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Abstract: The Dantzig variable selector has recently emerged as a powerful tool
for fitting regularized regression models. To our knowledge, most work involving
the Dantzig selector has been performed with fully-observed response variables.
This paper proposes a new class of adaptive Dantzig variable selectors for linear
regression models when the response variable is subject to right censoring. This is
motivated by a clinical study to identify genes predictive of event-free survival in
newly diagnosed multiple myeloma patients. Under some mild conditions, we es-
tablish the theoretical properties of our procedures, including consistency in model
selection (i.e. the right subset model will be identified with a probability tending to
1) and the optimal efficiency of estimation (i.e. the asymptotic distribution of the
estimates is the same as that when the true subset model is known a priori). The
practical utility of the proposed adaptive Dantzig selectors is verified via extensive
simulations. We apply our new methods to the aforementioned myeloma clinical

trial and identify important predictive genes.
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1. Introduction

Technical advances in biomedicine have produced an abundance of high-
throughput data. This has resulted in major statistical challenges and brought
attention to the variable selection and estimation problem, where the goal is to
discover relevant variables among many potential candidates and obtain high
prediction accuracy. For example, variable selection is essential when performing
gene expression profiling for cancer patients in order to better understand cancer
genomics and design effective gene therapy (Anderson et al., 2005; Pawitan et
al., 2005).

Penalized likelihood methods, represented by the LASSO, have been ex-
tensively studied as a means of simultaneous estimation and variable selection
(Tibshirani, 1996). It is known that the LASSO estimator can discover the right
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sparse representation of the model (Zhao and Yu, 2006); however, the LASSO
estimator is in general biased (Zou, 2006), especially when the true coefficients
are relatively large. Several remedies, including the smoothly clipped absolute
deviation (SCAD) (Fan and Li 2001), and the adaptive LASSO (ALASSO) (Zou
2006), have been proposed to discover the sparsity of the true models, while
producing consistent estimates for nonzero regression coefficients. Though these
methods do differ to a great extent, they are all cast in the framework of penalized
likelihoods or penalized objective functions.

More recently a new variable selector, namely the Dantzig selector (Candés
and Tao, 2007), has emerged to enrich the class of regularization techniques. The
Dantzig selector can be implemented as a linear programming problem, making
the computational burden manageable. Though under some general conditions
the LASSO and Dantzig may produce the same solution path (James et al., 2008),
they differ conceptually in that the Dantzig stems directly from an estimating
equation, whereas the LASSO stems from a likelihood or an objective function.

The Dantzig selector has beem most thoroughly studied with fully observed
outcome variables. But in many clinical studies, the outcome variable, e.g. the
CD4 counts in an AIDS trial or patients’ survival times, may not be fully ob-
served. In a myeloma clinical trial that motivates this research, the goal was to
identify genes predictive of a patient’s event-free survival.

While the vast magjority of work in variable selection for censored outcome
data has focused on the Cox proportional hazards model (e.g. Tibshirani, 1997; Li
and Luan, 2003; Li and Gui, 2004; Gui and Li, 2005a,b; Antoniadis et al., 2010),
a linear regression model offers a viable alternative as it directly links the outcome
to the covariates. Hence, its regression coefficients have an easier interpretation
than those of the Cox model, especially when the response does mot pertain to
a survival time. Some recent work on regularized linear regression models for
censored data can be found in Ma et al. (2006), Johnson et al. (2008), Wang et
al. (2008), Cai et al. (2009), Engler and Li (2009), and Johnson (2009).

Most of these methods operate under the penalization framework. Given that
a censored linear regression does not pertain to a likelihood function, the Dantzig
selector may be a natural choice. Johnson et al. (2008) approached the problem

using a penalized estimation equation approach, but Johnson (2009) noted that
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their procedure gives only an approximate root-n consistent estimator. To our
knowledge, it remains unclear whether the Dantzig selector can also be used to
estimate linear regression models with censored outcome data. Johnson et al.
(2011) studied such a procedure but did not provide theoretical support. It is
therefore of interest to (i) explore the utility of the Dantzig selector in censored
linear regression models, (ii) rigorously evaluate its theoretical properties, and
(11i) compare its numerical numerical properties to similar methods developed
under the lasso/penalization-based framework.

This paper proposes a new class of Dantzig variable selectors for linear re-
gression models when the response variable is subject to right censoring. Dicker
(2011) proposed the adaptive Dantzig selector for the linear model, and here we
develop a similar procedure for use with censored outcomes. First, our proposed
method carries out simultaneous variable selection and estimation, and is moti-
vated from the estimating equation perspective, which may be important for some
semiparametric models whose likelihood functions are often difficult to specify.
Second, the proposed selectors possess the oracle property when the tuning pa-
rameters follow some appropriate rates, providing the theoretical justification for
the proposed procedures. Thirdly, the complex regularization problem has been
reduced to a linear programming problem, resulting in computationally efficient
algorithms.

The rest of the paper is structured as follows. Section 2 reviews the Dantzig
selector for noncensored linear regression models, as well as its connection with
the penalized likelihood methods. Section 3 considers its extension to the linear
regression models when the response variable is subject to censoring. In Section
4, we discuss the large sample properties and prove the consistency of variable
selection and the optimal efficiency of the estimators. We discuss the choice
of tuning parameters for the finite sample situations in Section 5. We conduct
numerical simulations in Section 6 and apply the proposal to a myeloma study
in Section 7. We conclude the paper with a discussion in Section 8. All the
technical proofs are relegated to a web supplement.

2. Penalized Likelihood Methods and the Dantzig Selector
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We begin by considering a linear regression model with p predictors

P
Yi= ZXijﬁj + €, (2.1)

j=1
where ¢; are iid mean zero residuals for ¢ = 1,...,n. Denote the truth by 3, =

(Bots - -+, Bop) and define A = {j : By; # 0}. The goal of the model selection in
this context is to identify A, often referred to as the “true model.”

A variable selector ,@ for By is considered to have reasonable large sample
behavior if (i) it can identify the right subset model with a probability tending
to 1, ie. P({j : Bj # 0} = A) — 1 as the sample size n — oo, and (ii)
V(B4 — B4) — N(0,%%) where 8, is the subvector of 8 extracted by the
subset A of {1,...,p} and ¥* is some |A| x |A| covariance matrix (here, |A|
denotes the cardinality of the set A). Property (i) is often considered to be the
consistency property, while property (ii) involves the efficiency of the estimator.
If properties (i) and (ii) hold and ¥* is optimal (by some criterion), the variable
selection procedure is said to have the oracle property.

Concise notation is to be used for referring to sub-vectors and sub-matrices.
For a subset ' C {1,...,p} and B € RP, let By = (5;)jer be the |T'| x 1 vector
whose entries are those of 8 indexed by 7. For an n x p matrix, X, X is the
n x |T'| matrix whose columns are those of X that are indexed by T'. Additionally,
let X; and X.; denote the it" row and j** column of X, respectively, fori = 1,...,n
and j = 1,...,p. Denote the complement of T in {1,...,p} by T. Other common
notation includes the norms || 3|, = (32F_, |8i|")/" for 0 < r < o0, ||Bllo = #{J :
Bj # 0} and ||B||cc = maxi<;<p|8;|; and sgn(3), the sign vector corresponding
to 3, where sgn(3); = sgn(p;) (by definition, sgn(0) = 0). For a diagonal matrix
W = diag(ws, ..., wp), we define Wrr = diag(w;;j € T).

2.1. Penalized Likelihood Methods

The LASSO is a benchmark penalized likelihood procedure. LASSO works
by minimizing an Ly loss function ||[Y — Xg3||3 subject to an L; constraint:
18]1 = Zj 18j| < s, where Y = (Y1,...,Y},) is the response vector, X is the
n X p design matrix, B8 = (f1,...,05p) is the p x 1 vector of coefficients and s

is a nonnegative tuning parameter. Equivalently, the LASSO estimate can be
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obtained by minimizing

p
Y = X853+ 2> 18, (2.2)

j=1
where A is a nonnegative tuning parameter. It is known that the LASSO performs
variable selection, but in general does not possess the oracle property. A remedy

is to utilize an adaptive LASSO that minimizes

P
1Y = XBI5+ A D wilfjl, (23)

j=1
where w; is a data-driven weight. For example, we can take w; = | B](O)\_V for

~v > 0 and where B(O) is some y/n-consistent estimate of 5y, such as the ordinary
least square estimate when n > p. Note that w; tends to be large when the
true fp; = 0; in this case, the nonzero estimates of 3, are heavily penalized
in (2.3). Conversely, if 80 # 0, then w; tends to be small which ensures that
the nonzero estimates of 3, are moderately penalized in (2.3). Obtaining these
initial estimates is much more difficult when p > n, and for that we defer our
discussion to Section 3.2.
2.2. Adaptive Dantzig Selector
Derived directly from the score equations, the Dantzig selector also belongs

to the class of regularization methods in regression. Specifically, the Dantzig
selector estimator is defined to be the solution to

minimize 1811

subject to || X (Y — XB)[|oc < A,

which strikes a balance between nearly solving the score equation, X' (Y —X3) =
0 and minimizing the L; norm of 3. The Dantzig selector and LASSO are closely
related. Connections between the Dantzig selector and the LASSO have been
discussed in James et al. (2008), where it is shown that under some general
conditions the Dantzig selector and the LASSO produce the same solution path.
Note that in general the Dantzig selector does not have the oracle property.

As a remedy, a modified Dantzig selector, analogous to the adaptive LASSO,
is proposed by Dicker (2011):

minimize > w;l Bl

subject to  |X!;(Y — X3)| < Awj,j=1,...,p.
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As the Dantzig selector and LASSO are related, so are the adaptive Dantzig
selector and adaptive LASSO. Indeed, the adaptive Dantzig selector and adap-
tive LASSO are equivalent to instances of the Dantzig selector and LASSO,
respectively, where X is replaced with XW~!, 3 is replaced with W3, and
W = diag(ws, ..., wp). The key to the adaptive Dantzig selector is to strike a bal-
ance between minimizing the weighted L; norm, which promotes sparsity, and
approximately solving the weighted normal equations. Weights w; in the adap-
tive Dantzig selector should be chosen according to the same principles which
determine weights in the adaptive LASSO. When the response vector Y is fully
observed, Dicker (2011) established the oracle property of the adaptive Dantzig
selector for an appropriately chosen tuning parameter A. It is unclear, however,
whether this property hold when the response Y is subject to censoring.

3. Adaptive Dantzig Selector for Censored Linear Regression

Consider a slightly modified version of (2.1),
Y, =X;B+e¢

where X; = (Xj1,...,X;p)" is the covariate vector for the ith subject and ¢;
are iid with an unspecified distribution denoted by F'(-), with survival function
S(-) =1—F(-). The mean of ¢;, denoted by «, is not necessarily 0. As above, 3,
denotes the true 8 and A = {j; Bo; # 0} is the true model. Suppose that Y; may
be right censored by a competing observation C; and that only Y;* = Y; A C; and
0; = I(Y* =Y;) are observed for each subject. We assume that Y; is independent
of C; conditional on X;. When the response variable pertains to survival time,
both Y; and C; are commonly measured on the log scale, and the model is called
the accelerated failure time model (Kalbfleisch and Prentice 2002).
Denote by €;(3) = Y;* — 8'X;, and consider

. > . S(s,B)d
Yi(B) =E(Y; | Y6, X,8) =Y+ (1 - 51')M-

S5(ei(8),B)
Clearly,
E{Yi(8) | Xi,8} = a + X8,
The Buckley-James estimating equation is
> (X = X) {ViB) — X8} = 0.5 =1.....p, (3.1)
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where X; = -3 7" | X;; for j=1,...,pand

. . s, 3)ds
Yi8) =Y+ (1 6>fgfe( m)}

is the empirical version of Y;(3). Here, S‘(, () is the one-sample Nelson-Aalen
estimator based on (e;(3), d;),

(tﬁ—exp{ Z/ dNu'B}, (3.3)

where N;(u,8) = I{e;(B) < u,8; = 1} and Y (u, 8) = >, I{e;(8) > u}. Under
mild conditions, Lai and Ying (1991) have shown that the Buckley-James estima-

(3.2)

tor, which solves (3.1), is \/n-consistent. To facilitate the ensuing development,

note that (3.1) can be written in a more compact form
X'P,{Y(8) - X8} =0, (3.4)

where P,, =1, — 11’ /n, I, is an n x n identity matrix, 1 is an n x 1 vector with
all elements being 1 and Y (8) = (Y1(8),...,Yn(8))".

Solving (3.4) does not directly render an automatic variable selection proce-
dure. But because the adaptive Dantzig selector is derived directly from score
equations instead of a loss function, it naturally presents an appealing solution

to our problem. Applying it to (3.4) gives

minimize > wil Byl

subject to X!, P,{Y(B) — XB}| < My, j=1,...,p
Unfortunately, this is no longer a simple linear programming problem, because
(3.4) is a discrete estimating equation. One strategy uses an iterative algorithm,
starting with initial value of 3, as in Wang et al. (2008), but such methods have
numerical and theoretical difficulties (Johnson 2009).
3.1. Low-dimensional Setting

Instead of implementing the adaptive Dantzig selector with the true esti-

mating equation (3.4), we propose to use a /n-consistent initial estimator 3,
denoted B 0 to construct an imputed version of the true response Y, denoted
v(3")
(3.4) with X'P,{Y (3 3 )) — XB} = 0. In the low-dimensional setting, where

; we then employ a version of the adaptive Dantzig selector replacing
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p < n, we can obtain 3, using unpenalized Buckley-James estimation, or rank-
based procedures with Gehan or logrank weights (Jin et al., 2003). A similar
one-step imputation strategy was used by Johnson (2009), though there the im-
puted Y(B(U)) were used to construct a loss function which was then used with
a LASSO penalty. In contrast, here we proceed directly from the estimating
equation.

Our new version of the adaptive Dantzig selector is thus given by
minimize > wil Byl (3.5)
subject to \ijPn{Y(,@(O)) - XB}H < Awj, j=1,...,p. '

Again, w; are data driven weights and should be chosen to vary inversely with
the magnitude of By;. For instance, as with the adaptive Dantzig selector, we can
take w; = |BA§O)]*V for some v > 0. Then when ]B](O)] is large, (3.5) requires us to
nearly solve the j*" score equation, where the surrogate vector Y(EI(O)) is treated
as a fully observed outcome vector, and heavily penalizes non-zero estimates of
Bo; when | B](.O)\ is small. Note that when the response is fully observed, that
is 0; = 1 for all 4, the imputation-based Dantzig selector, (3.5) reduces to the
adaptive Dantzig selector for linear regression models and the result is an effective
variable selection procedure. However, the censoring present difficulties that are
worth investigating.
3.2. High-dimensional Setting

In the high-throughput datasets that now characterize modern medicine,
however, it is rare that the number of covariates is smaller than the sample size.
But in this high-dimensional setting with p > n, it is difficult to obtain initial
\/n-consistent estimates B(O). Our strategy here is to first reduce the number of
the covariates to be smaller than n using a sure screening procedure. We then
calculate the B(O) using the retained covariates and proceed as in Section 3.1.

Specifically, we employ the screening procedure of Zhu et al. (2011), which
can provide sure screening for any single-index model, which includes the AFT
model. To choose the number of covariates to retain after screening, we follow the
combined soft- and hard-thresholding rule of Zhu et al. (2011), which chooses up
to n/log(n) covariates using a procedure involving randomly generated auxiliary
variables.

Recently, Johnson et al. (2011) also studied Buckley-James estimation using
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the Dantzig selector with an initial \/n-consistent estimator. To deal with the
high-dimensional problem, they proposed a strategy they termed “B initializa-
tion”, in which they select a subset of important covariates to use in calculating
the initial estimate. While this is similar to our proposal, our work has several
advantages. First, we propose an adaptive Dantzig selector, which has practical
and theoretical advantages over the nonadaptive version. Second, by using the
procedure of Zhu et al. (2011) to select the subset of important covariates, we can
take advantage of the sure screening property of their method, which states that
under certain conditions on the design matrix, the probability that the selected
covariates contains the truly important covariates approaches 1.

4. Theoretical Results

A fundamental difficulty of extending the Dantzig selector to the censored
regression setting is that }A/Z-(B(O)) is only a surrogate for the unobserved outcome
Y;. This prevents the direct applications of the existing Dantzig selector results
obtained for fully observed outcomes.

In the ensuing theoretical development, we first quantify the “distance” be-
tween the surrogate and the true outcomes, and show that the average difference
between the imputed YL-(B(O)) and the true Y; is bounded by a random variable
of order n~Y/2. This turns out to be essential for establishing the oracle property
of the Dantzig selector estimator. Given this random bound, we then show that
the existing Dantzig selector results for the non-censored case can be extended
to the censored case, leading to the oracle property.

4.1. Quantify the “Distance” Between the Imputed and “True” Re-
sponses

Before stating the main result of the section, we state a lemma, which implies
that even though S, defined in (3.3), is a discontinuous function, a first order
asymptotic linearization exists. This is useful for bounding the difference between

the surrogate and the true outcomes.

Lemma 1 Assume the conditions 1—4 of Ying (1993, p.80). Also suppose that

the derivative of the hazard function A(s) with respect to s is continuous for
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—00 < s < 00. Then,

S(s1,81) — S(s0) = S(s0){(B1 — Bo) Als0, By) — M50, By)(s1 — s0)
+n" 2 Z(s0)} + ofmax(n 2, |s1 — so| + 181 — Boll)},

with probability 1 uniformly for any (s1,8,) € B={(s,8) : |s—so| + 18— Byl <
Cn_1/2}, where C' > 0 is any arbitrary constant, A is a px1 nonrandom function,
A(s) is the hazard function for S(s) and the stochastic process Z(s) is a version
of W(v(s)). Here, W(-) is the Wiener process and v(-) is defined in (S1.2) in

the web supplement.

Proposition 1 Under the reqularity conditions listed in Lemma 1, % Yoy Xi{f/i(/@(o))—
_ . 2(0) _
Yi} = Op(n™12) if B = By + Op(n~1/2).

Several points are worth noting. First, the result can be succinctly rephrased
as X'(Y = Y) = 0,(n'/?), where Y = Y(B(O)) and Y = (Y,...,Y,)". Second,
the result further implies (P, X) (Y —Y) = O,(n'/?), where X is replaced by its
centralized version; this will facilitate the proof of consistency of model selection.
Finally, as the validity of Proposition 1 requires B(O) to be y/n-consistent, taking
the B(O) equal to the Buckley-James estimate, which is \/n-consistent, will suffice.
4.2. Selection-consistent Adaptive Dantzig Selector

- NN (Y
To ease notation in what follows, we use Y to denote Y(,B( )). Observe that
the adaptive Dantzig selector for data with a censored response, (3.5), can be

rewritten compactly as

minimize INAZE]IF

. (SADS)
subject to  ||Z'(Y — ZWp)||s < A,

where W = diag(ws, ..., w,) and Z = P,XW~!. We will refer to the solution 3
as the selection-consistent adaptive Dantzig selector (SADS). The optimization
problem (SADS) is a linear programming problem, which means that there is
a corresponding dual linear programming problem. Specifically, ,3 can be char-
acterized in terms of primal and dual feasibility and complementary slackness

conditions.
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Lemma 2 If there is fr € RP such that,

IZ' (Y = ZWB)|ls < A, (4.1)
||Z,Zﬂ||oo < 1, (4.2)
WZZWB = [[Wa|, (4.3)

WZ(Y -ZWB) = A|plh, (4.4)

then the vector 3 € RP solves (SADS).

The parameter p in Lemma 2 is the dual variable and may be viewed a
a Lagrangian multiplier. Inequalities (4.1) and (4.2) correspond to primal and
dual feasibility respectively, while (4.3) and (4.4) concerns with complementary
slackness. Inspecting (4.1)—(4.4), the following proposition proves that (SADS)

is selection consistent, provided A and (w1, ..., wp) follow an appropriate rate.

Proposition 2 Suppose that B is the true parameter value and A = {j; fo; #
0}. Also assume that %X’PnX converges in probability to some positive definite

matriz. Suppose further that

\)\ijgooifjgéAand/\wj:Op(\/ﬁ) if j € A.
n

Then, with probability tending to 1, a solution to (SADS), B, and the correspond-

ing fu from Lemma 2 are given by

fra = (Z4Za) 'sgn(By)a (4.5)
pi = 0 (4.6)

and

A~

Ba = Wil {(Z4Za) " ZUY — \(Z)Za) sen(in)a }
= (XLP,Xa) 'XUP,Y - A(XUP,Xa) " Waasen(i)a  (4.7)
Bi = O (4.8)

Corollary 1 (consistency of model selection) Suppose that the conditions
of Proposition 2 hold and let B be any sequence of solutions to (SADS). Then

P({j: B #0} = 4) > 1.
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We make a few remarks about Proposition 2 and Corollary 1. First, to en-
sure that the conditions in Proposition 2 hold, one selects data-driven weights
w; and an appropriate A\. Examples of weights and X such that these conditions
hold include w; = | ,3(0)|_7, where ,3(0) is y/n-consistent for 3, and v > 0, and A
such that n='/2\ = O(1) and n("=1/2)\ — oco. Also note that though Proposi-
tion 2 makes no uniqueness claims about solutions to (SADS), it can be shown
that in “most” cases (SADS) has a unique solution (Dicker 2011). Furthermore,
Corollary 1 states that regardless of whether or not there is a unique solution,
(SADS) is consistent for model selection.

4.3. Oracle Adaptive Dantzig Selector

The estimator defined in (4.7) and (4.8) solves (SADS) in probability. This
expression may be leveraged to obtain the large-sample distribution of /n-
standardized (SADS) estimates. However, though the solution to (SADS) is
selection consistent, it may not achieve optimal efficiency. In other words, the
variances of the nonzero components of 3 could be larger than the corresponding
variances obtained from the oracle estimator. To remedy this, we propose the
oracle adaptive Dantzig selector (OADS), which does possess the oracle property.

To proceed, let T = {j; Bj # 0} be the index set of non-zero estimated
coefficients from the SADS estimator B Define the OADS estimator B(O’T) SO
that ,BSFO T 0 and [3§9 ) is the Buckley-James estimate obtained by solving
(3.4) with X replaced by Xp. That is, we perform a Buckley-James estimation
based on the subset of covariates selected by the SADS estimator. This is similar
to the Gauss-Dantzig selector of Candés and Tao (2007), in which ordinary linear
regression is performed on the covariates selected by the Dantzig selector. As

~(0,T i
summarized in the following proposition, ,8( ) achieves the oracle property.

Proposition 3 (oracle property) Assume that the conditions of Proposition
2 hold. Let T = {j; Bj # 0}, where B is the SADS estimator for By and let
Bo,a be the non-zero subvector of By. Define ,3(0714) so that HEE’A) =0 and BS}’A)
is the Buckley-James estimate obtained by solving (3.4) with X replaced by X 4.

Then the OADS estimator B(O’T) satisfies

P (A7 = 5°) 1
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and
(0,T)

Vi (BY" = Boa) = N(0,3)
weakly, where ¥ = Q 'AQ™L. Here,

{TU(t,By)}** | [7(1 = F(s))ds [ dlog f(t) f(@)
= / [(2)”30) ROINN ] 1—F() { d +1—F(t)}dF(t)

and

(T2, B)}22] [ [7°(1 = F(s))ds
A= / [1“(2) (t,Bg) — F(O)(t,go) ] { T } dF(t),

where TU)(t, By) for r = 0,1 are defined as in (S1.1) in the web supplement.

Note that X in Proposition 3 is the asymptotic variance of the Buckley-
James estimator given the true subset of covariates; see Lai and Ying (1991).
Finally, note that these theoretical results all depend on the existence of /n-
consistent B(O). In high dimensions we estimate B(O) from the covariates retained
after screening using the method of Zhu et al. (2011). Then by the sure screen-
ing property, the probability that B(O) is estimated from the truly important
covariates, and is thus y/n-consistent, will approach 1.

In practice we propose using the covariance matrix estimated from the second-
stage Buckley-James fit to estimate the covariance of the nonzero components of

~ (0,
6( )

timator ignores the variability coming from the imputation of }A’(,[:}

, while we set the zero components to have zero variance. This ad-hoc es-
(0)) as well as
the variability from the first-stage SADS model selection, and so will in general
underestimate the true variance of the OADS estimator. However, as the prob-
ability of selecting the true model increases, this variance estimator will clearly
approach X, the variance of the oracle estimator.
5. Tuning Parameter Selection

In practice, it is very important to select an appropriate tuning parameter A
in order to obtain good performance. For the uncensored linear regression (2.1),
Tibshirani (1996) and Fan and Li (2001) proposed the following generalized cross-

validation (GCV) statistic:

AR(N)

e Dk
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where AR()) is the average residual sum of squares (Y — XB(N)|3, B(N) is the
estimate of B under A and d(\) is the effective number of parameters, i.e. the
number of non-zero components of the LASSO estimates (Zou et al. 2007).
When the data are censored, we adopt an inverse reweighting scheme to
account for censoring. Assume the potential censoring C; are iid and have a
common survival function G;, which is a reasonable assumption for clinical tri-
als where most censoring is due to administrative censoring. As suggested by

Johnson et al. (2008), we approximate the unobserved AR()\) by

Sy 8 — a0 - XIBO) /G (YY)
S 0/GY)

where G(-) is the Kaplan-Meier estimator for G(-), and 4(0) = 1 Z?Zl{Y;(BO)) -
X;B(O)}. Conditional on (Y;, C;, X;), the expected value of ¢;/G(Y;*) is one, and
hence, the expected values of the numerator and the denominator of ZE(/\) are
equal to the expected value of > {V; —a(®) — X;B()\)}Q and n, respectively. El-

ementary probability implies that ZE()\) and AR(A) have the same limit, justify-

AR(\) =

ing the utility of the inverse reweighting scheme. To obtain an estimate of the ef-
fective number of parameters for the SADS estimator, we follow Zou et al. (2007).
The expression (4.7)-(4.8) suggests that d(\) = trace{Xr(X,P,X7) ' X4 P,} =
|T|o, where T" = {j;,@’j # 0}, is a consistent estimator for d(A). In the ensu-
ing data analysis and simulation studies, we propose to select A that yield the
smallest GCV defined as

_ AR
{1—d(\)/n}?>
Similar GCV schemes have been proposed by Wang et al. (2008) and Johnson

GOV () (5.1)

et al. (2008) in various contexts.
6. Simulations and Comparisons
6.1. Simulation Set-up

We examined the finite sample performance of the proposed methods in low-
and high-dimensional settings. Mimicking the simulation setup of Tibshirani
(1997) and Cai et al. (2009), for i« = 1,...,n we generated the true response
Y; (after the exponential transform) from the exponential distribution with rate

\i = exp(—06pX;) , ie., Y; = B,X; + ;. In the low-dimensional setting, we let
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p = 9, and to model weak and moderate associations between the predictors
and the response we considered: 8, = (0.35,0.35,0,0,0,0.35,0,0,0)" and B, =
(0.7,0.7,0,0,0,0.7,0,0,0)". In the high-dimensional setting, we let p = 10000
and considered B, = ( 60“’, ,660“’, 0), where Béow are the 9 x 1-dimensional true
parameter vectors from the low-dimensional setting.

We generated covariates X; = (Xji,...,X;p) from a multivariate normal
with mean zero and a compound symmetry covariance matrix ¥ = (01 )pxp = (p)
and e; follows the standard extreme value distribution. In low dimensions, we
varied p to be 0, 0.5, and 0.9, corresponding to zero, moderate, and strong
collinearity among the predictors. In high dimensions, good performance becomes
difficult to achieve with a p as large as ours, so we simulated slightly easier
settings with p equal to either 0, 0.3, or 0.5.

The censoring variable C; (after exponential transform) was generated from
a uniform[0, £], where { was chosen to achieve about 40% censoring. The initial
estimate ,3(0) is obtained via the Buckley-James procedure. We simulated sample
sizes of n = 50 or n = 200 and generated 200 independent datasets under each
simulation setting.

6.2. Comparisons of Competing Methods

For each scenario, the following proposed estimation procedures were evalu-
ated: the selection-consistent adaptive Dantzig selector ,@ (SADS) and the oracle
adaptive Dantzig selector B(O’T) For the OADS estimator, we first tuned the
SADS estimator and then fit a Buckley-James estimate to the selected covari-
ates. We used the unpenalized Buckley-James procedure to obtain the initial
/n-consistent estimates [ ©

To compare these methods to a penalization-based approaches, we also evalu-
ated the adaptive penalized Buckley-James estimator (APBJ) of Johnson (2009),
which uses the ,3(0) to impute outcomes Y(B(O)) and then applies the adaptive
LASSO penalty to the least-square loss function constructed using the Y(B(O)).
Here we followed Johnson (2009) and used the Gehan estimator (Gehan 1965)
to obtain the initial B(O). In the high-dimensional setting, we used the same
screening procedure of Zhu et al. (2011) on the APBJ estimator as well as our
proposed adaptive Dantzig selectors.

We evaluated the accuracy and precision of the parameter estimates based
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Table 6.1: Comparisons of Methods with Different Signal Strengths in Low Dimensions

50]' =0.7 BOj =0.35
Method MSE  FP FN % Correct C-stat MSE FP FN % Correct C-stat
n=>50,p=0

SADS 0.46 1.36  0.24 0.24 0.72 0.42 1.58 1.36 0.04 0.59

OADS 0.54 1.36  0.24 0.24 0.72 0.55 1.58 1.36 0.04 0.59

APBJ 0.44 1.42 0.23 0.24 0.72 0.39 1.60 1.23 0.04 0.60
n =200,p=0

SADS 0.11 0.56  0.01 0.74 0.75 0.10 0.80 0.34 0.32 0.64

OADS 0.08 0.56  0.01 0.74 0.75 0.11 0.80 0.34 0.32 0.64

APBJ 0.11 0.87 0 0.64 0.75 0.10 0.82 0.34 0.30 0.64
n =>50,p=0.5

SADS 1.03 1.60 0.55 0.10 0.78 0.61 1.27  1.62 0 0.66

OADS 1.14 1.60 0.55 0.10 0.78 0.85 1.27  1.62 0 0.66

APBJ 0.94 1.77 048 0.10 0.78 0.54 1.29 1.51 0.02 0.67
n=200,p=0.5

SADS 0.18 0.88 0.06 0.57 0.81 0.18 0.93 0.74 0.12 0.69

OADS 0.17 0.88 0.06 0.57 0.81 0.21 0.93 0.74 0.12 0.69

APBJ 0.18 1.10 0.02 0.48 0.81 0.16 0.96 0.55 0.20 0.69
n =>50,p=0.9

SADS 4.31 1.90 1.41 0 0.82 2.25 1.52 1.96 0 0.71

OADS 5.04 1.90 1.41 0 0.81 3.32 1.52 1.96 0 0.70

APBJ 3.68 212 1.26 0 0.82 1.85 1.52 1.88 0.01 0.71
n=200,p=0.9

SADS 1.20 1.55 0.78 0.04 0.83 0.59 0.65 1.98 0 0.72

OADS 1.35 1.55 0.78 0.04 0.83 0.86 0.65 1.98 0 0.72

APBJ 1.05 1.47 0.71 0.08 0.83 0.53 0.74 1.77 0.01 0.72

on the mean squared errors MSE = E(||3 — B||?). To examine how well the
proposed procedures perform with respect to variable selection, we recorded the
average number of of zero regression coefficients being incorrectly set to non-zero
and non-zero regression coefficients being incorrectly set to zero, leading to the
average number of false positives (FP) and false negatives (FN). We also recorded
for each method the probability, across the 200 simulations, of selecting exactly
the correct model. Finally, we compared the predictive abilities of the fitted
models by estimating their C-statistics (Uno et al., 2011) on independent test
datasets.

The results for the low-dimensional setting are summarized in Table 6.1.

The Dantzig selector-based estimators appeared to have better model selection
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performance. When n = 50, all three methods performed alike in terms of model
selection, and not surprisingly had a difficult time selecting the correct model.
However, when n = 200 and Bo; = 0.7, the SADS and OADS estimators were
able to select the correct model up to 74% of the time. The APBJ method of
Johnson (2009) performed worse than the other estimators except when p = 0.9.

However, the APBJ method of Johnson (2009) appears to have the best es-
timation accuracy in general, as its average mean squared errors were usually
lower than those of OADS and SADS. The OADS estimator could indeed outper-
form the SADS estimator, but apparently only when the probability of selecting
the true model was sufficiently high. Indeed, in such situations the OADS even
outperformed the APBJ estimator. However, when this was not the case, such
as in the simulation settings with n = 50, it was actually detrimental to fit a
Buckley-James estimator to the covariates selected by SADS.

Finally, the methods did not exhibit appreciable differences in predictive abil-
ities. The selection performance and mean squared errors of all three methods
improved with increasing sample size and degraded with increasing correlation
between the covariates. On the other hand, the predictive abilities were not af-
fected much by the sample size, and not surprisingly also improved with increasing
correlation.

The results for the high-dimensional setting are summarized in Table 6.2.
All of the methods performed poorly in variable selection. However, this is not
surprising given the difficulty of the simulation settings. On the other hand, when
n = 200 and Boj = 0.7, they were able to achieve fairly good estimation accuracy,
as the MSE’s of the three methods are lower than B3 = 2.94 for p = 0 and
p = 0.3. Again, the APBJ estimator gave the most accurate parameter estimates.
Finally, we see that the different methods give fitted models with very similar
predictive abilities. When n = 50 and p = 0, the C-statistics were very low
because of the noise involved in the screening step, but with larger n and higher
p the C-statistics were around 80% even though very few of the truly important
covariates were selected.

We also studied the performance of our proposed covariance estimator for
the OADS estimators. As we mentioned in Section 4.3, as the SADS stage does

a better job of selecting the true model, our variance estimator will approach
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Table 6.2: Comparisons of Methods with Different Signal Strengths in High Dimensions

Bo; = 0.7 Poj =0.35
Method MSE FP FN % Correct C-stat MSE FP FN % Correct C-stat
n=>50,p=0

SADS 4.81 7.66 5.50 0 0.55 1.87 7.78 5.91 0 0.54

OADS 4.97 7.66 5.50 0 0.55 2.00 7.78 5.91 0 0.54

APBJ 4.66 8.13 5.51 0 0.55 1.74 8.01 5.91 0 0.54
n =200,p =0

SADS 1.37 20.01 0.79 0 0.72 1.26 21.34  3.58 0 0.55

OADS 1.64 20.01  0.79 0 0.70 1.43 21.34  3.58 0 0.55

APBJ 1.34 19.31 0.79 0 0.72 1.18 22.02 3.51 0 0.55
n =>50,p=0.3

SADS 5.92 7.18 5.79 0 0.73 2.08 5.96 5.92 0 0.67

OADS 6.01 7.18 5.79 0 0.73 2.21 5.96 5.92 0 0.67

APBJ 5.66 7.30 5.80 0 0.73 1.88 6.29 5.92 0 0.67
n = 200,p =0.3

SADS 2.40 15.62 2.86 0 0.81 1.15 12.64 4.66 0 0.71

OADS 2.57 15.62 2.86 0 0.81 1.20 12.64 4.66 0 0.71

APBJ 2.30 13.45 2.87 0 0.81 1.03 10.57  4.69 0 0.71
n =>50,p=0.5

SADS 6.90 7.23 5.87 0 0.80 2.52 5.98 5.94 0 0.72

OADS 6.97 7.23 5.87 0 0.80 2.71 5.98 5.94 0 0.72

APBJ 6.50 7.50 5.88 0 0.80 2.29 6.05 5.94 0 0.72
n = 200,p =0.5

SADS 3.52 17.32  4.06 0 0.85 1.41 12.33 5.28 0 0.76

OADS 3.70 17.32  4.06 0 0.84 1.48 12.33 5.28 0 0.76

APBJ 3.34 15.70  4.07 0 0.84 1.25 9.54 5.35 0 0.76
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Table 6.3: Covariance estimators
Oracle cov. Ave. OADS cov.
B B2 Bs B1 B2 Be
n = 200, By; = 0.7,p =0, 74% correct
By 0.014 0.004 0.004 0.016 0.002 0.002
B2 0.004 0.013 0.004 0.002 0.016 0.002
Bs  0.004 0.004 0.016 0.002  0.002 0.016

n =50, Bo; = 0.7,p = 0.5, 10% correct
p/1 0.127  -0.036 -0.031 0.100 -0.010 -0.011
B2 -0.036 0.098 -0.020 -0.010 0.108 -0.014
Bg -0.031 -0.020 0.094 -0.011  -0.014 0.098

n =50, By; = 0.35,p = 0.9, 0% correct
51 0.457 -0.206 -0.224 0.144 -0.018 -0.017
B -0.206 0.406 -0.171 -0.018 0.132 -0.011
Bs -0.224 -0.171 0.416 -0.017 -0.011  0.158

the true variance of the oracle estimator. In Table 6.3 we compare a few average
estimated covariance matrices to their corresponding empirical oracle covariance
matrices in low dimensions. When n = 200, By; = 0.7, and p = 0, the OADS
estimator selected the correct model 74% of the time, so the two covariance
matrices were very similar. We also included a more difficult case, where n = 50,
Boj = 0.7, and p = 0.5. Even when the model was selected only 10% of the time,
our covariance estimator still performed fairly well. In the worst case setting of
n = 50, Bo; = 0.35, and p = 0, however, when the OADS estimator never selected
the correct model, our estimator was very different from the truth. Thus while
our ad-hoc proposal is reasonable for easy or moderately difficult settings, a
more appropriate variance estimator would be an interesting subject for further
research.
7. Example of Myeloma Patients’ Survival Prediction

Multiple myeloma is a progressive hematologic (blood) disease, characterized
by excessive numbers of abnormal plasma cells in the bone marrow and overpro-
duction of intact monoclonal immunoglobulin. Myeloma patients are typically
characterized with wide clinical and pathophysiologic heterogeneities, with sur-

vival ranging from a few months to more than 10 years. Gene expression profiling
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Table 7.4: Validation C-statistics on T'T3
Method Model size C-statistic

SADS 4 0.6067
OADS 4 0.6160
APBJ 13 0.6255

of multiple myeloma patients has offered an effective way of understanding the
cancer genomics and designing gene therapy. Identifying risk groups with a high
predictive power could contribute to selecting patients for personalized medicine.

To address this issue, we studied event-free survival from newly diagnosed
multiple myeloma patients enrolled in trials UARK 98-026 and UARK 2003-33
(Zhan et al. 2006, Shaughnessy et al. 2007). The trials compared the results
of two treatment regimes, total therapy II (TT2) and total therapy III (TT3).
There were 340 patients in TT2, with 191 events and an average follow-up of
47.1 months, and 214 patients in TT3, with 55 events and an average follow-up
of 35.6 months. Gene expression values for 54675 probesets were measured for
each subject using Affymetrix U133Plus2.0 microarrays. We retrieved the data
from the MicroArray Quality Control Consortium II (Shi et al., 2010) GEO entry
(GSE24080).

We used our proposed adaptive Dantzig selector methods to develop risk
scores by fitting AFT models to the TT2 patients. We then estimated the C-
statistics (Uno et al., 2011) of those models on the TT3 patients, and compared
the results to the APBJ estimator. Table 7.4 contains the results, and we see
that the SADS, OADS, and APBJ estimators have similar predictive perfor-
mances, with validation C-statistics of around 61%. Our adaptive Dantzig selec-
tors achieved this using 4 probesets, while the APBJ estimator used 13. Table
7.5 reports the final models and the parameter estimates.

8. Discussion

We have studied variable selection for the AFT model by applying the adap-
tive Dantzig selector to the Buckley-James estimating equation, and we have
provided two estimators. To our knowledge, this is the first theoretical study
applying the Dantzig selector to censored linear regression. We showed that our

SADS estimator is selection consistent while our OADS has the oracle property.
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Table 7.5: Parameter estimates by various selectors

Probeset Gene name SADS OADS APBJ
205072_s.at XRCC4 0.057  0.285 0.14
208966 x_at IFI16 -0.836  -0.678 -0.485

225450_at  AMOTL1 -0.042 -0.18 -0.082
233750_s_at  Clorf25 -0.207  -0.386 -0.191
204700 x_at  Clorfl07 -0.055
1565951_s_.at CHML -0.135
1568907_at  Unknown 0.08
201897_s.at CKS1B 0.009
222437 s_at  VPS24 0.297
222443 s_.at RBMS8A 0.255
209052_s.at WHSC1 -0.04

228817_at  ALG9 0.236

225834 at  FAMT2A /// FAMT72B /// GCUD2 -0.046

In simulations we showed that they perform similarly compared to the APBJ
method of Johnson (2009), though the Dantzig-based methods may have a slight
advantage in variable selection while the penalization-based method has slightly
better estimation accuracy. Similar results have been found when comparing the
Dantzig selector to the lasso in the complete data case, and we have shown the
a similar relationship holds in the censored data case.

When the data are high- or ultrahigh-dimensional, we proposed using a
screening procedure for single-index models before applying the SADS or OADS
estimators, a strategy justified by the sure screening property of Zhu et al. (2011).
Using this approach to analyze the data from the multiple myeloma clinical trial,
we showed that our methods could achieve comparable validation C-statistics as
the APBJ method, but using far fewer probesets.

Several issues merit further investigations. First, our asymptotic setup in this
paper is that the number of predictors is fixed while the sample size approaches
infinity. In this work we have appealed to the sure screening procedure of Zhu
et al. (2011), but an asymptotic theory with a diverging p seems to be more
applicable to problems involving a huge number of predictors, such as microarray
analysis and document/image classification.

Second, more research is needed on the evaluation of the variation of the
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estimator for small or moderate sample size. We proposed an ad-hoc variance
estimator that gives reasonable performance when the signal-to-noise ratio is not
too weak. Another possibility is to use a perturbation resampling technique, as
in Minnier et al. (2011), though this lacks theoretical justification when applied
to Dantzig selector-type regularization.

Finally, one potential advantage of the Dantzig selector over penalized likeli-
hood methods such as LASSO is that it can be naturally extended to the settings
where no explicit likelihoods or loss functions are available, and may be more com-
putationally and theoretically appealing than the penalized estimating equation
method of Johnson et al. (2008). We envision that our work can be extended to
handle Dantzig selector in the framework of more general estimating equations.
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