consider the situation when �X < 1 as the proof follows similarly when �X = 1. Fix a

small � > 0 and consider any t 2 [�X � �; �X ]. With monotonicity of ST and �, it follows that

j�(ŜT (t))� �(ST (t))j

< j�(ŜT (�X))� �(ŜT (�X � �))j+ j�(ŜT (�X � �))� �(ST (�X � �))j

+j�(ST (�X � �))� �(ST (�X))j:

Also note that

sup
0�t��X

j�(ŜT (t))� �(ST (t))j

� sup
0�t��X��

j�(ŜT (t))� �(ST (t))j+ sup
�X���t��X

j�(ŜT (t))� �(ST (t))j

� sup
0�t��X��

j�(ŜT (t))� �(ST (t))j+ j�(ŜT (�X))� �(ŜT (�X � �))j+ j�(ŜT (�X � �))� �(ST (�X � �))j

+j�(ST (�X � �))� �(ST (�X))j:

Using the uniform convergence of ŜT (t) on [0; �X��] and letting �! 0+ yields sup0�t��X j�(ŜT (t))�

�(ST (t))j
pr:
! 0: As �0(�) is bounded away from 0 on [0; 1] [condition (c.1)], a Taylor expansion im-

mediately yields sup0�t��X jŜT (t)� ST (t)j
pr:
! 0:

Applying a similar argument, we may demonstrate the uniform convergence of
R t
0
I(Y (s) >

0)
dN(s)

Y (s)
to ~�(t) on [0; �X ] by observing that

Z t

0

I(Y (s) > 0)
dN(s)

Y (s)
�

Z t

0

d~�(s) =

Z t

0

I(Y (s) > 0)
dM(s)

Y (s)
�

Z t

0

I(Y (s) = 0)d~�(s):

�

We now consider the asymptotical normality of the proposed estimator for cure fractions. De�ne

the stopped process

Zn(t) =
p
nf�(ŜT (t ^X

n))� �(ST (t ^X
n))g: (7)

and the covariance function

C(t1; t2) =

Z t1^t2

0

�(s)(�0(�(s)))2d~�(s) + 2

Z t1^t2

0

Z s

0

�(s)(1� �(u)) 0(�(u)) 0(�(s))d~�(u)d~�(s)

+2

Z t1^t2

0

Z s

0

�0(�(u))�(s) 0(�(s))d~�(u)d~�(s)

+

Z t1_t2

t1^t2

�(s) 0(�(s))d~�(s)

Z t1^t2

0

�
f1� �(u)g 0f�(u)g+ �0f�(u)g

�
d~�(u) (8)

for 0 � t1; t2; < �X , where  (s)
def
= �s�0(s).
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Theorem 1 Zn(t) converges weakly to I[0; �X)Z(t) + If�XgZ
1 on D[0; �X ], where Z(t) is a tight

Gaussian process with the covariance function C(t1; t2) and Z
1 is a normal random variable with

the variance v10 and covfZ1; Z(t)g = C1(t).

Proof: Using the same argument as in Rivest and Wells (2001), up to an op(1) term, we have

that

Zn(t) =
p
n

�
�
1

n

Z t^Xn

0

I(Y (s) > 0)�0
�
Y (s)

n

�
dM(s)

+

Z t^Xn

0

I(Y (s) > 0)

�
 

�
Y (s)

n

�
�  (�(s)

�
d~�(s)

�

= Zn;1(t) + Zn;2(t): (9)

Rivest and Wells (2001) showed, for any t0 such that �(t0) > 0, Zn(t) converges weakly to Z(t)

on D[0; t0]. To show the weak convergence of Zn(t) on D[0; �X ], it is suÆcient to show the tightness

of Zn(t) in a small (left) neighborhood of �X in view of Theorems 13.2 and 16.8 of Billingsley (1999).

That is, it suÆces to show for any � > 0

lim
t!�X

lim sup
n
P ( sup

s2(t;�X ]

jZn(s)� Zn(t)j > �) = 0; (10)

see, also, Gill (1980).

Fix a t. Then sups2(t;�X ]jZn(s) � Zn(t)j � sups2(t;�X ]jZn;1(s) � Zn;1(t)j + sups2(t;�X ]jZn;2(s) �

Zn;2(t)j: Since X
n is a stopping time, and by the optional sampling theorem, Zn;1(s) � Zn;1(t) =

� 1p
n

R s^Xn
t^Xn I(Y (s) > 0)�0

n
Y (s)

n

o
dM(s) is a local martingale and its predictable variation process

is given by

< Zn;1(s)� Zn;1(t); Zn;1(s)� Zn;1(t) >=

Z s^Xn

t^Xn
I(Y (s) > 0)

�
 

�
Y (s)

n

��2
n

Y (s)
d~�(s);

hence, (Zn;1(s)� Zn;1(t))
2� < Zn;1(s)� Zn;1(t); Zn;1(s)� Zn;1(t) > is a martingale (again assume

that t is �xed).

Therefore, by Lenglart's inequality we have

P ( sup
[t;�X ]

jZn;1(s)� Zn;1(t)j > �)

<
�

�2
+ P (

Z �X^X
n

t^Xn
I(Y (s) > 0)

�
 

�
Y (s)

n

��2
n

Y (s)
d~�(s) > �)

�
�

�2
+ P (

Z �X

t

�
 

�
Y (s)

n

��2
n

Y (s)
d~�(s) > �): (11)
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Because of the uniform convergence of
Y (s)

n
to �(s) on [0; �X ],

Z �X

t

�
 

�
Y (s)

n

��2
n

Y (s)
d~�(s)

pr:
!

Z �X

t

( (�(s))2

�(s)
d~�(s);

for any t < �X . Hence by the regularity condition (c.4), the second term in (11) converges to 0 for

any � > 0 as t! �X . Hence, we have

lim
t!�X

lim sup
n
P ( sup

[t;�X ]

jZn;1(s)� Zn;1(t)j > �) = 0: (12)

Now we turn to show that

lim
t!�X

lim sup
n
P ( sup

[t;�X ]

jZn;2(s)� Zn;2(t)j > �) = 0: (13)

As Zn;2(s)�Zn;2(t) =
R s^Xn
t^Xn

I(Y (s) > 0) 0(�(s))
p
n
n
Y (s)

n
� �(s)

o
d~�(s)+op(1); it follows that

(13) holds as
p
n(

Y (s)

n
��(s)) converges weakly to a tight Gaussian process over [0;1). Combining

(12) and (13) gives (10). Hence the desired result follows.

We now compute the covariance function for the limiting process Z(t). The derivation of this

covariance function, which is not given in Rivest and Wells (2001), is involved as Z(t) is not

an independent increment process. For any t < �X , as X
n ! �X almost surely and following

Rivest and Wells (2001), we can show that (9) is asymptotically equal to (up to an op(1) term)

Wn(t) = 1p
n

R t
0
��0(�(u))dM(u) +

R t
0
Xn(s) 

0(�(s))d~�(s) = Wn;1(t) + Wn;2(t); where Xn(s) =
p
n
n
Yn(s)

n
� �(s)

o
. Hence we only need to compute the limiting covariance function for Wn(t).

Consider 0 � t1 � t2 � �X . Then

covfWn(t1);Wn(t2)g = EfWn;1(t1)Wn;1(t2)g+EfWn;2(t1)Wn;2(t2)g

+EfWn;1(t1)Wn;2(t2)g+EfWn;1(t2)Wn;2(t1)g:

Since Wn;1(�) is a square integrable martingale,

EfWn;1(t1)Wn;1(t2)g =
1

n
E

�Z t1

0

[�0f�(s)g]2Y (s)d~�(s)

�
=

Z t1

0

[�0f�(s)g]2�(s)d~�(s):

Also

EfWn;2(t1)Wn;2(t2)g

= E

Z t2

0

Z t1

0

(Y1(u)� �(u))(Y1(s)� �(s)) 0(�(u))d~�(u) 0(�(s))d~�(s)
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= E

Z t1

0

Z t1

0

(Y1(u)� �(u))(Y1(s)� �(s)) 0(�(u))d~�(u) 0(�(s))d~�(s)

+E

Z t2

t1

Z t1

0

(Y1(u)� �(u))(Y1(s)� �(s)) 0(�(u))d~�(u) 0(�(s))d~�(s)

= 2

Z t1

0

Z s

0

�(s)(1� �(u)) 0(�(u))d~�(u) 0(�(s))d~�(s)

+

Z t2

t1

�(s) 0(�(s))d~�(s)

Z t1

0

(1� �(u)) 0(�(u))d~�(u);

where the calculation of E
R t1
0

R t1
0

comes from Rivest and Wells (2001) [after correcting a typo-

graphic error in their formula - �(u)��(s)�(u) on line 8 of p.151 of Rivest and Wells (2001) should

read �(s)� �(s)�(u)].

IntroduceA(s) = ��0(�(s)) andB(s)ds =  0(�(s))d~�(s). Applying the result E(M1(u)Y1(s)) =

��(s)~�(u ^ s) and integration by parts, we have

covfWn;2(t1);Wn;1(t2)g

= E

�Z t1

0

A(u)dM1(u)

Z t2

0

(Y1(s)� �(s))B(s)ds

�

= E

�Z t2

0

A(t1)M1(t1)Y1(s)B(s)ds

�
(14)

+E

�Z t2

0

Z t1

0

�M1(u)Y1(s)dA(u)B(s)ds

�
(15)

Using
R t2
0

=
R t1
0
+
R t2
t1
, (14) is

�~�(t1)

Z t1

0

�(s)~�(s)B(s)ds� ~�(t1)A(t1)

Z t2

t1

�(s)B(s)ds (16)

while using
R t2
0

R t1
0

=
R t1
0

R t1
0
+
R t2
t1

R t1
0
, (15) is

Z t1

0

Z t1

0

�(s)~�(u ^ s)dA(u)B(s)ds+

Z t2

t1

Z t1

0

�(s)~�(u)dA(u)B(s)ds: (17)

Adding the �rst term of (16) and the �rst term of (17) gives �
R t1
0

R s
0
A(u)d~�(u)�(s)B(s)ds fol-

lowing Rivest and Wells (2001) [, though a minus sign is missing in the statement between (20) and

(21) in their article). Integration by parts with respect to dA(u) in the second term of (17) gives the

summation of the second term in (16) and the second term in (17) is �
R t2
t1
�(s)B(s)ds

R t1
0
A(u)d~�(u)

So,

covfWn;2(t1);Wn;1(t2)g = �

Z t1

0

Z s

0

A(u)d~�(u)�(s)B(s)ds�

Z t2

t1

�(s)B(s)ds

Z t1

0

A(u)d~�(u): (18)
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Similarly we obtain

covfWn;1(t2);Wn;2(t1)g = �

Z t1

0

Z s

0

A(u)d~�(u)�(s)B(s)ds: (19)

Plugging back A(u) = ��0(�(s)) and B(s)ds =  0(�(s))d~�(s) in (18) and (19) and using the weak

convergence of a tight process Wn to Z(t), we have thus obtained the covariance function C(t1; t2)

as stated in the theorem. �
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