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Abstract

We propose a new class of generalized linear mixed models with Gaussian mixture random effects for clustered
data. To overcome the weak identifiability issues, we fit the model using a penalized Expectation Maximization (EM)
algorithm, and develop sequential locally restricted likelihood ratio tests to determine the number of components in
the Gaussian mixture. Our work is motivated by an application to nationwide kidney transplant center evaluation in the
United States, where the patient-level post-surgery outcomes are repeated measures of the care quality of the transplant
centers. By taking into account patient-level risk factors and modeling the center effects by a finite Gaussian mixture
model, the proposed model provides a convenient framework to study the heterogeneity among the transplant centers
and controls the false discovery rate when screening for transplant centers with non-standard performance.
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1. Introduction

The generalized linear mixed model (GLMM) is the most widely used framework for repeatedly measured non-
Gaussian data, where the vast majority of literature assumes the distribution of the random effect to be Gaussian.
Most papers focus on estimating the fixed effects while treating the random effects as nuisance [4, 26]. Even though
GLMM’s are typically robust against deviations from the Gaussian random effect assumption [29], many authors have5

documented various drawbacks when the Gaussian assumption is violated, including loss of estimation efficiency [10]
and reduced power for statistical tests [27]. Even though the predicted random effects are relatively robust in terms of
mean squared error, the distribution for the predicted random effect is highly sensitive and mostly reflects the shape
of the assumed random effect distribution [29]. Many authors have tried to relax the Gaussian assumption and model
the random effect with more flexible distributions, such as the semi-nonparamatric distribution [10]. Caffo et al. [5]10

considered modeling the random effect with a Gaussian mixture model, but limited their investigation to binary probit
models, focusing on numerical performance rather than theoretical justifications.

Finite Gaussian mixture models [30] are intuitively appealing for modeling non-homogeneous populations and
detecting subgroups. There has been a recent surge in applications of Gaussian mixture models, including clustering
analysis [16], false discovery rate control [11, 25] and genetic imprinting [23]. Statistical inference for Gaussian15

mixture models is well-known to be difficult, because many regularity conditions in parametric inference are violated
in these models [6, 7, 13]. There has been much recent work in hypothesis testing on the order of finite Gaussian
mixture models [8, 19]. However, none of the existing methods are directly applicable to generalized linear mixed
models.

We investigate a new class of generalized linear mixed models with Gaussian mixture random effects, propose a20

penalized EM algorithm to fit the proposed model, and develop sequential locally restricted likelihood ratio tests to
decide the number of components in the mixture model. Our work is motivated by an application on kidney transplant
center evaluation, using the U.S. Organ Procurement and Transplantation Network (OPTN) database. We model the
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patient level outcome, e.g., 5-year post-transplant survival status, using a GLMM, where the random effect for a
transplant center follows a finite Gaussian mixture distribution. We then propose an empirical Bayes approach to25

classify the transplant centers using the fitted Gaussian mixture model, while controlling the false discovery rate. The
results may have a strong impact on health-policy making and on the patients’ choice of transplant centers.

The main advantage of the proposed method is its ability to fulfill multiple tasks under the same framework: it
offers flexible modeling on the distribution of the random effect in GLMM; the Gaussian mixture structure enables a
model based clustering on the units (i.e., the transplant centers in the OPTN data); the proposed inference procedure30

can be used to test if there are any clusters among the units and thus examine the goodness-of-fit of the classic GLMM
assuming homogeneous Gaussian random effects; when the proposed tests are used sequentially, the procedure can
automatic determine the number of mixture components; furthermore, the proposed framework provides an intuitive
way to detect transplant centers with non-standard performance while controlling the false discovery rate. The pro-
posed procedures are computationally intensive when analyzing large medical data sets, but can be done efficiently35

using parallel computing. We have developed a software package written in Julia (http://julialang.org/), which is a
high-level, high-performance dynamic programming language. Our package is based on open source math libraries,
supports parallel computing, and will be made available on the corresponding author’s website.

The rest of the paper is organized as follows. In Section 2, we introduce the model, propose an EM-based esti-
mation procedure and establish the consistency of the procedure. To decide the number of mixture components, we40

propose sequential locally restricted likelihood ratio tests in Section 3. In Section 4, we propose a false discovery rate
control procedure to evaluate the care qualities of the transplant centers. We conduct simulations in Section 5 and
report the analysis of the OPTN kidney transplant data in Section 6. Concluding remarks are provided in Section 7,
and technical proofs are collected in Section 8. Detailed algorithms are relegated to the supplementary material.

2. Model and parameter estimation45

2.1. Model and assumptions
The data consist n independent units (e.g., transplant centers), each with Ni subunits (patients), which brings the

total number of measurements to N =
∑n
i=1Ni. Let Yik be the outcome variable of the kth subunit in the ith unit

and letXXXik ∈ Rp be the subunit level covariate, k ∈ {1, . . . , Ni}, i ∈ {1, . . . , n}. Denote by YYY i = (Yi1, . . . , YiNi)
>,

XXXi = (XXXi1, . . . ,XXXiNi)
>, and γγγ = (γ1, . . . , γn)> where γi is a random effect shared by all entries in YYY i. In our50

motivating example, γi represents the quality of care delivered by the ith transplant center. The conditional density of
Yik, givenXXXik and γi, belongs to the canonical exponential family:

f(Yik |XXXik, γi;βββ, ϕ) = exp

{
Yikξik − b(ξik)

a(ϕ)
+ d(Yik, ϕ)

}
, (1)

where a(·), b(·) and d(·) are known functions, ξik = XXX>ikβββ + γi is the canonical parameter with E(Yik | XXXik, γi) =
b′(ξik), and ϕ is a nuisance parameter. Here XXXik does not contain the intercept and γi is allowed to have a nonzero
mean. We also assume that Yik and Yik′ are independent given γi, for any k 6= k′. In our transplant center evaluation55

application, we consider a binary response variable: Yik = 1 if the patient died within 5 years after transplant; −1
otherwise. In the dataset, there was essentially no censoring within the first 5 years since the transplant patients’
survival information had been closely monitored and tracked. With that, model (1) becomes f(Yik | XXXik, γi;βββ) =
{1 + exp(−ξikYik)}−1.

Assume that the units belong to C subpopulations and the cth subpopulation can be described by a Gaussian60

distribution with mean µc and variance σ2
c , c ∈ {1, . . . , C}. The density of γi is g(γ | θθθγ) =

∑C
c=1 πcfc(γ | µc, σc),

where fc(γ | µc, σc) = σ−1
c φ{(γ − µc)/σc}, φ(·) is the standard Gaussian density, πc ∈ [0, 1] is the weight for

subpopulation c,
∑C
c=1 πc = 1, and θθθγ = (µ1, . . . , µC , σ

2
1 , . . . , σ

2
C , π1, . . . , πC)> collects the parameters in g(γ).

Here, C represents the number of clusters or subpopulations, and hence should be a positive number. When C = 1,
the model is the classic GLMM with Gaussian random effects; when C > 1, the model is a GLMM with Gaussian65

mixture random effects.

2.2. Model fitting
Though conceptually appealing, Gaussian mixture models possess some undesirable properties, including a slower

convergence rate for parameter estimation when the number of components is unknown [6], unbounded likelihood
when any of the component variance parameters σ2

c goes to 0 [13], and infinite Fisher information on some boundary70
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points of the parameter space [7]. The solution to these problems in the literature is to either restrict the value of the
parameters away from the boundaries [13] or include a penalty function to prevent any σc from converging to 0 [7, 9].
We adopt the latter strategy by maximizing a penalized likelihood

`pen(θθθ) = `n(θθθ;YYY ,XXX) +
∑C
c=1 pn(σ2

c ), (2)

where YYY = (YYY >1 , . . . ,YYY
>
n )>,XXX = (XXX>1 , . . . ,XXX

>
n )>, θθθ = (θθθ>y , θθθ

>
γ )>, θθθy = (βββ>, ϕ)>, and

`n(θθθ;YYY ,XXX) =

n∑
i=1

ln

∫ { Ni∏
k=1

f(Yik |XXXik, γ;θθθy)

}
g(γ | θθθγ)dγ. (3)

In all of our numerical studies, we use the following penalty proposed by Chen and Li [7]75

pn(σ2; σ̂2
pilot) = −an{σ̂2

pilot/σ
2 + ln(σ2/σ̂2

pilot)− 1}, (4)

where σ̂2
pilot is a pilot estimate for the variance of γ. One possible choice of σ̂2

pilot is the variance estimator assuming
the γi are i.i.d. Gaussian variables. When an = op(n

1/4), the penalty function in (4) satisfies the assumptions for our
asymptotic theory. A similar requirement on an is made by Chen et al. [8]. In all of our numerical studies, we choose
an using the empirical formula (23) in Kasahara and Shimotsu [19].

To derive an EM algorithm, define LLLi = (Li1, . . . , LiC)> follows multinomial distributionM(1;π1, . . . , πC) as80

a latent random vector of subpopulation memberships, where Lic = 1 if γi belongs to component c and Lic = 0
otherwise. Then the likelihood function for the complete data, comprising of both observed and latent variables, is
`comp(θθθ;YYY ,XXX,γγγ,LLL) =

∑n
i=1 `i,comp(θθθ;YYY i,XXXi, γi,LLLi), where `i,comp(θθθ;YYY i,XXXi, γi,LLLi) = ln f(YYY i | XXXi, γi;θθθy) +∑C

c=1 Lic[lnπc −
1
2 ln(σ2

c ) + lnφ{(γi − µc)/σc}] and f(YYY i |XXXi, γi;θθθy) =
∏Ni
k=1 f(Yik |XXXik, γi;θθθy). We estimate

the parameters by maximizing the penalized likelihood while treating γγγ andLLL as missing data. The detailed algorithm85

is provided in the supplementary material.

2.3. Consistency of the estimator
The parameter space for a model with exactly C mixture components is ΘC = {θθθ | βββ ∈ Rp,

∑C
c=1 πc = 1, 0 <

πc < 1, µ1 < · · · < µC , σc > 0, c ∈ {1, . . . , C}}. The closure of ΘC is Θ̄C = {θθθ | βββ ∈ Rp,
∑C
c=1 πc = 1, 0 ≤

πc ≤ 1, µ1 ≤ · · · ≤ µC , σc ≥ 0, c ∈ {1, . . . , C}}, which also includes the over-fitted models. In other words, Θ̄C90

admits models with the true number of components C0 strictly less than C, in which case a redundant component c
can be parameterized in Θ̄C in multiple ways, such as setting either πc = 0 or (µc, σc) = (µc′ , σc′) for some c′ 6= c.
Let θθθ0 ∈ Θ̄C be one parameterization for the true density of γ, and f(xxx,yyy | θθθ) be the joint distribution function of
(XXX,YYY ) associated with the likelihood in (3). Following Hathaway [13], define

Fθθθ0 =

{
θθθ ∈ Θ̄C :

∫ (xxx′,yyy′)

−∞
f(xxx,yyy | θθθ)dµ(xxx,yyy) =

∫ (xxx′,yyy′)

−∞
f(xxx,yyy | θθθ0)dµ(xxx,yyy) for any (xxx′, yyy′)

}
.

All parameters in Fθθθ0 lead to the same mixture density for γ, stressing the lack of identifiability in finite Gaussian95

mixture models and their fundamental difference from other commonly used parametric models. Denote the maximum
penalized likelihood estimator under a C-component mixture model by θ̂θθC = arg maxθθθ∈Θ̄C `pen(θθθ).

Proposition 1. Under Assumptions 1-6 in Section 8, θ̂θθC is consistent in the sense that infθθθ∗∈Fθθθ0 ‖θ̂θθC − θθθ
∗‖ → 0 in

probability.

The proof of Proposition 1 is provided in Section 8, which extends the arguments in Chen et al. [9] to the GLMM100

framework. Proposition 1 implies that we can estimate the mixture density consistently, but this is not necessarily true
for the parameters since θθθγ is not unique if we over fit the model by including more mixture components.

3. Deciding the Number of Mixture Components

3.1. Hypothesis tests on the order of the latent Gaussian mixture model
Deciding the number of mixture components is key in addressing the heterogeneity across units. In the context of105

transplant center evaluation, this is about detecting whether there are subgroups of transplant centers that are under-
performing or out-performing the rest. There are two commonly used approaches, the model selection approach
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[17, 34] and the hypothesis testing approach [8]. The model selection approach seeks a model to adequately describe
the data, while the hypothesis testing approach is used to validate scientific claims. In this paper, we focus on the
hypothesis testing approach because it quantifies the confidence of our decisions by providing p-values.110

Among the many hypotheses that we can test, the most important one is H0 : C0 = 1 vs H1 : C0 = 2, where
C0 is the true number of components. This test is also referred to as the homogeneity test, since the null hypothesis
means all transplant centers are from the same homogeneous population with no anomalies. Chen et al. [8] provided
more examples where different orders of mixture models have different scientific interpretations that require testing.

Even though hypothesis tests are not designed for model selection, they can nevertheless be used for such a purpose115

in an exploratory study. One can determine the order of the latent Gaussian mixture model by sequentially testing
H01 : C0 = 1, H02 : C0 = 2, H03 : C0 = 3, . . . at level α respectively, and declare C0 = C̃ if H0C̃ is the first
null hypothesis in the sequence that is not rejected. With limn→∞ Pr(H0C being rejected) = 1 for any C < C0 and
limn→∞ Pr(H0C0 being rejected) = α, the sequential test procedure chooses the correct component number with a
probability tending to 1−α and over-selects the component number with a probability tending to α. This is obviously120

not a consistent model selection procedure, since we have a positive chance of falsely reject a hypothesis if α is fixed.
On the other hand, one can also argue that many widely used model selection procedures are not consistent, such as
the Akaike information criterion (AIC) [1]. In our simulation studies, we show that the sequential test procedure that
we propose can vastly outperform the Bayesian information criterion (BIC) [31] in model selection when the sample
size is moderate. There has been some work on model selection in linear mixed models (LMM) using AIC type of125

criteria [28, 35], however these methods are not applicable to GLMM and are not designed for selecting the number
of components in Gaussian Mixture Models.

Due to the loss of strong identifiability for finite Gaussian mixture models, regular asymptotic theory for likelihood
ratio tests (LRT) does not hold. Instead, Chen et al. [8] and Kasahara and Shimotsu [19] proposed locally restricted
likelihood ratio tests that confine the parameter space in local alternative models to ensure the existence of asymptotic130

distributions for the test statistics. We extend such tests to the proposed latent Gaussian mixture models.

3.2. Homogeneity test

We first consider H0 : C0 = 1 vs H1 : C0 = 2. We refer to the model under the null hypothesis as the reduced
model and the one under the alternative as the full model. When the null hypothesis is true, γi are i.i.d. random
variables following N (µ0, σ

2
0). However, this model is not uniquely parameterized in the full model, for example, π1135

can be any value between 0 and 1 when µ1 = µ2 and σ1 = σ2. Following Chen et al. [8], we restrict the parameter
space under the full model to Θ̄2(τ) = {θθθ = (µ1, µ2, σ

2
1 , σ

2
2 , π1, π2)>; µ1, µ2 ∈ R, σ1, σ2 ≥ 0, π1 = τ, π2 = 1− τ},

for a fixed τ ∈ (0, 0.5]. By doing so, we do not impose any constraints on the order between µ1 and µ2. In Θ̄2(τ), the
null model is uniquely parameterized by θθθ0(τ) = {θθθ>y,0, θθθ

>
γ,0(τ)}>, where θθθγ,0(τ) = (µ0, µ0, σ

2
0 , σ

2
0 , τ, 1− τ)>.

Let Θ̄1 = {θθθ = (µ, σ2)>; µ ∈ R, σ ≥ 0} be the parameter space under the null hypothesis C0 = 1, which140

is nested in Θ̄2. Denote the reduced model estimator as θ̂θθred = arg maxθθθ∈Θ̄1
`pen(θθθ), which is the usual maximum

likelihood estimator for a GLMM under the Gaussian random effect assumption. Under the full model, the estimator
with a fixed τ is θ̂θθfull(τ) = arg maxθθθ∈Θ̄2(τ) `pen(θθθ). This estimator can be obtained using the EM algorithm described
in the supplementary material without the step for updating πc’s. The following proposition provides the convergence
rate of θ̂θθfull(τ) when the null hypothesis is true, the proof of which is provided in Section 8.145

Proposition 2. Under H0 : C0 = 1 and Assumptions 1-7 in Section 8, for any fixed τ ∈ (0, 0.5], β̂ββfull(τ) − βββ0 =

Op(n
−1/2), µ̂c,full(τ)− µ0 = Op(n

−1/8) and σ̂2
c,full(τ)− σ2

0 = Op(n
−1/4) for c ∈ {1, 2} where β̂ββfull, µ̂c,full and

σ̂2
c,full are components in θ̂θθfull(τ) while βββ0, µ0 and σ2

0 are the true parameters.

Remark 1. We use a reparameterization similar to that of Kasahara and Shimotsu [19] in the proof of Proposition
2. As shown in the proof, many derivatives of the log likelihood are either exactly zero or have mean zero, and150

it takes a ninth order Taylor expansion to get a local quadratic approximation for the penalized likelihood. The
convergence rate in the proposition means that, for an over-fitted mixture model, the regression coefficient βββ still
enjoys the root-n convergence rate, while the parameters of the latent Gaussian mixture model converge much slower.
This slow convergence rate also stresses a fundamental difference between our latent Gaussian mixture model and
the common parametric models. The Op(n−1/8) convergence rate in µ̂c,full is in agreement with the minimax lower155

bound established in Ho and Nguyen [15] for finite Gaussian mixture models with one redundant component.
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Let T be a finite subset of numbers in (0, 0.5], define the test statistic

T̃1 = max
τ∈T

T1(τ), T1(τ) = 2[`n{θ̂θθfull(τ)} − `n(θ̂θθred)]. (5)

The following proposition provides the asymptotic distribution of T̃1, the proof of which is provided in Section 8.

Proposition 3. Under H0 : C0 = 1 and Assumptions 1-7, T̃1 → χ2(2) in distribution as n→∞.

Remark 2. Our proof of Proposition 3 shows that, under H0 : C0 = 1, T1(τ) → χ2(2) in distribution for any fixed160

τ . In fact, if there is only one true component, no matter how we choose to split that component, the leading term in
the asymptotic expansion of T1(τ) remains the same. We define T̃1 as the maximum of T1(τ) over T to increase the
power: if H1 is true, the more values of τ we try, the better chance we have to detect an extra component. Intuitively,
bigger T leads to higher power, but also a heavier burden in computation. Empirical studies in Chen et al. [8] suggest
that T = {0.1, 0.3, 0.5} provides a good balance between statistical power and computational cost. We follow this165

recommendation in all numerical studies in this paper. The condition an = op(n
1/4) guarantees that the asymptotic

distribution of test statistic is not affected by penalty (4) in estimation.

The detailed test procedure is as follows.

Step 0. Obtain θ̂θθred and `n(θ̂θθred).

Step 1. For a fixed τ , obtain θ̂θθfull(τ). To increase the chance of reaching the global maximum of the penalized170

likelihood, try 100 randomly selected initial values.

Step 2. (Optional) Using θ̂θθfull(τ) obtained in Step 1 as the starting value, perform two more EM iterations without
fixing τ , and use the resulting estimator to evaluate T1(τ).

Step 3. Repeat Steps 1 and 2 for each τ ∈ T to obtain T̃1, where T is set to be {0.1, 0.3, 0.5} following the recom-
mendation of Chen et al. [8].175

Step 4. For a size α test, reject H0 : C0 = 1 if T̃1 > χ2
α(2).

In Step 2, we perform two more EM iterations without fixing τ to increase the power of the test, as recommended
by Chen et al. [8].

3.3. Testing for C greater than 1
Next, we consider a test H0 : C0 = C vs H1 : C0 = C + 1 for a C ≥ 2. We now refer to the model with180

C components as the reduced model and the one with C + 1 components as the full model. We first compute the
reduced model estimator θ̂θθred = arg maxθθθ∈Θ̄C `pen(θθθ). Assuming H0 is true, denote the true value of the parameter
by θθθ0 and order the true mean parameters by µ1,0 < · · · < µC,0. This parameter is not uniquely identified in the
full model: if any πc = 0 or (µc, σc) = (µc+1, σc+1) for some c ∈ {1, . . . , C}, the full model degenerates to the
reduced model. In order to make the reduced model identifiable in Θ̄C+1, we will impose constraints that πc > 0 for185

all c ∈ {1, . . . , C + 1} and πc/(πc + πc+1) = τ for some c and a fixed τ ∈ (0, 0.5] like we did in Section 3.2.
To test if a (C+1)-component mixture model fits the data better, we will test to see if any one of theC components

in the reduced model can be further split into two. Define non-overlapping intervals D1, . . . , DC such that µc,0 ∈ Dc.
For a fixed τ ∈ (0, 0.5] and c ∈ {1, . . . , C}, define neighborhoods in the parameter space Θ̄C+1:

NC+1(c, τ) =
{
θθθ ∈ Θ̄C+1 | πc/(πc + πc+1) = τ ; µc′ ∈ Dc′ for 1 ≤ c′ < c;

µc, µc+1 ∈ Dc;µc′ ∈ Dc′−1 for c+ 1 < c′ ≤ C
}
.

The neighborhood NC+1(c, τ) collects the parameters that split the cth component into two daughter components190

with a split proportion τ , while restricting the other mean parameters from changing too much. The definition of
NC+1(c, τ) requires knowledge about intervals {D1, . . . , DC} that contain the true mean parameters. In practice, we
already have a consistent estimator of µc,0 from fitting the reduced model. Replacing {Dc}Cc=1 with their consistent
estimates does not affect the asymptotic behavior of the test we are about to propose. A practical choice for {Dc}Cc=1 is
provided below in the test procedure. Like in Section 3.2, we do not restrict order between µc and µc+1 inNC+1(c, τ)195

because τ is restricted to (0, 0.5].
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Define the locally restricted full model estimator as

θ̂θθfull(c, τ) = arg max
θθθ∈NC+1(c,τ)

`pen(θθθ).

To obtain this estimator, we need some minor adjustments to the EM algorithm in Section 2.2. First, we update
πc + πc+1 as a single parameter and then assign values for πc and πc+1 proportional to τ . Second, after each M -step,
we enforce the restrictions in NC+1(c, τ) by forcing any µc′ stepping out of the boundary back to its predetermined
range. A similar scheme was used in Chen et al. [8]. The following convergence rate result echoes Proposition 2.200

It shows that the component that we are trying to split suffers a slower convergence rate, because it is overfitted in
NC+1(c, τ) as a mixture of two daughter components, and the rest of the parameters converge in root-n rate.

Proposition 4. Under H0 : C0 = C and Assumptions 1-8 in Section 8, for any fixed τ ∈ (0, 0.5],

µ̂c,full(c, τ)− µc,0 = Op(n
−1/8), µ̂c+1,full(c, τ)− µc,0 = Op(n

−1/8),

σ̂2
c,full(c, τ)− σ2

c,0 = Op(n
−1/4), σ̂2

c+1,full(c, τ)− σ2
c,0 = Op(n

−1/4),

and θ̂θθy,full(c, τ)− θθθy0 = Op(n
−1/2), θ̂θθγ,c′,full(c, τ)− θθθγ,c′,0 = Op(n

−1/2) for c′ < c, θ̂θθγ,c′,full(c, τ)− θθθγ,c′−1,0 =
Op(n

−1/2) for c′ > c+ 1, where θθθγ,c′ = (µc′ , σ
2
c′ , πc′)

>.205

The proof of Proposition 4 is relegated to Section 8. To test if any component in the reduced model can be further
divided into two, define the test statistic

TC(τ) = max
c∈{1,...,C}

TC(c, τ), where TC(c, τ) = 2[`n{θ̂θθfull(c, τ)} − `n(θ̂θθred)]. (6)

For any finite subset T of the interval (0, 0.5], define the test statistic

T̃C = max
τ∈T

TC(τ). (7)

In order to understand the asymptotic behavior of TC(c, τ), we adopt the reparameterization of Kasahara and
Shimotsu [19] in NC+1(c, τ). Define the new parameter vector as ψψψ(c, τ) = {θθθ>y , δδδ(c)>,µµµ(c)>,σσσ2(c)>, λµ, λσ}>210

such that 
µc
µc+1

σ2
c

σ2
c+1

 =


νµ + (1− τ)λµ
νµ − τλµ

νσ + (1− τ)(2λσ − 1+τ
3 λ2

µ)
νσ − τ(2λσ + 2−τ

3 λ2
µ)

 , (8)

and

δδδ(c) = (π1, . . . , πc−1, πc + πc+1, πc+2, . . . , πC)>,
µµµ(c) = (µ1, . . . , µc−1, νµ, µc+2, . . . , µC , µC+1)>,
σσσ2(c) = (σ2

1 , . . . , σ
2
c−1, νσ, σ2

c+2, . . . , σ
2
C , σ

2
C+1)>.

(9)

Denote the new parameter space as Θ̄ψ,C+1 and partition ψψψ into (ηηη>,λλλ>)> where

ηηη = {θθθ>y , δδδ(c)>,µµµ(c)>,σσσ2(c)>}>, λλλ = (λµ, λσ)>.

The reduced model is uniquely parameterized by θθθ∗ ∈ NC+1(c, τ), and it is reparameterized asψψψ∗ = {(ηηη∗)>, 0, 0}>,
or more specifically θθθy = θθθy,0, λλλ∗ = 0 and δδδ∗(c) = (π1,0, . . . , πC−1,0)>, µµµ∗(c) = (µ1,0, . . . , µC,0)>, σσσ2∗(c) =215

(σ2
1,0, . . . , σ

2
C,0)>. The reparameterization in (8) is beneficial because, to test if the cth component can be further split,

we can equivalently test if λλλ = 0.
Define

sss
(c)
i =

{
sss>ηηη,i, (sss

(c)
λλλ,i)
>
}>

, (10)
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where sssηηη,i = (sss>θθθy,i, sss
>
δδδ,i, sss

>
µ,i, sss

>
σ,i)
>, sss(c)
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(∫
ζiπcf

∗
c,iH

3∗
ci /

∫
ζig
∗,
∫
ζiπcf

∗
c,iH

4∗
ci /

∫
ζig
∗)>, sssθθθy,i =

∫
(∂ζi/∂θθθy)g∗/

∫
ζig
∗,

sssδδδ,i = {
∫
ζi(f

∗
1,i−f∗C,i)/

∫
ζig
∗
i , . . . ,

∫
ζi(f

∗
C−1,i−f∗C,i)/

∫
ζig
∗
i }>, sssµ,i = (

∫
ζiπ1f

∗
1,iH

1∗
1i /

∫
ζig
∗, . . . ,

∫
ζiπCf

∗
C,iH

1∗
Ci/

∫
ζig
∗)>220

and sssσ,i = (
∫
ζiπ1f

∗
1,iH

2∗
1i /

∫
ζig
∗, . . . ,

∫
ζiπCf

∗
C,iH

2∗
Ci/

∫
ζig
∗)>. Here, we use the short hand notation ζi =∏Ni

k=1 f(yik | xxxik, γi;θθθy), f∗c,i = fc(γi | µc,0, σc,0), g∗i = g(γi | θθθ∗γ) and Hk∗
ci = Hk {(γi − µc,0) /σc,0} /(k!σkc,0),

where Hk(·) is the kth Hermite Polynomial. The following proposition provides the asymptotic distribution of T̃C ,
the proof of which is provided in Section 8.

Proposition 5. Under H0 : C0 = C and Assumptions 1-8 listed in Section 8,225

T̃C → max
{

(SSS
(c)
λ|η,n)>(III(c)

λ|η)−1SSS
(c)
λ|η,n, c ∈ {1, . . . , C}

}
in distribution,

where SSS
(c)
λ|η,n = SSS

(c)
λ,n − III

(c)
ληIII

−1
η SSSη,n, III(c)

λ|η = III(c)
λ − III(c)

ληIII
−1
η (III(c)

λη )>, SSSη,n = n−1/2
∑n
i=1 sssη,i, SSS

(c)
λ,n =

n−1/2
∑n
i=1 sss

(c)
λ,i, III

(c)
λη = E{sss(c)

λλλ,isss
>
ηηη,i}, IIIη = E(sssη,nsss

>
η,n), and III(c)

λ = E{sss(c)
λλλ,i(sss

(c)
λλλ,i)
>}.

One can show (SSS
(c)
λ|η,n)>(III(c)

λ|η)−1SSS
(c)
λ|η,n → χ2(2) in distribution for each c, but the score vectors SSS(c)

λ|η,n are

correlated across different c’s and hence the distribution of T̃C in Proposition 5 is that of the maximum of a few corre-
lated χ2(2) random variables. In S2 of the supplementary material, we describe a simulation method to evaluate this230

asymptotic distribution. This procedure only requires estimating the covariance matrix of {SSS(c)
λ|η,n, c ∈ {1, . . . , C}}

and simulating Gaussian random variables. It is extremely fast and fundamentally different from bootstrap, which
requires fitting the model a large number of times to the bootstrap samples.

For any C ≥ 2, our test procedure for H0 : C0 = C is as follows.

Step 0. Obtain θ̂θθred and evaluate `n(θ̂θθred). Define subintervals D1 = [γ̂min, µ̂1,red/2+ µ̂2,red/2], D2 = (µ̂1,red/2+235

µ̂2,red/2, µ̂3,red/2 + µ̂2,red/2], . . . , DC = (µ̂C−1,red/2 + µ̂C,red/2, γ̂max], where γ̂min and γ̂max are the minimum
and maximum of the predicted γ’s under the reduced model.

Step 1. Obtain θ̂θθfull(c, τ) by maximizing the penalized likelihood in the restricted parameter neighborhoodNC+1(c, τ)
using the subintervals {Dk}Ck=1 defined in Step 0. The penalty on σ2

k is pn(σ2
k, σ̂

2
c′,red) if µk is restricted in Dc′ ,

k ∈ {1, . . . , C+ 1}, and an is chosen according equation (23) in Kasahara and Shimotsu [19]. If a µk steps outside of240

its range Dc′ specified by NC+1(c, τ) during the EM iterations, we simply set it back to the nearest boundary of Dc′ .
To ensure that the maximum of `pen is reached, we repeat the EM algorithm 100 times using randomly selected initial
values within NC+1(c, τ).

Step 2. Using θ̂θθfull(c, τ) as the starting value, conduct two more EM iterations without fixing τ . Use the resulting
estimator to evaluate TC(c, τ) in (6).245

Step 3. Repeat Steps 1 and 2 for each c ∈ {1, . . . , C} and τ ∈ T = {0.1, 0.3, 0.5}, and evaluate T̃C in (7).

Step 4. Evaluate the null distribution in Proposition 5 using the procedure described in S2 of the supplementary
material and compare T̃C with the null distribution to get the p value.

4. Use False Discovery Rate Control to Classify Units

A practical utility of model (1) is to classify units based on γi. To ease understanding, we frame the ensuing devel-250

opment in the context of the aforementioned transplant center evaluation. That is, different components in the mixture
density g(γ) represent different clusters in health care quality delivered by transplant centers, and we want to classify
the transplant centers into these clusters. However, these clusters are not considered to be equal: usually a subset of
clusters, denoted as C0, represent the norm of care quality, consisting of centers with average performances; those out
of C0 are centers either underperforming or outperforming the industrial standard. Following Efron’s “empirical null”255

idea [11], C0 ⊂ {1, . . . , C} can be identified as one or more components in the fitted mixture model, usually those in
the middle of g(γ) with high weights πc’s.

With C0 representing the distribution of normal care quality, one should classify an individual center into clusters
outside of C0 with extreme care, since it declares that center as an anomaly, and the false discovery rate needs to
be controlled. As pointed out in Sun et al. [33], classification problems with unequal losses in different classes260
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are naturally connected with multiple hypothesis tests. In our context, this classification problem is equivalent to
performing a test for each center on whether the center is in the empirical null C0. In other words, we test a sequence
of hypotheses Hi0 :

∑
c∈C0 Lic = 1, i ∈ {1, . . . , n}. Since C0 represents the average quality of care, center i is

considered “interesting” (either outperforming or underperforming) if Hi0 is rejected.
For a given subset of components C0, identify the “empirical null” distribution of γ as265

g0(γ | θθθγ) =
∑
c∈C0 πcfc(γ | µc, σc)/

∑
c∈C0 πc.

Since γi is not directly observed, our decision rule for Hi0 is based on the observed data XXXi and YYY i, denoted as
δi = δ(XXXi,YYY i;θθθ), where δi = 1 means center i is “interesting” and δi = 0 otherwise. The false discovery rate is
defined as

FDR = E

{∑n
i I(δi = 1,

∑
c∈C0 Lic = 1)∑n

i I(δi = 1)
|
n∑
i

I(δi = 1) > 0

}
Pr

{ n∑
i

I(δi = 1) > 0

}
.

When γi’s are observed, Sun and Cai [32] show that the oracle decision rule is based on the local FDR, TOR(γi) =
Pr(
∑
c∈C0 Lic = 1 | γi) =

∑
c∈C0 πcfc(γi)/g(γi). In our case, γi is not observed, and the local FDR is defined as270

the posterior probability given the observed data

lFDRi = Pr(
∑
c∈C0 Lic = 1 |XXXi,YYY i) =

∑
c∈C0 πc

∫
f(YYY i |XXXi, γ;βββ)fc(γ | µc, σc)dγ∫

f(YYY i |XXXi, γ;βββ)g(γ | θθθγ)dγ
. (11)

It is easy to show lFDRi = E{TOR(γi) |XXXi,YYY i}. Following Sun et al. [33], the multiple hypothesis testing problem
is related to a classification problem with the loss function

L (LLL,δδδ) = λ
∑
i δi(

∑
c∈C0 Lic) +

∑
i(1− δi)(1−

∑
c∈C0 Lic),

where λ is a penalty for false positives. Let R = E{L (LLL,δδδ)} be the risk of the classification problem. By Theorem
1 of Sun et al. [33], the optimal decision rule that minimizes this risk is δi = I(lFDRi < t) for some threshold t.275

Let lFDR(1) ≤ · · · ≤ lFDR(n) be the ranked lFDR values. For any α′ > 0, let k = maxi{ 1
i

∑i
j=1 lFDR(j) ≤

α′} and our FDR control procedure is to reject all Hi0 with the rank of lFDRi less or equal to k.

Proposition 6. Under the model in (1), the above procedure controls FDR at level α′.

A sketch proof of Proposition 6 is provided in Section 8. In practice, lFDR is estimated by substituting θθθ with
its estimator and the integrals in (11) are evaluated using Gaussian quadrature as described in Section S1 of the280

supplementary material.
To elucidate the connection between our FDR approach with [18] as suggested by a reviewer, we note that [18]

compared genes of healthy subjects with those of cancer patients, with a pre-determined group structure among genes
based on the prior biological knowledge. The group memberships among the genes were fixed, and randomness or
error in grouping was ignored. In contrast, our framework is unsupervised learning, wherein the groups or clusters285

among the transplant centers are unknown and detected using a mixture model.

5. Simulation Studies

5.1. Simulation 1: Estimation and random effect prediction

We simulate data for n = 282 transplant centers, which is the number of kidney transplant centers in the Organ
Procurement and Transplantation Network in the year 2008. The number of patients per center has a highly skewed290

distribution in the real data. To mimic such a distribution, we generateNi as the floor of the sum of Poisson distribution
P(55) and exponential distribution E(95). The response Yik is a binary variable generated using (1) with Pr(Yik =
1) = {1 + exp(−ξik)}−1, where ξik = XXX>ikβββ + γi,XXX is generated from a bivariate standard normal distribution and
βββ = (1, 1)>. We generate γi’s from the following Gaussian mixture models

Model 1: 0.5 N (−3.26, 1.22) + 0.5 N (0.74, 0.82), (12)
Model 2: 0.3 N (−5.26, 1.22) + 0.4 N (−0.26, 0.82) + 0.3 N (2.74, 0.92). (13)
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The parameters in these models are selected such that the marginal probability of {Yik = 1} for each model is roughly295

the same as for the real data and the overall mean of the normal mixture is fixed at -1.26. We repeat the simulation
200 times under each model and apply the estimation procedure in Section 2.2 to each simulated data set. Estimation
results for Model 1 and Model 2 in Simulation 1, under correctly specified number of components, are summarized
in Table 1 and 2 respectively. The mixture components in the estimated model are ranked according to the value µ̂c
to avoid the cluster label switching problem. We can see that the estimation results are quite reasonable: all biases300

are virtually zero; the standard errors for component means (µc) and component standard deviations (σc) are slightly
inflated compared with Table 1, which is understandable since we are fitting a more complicated mixture model; the
standard errors for βββ are not affected by the increased complicity of the latent mixture model.

Table 1
Summary of parameter estimation under Simulation
Model 1, which is a two-component latent Gaussian
mixture model defined in (12). The table contains the
true values of the parameters and the means, biases and
standard deviations of the estimators. The results are
based on 200 repetitions.

Parameter Truth Mean Bias Std
π1 0.50 0.50 -0.00 0.03
π2 0.50 0.50 0.00 0.03
µ1 -3.26 -3.26 0.00 0.13
µ2 0.74 0.74 -0.00 0.08
σ1 1.20 1.20 -0.00 0.13
σ2 0.80 0.80 -0.00 0.06
β1 1.00 1.00 0.00 0.02
β2 1.00 1.00 0.00 0.02

Table 2
Summary of parameter estimation under Simulation
Model 2, which is a three-component latent Gaussian
mixture model define in (13). The table contains the true
values of the parameters and the means, biases and
standard deviations of the estimators. The results are
based on 200 repetitions.

Parameter Truth Mean Bias Std
π1 0.30 0.30 0.00 0.02
π2 0.40 0.39 -0.01 0.06
π3 0.30 0.31 0.01 0.06
µ1 -5.26 -5.28 -0.02 0.22
µ2 -0.26 -0.27 -0.00 0.35
µ3 2.74 2.69 -0.05 0.34
σ1 1.20 1.18 -0.02 0.27
σ2 0.80 0.80 0.00 0.19
σ3 0.90 0.93 0.03 0.25
β1 1.00 1.00 0.00 0.02
β2 1.00 1.00 0.00 0.02

Fig. 1 illustrates the effect of model misspecification on random effect prediction. The data are generated in a
typical simulation run under simulation Model 1. The left panel shows the prediction results of a common generalized305

linear mixed model under Gaussian random effect assumption, and the right panel shows the results of the proposed
model. In both panels, we compare the true density of γ with the estimated density using the fitted model and the
kernel density of the predicted γ using the fitted model. As we can see from the left panel, prediction under the mis-
specified Gaussian random effect assumption suffers from a shrinkage effect that the values of γ̂ are pushed towards
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the center of the distribution so that the posterior distribution resembles the shape of a Gaussian distribution. The310

right panel shows that prediction under our proposed model does not suffer from such a shrinkage effect. Our model
recovers the shape of the latent variable distribution and produces better predictions.

0.0
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(a) (b)

Fig. 1. Simulation Model 1: Impact of random effect assumption. Panel (a) shows results from a common generalized linear mixed model with a
mis-specified Gaussian random effect assumption; Panel (b) shows results of the proposed latent Gaussian mixture model with a correctly specified
number of components. In both panels, the solid curve is the true density for γ, the dashed curve is the estimated density of γ using the fitted model,
and the dot-dash curve is the kernel density of the predicted random effects.

In Table 3, we also present the mean square prediction error of the proposed model averaged over 200 simulation
runs, Monte Carlo standard deviation of the prediction error, and the same quantities under GLMM with Gaussian
random effects. As we can see the prediction error under the common GLMM with Gaussian assumption has much315

bigger prediction error than the proposed model. The gap between the prediction errors from the two models is even
bigger than for Model 1, because Model 2 is even more heterogeneous.

Table 3
Mean squared prediction errors for the random effects under Simulation
Models 1 and 2, defined in (12) and (13), respectively. The fitted models
are Gaussian (GLMM with Gaussian random effects) and Gaussian
Mixture (the proposed model). Mean: Mean Squared Prediction Error
averaged over 200 replicates; Std: standard deviation of the prediction
error.

Simulation Model Fitted Model Mean Std
Model 1 Gaussian 0.42 0.04

Gaussian Mixture 0.36 0.04
Model 2 Gaussian 0.70 0.07

Gaussian Mixture 0.54 0.06

5.2. Simulation 2: Hypothesis tests
Next, we investigate the validity and power for the proposed tests in Section 3. We generate simulated data under

similar settings as in Simulation 1, while γi’s are generated from three models: Model 1, Model 2 and320

Model 0: N (−1.26, 0.52).

The three models represent latent Gaussian mixture models with orders 1 to 3. We generate 200 simulated data sets
under each of the three models, and compute T̃1 in data under Model 0, T̃2 under Model 1 and T̃3 under Model 2.
The empirical distributions of the three quantities represent the null distribution for the test statistics under the null
hypotheses C0 = 1, 2 and 3 respectively. These empirical distributions are provided in Fig. 2 and compared with the
asymptotic distributions provided in Section 3. In each panel of Fig. 2, the dash curve is the kernel density based on325
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200 replicates of the test statistic and the solid curve is the asymptotic distribution. The asymptotic distributions for T̃2

and T̃3 are based on 10,000 simulations using the procedure described in Section S2 of the supplementary material. As
we can see, the empirical distributions of the test statistics are remarkably close to the asymptotic distribution, which
also shows the validity of the proposed tests. We use T̃1 - T̃3 to test the three null hypotheses, and the empirical sizes
of these tests are 0.06, 0.03 and 0.05 respectively, which are close to the nominal level 0.05.330
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Fig. 2. Empirical (dash) and asymptotic (solid) distributions of the test statistics T̃1, T̃2 and T̃3 (defined in (5) and (7)) under the null hypotheses.
The vertical dotted line marks the 95% quantile of the asymptotic distribution. The empirical distributions are obtained based on 200 simulations
and the asymptotic distributions are described in Propositions 3 and 5.

Next, we illustrate the power of the tests. The response Y is generated the same way as in Section 5.1, while γ is
generated from the following two models:

Model 3: 0.6 N (−2.26, 1.22) + 0.4 N (−0.46, 0.82), (14)
Model 4: 0.3 N (−3.26, 1.22) + 0.4 N (−0.26, 0.82) + 0.3 N (2.34, 0.92). (15)

Compared with the Models 1 and 2 considered in Section 5.1, the individual components in Models 3 and 4 are less
separated, making it harder to detect the real order of these models, especially when γ is an unobserved latent variable.

To examine the power of the proposed locally restricted likelihood ratio tests in Section 3, we test H0 : C0 = 1335

when the data are generated from Model 3, and test H0 : C0 = 2 when the data are generated from Model 4. In Fig.
3, we present the empirical distributions of the test statistics based on 200 simulation runs. When performing 5% tests,
the empirical powers of the proposed tests are 91% under Model 3 and 95.5% under Model 4. We have also examined
the power of the homogeneity test when γi’s are simulated from Model 1 and the power of the test on H0 : C0 = 2
when γi’s are generated from Model 2. The powers under both of these cases virtually equal to 1.340

Since a sequential test can be used for model selection purposes, it is of interest to compare the test based procedure
with other model selection procedures such as the Bayesian information criterion (BIC) or the Akaike information
criterion (AIC), which are the negative log likelihood for the observed data plus a penalty on the number of free
parameters in the model. Specifically, BIC for a C component latent Gaussian mixture model is

BIC(C) = −2`n(θθθ;YYY ,XXX) + (3C − 1) ln(n),

where `n(θθθ;YYY ,XXX) is the marginal likelihood defined as (3) and n is the number of transplant centers. AIC is similarly
defined replacing the ln(n) factor in the BIC by 2. In Table 4, we show the frequency of correctly choosing the
number of mixture components for Models 3 and 4 using various model selection methods, including our sequential
test procedure with significant levels 0.01, 0.05 and 0.1 and the AIC and BIC. The reported frequencies are based on
200 stimulation runs. As we can see, the sequential test procedure outperforms the two information criteria, especially345

the BIC, which by classic wisdom is a consistent model selection criterion. Among the three significant levels for the
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Fig. 3. Power of the locally restricted likelihood ratio tests. Panels (a) and (c) illustrate the true density (solid) of γ under Model 3 and 4 respectively.
The dashed lines represent the individual components. Panels (b) and (d) illustrate the empirical distributions (dash) of T̃1 and T̃2 comparing to the
corresponding null distributions (solid). The vertical dotted line marks the 95% quantile of the null distribution.

sequential test procedure, α = 0.05 provides the best results. As shown in Fig. 3, the mixture components in Models
3 and 4 overlap a lot and are hence hard to separate, which may explain the miserable failure of the BIC. The BIC puts
a higher penalty on model complexity and therefore tends to choose a lower number of components than the truth.
The AIC is more liberal and hence behaves more competitively in these examples, however we do see in other settings350

AIC overestimates the number of mixture components.

Table 4
Empirical frequency of choosing the correct number of mixture components for various
model selection methods, including the sequential test procedure with different levels of
α and the AIC and BIC. The data are generated from Simulation Models 3 and 4 (define
in (14) and (15), respectively) and the results are based on 200 repetitions.

Simulation Model α=0.01 α=0.05 α=0.10 BIC AIC
Model 3 75.5% 88% 88% 39% 78.5%
Model 4 81% 86% 80.5% 50.5% 73%

6. Data Analysis

6.1. Background

Renal failure is one of the most common and severe diseases in the United States. In 2013, a total of 117,162 new
cases were reported (www.USRDS.org). Kidney transplantation, a primary therapy for end stage renal disease, is a355
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complicated procedure typically involving transplant surgeons and physicians, coordinators, social workers, financial
counselors, nutritionists, psychologists and referring physicians. The quality of care delivered by a transplant center
is often assessed by patient survival, such as the 5 year post-transplant survival rate.

To provide a fair assessment of each transplant center, both patient level risk factors and an effect representing
the quality of care of the transplant center are often included in the risk adjustment model. Many statisticians and360

health policy researchers model the transplant center effects as random effects that follow a Gaussian distribution
[21, 22, 24]. This approach ignores the heterogeneity among the transplant centers, and the assumption of a common
Gaussian distribution induces a shrinkage effect that makes the predicted random effects similar in value. He et al. [14]
argue that borrowing information from other transplant centers is not fair when the goal of the study is to evaluate the
centers and advocate modeling the transplant center effects as fixed effects. However, in such a fixed effects model, the365

number of parameters is large, making statistical inference numerically unstable, especially when the center size varies
substantially. A comprehensive critique of these two approaches can be found in a report prepared by the Committee
of Presidents of Statistical Societies (COPSS) through a contract with Centers for Medicare and Medicaid Services
[2].

Our proposed latent Gaussian mixture model bridges the gap between the existing approaches and has two ad-370

vantages. First, the model allows the presence of heterogeneities (e.g., the existence of clusters or subpopulations)
among the transplant centers, making it a natural framework to identify centers with anomaly performance. Second,
the mixture model can be considered as a compromise between the random effects model and the fixed effects model:
it reduces to the random effects model when there is only one component in the mixture distribution and it becomes
the fixed effects model if each transplant center forms a cluster of its own.375

Our motivating data are obtained from the Organ Procurement and Transplantation Network, administered by the
U.S. Department of Health and Human Services. The data system includes data on all donors, wait-listed candidates,
and transplant recipients in the U.S. Included in the analysis are adult renal failure patients (≥ 18 years of age) who
underwent deceased donor kidney transplantation between January 1987 and December 2008. This cohort includes
N = 269, 386 patients receiving kidney transplants from a total of n = 296 centers. The number of transplants380

performed by a center, Ni, has a highly skewed distribution. Most centers performed a few hundred cases of kidney
transplantation, but there are centers that took over 5000 cases. The patient level response is the 5-year survival status
(1=death and -1=survival) and there is no censoring due to routine and rigorous tracking of the patients. The overall
5-year failure rate is 27.59%.

An important patient level covariate that is directly related to the success of kidney transplants is x1 = cold ischemic385

time, which is the time that the donor kidney was kept in a refrigerator before being received by the patient. Other
patient level covariates include x2 = age at transplantation and x3 = sex of the patient (1 = male, 0 = female), while
x4–x6 are indicators for Body Mass Index (BMI) in the intervals (22, 25], (25, 30] and 30+ respectively. Since the
data were collected over a time span of two decades, it is possible that the technology used in transplant surgeries
has improved over time, which also affects the patient level outcome. Therefore, in addition to the other covariates390

described above, we also include time effects into the model. Using cases before 1990 as the baseline, covariates
x7–x10 are indicators for cases performed in 1990–1994, 1995–1999, 2000–2003 and 2004–2008, respectively.

6.2. Model fitting

We fit the proposed model to the data, using a random effect following a Gaussian mixture distribution to represent
the care quality of a center. Using the proposed test procedure to decide the order of the latent Gaussian mixture model,395

the p-value is 0.0016 for H0 : C0 = 1 vs. H1 : C0 = 2; and 0.4076 for H0 : C0 = 2 vs. H1 : C0 = 3. We conclude
that the care quality among the kidney transplant centers is not homogeneous and the distribution of the random effect
is adequately described by a two-component Gaussian mixture. In this particular dataset, BIC happens to agree with
the sequential test procedure and selects a two-component model as well. The estimated fixed effects under our final
model are summarized in Table 5, where the standard errors are obtained using the asymptotic expansion (24) in the400

supplementary material. As we can see, all covariates considered are significant. Since we code Y = 1 as death, the
results in Table 5 imply that having longer donor kidney delivery times, being older, being male, and having higher
BMI all lead to increased risk of patient death. The coefficients for x7–x10 are negative and decreasing, confirming
that the overall death rate is decreasing over time.

The estimated Gaussian mixture model for the random effect γ is

0.98 N (−0.969, 0.2442) + 0.02 N (−2.528, 0.2342).
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Table 5
U.S. Organ Procurement and Transplantation Network data analysis:
estimated fixed effects, standard errors, z-values and p-values. The
covariates are x1 = cold ischemic time, x2 = age, x3 = sex (1 = male, 0
= female); x4–x6 are indicators for BMI in the intervals (22, 25], (25,
30] and 30+ respectively; x7–x10 are indicators for cases performed in
1990–1994, 1995–1999, 2000–2003 and 2004–2008, respectively. .

Covariate Estimate Std. Error z-value p-value
x1 0.02 0.00 63.80 0.00
x2 0.01 0.00 33.58 0.00
x3 0.03 0.01 3.27 0.00
x4 0.08 0.02 5.03 0.00
x5 0.12 0.01 9.31 0.00
x6 0.23 0.01 15.26 0.00
x7 -0.27 0.01 -18.60 0.00
x8 -0.53 0.01 -41.61 0.00
x9 -0.63 0.01 -45.93 0.00
x10 -0.80 0.01 -62.07 0.00

The mixture density g(γ), as well as its individual components, are illustrated in Fig. 4 (a). The majority of the centers405

have rather similar care quality, but there is also a small cluster of transplant centers that have lower death rates after
taking into account all the patient level covariates and these are the centers that are out-performing the others. In Fig.
4 (b), we also compare the predicted random effects under the standard GLMM with those under our latent Gaussian
mixture model. While the predicted γ is almost the same under both models for the majority of the centers, the care
quality effects for the a few centers in the left tail are severely shrunken towards the mean if we assume the random410

effects follow a homogeneous Gaussian distribution.
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Fig. 4. (a) Estimated latent Gaussian mixture model for the kidney transplant data. The solid line and dashed line represent two components. (b)
Comparison of the predicted random effects under Gaussian and Gaussian mixture model assumptions.

Since the second component is small, we also run additional simulations to confirm that our methodology really
works under such situations. To mimic the real data, we simulate binary Yik from a logistic GLMM using the covariates

14



from the real data, set βββ as the estimated values in Table 5 and generate γγγ from the following mixture model:

(1− π2)N (−0.969, 0.2442) + π2N (−2.528, 0.2342).

We set π2 to be 0.005, 0.01, 0.02 or 0.05, and simulate 200 data sets under each setting. The empirical powers for
testing H0 : C0 = 1 are 47%, 78.5%, 97.5% and 100% respectively. These results show that our method can detect a
small component under the sample size of the real data and our discovery is likely to be true.

6.3. Performance evaluation415

Based on the fitted model for γ in Fig. 4 (a), the majority of the centers provide similar care for their patients.
However, the smaller mixture component consists of transplant centers with lower adjusted mortality rates, and these
centers outperform the rest. We let the empirical null distribution be the bigger component of the fitted mixture model.
Using the evaluation procedure described in Section 4 with the false discovery rate controlled at 5%, we find three
transplant centers that outperform the rest. In Table 6, we list the IDs of the three outperforming centers, as well as420

their lFDR, γ̂, number of cases treated, and average 5-year survival rate.

Table 6
The out-performing centers detected using local false discovery rate in the
kidney transplant data: ID of the transplant center, value of the lFDR defined
in (11), predicted random effect γ̂, number of patients treated in the transplant
center and 5-year patient survival rate.

Center ID lFDR γ̂ Num. Patient Survival Rate
#287 0.00 -2.68 114 0.97

#10 0.01 -2.58 125 0.94
#28 0.07 -2.34 120 0.84

7. Summary

We propose a GLMM model with latent Gaussian mixture random effects that provides a natural framework to
model the non-homogeneity among transplant centers and to rank their care quality. We demonstrate that the predicted
random effects can be severely shrunken toward the mean if the distribution of the random effect is mis-specified as425

Gaussian. This shrinkage effect is quite prominent for the centers in the tails of the population. The latent Gaussian
mixture model is not strongly identifiable and suffers from a slow convergence rate when the number of mixture
components is larger than the truth. We develop test procedures to decide the number of mixture components. Even
though the proposed tests are designed mainly for testing scientific claims and providing uncertainty assessments, they
can also be used for model selection and our simulation results in Section 5.2 suggest that the sequential test procedure430

outperforms a naive Bayesian information criterion. We leave development of a consistent model selection procedure
for the latent Gaussian mixture model for future work. The proposed test procedures are computationally intensive,
especially when analyzing large medical data sets like the OPTN data, since we have to try hundreds of initial values
to find the biggest likelihood ratio. These computations are best handled using parallel computing. Our open source
software package LatentGaussianMixtureModel written in Julia will be made available on the corresponding435

author’s website. Even though comparing transplant centers using the five-year survival rates of the patients has been
the standard in the health policy literature, we acknowledge the fact that survival time is a more informative response
variable. We intend to explore extending the latent Gaussian mixture model to survival outcomes in future research.

8. Technical Proofs

Assumptions440

For simplicity, assume Ni = n0 for i ∈ {1, . . . , n}. Let (XXX,YYY ) be a generic copy of (XXXi,YYY i) and have a density

f(xxx,yyy | θθθ) = f(xxx)

∫ { n0∏
k=1

f(yk | xxxk, γ;βββ)g(γ | θθθγ)

}
dγ, (16)

15



where yyy = (y1, . . . , yn0)>, xxx = (xxx1, . . . ,xxxn0)> and f(xxx) is the joint density ofXXX . Define metric

δ(θθθ′, θθθ) =
∑
l

| arctan θ′l − arctan θl|,

where θl is the l-th entry of θθθ. All convergences in the parameter space are defined with respect to the metric δ defined
above.

Assumptions 1- 5 below are equivalent to those in Kiefer and Wolfowitz [20] and Hathaway [13] for the consistency
result. Assumption 6 is a regularity assumption on the penalty function used in Chen et al. [9] and [19]. Assumption445

7 and 8 are additional assumptions for Propositions 2 and 4 respectively.

Assumption 1. f(xxx,yyy | θθθ) is a density (the Radon-Nikodym derivative of a probability measure) with respect to a
σ-finite measure µ on the space of (xxx,yyy).

Assumption 2 (Continuity Assumption). The definition of f(xxx,yyy | θθθ) can be extended to the closure of the parameter
space Θ̄C such that, for any θθθ∗ in Θ̄C and any Cauchy sequence {θθθ1, θθθ2, . . .} ⊂ Θ̄C , f(xxx,yyy | θθθi) → f(xxx,yyy | θθθ∗) if450

θθθi → θθθ∗.

Assumption 3. For any θθθ ∈ Θ̄C and any ρ > 0, ω(xxx,yyy | θθθ, ρ) is a measurable function of (xxx,yyy), where

ω(xxx,yyy | θθθ, ρ) = sup f(xxx,yyy | θθθ′),

the supreme being taken over all θθθ′ in Θ̄C for which δ(θθθ′, θθθ) < ρ.

Assumption 4 (Identifiability Assumption). Identify Θ̄C as the quotient topological space such that

Fθθθ0 =

{
θθθ ∈ Θ̄C :

∫ (xxx′,yyy′)

−∞
f(xxx,yyy | θθθ)dµ(xxx,yyy) =

∫ (xxx′,yyy′)

−∞
f(xxx,yyy, | θθθ0)dµ(xxx,yyy) for any (xxx′, yyy′)

}
is identified as a single point.

Assumption 5. For any θθθ′ in Θ̄C ,

lim
ρ↓0

Eθθθ

[
ln
ω(xxx,yyy | θθθ′, ρ)

f(xxx,yyy | θθθ)

]+

<∞,

where Eθθθ is the expectation under f(xxx,yyy | θθθ) and [x]+ equals x if x > 0 and 0 otherwise.

Assumption 6. The penalty function satisfies, (a) supσ2>0 max{0, pn(σ2)} = o(n), pn(σ2) = o(n) for any fixed σ2;455

(b) for any σ ∈ (0, 8/(nM)], pn(σ2) ≤ 5{ln(n)}2 ln(σ) for sufficient large n, where M = supxxx,yyy f(yyy | xxx;θθθ0); (c)
p′n(σ2) = op(n

1/4) for any fixed σ2.

Assumption 7. When the true number of component is C0 = 1, assume that III = E(IIIn) is a finite, positive definite
matrix, where IIIn is defined in (18).

Assumption 8. When θθθ ∈ ΘC , assume that III(c) defined in (23) is positive definite, for c ∈ {1, . . . , C}.460

Remark 3. The continuity assumption (Assumption 2) is not satisfied by the finite Gaussian mixture model on the
boundary of the parameters space, since the likelihood diverges∞ if any σ2

c → 0. That is the reason that Hathaway
[13] restricted the estimation in the interior of the parameter space. However, in our problem, the finite Gaussian
mixture density g(γ) is convoluted with proper density f(yyy | xxx, γ) in (16). Since the integral is bounded, unbounded
likelihood is no longer a concern and the condition is satisfied even on boundary points of Θ̄C .465

Remark 4. Assumption 4 is a modified version of the identifiability assumption in Kiefer and Wolfowitz [20]. The
same assumption is used in Hathaway [13]. The consistency result in Proposition 1 means consistently estimating the
mixture density rather than the parameters.

Proof of Proposition 1
Using similar arguments as in Chen et al. [9] one can show, as long as the penalty function satisfies Assumption 6,470

the maximizer of (2) is restricted in an interior region of the parameter space Θ̄(ε) = {θθθ ∈ Θ̄; minc σ
2
c ≥ ε} for some

positive constant ε. Since the penalty term is of order o(n), which is much smaller than the likelihood function, the
maximum penalized likelihood estimator θ̂θθ in the restricted parameter space belong to the class of modified maximum
likelihood estimator in Kiefer and Wolfowitz [20] and the strong consistency of θ̂θθ follows from their theory.
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Proof of Proposition 2475

Denote for convenience ζi =
∏n0

k=1 f(yik | xxxik, γ;θθθy). After fixing π1 = τ , the log likelihood is

`n(θθθ) =

n∑
i=1

ln

∫
ζi{τf1(γ | µ1, σ1) + (1− τ)f2(γ | µ2, σ2)}dγ.

We adopt the re-parameterization of Kasahara and Shimotsu [19],
µ1

µ2

σ2
1

σ2
2

 =


νµ + (1− τ)λµ
νµ − τλµ

νσ + (1− τ)(2λσ − 1+τ
3 λ2

µ)
νσ − τ(2λσ + 2−τ

3 λ2
µ)

 , (17)

collect all parameters except τ into ψψψ(τ) = (ηηη>,λλλ>)>, where ηηη = (θθθ>y , νµ, νσ)> and λλλ = (λµ, λσ)>. Denote Θ̄ψ(τ)

as the parameter space ofψψψ corresponding to Θ̄2(τ). Sometimes we suppress the dependence ofψψψ(τ) on τ . Under the
null hypothesis C0 = 1, λµ = λσ = 0 and the true parameter vector is ψψψ∗ = {(ηηη∗)>, 0, 0}>.480

For any multivariate function f(xxx), denote ∇xxxkf as its k-th derivative, which is a multidimensional array. By
similar calculations as in Proposition C and equation (29) in the supplementary appendix of Kasahara and Shimotsu
[19], we can show

∇λkµ,ηηη``n(ψψψ∗, τ) = 0, k ∈ {1, 2, 3}, ` ∈ {0, 1, . . .};

∇λkµ`n(ψψψ∗, τ) = Op(n
1/2), k ∈ {4, 5, 6, 7};

∇λσηηη`,τ `n(ψψψ∗) = 0, ` ∈ {0, 1, . . .};
∇λkσ`n(ψψψ∗, τ) = Op(n

1/2), k ∈ {2, 3};

∇λµλ2
σ
`n(ψψψ∗, τ) = Op(n

1/2);

∇λkµλσ`n(ψψψ∗, τ) = Op(n
1/2), k ∈ {1, . . . , 4}.

Denote g∗(γ) = g(γ;ψψψ∗) as the true density of γ under the null hypothesis. Using a ninth order Taylor expansion
of `pen around ψψψ∗ as in Kasahara and Shimotsu [19], we get the following local quadratic approximation to the485

penalized likelihood

`pen(ψψψ, τ)− `pen(ψψψ∗, τ) = tttn(ψψψ, τ)>SSSn −
1

2
tttn(ψψψ, τ)>IIIntttn(ψψψ, τ) +Rn(ψψψ, τ)

+

2∑
c=1

[pn{σ2
c (ψψψ, τ)} − pn{σ2

c (ψψψ∗, τ)}], (18)

where tttn(ψψψ, τ) = (tttηηη,n, tttλλλ,n)>, SSSn =
∑n
i=1 sssi/

√
n, IIIn = 1

n

∑n
i=1 sssisss

>
i , sssi = (sss>ηηη,i, sss

>
λλλ,i)
>, σ2

c (ψψψ, τ) is the variance
as a function of ψψψ defined by the reparameterization in (17),

tttηηη,n =
√
n(ηηη − ηηη∗), tttλλλ,n =

{
6
√
nτ(1− τ)λµλσ√

nτ(1− τ)(12λ2
σ − 2

3 (τ2 − τ + 1)λ4
µ)

}
,

sssηηη,i =

 sssθθθy,i
sνµ,i
sνσ,i

 =


∫

(∂ζi/∂θθθy)g∗∫
ζig∗∫

ζig
∗H1∗

i∫
ζig∗∫

ζig
∗H2∗

i∫
ζig∗

 , sssλλλ,i =

 ∫
ζig
∗H3∗

i∫
ζig∗∫

ζig
∗H4∗

i∫
ζig∗

 ,

Rn(ψψψ, τ) = [O(‖ψψψ −ψψψ∗‖) + o(1)]×Op[{1 + ‖tttn(ψψψ, τ)‖2}].

Here,

Hk∗
i = Hk(

γi − µ∗γ
σ∗γ

)/{k!(σ∗γ)k},

where Hk(x) is the kth order Hermite polynomial, e.g., H0(x) = 1, H1(x) = x, H2(x) = x2− 1, H3(x) = x3− 3x490

and H4(x) = x4 − 6x2 + 3.

17



By consistency of the estimator, we can focus on ψψψ such that ‖ψψψ − ψψψ∗‖ = op(1) and hence Rn(ψψψ, τ) =
op(‖tttn(ψψψ, τ)‖2). By Assumption 6, p′n(σ2) = op(n

1/4), and by (17)

pn{σ2
c (ψψψ, τ)} − pn{σ2

c (ψψψ∗, τ)} = op(n
1/4)(|λσ|+ λ2

µ) = op{‖tttn(ψψψ, τ)‖}.

Therefore, `pen(ψψψ, τ)− `pen(ψψψ∗, τ) is dominated by the quadratic function defined by the first two terms on the right
hand side of (18). It is then easy to see t̂ttn = tttn{ψ̂ψψ(τ), τ} that maximizes `pen(ψψψ, τ)− `pen(ψψψ∗, τ) is495

t̂ttn = III−1
n SSSn + op(1). (19)

Under Assumption 7, III = E(IIIn) is a positive definite matrix. By the law of large numbers, IIIn → III in probability.
On the other hand, by the central limit theorem, SSSn → N(0,III) in distribution. Therefore, t̂ttn → N(0,III−1) in
distribution, which also implies

β̂ββfull(τ)− βββ0 = Op(n
−1/2), λ̂µ = Op(n

−1/8), λ̂σ = Op(n
−1/4).

The convergence rate of θ̂θθγ,full(τ) is determined by those of λ̂µ and λ̂σ .

Proof of Proposition 3500

Following arguments in Section 8, we have SSSn → N(0,III) in distribution, where III = E(IIIn). Under the full
model, for any ψψψ such that tttn = Op(1), using the local quadratic approximation (18) we have

2{`n(ψψψ, τ)− `n(ψψψ∗, τ)} = 2ttt>nSSSn − ttt>n IIIntttn + op(1) = 2ttt>nSSSn − ttt>nIIItttn + op(1).

Let ψ̂ψψfull(τ) be maximizer of (18) under the full model with 2 components, and it is the reparameterized version of
θ̂θθfull(τ). By (19), tttn{ψ̂ψψfull(τ)} = III−1SSSn + op(1) and hence

2[`n{ψ̂ψψfull(τ), τ} − `n(ψψψ∗, τ)] = SSS>nIII
−1SSSn + op(1). (20)

Partition SSSn into
(
SSSη,n
SSSλ,n

)
according to the partition of ψψψ. With a similar partition to III, we have505

III−1 =

(
IIIη IIIηλ
IIIλη IIIλ

)−1

=

{
III−1
η + III−1

η IIIηλIII
−1
λ|ηIIIληIII

−1
η −III−1

η IIIηλIII
−1
λ|η

(−III−1
η IIIηλIII

−1
λ|η)> III−1

λ|η

}
,

where IIIλ|η = IIIλ −IIIληIII−1
η IIIηλ. Define

SSSλ|η,n = SSSλ,n −IIIληIII−1
η SSSη,n,

and by simple algebra

SSS>nIII
−1SSSn = SSS>η,nIII

−1
η SSSη,n +SSS>λ|η,nIII

−1
λ|ηSSSλ|η,n. (21)

Under the reduced model, λλλ = 0, and hence tttλn = SSSλn = 0. Using the same local quadratic approximation, for a
parameter vector ψψψred in the reduced model,

2{`n(ψψψred, τ)− `n(ψψψ∗, τ)} = 2ttt>ηnSSSηn − ttt>ηnIIIηtttηn + op(1).

Let ψ̂ψψred be the estimator that maximizes the reduced model penalized likelihood, then tttηn(ψ̂ψψred) = III−1
η SSSηn+ op(1),510

and

2{`n(ψ̂ψψred, τ)− `n(ψψψ∗, τ)} = SSS>η,nIII
−1
η SSSη,n + op(1). (22)

Combining (20), (21) and (22),

T1(τ) = 2[`n{ψ̂ψψfull(τ), τ} − `n(ψ̂ψψred, τ)] = SSS>λ|η,nIII
−1
λ|ηSSSλ|η,n + op(1)→ χ2(2) in distribution.

Because SSSλ|η,n and IIIλ|η do not depend on τ and T is a finite set,

T̃1 = max
τ∈T

T1(τ) = SSS>λ|η,nIII
−1
λ|ηSSSλ|η,n + op(1)→ χ2(2) in distribution.
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Proof of Proposition 4
Denote ζi =

∏n0

k=1 f(yik | xxxik, γ;θθθy) as in Section 8. Under the local reparameterization in NC+1(c, τ) defined515

in (3.9) and (3.10) in Section 3.2, the log likelihood is

`n(θθθ) =

n∑
i=1

ln

∫
ζigc,τ (γ)dγ,

where

gc,τ (γ) = (πc + πc+1)τf(γ | µc, σc) + (πc + πc+1)(1− τ)f(γ | µc+1, σc+1) +
∑
c′ 6=c

πc′fc′(γ | µc′ , σc′)

= (πc + πc+1)τf

{
γ | νµ + (1− τ)λµ, νσ + (1− τ)(2λσ −

1 + τ

3
λ2
µ)

}
+(πc + πc+1)(1− τ)f

{
γ | νµ − τλµ, νσ − τ(2λσ +

2− τ
3

λ2
µ)

}
+
∑
c′ 6=c

πc′fc′(γ | µc′ , σc′).

The score function with respect to ψψψ(c, τ) is sss(c)
i = (sss>ηηη,i, (sss

(c)
λλλ,i)
>)>, which is defined in (3.11). Define SSS(c)

n =

n−1/2
∑n
i=1 sss

(c)
i , III(c)

n = n−1
∑n
i=1 sss

(c)
i (sss

(c)
i )> and tttn{ψψψ(c, τ), τ} = (tttηηη,n, tttλλλ,n)> where

tttηηη,n =
√
n(ηηη − ηηη∗), tttλλλ,n =

{
6
√
nτ(1− τ)λµλσ√

nτ(1− τ)(12λ2
σ − 2

3 (τ2 − τ + 1)λ4
µ)

}
.

Similar to (18), we can derive a local quadratic approximation to the likelihood520

`n{ψψψ(c, τ), τ} − `n(ψψψ∗) = tttn{ψψψ(c, τ), τ}>SSS(c)
n −

1

2
tttn{ψψψ(c, τ), τ}>III(c)

n tttn{ψψψ(c, τ), τ}+Rn,c{ψψψ(c, τ), τ},

where Rn(ψψψ, τ) = [O(‖ψψψ −ψψψ∗‖) + o(1)]×Op[{1 + ‖tttn(ψψψ, τ)‖2}].
Put ψ̂ψψfull(c, τ) = arg maxψψψ(c,τ)∈Θψ(c,τ) `pen {ψψψ(c, τ), τ} and t̂ttn = tttn

{
ψ̂ψψfull(c, τ), τ

}
. Using similar arguments

as in Section 8, we can show that the penalty function is asymptotically negligible when ψψψ(c, τ) is in a consistent
neighborhood of ψψψ∗. Define

III(c) = E(III(c)
n ) = var(sss(c)

i ), (23)

which is positive definite under Assumption 8. It is then easy to see that525

t̂ttn = (III(c))−1SSS(c)
n + op(1)→ N{0, (III(c))−1} in distribution. (24)

By the definition of tttn{ψψψ(c, τ), τ}, we obtain η̂ηη − ηηη∗ = Op(n
−1/2), λ̂µ = Op(n

−1/8) and λ̂σ = Op(n
−1/4). Clearly

µ̂c,full(c, τ) and µ̂c+1,full(c, τ) converge to the true parameter µc,0 at a Op(n−1/8) rate. Since the convergence
rates for σ̂2

c,full(c, τ) and σ̂2
c+1,full(c, τ) are determined by λ̂2

µ and λ̂σ , they converge to the true parameter σ2
c,0 in

Op(n
−1/4) rate. The rest of the parameters in θ̂θθfull(c, τ) converge in a Op(n−1/2) rate.

Proof of Proposition 5530

We first derive the asymptotic properties for TC(c, τ). By (23) and (24),

2[`n{ψ̂ψψfull(c, τ), τ} − `n(ψψψ∗)] = (SSS(c)
n )>(III(c))−1SSS(c)

n + op(1),

where SSS(c)
n → N (0,III(c)) in distribution by the central limit theorem.

The reduced model estimator ψ̂ψψred(c, τ) is obtained by minimizing the penalized likelihood while restricting λµ =
λσ = 0. by similar derivations under the full model, we get

2[`n{ψ̂ψψred(c, τ), τ} − `n(ψψψ∗)] = SSS>η,nIII
−1
η SSSη,n + op(1),
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where SSSη,n and IIIη are sub-vector or sub-matrix of SSS(c)
n and III(c) as defined in Proposition 5.535

Using algebra similar to that in Section 8, we get

TC(c, τ) = 2[`n{ψ̂ψψfull(c, τ), τ} − `n{ψ̂ψψred(c, τ), τ}] = (SSS
(c)
λ|η,n)>(III(c)

λ|η)−1SSS
(c)
λ|η,n + op(1)→ χ2(2) in distribution.

Therefore,

TC(τ) = max
c
TC(c, τ)→ max

c∈{1,...,C}
{(SSS(c)

λ|η,n)>(III(c)
λ|η)−1SSS

(c)
λ|η,n} in distribution.

Since none of the quantities (SSS
(c)
λ|η,n)>(III(c)

λ|η)−1SSS
(c)
λ|η,n depends on τ , T̃C that maximizes TC(τ) over any set T has the

same limiting distribution.

Proof of Proposition 6540

The FDR for the described procedure is

FDR = E

{∑n
i I(δi = 1,

∑
c∈C0 Lic = 1)∑n

i I(δi = 1)
|
n∑
i

I(δi = 1) > 0

}
Pr

{
n∑
i

I(δi = 1) > 0

}

= E

{∑n
i δi

(∑
c∈C0 Lic

)∑n
i δi ∨ 1

}
= E

{∑n
i δiE

(∑
c∈C0 Lic = 1 |XXXi,YYY i

)∑n
i δi ∨ 1

}

= E

(∑n
i δilFDRi∑n
i δi ∨ 1

)
= E

(∑k
i lFDR(i)

k

)
≤ α.

Supplementary Material The online supplementary material contains details of the model fitting algorithm.
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