Inference on Clustered Survival Data Using
Imputed Frailties
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This article proposes a new method for fitting frailty models to clustered survival data
that is intermediate between the fully parametric and nonparametric maximum likelihood
estimation approaches. A parametric form is assumed for the baseline hazard, but only
for the purpose of imputing the unobserved frailties. The regression coefficients are then
estimated by solving an estimating equation that is the average of the partial likelihood score
with respect to the conditional distribution of frailties given the observed data. We prove
consistency and asymptotic normality of the resulting estimators and give associated closed-
form estimators of their variance. The algorithm is easy to implement and reduces to the
ordinary Cox partial likelihood approach when the frailties have a degenerate distribution.
Simulations indicate high efficiency and robustness of the resulting estimates. We apply our
new approach to a study with clustered survival data on asthma in children in east Boston.
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1. INTRODUCTION

Dependent or clustered survival data arise frequently in medical research; for example,
in familial studies or multi-center clinical trials. In the East Boston Asthma Study, conducted
by Rosalind Wright at the Channing Laboratory, Harvard Medical School, efforts are being
made to understand the etiology of the rising prevalence and morbidity of childhood asthma,
and of the disproportionate burden among urban minority children. A total of 753 subjects
from 25 neighborhoods were enrolled at community health clinics throughout east Boston
between 1986 and 1992. As children from the same neighborhoods share similar environ-
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mental and social factors, correct inference needs to take within-cluster dependence into
account. Frailty models (Clayton and Cuzick 1985), a natural extension of the Cox model,
are increasingly popular for such settings, and typically involve adding random effects into
the baseline hazard to model the correlation among observations within the same cluster. A
challenge in fitting frailty models, however, is that the standard partial likelihood approach
does not apply and one has to estimate the regression coefficients, the variance components,
and possibly the baseline hazard simultaneously.

Two major approaches, parametric and nonparametric, are available to fitting frailty
models for clustered survival data. Parametric methods involve specifying a parametric form
on the baseline hazard and then maximizing the marginal likelihood to obtain the maximum
likelihood estimates of unknown parameters (Andersen, Borgan, Gill, and Keiding 1992, p.
668; Shoukri, Attanasio, and Sargeant 1998). On the other hand, with the functional form
of the baseline hazard unspecified, Nielsen, Gill, Andersen, and Sorensen (1992), Murphy
(1994, 1995), and Parner (1998) discussed the use of nonparametric maximum likelihood
estimation (NPMLE) to fit frailty models. For a review, see Oakes and Jeong (1998).

Although parametric MLEs are consistent and most efficient when the baseline hazard
is correctly specified, they are generally biased when the baseline hazard is misspecified.
In contrast, NPMLEs are robust with respect to such misspecification. There are, however,
several obvious drawbacks. First, the computation of NPMLEs is complex and the con-
vergence is usually slow. Second, the efficiency of NPMLEs is low compared with that of
parametric MLEs (Shoukri et al. 1998). Third, the variance estimators for NPMLEs are
hard to calculate (Murphy 1995; Parner 1998).

Because of the difficulties described above, we propose a method that is intermediate
between the fully parametric and nonparametric approaches. A parametric form is assumed
for the baseline hazard, but it is used only to impute the unobserved frailties. Once the
baseline distribution is specified, the distribution of frailties conditional on the observed
data can be calculated. A new estimating equation can be obtained by averaging the score
equation for the Cox partial likelihood with respect to the conditional distribution of frailties.
We propose to use this average partial likelihood score equation to estimate regression
parameters, and give closed-form estimators of the sampling variance of our proposed
estimators. Because the average over the conditional distribution of frailties cannot be
carried out analytically, and because this distribution depends on unknown parameters to
be estimated, we use the S-U algorithm (Satten and Datta 2000) and a novel Monte Carlo
estimating equation (MCEE) approach to calculate the estimators. Our method reduces to the
ordinary Cox partial likelihood approach when the frailties have a degenerate distribution.
The algorithms are easy to implement and the efficiency of the resulting estimates is high.
Though a disadvantage of our method is its dependence on the parametric structure of the
baseline hazard, simulations indicate that the choice of baseline hazard has only a slight
effect on the value of the estimated regression coefficients. A similar approach was proposed
by Satten, Datta, and Williamson (1998) for independent interval-censored data analysis,
where they imputed unobserved failure times based on a parametric model and, thereafter,
calculated the average partial likelihood score based on the imputed data for the estimation
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of the regression coefficients.

The rest of the article is structured as follows. Section 2 presents the model and derives
the average partial likelihood score equations. Section 3 develops asymptotic results. Section
4 details the two algorithms, the S-U algorithm and the Monte Carlo estimating equation, for
solving the proposed estimating equations. Section 5 gives consistent variance estimators
for the resulting parameter estimates. Sections 6 and 7 conduct simulations to assess the
finite sample performance of the proposed methods and apply the methods to the analysis
of the East Boston Asthma Study. We conclude with general discussion in Section 8.

2. IMPUTED FRAILTY PARTIAL LIKELIHOOD SCORE
EQUATION

A distinctive feature of the imputed frailty partial likelihood score (IFPLS) approach
is that unobserved frailties are effectively treated as missing covariates, and their imputed
values based on the conditional distributions are used to construct an average partial likeli-
hood score estimating equation. As the partial likelihood score does not involve the baseline
hazard, one might expect the resulting estimates to be more robust than the fully parametric
maximum likelihood estimates. In recent years a variety of Monte Carlo procedures for
solving missing data problems based on data augmentation or imputing missing data have
been developed (Tanner 1993). We proceed, in the following, by stating the frailty survival
model, followed by the derivation of the imputed frailty partial likelihood score equation.

Let V;;, C;;, and X;; (r x 1) be the failure time, the censoring time, and the covariate
vector for subject j in cluster ¢, j = 1,...,n;,¢ = 1,..., M. We assume that the C;; are
independently and identically distributed and independent of the V;;, conditional on the ob-
served covariate X;; . The observed data are right censored with only T;; = min{Vij7 C; j}
and the censoring code 6;; = I(V;; < Cj;) observed, where I(-) denotes an indicator
function. Clusters are assumed to be independent, cluster-specific frailties b; are iid and
failure times within a cluster are independent, conditional on the b;. Our model specifies
that, conditional on the covariates and an unobserved cluster-specific frailty b;, the survival
time V;; is independent and has an intensity function as follows

At Xz, 0i) = Xo(t, &) exp(X; 8 + bi), (2.1

where 3 (r x 1) is a vector of unknown fixed effect parameters, \(¢, ) is a continuous
baseline hazard function depending on an unknown parameter «, and b; is a zero mean
random variable with density function f(-; #) and distribution function F'(-; #), specified up
to an unknown variance parameter . A common choice of the distribution of the frailty b;
would be a log-Gamma distribution (Clayton and Cuzick 1985; Murphy 1995) or a normal
distribution (Li and Lin 2000).

Define the standard event counting processes by N;;(¢) = I(T;; < t,d;; = 1), at-risk
processes by Y;;(t) = I(T;; > t), and the cumulative baseline hazard by A (t, ) =
fot Ao (s, @)ds. For notational convenience, we denote b = (by,...,bx), T; = (Tiy,s . - -,
Tin,), T = (T1,...,Th), and similarly for X;, X, A;, A, N;(¢),N(¢), Y,;(t), and Y (¢).
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We assume that the covariates X;; are constant over time. Throughout, unless specified,
F(-) represents a distribution function and f(-) a density function, and expectations are
taken conditionally on the observed covariates X.

Conditional on the covariates X ;; and the unobserved frailties b;, following Cox (1972),
one may derive the partial likelihood score function for the regression coefficients 3 as
follows:

M n; S(l) , 7b
S(T,A,X,b;8) = ZZ/ { S(O)Eigb;}d%(t), (2.2)

i=1 j=I

where T < oo is a constant, usually in practice the study duration, and S®) (¢, 3,b) =
PO | S0 XY (t) exp(X; B+ bi). Here, for a vector u, u® = uu'if | = 2,u® = u
ifl =1 and u®l = 1if [ = 0. Using a simple application of the Martingale theory, we
show in the Appendix that the marginal expectation of S(-) is 0, that is,

E{S(T,A,X,b:8)} =0, (23)

which is an important finding as it guarantees the unbiasedness of the estimating equations
developed in the following.

Let F(b|T, A, X;3,n) denote the conditional distribution of the frailties given ob-
served survival times, covariates, and censoring indicators, where 17 = (c, §) denotes the
parameters necessary to specify the baseline hazard function and the unconditional distri-
bution of frailties b. The conditional expectation of the full data partial likelihood score for
3 hence is

S(B.m) = E{S(T,A.X.b:B)T,A,X:8,n)
- / S(T, A, X, b; B)dF(b|T, A, X: 8,m), 2.4)

where F' has a product form
M
i=1

It should be noted that, in our model formulation, a parametric form has been assumed
on the baseline hazard for the purpose of fully specifying the conditional distribution F'. For
instance, in our later simulations, we will be considering a flexible form, that is, a Weibull
model:

Mo(t, @) = Ap(At)P~ !, (2.5)
where a = (A, p). It follows that

L(Ty, Ai|Xi58,1m) ’

F(b;|Ti, A, X3 8,m) =
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where L(T;, A;|X;, b;; 3,m) is the conditional likelihood for the ith cluster given the frailty
b; under (2.1) and (2.5), that is,
i , 27 ,
L(Ty, A X4, b3 8,m) = H {/\O(Tz‘ja o)Xl } Te Ml (LAt (2.6

=1

and L(T;, A;|X;; 8, n) is the marginal likelihood for the ith cluster obtained by integrating
b; out in (2.6) over its unconditional distribution. That is,

L(T:, A X5 8,m) = /L(Ti>Ai|Xi7bi;ﬁ7n)dF(bi§9)- (2.7)

A similar procedure was used by Louis (1982) for finding maximum likelihood estimates
from incomplete data using the EM algorithm.

By iterated expectations, E{S(3,n)} = E{S(T,A,X,b;3)} = 0. The form of (2.4)
motivates us to regard frailties as “missing” constants, to impute them by the conditional
distribution and to use the imputed values to construct an unbiased estimating equation.
A similar observation was made by Satten, Datta, and Williamson (1998), who imputed
unobserved failure times in the context of independent interval-censored survival data.

We propose to estimate the regression coefficient 3 from the imputed frailty partial
likelihood score equation given the estimate of 77, containing the variance component 6
and the unknown parameters o associated with the baseline hazard. As the full data partial
likelihood score S(T, A, X, b; 3) is independent of the baseline distribution, we may expect
that (2.4) is less sensitive to the misspecification of the parametric form of the baseline hazard
than the full likelihood score obtained by differentiating (2.7) with respect to 3.

To estimate 1), we resort to full likelihood maximization. Specifically, given 3, we
estimate 7) by solving the full data log-likelihood score,

M

M
0
UB.n) =Y U, A, XiBn) =) gy 02 LT AX B} 28)

=1 =1

where L(-) is defined in (2.7).
The scheme above is equivalent to simultaneously solving for 3 and 7 in

S(B,m) = 0, (2.9)
UB,n) = O. (2.10)

In Section 4, two iterative algorithms are presented to solve these equations.

3. ASYMPTOTIC RESULTS

Under model (2.1) with \y(¢; &) correctly specified and by the usual properties of
maximum likelihood estimation, the estimating equations (2.9) and (2.10) are unbiased and,
hence, would be expected to yield consistent estimates. If S(3, 17) were a sum of independent
terms for each cluster, standard approaches would be applied to obtain the asymptotic results.
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However, since (2.9) is not derived from an ordinary likelihood function and is not a sum
of independent items, an application of the decomposition of the partial likelihood score
will be needed to establish the asymptotic results. The asymptotic framework is as cluster
number M goes to infinity with cluster sizes, n;, uniformly bounded.

Denote by v, = (8y,m,) the true value of the parameter vector, v = (3,7n), and
suppose that -y, is contained in a compact subset of R4, say, B, where ¢ is the dimension
of m. For simplicity in the following theoretical development, we assume a constant cluster
size, that is, n; = n < oo. With the assumption that (T;, A;, X;, b;) are iid, we show in the
Appendix that one may represent the full data partial likelihood score S(T, A, X, b; 3,),
up to 0,(1), as an iid sum. That is,

M
M_]/zs(TaAvxab;/GO) = M_]/ZZ¢(TiaAiaXi;bi;BO,n0) + Op(l)y (31)

i=1

where

¢ ST, Bm)
o(Ti, Ai, X, 0i:8,m) = 5i’{Xi'_ S }
( ) ; [ ! ! 8(0)(Tij7/63n)

Tij (1)
_ XL Brb s (t,ﬂ,n)} dG(t)
et /0 {ng sOt,B.m) [ sOB.m) |

Here, G(t) = E{N;;(t)}, and s (t,8,n) = E{SW(t,3,b); B,n} for | = 0,1,2. We
further show in the Appendix that, in a small neighborhood of =, the termwise integration

of (3.1) is allowable, enabling us to write

M
M™'P2S(y) = M7V2Y (T, Ay, Xiz ) + 0,(1), (3.2)
i=1
where U(T;, A;, X;;y) = qu(Ti,Ai,Xi,bi;,B,no)dF(bi|T,;,A,;,Xi;ﬁ,n).Hence,one
is able to approximate the average partial likelihood score with respect to the conditional
distribution of frailties using a sum of iid random variables.
Under model (2.1) with the baseline hazard Ay (¢; «) correctly specified and under the
regularity conditions (C.1)—(C.3) listed in the Appendix, we can establish the consistency
of the solution to the proposed estimating equations.

Theorem 1. Under assumptions (C.1)—(C.3), there exists a sequence of solutions %
to (2.9) and (2.10) such that for any given € > 0, there exists a K < oo and an integer
My > 0 such that Pr{¥ € N, 57(70)} = 1 — € for any M = My, where N, (7,) is the
neighborhood around =y, with radius p.

Using (3.2), it can be shown readily that
M™2{8(v,), U(79)} = N(0,9), (33)

where W, the covariance matrix of U(T;, A;, X;;,) and U(T;, A;, X;;7,), is defined
below. Asymptotic of the solution to (2.9) and (2.10) follows in part from (3.3) and is
summarized in the following theorem.
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Theorem 2. Let % be a consistent solution to (2.9) and (2.10). Then under (C.1)—
(C.3),

A d
Ml/z('y - ’YO) - N(07V)7

v, v
where V = A71W(A71)T, with ¥ = ,” ') . Here, A is expectation of the
U, ¥p
Jacobian matrix of the score Equations (2.9) and (2.10) and is defined in the Appendix, and
Uy = E{U(Ti, A, Xi;v0)U(Ts, Ai, Xi570)'}
U, = E{¥(T;A; X)) U(Ti, Ay, Xi:7)'}
Uy = B{U(Ti A, Xi570)U(Ti, Ai, Xi57,)' }-

Both Theorems 1 and 2 are proved in the Appendix, along the line of Datta, Satten,
and Williamson (2000).

4. ALGORITHMS FOR SOLVING THE ESTIMATING
EQUATIONS

Due to the intractability of the integrals, Equations (2.9) and (2.10) are difficult to solve
using standard numerical methods. We describe below two types of Monte Carlo algorithms
to solve the score equations: the S-U Algorithm (Satten and Datta 2000) and a new approach
we call the Monte Carlo estimating equation (MCEE) method.

4.1 S-U ALGORITHM

The S-U algorithm is a technique for finding the solution of an estimating equation
that can be expressed as the expected value of a full data estimating equation, where the
expectation is taken with respect to the missing data, given the observed data. This algorithm
alternates between two steps: a simulation step wherein the missing values are simulated
based on the conditional distributions given the observed data, and an updating step wherein
parameters are updated without performing a numerical maximization. An attractive feature
of this approach is that it is sequential, that is, the number of Monte Carlo replicates does
not have to be specified in advance, and the values of previous Monte Carlo replicates do not
have to be stored or regenerated for later use. In the following, we will apply this approach
to solve (2.9) and (2.10).

Notice that S(3,n7) can be written

L(T,A,b|X;~)
f(b;0)

where L(T, A|X;~y) is the marginal likelihood of the observed dataset, which is the prod-
uct of (2.7) over all clusters and L(T, A, b|X;~) is the joint likelihood of the observed

S(B.m) = ¢

1
W/S(T,AXJO;@ dF(b;0), 4.1)
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survival times, the censoring indicators and the frailties. Hence, one can apply the impor-
tance sampling scheme (Tanner and Wong 1987) to approximate S(3,n) and %S(B, n)
and proceed as follows.

Having obtained approximants 4, ..., %, to 4, at the jth S-step of the algorithm, we
simulate bYY [ = 1, ..., m, independently from f(b;8;). Denote w:) by

L(T,A, b9V |X;4))

wh) = W,
f(bY750;)

= L(T,A|X,bV;4,),

and let
1 &S
w; = —— wt'D,

As j — 00, the Law of Large Numbers gives that @; ~> L(T,A|X;4) provided that
;2 A
We then write

S, = Zw(]l S(T, A, X,bY"; 3)),

Sp, = wa l){ (T,A,X, bV 3,)

+S(T,A, X, bY"D; B)U, 4(T, A, X, bU"D; )},
where

M n;
I(T,A, X, b; 8) = B(TAXbﬁ ZZ/{ ij — M}dl\fij(t)-

i=1 j=1
Notice that Z(-) is the information for the full dataset with b given (Fleming and Harrington
1991). With j sufficiently large, S; and Sg ; will be good estimates for (%) and %S(’y i)
Also note that, since (2.7) is a one-dimensional integral, one can conveniently apply
Gauss—Hermite Quadrature to approximate this integral so as to obtain closed-form approx-
imations, say, U(v) and Uy (), to U(), defined in (2.8), and its derivative with respect to
1, (%U('y). Finally, define

Then at the jth U-step, the updated value for 4 is

A -

Biwi = Bj—Sg,
M = 0, - 0,505

e
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It might be worthwhile to point out that each of the quantities required at this step, such as
S,,Sp.;. and so on, can be calculated recursively so that the past values of these intermediate
variables never need to be stored.

Following Satten and Datta (2000), as j — oo, %; converges to 4 almost surely. The
total sampling variance of 4, around -y is the sum of the variance of %, around 4 due to
the S-U algorithm and the sampling variance of 4 around -y, (Satten 1996). In most cases,
the S-U algorithm should be iterated until the former is negligible compared to the latter. In
theory, the starting value for the S-U algorithm is arbitrary. However, a bad starting value
might cause instability at the begining of this algorithm. Hence, in the next section, we
introduce an algorithm that can generate a starting value sufficiently close to the true zero
of the estimating equations.

4.2 MONTE CARLO ESTIMATING EQUATION (MCEE)
One may notice that (4.1) can also be written

L(T,A|X,b;~) f(b;0)
g9(b)

where G (b) is a known distribution function and ¢(b) its density function. Hence, we are

S(B,m) = ¢

1

/S(T,A,X,b;,@)

able to exploit an importance sampling approach to approximate (4.2) by sampling from
distribution G(+). The resulting estimating equations are termed Monte Carlo estimating
equations. There are many numerical methods, such as bracketing and bisection, Brent’s
method, and so on, to solve such Monte Carlo estimating equations; for a detailed description
of these methods, see Press, Teukolsky, Vetterling, and Flannery (1992). Below we describe
a Newton—Raphson-type method.
The key idea behind this algorithm is that one needs only to generate a single set of
random numbers at the beginning of the iteration procedure. With the current estimates at
each iteration step, one updates the sampling weights for the approximation of the average
partial likelihood score over the the conditional distribution of frailties using importance
sampling. More precisely, the procedure goes as follows:
1. Choose an initial iteration point 4. In practice, one can maximize the marginal
likelihood for the observed data, which is the product of (2.7) over all clusters, to
obtain 4.

2. Independently generate m simulations, b(o’l)7 l=1,...,m, from a candidate den-
sity g(b), which should have the same support as f(b;6).

3. With 4, obtained at the jth step, calculate the weights wi) = L(T,AlX, b0
4,01 (B:0,)/g(b*D) and @; = ", w0,

4. Estimate S(¥;) and %S(‘yj) using importance sampling by

- 1 &
S;=—>> wls(T,A X, b, 8).
J u—}j — w ( ) 9 ) /8)
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and

~ 1 & . .
- (4,0 (0,0).
Sps = g, 2" {Z(T,4,x,b; 3))

+S(T, A, X, bOD; 3,)U, 6(T, A, X,bD;4,) |

5. As in the S-U algorithm, acquire the Gauss-Hermite Quadrature approximations
U(v) and U, () and evaluate them at 4 ; to obtain U, and U, ;.
6. Perform a Newton—Raphson updating step

~

e ia
Bivi = B;—=55;55
A A S — 1

N = 7; =0, ;U;.

7. Repeat Steps 3-6 until ||% 11— || < €, where € is a prespecified positive number.

Under the regularity conditions (Assumptions 1-4) listed by Geweke (1989), 4, can
be guaranteed to converge to 4*, which is sufficiently close to 4, the true zero of (2.9) and
(2.10). These results are summarized in the following theorem proved in the Appendix.

Theorem 3.  Given a fixed M and m, as j — oo, 4 ; converges to 4" when the initial
iteration value ||y, — 4™ || < €, where € is a sufficiently small number. Under the regularity
conditions listed by Geweke (1989), 4 — 4 almost surely. Moreover,

Vmy* —4) %5 N0, ),

where ¥ = A;/Il (’?)V(AE)T(’?), Ay and V are given in the Appendix.

It follows from this theorem that, as in the S-U algorithm, the total sampling variance
of the MCEE estimator 4™ around -y is the sum of the variance of 4* around 4 due to the
importance sampling iteration and the sampling variance of 4 around «,,. With the number of
Monte Carlo simulations, m, sufficiently large, the variation due to the importance sampling
can be made arbitrarily small.

In practice, one may be able to combine the S-U and MCEE algorithms: starting with the
MCEE algorithm, one obtains an estimate after a small number of iterations and, thereafter,
uses it as the starting value for the S-U scheme described earlier. We will numerically
examine this hybrid algorithm in the simulation study.

5. VARIANCE ESTIMATORS

Conventionally, the variances of the maximum likelihood estimates are calculated by
inverting the Fisher information matrix. However, since (2.9) is not an ordinary likelihood
score, a further analysis is needed to derive an estimate of the variance matrix of 4, the zero
of (2.9) and (2.10).

As shown in Lemma 2 in the Appendix, A can be consistently estimated by A s (%),
where 4 is the solution to (2.9) and (2.10) and A 5;(«y) is the Jacobian matrix of the score
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Equations (2.9) and (2.10). It is given by

m(B.m) = AN (B AnBm) \ _ 1 [ 58Bm) 5S(B.m)
’ AN B A% (Bm) M\ ZUB.m) 2U(B,n)

(5.1)
where AJ] and A are easily obtained by differentiating (2.8) with respect to 3 and 7,
while Af\f and Af\g are given by
1
AN B = [ZTAX D)
—S(T,A,X,b; 8)U, 4(T, A, X, b: 8,n)} dF(b|T,A, X: 3, m)
and

1
AY(B,n) = —M/S(T7A7X,b;ﬁ)Ub,n(T,A,X,b;ﬂ,n)dF(blT7A7X;ﬁ,n)-

To develop a consistent estimator for ¥, we begin with ¢(T;, A;, X, b;; ). For each
t <ooandl=0,1,2, s®)(t,3,7n) can be consistently estimated by () (¢, 3,7), where

50, 8,n Z/ Zexuﬁ“w (XS AF(b| Ty, Ay, X 8,m). (5.2)

Let g(s; T;, A;, X, 7y) denote the moment generating function of b; conditional on T;, A;
and X, that is, g(s; T;, A, X4, ) = E(e%|T;, A;, X;; ). Hence, Equation (5.2) can
be simply expressed as

3O, 8,n =3 Z Ze OXE S g(1: Ty, Ay, X5, 7).

i=1 | j=1

It follows that, with the same argument in Lin and Wei (1989), ¢ can be estimated by

A(Ti, A, X, b3 8,m) = Z l%‘ {Xij - A(O)Eng’;}

=1 R

lJﬁeri' X §(1)(n’j’7/6an)
ZM Ty ) U T )

Note that é() resembles the influence function for the full data proportional hazards model
(Reid and Crépeau 1985).

Because each U(T;, A;, X;;~) is the expectation (with respect to b; conditional on
T;, A; and X;) of ¢(T;, A;, X;, b;; ), it can be consistently estimated by the conditional
expectation of &(Ti, A;, X, bi; ), which is

\r - 3( ( 7 767 )
W(T;, A, Xi3y) = ) dij {Xz f*
jz:; ’ ! S ( ZJ’ﬂv )

Nivjo(Tij) 8Ty, By )
— lTl Az Xi i i'j Xz _ 2 Aty Ml
g( > 9 ) Y ;6 7 Z M - S(O)(T/ ',ﬂ,n) { J §(0) (Tilj/,ﬁ,'f])
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Because @(Ti, A;, X;;4) is an estimate of the contribution of the ith cluster to the score

. v, ¥
S(4), the matrix ¥ can be estimated by ¥ = ( R ) , where

Uy Uy
. 1 . .
vy = M;‘I’i(TiaAnXi;’?)‘I’i(TmAi,Xz‘;’?)/7
b, = ‘i’/z1 = %Z‘ili(TiaAi»Xi;ﬁ)Ui(ThAivxi;;)’)/v
R LM .
Uy = MZUz‘(Ti,Ai,Xi;’AY)Ui(Ti,Ai,Xi;’AY)/~

i=1
Hence, the asymptotic variance of M/ 2(4 — ), V, can be estimated by
V= A HEA)T(3)- (53)
A simple alternative to calculate the variance involves a bootstrap procedure on the
basis of clusters (Efron 1979). Specifically, we resample M clusters, with replacement, from
(Ti, A, X;) |, to obtain a new dataset (T ;y, A(;), X(;))|,. Given this new dataset, we
solve (2.9) and (2.10) for the estimates of 3 and 6. This procedure can be repeated for B
times to obtain a sequence of estimates, (/3 (l), 6(). The bootstrap variance estimates can
hence be calculated using the sample variances

o =
ﬁboot B _IBboot)I’

Varboot

tU
Mm

l:l

and

B
Varbool 9 = B 1 ZE_I eboot ,

where By, = 5 Z = B and Oboot = 5 Z = 0 ). In practice, it is adequate to choose
a moderate number of resamplings, B, say, in the range 25 to 100 (Lange 1999, p. 301). We
chose B = 40 in our simulation studies. For a review of other nonparametric techniques for
obtaining the variance estimates, such as the jackknife procedure, the smoothed bootstrap
method and the half-sampling approach; see Efron (1981) and Efron and Tibshirani (1993).

6. SIMULATION

Simulations were performed to assess the finite sample performance of the proposed
imputed frailty partial likelihood score (IFPLS) estimators, compared with the paramet-
ric likelihood MLEs and the nonparametric MLEs. The robustness and efficiency of the
proposed estimators were of particular interest. The performance of the variance estimator
(5.3) and the bootstrap variance estimator was also evaluated.
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Table 1. Comparisons of IFPLS Estimates, Parametric MLEs and NPMLEs. The baseline hazard is
correctly specified in the imputation and parametric MLE calculation. The true regression
coefficients are : 8, = 1, 6 = 0.25. SE¢ is the empirical standard error, SE; is the standard
error calculated by (5.3) and SE, is the bootstrap standard error.

IFPLS Parametric MLE NPMLE
Censoring Estimate  SEe SEa SE, Estimate  SEe Estimate  SEe
20% B8 1.017 0.348 0.330 0.349 1.012 0.318 1.022 0.424
0 0.263 0.198 0.204 0.217 0.256 0.185 0.246 0.230
40% 6 0.982 0.450 0.459 0.450 1.029 0.431 1.014 0.507
6 0.258 0.265 0.243 0.249 0.259 0.221 0.267 0.286
60% B8 1.019 0.559 0.563 0.551 1.013 0.523 1.046 0.643
0 0.253 0.272 0.282 0.289 0.278 0.252 0.268 0.312
80% B 1.021 0.707 0.718 0.722 0.965 0.676 1.056 0.781
6 0.287 0.499 0.483 0.503 0.289 0.467 0.223 0.532

To calculate the IFPLS estimates, we used a combination of the S-U and MCEE algo-
rithms: we obtained an estimate by the MCEE algorithm after a small number of iterations,
and used it as the initial value for the S-U scheme. As stated earlier, the sole purpose of
doing so was to guarantee the stability when applying the S-U algorithm.

In each simulated dataset, survival times V;; were generated within each cluster by the
conditional hazard \;;(t) = Ao(t) exp(8X;; + b;),j = 1,...,n4,%9 = 1,..., M, where
the X;; were generated from random uniform U0, 1]. Censoring times C;;; were simulated
from uniform U0, ¢]. The frailties were generated according to N (0, 6).

We considered the following combinations of experiments: the cluster number M was
set to be 40, while the cluster sizes n; were distributed according to the discrete uniform
distribution with masses on the integers 1 to 5; 3 = 1 and # = 0.25; ¢ was chosen to yield
four different censoring proportions (20%, 40%, 60%, and 80%). We chose different models
for the baseline hazard A (¢) depending on the purpose of simulations, that is, comparison of
efficiency or study of robustness. For each parameter configuration, a total of 400 replicate
datasets were made.

We first studied the finite sample performance of the IFPLS estimators and compare
them with the parametric MLEs and the NPMLEs in terms of efficiency. Specifically, sur-
vival times were generated with the Weibull baseline hazard (2.5), where the shape parameter
p was set to 2 and the scale A to 0.25. In the calculation of the IFPLS estimators and the
parametric MLEs, the baseline hazard was correctly specified as the Weibull model (2.5).
To obtain an initial value for the S-U algorithm, we first ran two iterations of the MCEE
algorithm, where the number of Monte Carlo simulations was set to 3,000. At each simula-
tion step of the S-U algorithm, the number of Monte Carlo simulations was set to 1,000. In
our experience, usually convergence was achieved within about 10 steps. We also computed
the variance estimators using (5.3) and the bootstrap procedure for the IFPLS estimates,
The results are displayed in Table 1. The IFPLS method gave highly efficient estimates
compared with the full likelihood MLEs. For example, with a censoring proportion 20%,
the asymptotic relative efficiency (ARE) for 3 and 6 calculated by the IFPLS method are
92.8% and 92.3%. In addition, the estimated standard errors using (5.3) and the bootstrap
agree well with the empirical standard errors.
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Table 2. Comparisons of IFPLS Estimates, Parametric MLEs and NPMLEs. The baseline hazard was
misspecified in the IFPLS and parametric MLE calculation. The true regression coefficients
are: By =1,0 =0.25. SE, is the empirical standard error, SE; is the standard error calculated
by (5.3) and SE, is the bootstrap standard error.

IFPLS Parametric MLE NPMLE
Censoring Estimate  SEe SEa SE, Estimate  SEe Estimate  SEe
20% B 0.951 0.313 0.319 0.323 0.887 0.301 1.045 0.393
0 0.238 0.192 0.201 0.207 0.203 0.163 0.256 0.257
40% B 0.931 0.415 0.421 0.408 0.873 0.464 1.038 0.567
6 0.239 0.244 0.224 0.238 0.187 0.153 0.246 0.301
60% B 0.943 0.526 0.513 0.538 0.861 0.553 1.034 0.641
0 0.217 0.252 0.242 0.267 0.168 0.179 0.253 0.331
80% 5 0.931 0.672 0.703 0.686 0.854 0.702 0.951 0.842
6 0.192 0.479 0.474 0.462 0.160 0.399 0.271 0.485

We next examined the robustness of the proposed IFPLS estimators, compared with the
parametric MLEs and the NPMLEs when the baseline hazard was misspecified. Specifically,
the true baseline hazard was \o(t) = pe P! with p = 2, while in the calculation of the IFPLS
estimators and the parametric MLESs, the baseline hazard was incorrectly specified as the
Weibull model (2.5). The results are shown in Table 2. It appears that the IFPLS estimates
are only slightly biased. For instance, with a censoring proportion 20%, compared with
the true values, the relative biases (RBs) for 3 and 6 calculated by the IFPLS method are
5.5% and 7.2%, compared with the corresponding RBs of 11.2% and 16.6% in the full
likelihood MLEs. The NPMLEs gave consistent estimates but with large standard errors.
With the current configuration of parameters, the estimated standard errors using (5.3) and
the bootstrap agree well with the empirical standard errors.

7. AN APPLICATION: EAST BOSTON ASTHMA STUDY

We applied the proposed method to the analysis of the East Boston Asthma Study,
which was conducted by Rosalind Wright at the Channing Laboratory, Harvard Medical
School, to understand etiologies of rising prevalence and morbidity of childhood asthma,
and of the disproportionate burden among urban minority children. For our analysis, we
focus on an assessment of the role of a familial history of asthma may attribute to disparities
in disease burden. This has been largely an unexplored aspect to explain children’s asthma
prevalence. The investigator, in particular, was interested in the relationship between the
maternal asthma status (with a variable name “MEVAST”, coded as 1 = EVER HAD
ASTHMA and 0 = NEVER HAD ASTHMA) and children’s asthma status, controlled for
the effects of race (0 = WHITE and 1 = NON-WHITE) and gender (0 = MALE and 1 =
FEMALE).

Subjects were enrolled at community health clinics throughout east Boston and ques-
tionnaire data was collected during regularly scheduled well-baby visits. In addition to basic
demographic data, residential addresses were recorded and geocoded for each study subject.
Geocoding the dataset allowed one to link various community-level (cluster) covariates to
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Table 3. Analysis Results of the Boston Asthma Study Data. Estimates were calculated by the Naive
(ignoring within-cluster correlation), NPMLE, Fully Parametric MLE and IFPLS algorithms.
Numbers inside the parentheses are standard errors (SEs). The SEs of the IFPLS estimates
were obtained using the closed-form variance estimators, the SEs of the parametric estimates
were obtained by inverting the minus second-order derivative of the log-likelihood and the SEs
of the NPMLEs were acquired by inverting the negative second derivative of the log profile

likelihood.
Parameter Naive IFPLS Parametric NPMLE
0 — 0.032 (0.07) 0.034(0.05) 0.029 (0.10)
MEVASTH 0.706 (0.28) 0.652(0.30) 0.664(0.29) 0.647(0.35)
RACE 0.173 (0.21) 0.205 (0.23) 0.212 (0.21) 0.199 (0.26)
GENDER —0.135(0.20) —0.160(0.22) —0.165(0.21) —0.159 (0.26)

individuals in the east Boston dataset from U.S. Census data at both the census tract and
census block-group level (clusters). In the analysis, the census block-groups were treated
as independent clusters.

We fitted a random intercept frailty model to the data

)\ij (t|bz) = Ao(t) exp{ﬁM X MEVASTZ‘]‘ -‘rﬁR X RACEZ'j +/6G X GENDERM +bz}, (71)

where the frailty b; follows N (0, 6). Here, the subscripts  and j indicate the cluster (census
block) level and the individual level, respectively.

We applied the proposed IFPLS method, with the baseline hazard taking the Weibull
model (2.5), and calculated the estimates of unknown parameters using a combination of
the S-U and MCEE algorithms. For comparison purposes, we also fitted a naive model,
which ignores the within cluster correlation, that is, assume that § = 0 in (7.1). In addition,
the NPMLEs and fully parametric MLEs were also calculated. The results are presented in
Table 3. As demonstrated by the IFPLS method (p = 0.030) and the fully parametric MLE
(p = 0.026), a higher risk of asthma was significantly associated with a history of maternal
asthma, after controlling for the effects of race and gender. However, the NPMLE yielded a
nonsignificant p value of 0.064. Ignoring within-cluster correlation inflated the estimate of
the regression coefficient. Note that the standard error of the estimate of 6 in Table 3 cannot
be directly used to test for Hy : # = 0, since the null hypothesis is on the boundary of
the parameter space and the Wald statistic is not asymptotically distributed as a chi-square
(Lin 1997). An appropriate score test for detecting the heterogeneity across clusters was
developed by Gray (1995), who considered institutional variations in a multi-center cancer
clinical trial.

8. DISCUSSION

This article extends the Cox partial likelihood approach to fit frailty models for clus-
tered survival data. The frailties are treated as unobserved covariates and are imputed based
on the conditional distributions. For this purpose, a parametric form is assumed on the base-
line hazard. We estimate the regression coefficients by solving the average partial likelihood
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score (PLS) equations. Simulations indicate high efficiency of the resulting estimates. De-
spite the dependence of our proposed method on the parametric structure of the baseline
hazard, the estimation of regression coefficients is only slightly affected when the baseline
hazard is incorrectly specified.

We have also proposed a closed-form “sandwich” variance estimator, along with a boot-
strap variance estimator, for the IFPLS estimates. Both are easy to calculate and simulations
indicate that they agree well with the empirical variance estimates.

A Weibull structure was assumed on the baseline hazard in our numerical experiments.
In practice, this assumption can be made more flexible to adjust to the given data. For
instance, the baseline hazard can be modeled by smooth splines with knots at fixed finite
time points. Explicitly, we may consider a linear spline model:

L
log Ao(t, @) = ag + ant + 3 anj(t — &) 4,
j=1
where z denotes the positive part of 2,0 < £ < --- < &, < oo are given knots for a fixed
L and o = (v, a1, 11, - . ., a1, are unknown coefficients. One may choose the knots by
examining the smoothed naive hazard curve (Ramlau-Hansen 1983).

We expect that this proposed IFPLS methodology shall have broad applications. A first
straightforward application would be on the multivariate random effects survival models
with b; in (2.1) replaced by B;j b;, where B;;(a x 1) is the known covariate vector asso-
ciated with the frailty b; and the b; are iid with a distribution function F'(-; 8), depending
on an unknown length-a variance component 6. This approach can also be easily explored
to model clustered interval-censored survival data, survival data with measurement error
in covariates, spatial survival data, where the unobserved random quantities, such as true
survival times, true covariates and region-specific random effects, can be imputed simulta-
neously from the conditional distributions to construct unbiased average partial likelihood
estimating equations. We will report on these in subsequent articles.

APPENDIXES: TECHNICAL DETAILS

A. NOTATION AND REGULARITY CONDITIONS

For the ith cluster, we introduce the score function with respect to the conditional
density of the frailties as follows

0
Uy, ~(Ti, A, Xy bisy) = %log{f(bHTuAuXi;V)}

o
- %mg{f(bi\Ti,Ai,Xi,v)},

0
on log{ f(b:| T, As, Xi57)}

= [Uy, p(Ti, Ay, X5, bi57), Uy, (T A, X, iz )]
(A1)
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Denote by U (T, A, X, b;v), U, g(T, A, X, b;7), and Uy »(T, A, X, b;~) the sum
of the corresponding terms in (A.1) over all clusters. We further denote a p-neighborhood
of vy by N,(v) = {~ € B : ||¥ — || < p}, where || - || denotes an Euclidean norm.
With the notation introduced above and established in Sections 2 and 3, we stipulate the
following regularity conditions:

(C.1) The sequence (T;,A;, X;,b;) is iid and X; are bounded.
(C.2) The sequences {%}, {g—g}, {oU, .1}, {822"} and {g—z} each satisfy the uniform

weak law of large numbers (UWLLN) conditions at v, as explained below.

(C.3) The expectation matrix, A, of the Jacobian matrix of the score Equations (2.9) and

A, A
(2.10), is invertible, where A = < H 12 ), and

A21 A22
A = Q(By,mg) — E{d(Ti, Ai, Xy, bisvo) Us, g(Ti, Ay, Xy, bis )’}
A12 = E{¢(Ti?AiaXiabi;’yO)Ubh’r’(Ti’Aiinabi;’)l())/}a
1o}
A = F{—U Tz Al Xi; ! s
2 = BlggU(T A Xim))

B
Ay = E{%U(Ti,Ai,qu;’)’o)/},

_ sO(t,Bg,my)  s(t, By, my) >
Q(ﬁ()?’r’O) B /{5(0)@»[30,770) - 5(0)(t7507770)2 }dG(t)’

and all the expectations involved are taken under the true parameter ~y,.

Remark: An iid random sequence indexed by 7, say, ¢;(v),7 = 1,2,..., is said to
satisfy the UWLLN conditions at a fixed point -y, if, for each ¢, (1) E{¢;(y)} is continuous
at 7y, and, (2) there exists a 6 > 0 such that, E{SupH—nyO||<5 @i ()|} < oo, and (3)

lim sup E{Q,(+)} = 0
p—0+

for any v € Ns(vo), where Qi(v) = sup{[l¢i(v1) — ¢:i(7)] : 71 € N, (7). Datta (1988)
showed that the UWLLN conditions ensure the uniform convergence of M ~! Zi\i] a: (%)

to E{qi(+)} uniformly in Ny > (7,). Practically, the seemingly stringent Condition (3) can
be substituted with a more familiar sufficient (Lipschitz) condition

lgi(v1) = @ (vl < [lv1 = 7llGi

forany v,,7, € Ns(v,), where E(G;) < oo. For more detailed discussion on the UWLLN
conditions, see Satten, Datta, and Williamson (1998).

B. PROOFS

Proof of Equation (2.3): Following Fleming and Harrington (1991, p. 44), we rewrite
(2.2)
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M ng

.3y — ! SW(t,B8.b)

i=1 j=1

where M;;(t) = N;;(t) — fot Yij(s)Ao(s) exp(X;;3 + b;)ds is a martingale adapted to
the filtration F,°® = ¢{N(s),Y(s),X,b,0 < s < t}, where o{-} denotes a o-algebra.
Because the integrand in (2.2) is an .7-'tX’ b—prc:tdict.alble process, S(T, A, X, b; 3) is alocally
square integrable martingale adapted to ]_-tX b (Fleming and Harrington 1991). Hence,

E{S(T,A,X,b; 8)| 7>} = B{S(T, A, X, b; 8)|X, b} =0,

and, moreover, by the conditional expectation theorem (Fleming and Harrington 1991, p.
22),

E{S(T,A,X,b; 8)| 7’} = E{S(T,A,X,b: 3)|X} =0

because Fx C .7-'3(’ P Here, fg(’b = o{X,b} and FX = ¢{X}. O
Lemma 1. As M — oo, for each K > 0, M~'/?S(v) = M~'2§(~) + 0,(1)
uniformly in NKM_% (7o), where S() = Zf\il U(T;, A, Xi57).
Proof: Consider Ry (8) = M~/2{S(T,A,X,b;3) —S(T, A, X,b; 3)}, where

M
S(Tv A7 Xabaﬁ) = Z d)(T“ Aivxia bz’/anO)

i=1

Then

M=12{S() — §(7)} / R/ (8)dF (b|T, A, X; )

— [ Rar(8) exp{Usy (T, X, iy
X(¥ = Y0) }F (BT, A, X; ),
where v* lies on the line segment connecting ~ and ~y,. For an arbitrary function H () :
R™% — R, denote its suprema in ./\/KM,% (vo) by V H(7) = Sup’YGNKM,% ) H(7).
Then \/ |M~2{S(vy) — S(7)}| < C,C,, where

Ci = exp K.\/|\M*1/2Ub,7(T,A,X,b;»y)H} (B.1)

and Gy = E{V |[Ru(8)]|T, A, X;7,}-
Notice that
\ IM 20, (T, A, X, by )| < [|M 72U, (T, A, X, ;)|

.0
+K-\/||M EUbW(T?A,X,b;v)H.
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The first term is O, (1) by applying the central limit theorem, while the second term on the
right-hand side of the inequality above converges to K ||E{%Ub;y(Ti, A X b))
|y=~, | by the UWLLN condition; hence Cy = Op(1).

To estimate the magnitude of Cs, we consider its expected value, E(C,) = E(\/ ||Rs
(B)|])- We observe that

VIRu@I = \/M'?S(T,A,X,b; 8) - 5(T,A, X, b; 8)]]

+\/ M28(T, A, X, b: B,m9) — S(T, A, X, b: 3,1)]|
IRz (Bo)ll + K - \/ |IM~'Z(T, A, X, b: 8) — Q)|
%d)(Tia Ai, X, bi38,m0) — Q(0)l[- (B.2)
We first find a bound for R/ (83,). Applying the uniform laws of large numbers for

IN

+K-\/ |- M

the empirical processes (see Pollard 1990, p. 34), one may see

8(1)(ta607b) 5(1)(t560)770) P

S(O) (t, /BOﬂb) 5(0) (t7/607"70)

as M — oo, where s)(¢,8,1n) = E{SW(t,8,b); B,n} for l = 0,1,2. Write N(t) =
T > Nij(t) and G(t) = E{N(t)} = E{N;;(t)}. We may write M ~'/2S(T, A, X, b;
By) as

sup
te0,7]

T S(l)(t 3 1 ) _
—-1/2 ]/2 el S R (b Bel
E E / X;;dN;;(t) — M . SOt 8, )dN(t)

i=1 j=1
7 gD
—1/2 2, [ 50(tBo M) 5
;jz:l/ Xz]szj -M 7’?,/0 5(0)(t7ﬂ077’]0)dN(t)
W (t, By, b) )(tﬁ,n)}
—_M/? 0 _ 0: Mo
e [ St s i g | 190
TLSW(t,Byb) sVt By ) | 5
_ M2 0 0> Mo B
M n/o { SO(t, By, b)  sO(¢, ﬂOﬂnO)}d{N(t> G(t)}. (B.3)

Because M'/2{ N (t) — G(t)} converges to a zero mean Gaussian process, the last term
in (B.3) is 0,,(1). It can be shown the third term in (B.3) is equal to

VC LS S B _ sU( By o) g0 }
. n/o sO)(t, By, mo) {S 00D~ 01, By © PP GO D)
Then
. (1)
s A Xy - 2SS [ [ B g

=1 j=I

T (1
_ o XijBotbi > S (t7 Bo, 770) } dG(t) :|
e + /O Y;J(t) {X’Lj 8(0)(t, ,60,7]()) 8(0)(t,ﬂ0,’l’]0) +0p(1)
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In other words, Ras(8y) = 0,(1). The above derivation resembles the decomposition of
the partial likelihood score (Lin and Wei 1989) for independent survival data.

Recalling that Z(T, A, X, b; 3) is the partial likelihood information (given frailties)
and applying Theorems 3.2 and 4.2 of Andersen and Gill (1982), one may show that the
second term in (B.2) is 0, (1). With the UWLLN conditions on d¢p/903, the third term in
(B.2)is 0,(1) as well. Hence we have shown that E(C>) — 0 and, furthermore, C, = 0,(1),
in view of the nonnegativity of C,. Therefore, C1C> = 0,(1), which proves the lemma. O

We next show in the following lemma that Af-\jl (%), defined in (5.1), is a consistent
estimator of A;; in a small neighborhood of ~.

Lemma 2. As M — oo, for each K > 0,

sup (|G () = Ayl = 0,(1)
YEN 1 ()

KM~ 2

Proof:  As shown in the previous lemma,

\/ [IM~'Z(T, A, X, b: B8) — Q(vo)l| = 0,(1).

By a similar calculation as before,

Zu = VI / (M7'Z(T, A, X, b: 8) — Q(vo) }dF (b|T, A, X: )|

E(Du|T, A, X;7,)Ch, (B.4)

IN

where C| is as in (B.1) and Dy = \/ |[|[M~'Z(T, A, X, b; 3) — Q(v,)||- Hence, Dy =
0p(1). As X is bounded, for any b, it is easy to show S@(¢,3,b)/S©) (¢, 3,b) and
SW(t, B,b)/SO(t, 3, b) are uniformly bounded. Therefore, D), is bounded. By the dom-
inated convergence theorem, E(Djys) — 0. Hence, Zy; = 0,(1). One can also establish
that

VIl [ RasB)Usa(T. A X b8 dF (BT, A Xi) | = 0p(D): (B5)

On the other hand,
M
M_l / Z ¢(Tl7 Ai7 Xia bz, 7)Ub,ﬁ(T7 A7 Xa b’ /67 n)dF(b|T’ Aa Xa ’Y)
=1

M
= M_lZ/d)(TiaAiaxi,bi;')’)Ubi,ﬁ(ThAiaXi»bi;'Y)dF(bi‘TmAiaxi;'V)
=1

uniformly in NKM, ! (7o) by the UWLLN conditions. Thus, combining (B.4)-(B.6), we

finish the proof of the uniform convergence of the A{\f . Similarly, we can obtain the
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convergence for A{\g . Convergence of A% and A% follows from the standard maximum
likelihood score argument and the UWLLN conditions. |

With Lemmas 1 and 2 established, we can prove consistency and asymptotic normality
of the estimators.

Proofof Theorem 1: Let P(~y) = {S(v), U(v)} and assume that A is positive definite,
otherwise we can replace P(v) with A’ P(). A standard Taylor expansion gives that

M™'2P(y) = M7'2P(vg) — Ap (v )M (y — ),

where v* lies between ~y and ~.

By Lemma 1 and the central limit theorem, M ~'/2 P(~,) converges to a mean 0 random
normal variable. Hence M ~'/2P(~,) = O,(1). Let € > 0 be arbitrary. Then for sufficiently
large My, when M > Moy, on a set with probability 1 — Le, [|[M~1/2P(v,)|| < J, where
J < co. By Lemma 2, there exists an My, > 0 such that when M > My,, on a set with

probability 1 — ¢, A /() converges uniformly to A iny € NKM,% (7o), where K is any
positive numbers. Let My = max (M, M,). We then work on the intersection of the two
random sets (with probability at least 1 — €). Now we fix any M > M. Denote by Ap;, the
minimum eigenvalue of A. Then for Ky = 2.J/Amin, one can show ||(v — 7o) P(Y)|| >
M2 (Apin K2 — JKg) > 0 for ||y — || = KoM ™2 = 2(J/Amin) M~ 2. Because P(v)
is continuous in 7y, by Lemma 2 of Aitchison and Silvey (1958) (an application of the fixed
point theorem in continuous functions mapping from a closed unit ball to itself), P(«y) has

a solution in ||y — vo|| < 2(J/Amin) M 2. O

Proof of Theorem 2: With P(4%) = 0, expanding it about =y, gives that
An ()M (& = 79) = M7V P(v), (B.7)

where v* lies between 4 and ~,,. By the proof of Theorem 1, for any € > 0, there exists a
Ko > 0and M such that the event {||5 — 7,|| < KoM ~'/?} has measure at least | — e.
Hence, by Lemma 2 A/ (v*) 2. A. Using Lemma 1 and a central limit theorem, one
obtains that

M™2P(y,) % N(0, ).
Hence, Theorem 2 follows from (B.7) by the Slutsky theorem. O
Proof of Theorem 3: Using the standard argument for the convergence of the Newton—

Raphson iteration, one can show that there exists an ¢y > 0 such that when |9, —4"|| < e,
4; — 4", where 4" is the solution to

Stv) = o,
Uy) = o,
where $(v) = L 37" wWS(T, A, X, b"; 3). Here,
F(®0:6)

0 — 0.0,
w - L(T?A|X7b 7’7) g(b(o’l))
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andw =", wh.

Because the supports of g(b), f(b; ) and f(b|T, A, X; ) are identical, by Theorem
1 in Geweke (1989) S() — S() uniformly and almost surely in a compact set /3. Using
the infinite smoothness of L(T;, A;|X;, b;;~y) with respect to b; and applying the Weier-
strass’ theorem (Lange 1999, p. 219), when the number of Gaussian abscissas, N¢, goes
to oo, U(v) — U() uniformly in B. Since S, U, S, and U are continuous in -, it follows

+ almost surely
BN 4.

immediately that 4
Applying a one-term Taylor expansion to $(¥*) and U(4*) about 4 and using that
S(4) = 0and U(4) = 0, one obtains

0

VmS(#*) = vm{S(¥) - S(#)} +

0 = vmUF") =vm{U(H) - U@} + -0 vVm(§" - 9),

where
Vi = /S(T,A,X,b;ﬁ)zw(b,T,A,X;ﬁ/)dF(b|T,A,X;ﬁ),

and

L(T,A|X,b;4) f(b,0)
L(T,A|X;%)g(b)

w(b, T, A, X;4) =
. X Imost surel A Imost surel
In addition, O%U('y) oY %U('y) and (%S('y) oSy %S
Again using the Weierstrass’ theorem, one can show that, for a fixed m, one can choose
sufficently large number of Gaussian absissas to let /m{U(%) — U(%)} = o(1).
Combining all the pieces above, one can obtain that /m (4" — %) 4N (0,%), where

<=1, ~—1 o v 0
E=A BAVA)TA), Apu(y) =M - Apy(y)and V = ( (;1 0

(7) uniformly in B.
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