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Abstract

This article presents semiparametric joint models to analyze longitudinal data with

recurrent event (e.g. multiple tumors, repeated hospital admissions) and terminal event

such as death. A broad class of transformation models for the cumulative intensity of

the recurrent events and the cumulative hazard of the terminal event is considered,

which includes the proportional hazards model and the proportional odds model as

special cases. We propose to estimate all the parameters using the nonparametric

maximum likelihood estimators (NPMLE). We provide the simple and efficient EM

algorithms to implement the proposed inference procedure. Asymptotic properties of

the estimators are shown to be asymptotically normal and semiparametrically efficient.

Finally, we evaluate the performance of the method through extensive simulation stud-

ies and a real-data application.

KEY WORDS: Joint models; Longitudinal data; Nonparametric maximum likelihood;

Random effects; Recurrent events; Repeated measures; Terminal event; Transformation

models.
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1 Introduction

In many biomedical studies, data are collected from patients who experience the same event

at multiple times, such as repeated hospital admissions or medical emergency episodes,

recurrent strokes, multiple infection episodes, and tumor recurrences. At the same time,

some longitudinal biomarkers are observed either at the occurrence time of the events or

at regular clinic visits. In addition, some subjects may experience a terminal event such as

death. The work described in this paper arose from the Atherosclerosis Risk in Communities

(ARIC) study where there was a growing need for a new model to investigate the association

between recurrent coronary heart diseases (CHD) and systolic blood pressures over time

whose observations were censored by the patient’s death. It was concerned that the usual

independent censorship assumption may be inappropriate because we observed some patients

died soon after the recurrent CHD event occurred. As longitudinal markers, recurrent events,

and death appear to be dependent on and informative of one another, analyzing one or two

of these processes but ignoring the dependence from the other processes may lead to bias

or result in inefficient inference. Therefore, it is important to jointly model longitudinal

markers, recurrent events, and death altogether. In this way, we will be able to make the

most efficient use of all data and identify effects of variables after correctly controlling the

interplay among these processes.

A number of authors have studied jointly modeling longitudinal outcomes and a terminal

event, but not considering recurrent events. Among them, Wulfsohn and Tsiatis (1997),

Tsiatis and Davidian (2001, 2004), Hsieh et al. (2006), and Song and Wang (2008) presented

joint models for survival endpoint and longitudinal covariates with measurement errors.

The same joint modeling approach has also been studied for other purposes where both

longitudinal and survival data were outcomes of interest (Xu and Zeger, 2001). Vonesh et al.

(2006) addressed the need of jointly modeling for the analysis of repeated measures with

informative censoring time. The approach by Henderson et al. (2000) could incorporate

longitudinal data with either a recurrent or terminal event, but not both.
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For the analysis of longitudinal data with informative observation times, a variety of

methods have been proposed. Among them, most commonly used approaches were the

marginal models for both longitudinal data and time processes (Lin and Ying, 2001; Lin

et al., 2004; Sun et al., 2005, 2007). Under these marginal models, it is challenging to obtain

efficient estimators and also impossible to predict future outcomes of an individual given

the past information. An alternative approach was suggested by Liang et al. (2009); they

studied the joint modeling approach using random effects, requiring specified link functions

of the random effects.

Joint models have also been developed for analyzing a recurrent and a terminal events

data. Wang et al. (2001), Liu et al. (2004), Rondeau et al. (2007), Ye et al. (2007), and

Huang and Liu (2007) adopted a common gamma frailty to account for the dependence

of recurrent events on death or informative censoring (drop-out), while Huang and Wang

(2004) made no assumption of censoring time and random effect. Most of the existing work

required the proportionality and assumed time-independent covariates. Recently, Zeng and

Lin (2009) developed transformation models that can deal with non-proportional hazards as

well as time-varying covariates.

However, there has been scant literature considering the dependence of repeated measures

on both recurrent and terminal events. Both Liu et al. (2008) and Liu and Huang (2009)

have proposed to use joint modeling approach to analyze such data under the proportionality

assumption. In case where the proportionality does not hold, their joint models may yield

biased estimators as demonstrated in examples in Web Table 1. In their inference procedure,

the piecewise constant functions were adopted for estimating baseline intensity and hazard

functions; however, there was no general rule for selecting the number of knots that led to

the best reflection of the underlying baseline functions. Moreover, theoretical properties of

the suggested estimators have not been established.

In this paper, we will use general transformation models for modeling both recurrent and

terminal events, while accounting for the dependence between these two event processes and
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longitudinal outcomes. Our transformation models, including the proportional hazards and

the proportional odds models as special cases, can prevent possible model mis-specification

errors. Our numerical results demonstrate severe biases in regression parameter estimators

when the proportional hazards/odds model is misspecified. The rest of the article is or-

ganized as follows. In Section 2, we introduce joint models for longitudinal measurements

and recurrent events in the presence of a terminal event. In Section 3, we estimate all the

parameters by the nonparametric maximum likelihood estimation (NPMLE) and provide

simple and efficient algorithms to implement the proposed inference procedure. The the-

oretical work that shows the weak convergence and efficiency of the proposed NPMLEs is

given in Section 4. Sections 5-6 evaluate the numerical performance of the proposed method

through extensive simulation studies and through the application to the Atherosclerosis Risk

in Communities (ARIC) study. We conclude with some remarks in Section 7.

2 Joint Models

Let Y (t) denote the longitudinal outcome measured at time t, N∗(t) denote the number of

recurrent events occurring by time t, and T be the time to a terminal event. We introduce

latent random effects to account for the association among these processes. Particularly,

let bT = (bT1 , b
T
2 ) denote the subject-specific random effects following a multivariate normal

distribution with mean-zeros and covariance matrix Σb; b1 is used to explain the correlation

between longitudinal outcomes, and b2 (i.e., frailty term) is used for the correlation in recur-

rent event times. Let Z be a vector of external covariates (possibly time-varying), including

the unit component. We assume that Y (·), N∗(·), and T are independent, conditional on Z

and b. We then propose the following joint models combining the conditional longitudinal

process Y (t|Z; b) and the conditional cumulative intensity and hazard functions Λ∗
R(t|Z; b)
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and Λ∗
T (t|Z; b), respectively:

Y (t|Z; b) = βT
1 Z1(t) + bT1 Z̃1(t) + ε(t), (1)

Λ∗
R(t|Z; b) = GR(

∫ t

0

exp
{

βT
2 Z2(s) + bT2 Z̃2(s)

}

dΛR(s)), (2)

Λ∗
T (t|Z; b) = GT (

∫ t

0

exp
{

βT
3 Z3(s) + (b ◦ φ)T Z̃3(s)

}

dΛT (s)), (3)

where βT = (βT
1 , β

T
2 , β

T
2 ) is a vector of unknown regression parameters, ΛR(·) and ΛT (·) are

unspecified increasing, baseline cumulative intensity and hazard functions, φT = (φT
1 , φ

T
2 ) is

a set of unknown constants, and b ◦ φ denotes the component-wise product. Both Zi(t) and

Z̃i(t) (i = 1, 2, 3) are some subsets of Z, but Z2(t) and Z3(t) do not have the unit component.

This allows each of three outcomes {Y (·), N∗(·), T} to depend on different sets of predictors.

Additionally, ε(t) is a Gaussian white noise process with mean-zero and variance σ2
e . Both

GR and GT are continuously differentiable and strictly increasing transformation functions

to be specified in the analysis. For example, GR(x) and GT (x) can take a form of the

logarithmic transformation,











log(1 + γLx)/γL, γL > 0

x, γL = 0,
(4)

or a form of the Box-Cox transformation,











{(1 + x)γBC − 1}/γBC , γBC > 0

log(1 + x), γBC = 0.
(5)

According to the choice of γL and γBC in both classes of transformations, the transformation

model can represent the proportional hazards model x (when γL=0, γBC=1) or the propor-

tional odds model log(x + 1) (when γL=1, γBC=0). In fact, these types of transformations

arise from a Cox model with missing covariate (Kosorok et al., 2004). Thus, the parameters
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can still be interpreted similarly as in the Cox model but conditional on some unobserved

missing covariate. The greatest importance of the transformation models is that they lead

to correct estimation of predictors and survival prediction, even if neither the Cox model

nor the proportional odds model does hold.

Note that models (1) and (2) characterize the dependence between Y (·) and N∗(·) via the

covariance structure between b1 and b2. For example, when both b1 and b2 are scalar, their

correlation (say ρ) quantifies the degree of such dependence not explained by the observed

covariates. Model (3) shows that the terminal event depends on Y (·) through the shared

random effects b1, and depends onN∗(·) through the shared frailty b2, respectively; moreover,

such dependences can be characterized by φ1 and φ2. For example, φ1 = 0 implies that i) the

dependence between the longitudinal process and the terminal event can be fully explained

by the observed covariates, and ii) censoring in the longitudinal process occurs at random.

Let C be the non-informative censoring time assumed to be independent of {Y (·), N∗(·),

T , b} given Z, and letX =min(T , C) denote the observed terminal event time. The observed

data for the ith subject with mi repeated measurements are {Yi(tik), Ni(t), Xi, ∆i, Z(t) ;

tik ≤ Xi, t ≤ Xi, i = 1, . . . , n, k = 1, . . . , mi}, where Ni(t) = N∗
i (t ∧Xi), ∆i = I(Ti ≤ Ci)

with I(·) being the indicator function. Under models (1)-(3), the log-likelihood function of

the observed data is given by

n
∑

i=1

log

∫

b

mi
∏

k=1

[

1
√

2πσ2
e

exp

{

−(Yi(tik)− βT
1 Z1i(tik)− bT1 Z̃1i(tik))

2

2σ2
e

}]

×
∏

t

[

λR(t) e
βT
2 Z2i(t)+bT2 Z̃2i(t) G′

R(

∫ t

0

eβ
T
2 Z2i(s)+bT2 Z̃2i(s) dΛR(s))

]Ri(t)∆N∗

i (t)

×
[

λT (Xi) e
βT
3 Z3i(Xi)+(b◦φ)T Z̃3i(Xi) G′

T (

∫ Xi

0

eβ
T
3 Z3i(t)+(b◦φ)T Z̃3i(t) dΛT (t))

]∆i

× exp

{

−GR(

∫ Xi

0

eβ
T
2 Z2i(t)+bT2 Z̃2i(t) dΛR(t))−GT (

∫ Xi

0

eβ
T
3 Z3i(t)+(b◦φ)T Z̃3i(t) dΛT (t))

}

× f(b; Σb) db,

where Ri(t) = I(Xi ≥ t) is the indicator for the risk set, ∆N∗
i (t) denotes the jump size of the
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underlying recurrent event at time t, f(b; Σb) denotes a multivariate normal density function

of b, and λR(t) = Λ′
R(t) and λT (t) = Λ′

T (t) are the derivatives of ΛR and ΛT , respectively.

Note in (1) and (2) that the observation times of longitudinal outcomes do not need to be

the same as the recurrent event times. Instead, the longitudinal measures may be observed

at some scheduled visits or at the times when the recurrent events occur.

3 Inference Procedure

3.1 Nonparametric Maximum Likelihood Estimation

We propose to use the nonparametric maximum likelihood estimation (NPMLE) for esti-

mating parameters (β, φ, σ2
e , Σb) and infinite-dimensional parameters ΛR(t) and ΛT (t). In

the log-likelihood, we assume the cumulative intensity function ΛR(t) and the cumulative

hazard function ΛT (t) to be step functions with the jumps at the observed event times, and

we replace the intensity function λR(t) and the hazard function λT (t) with the jump size of

ΛR and ΛT at time t, denoted by ΛR{t} and ΛT{t}, respectively. The modified log-likelihood

ln(β, φ, σ
2
e , Σb, ΛR, ΛT ) is given by

n
∑

i=1

log

∫

b

mi
∏

k=1

[

1
√

2πσ2
e

exp

{

−(Yi(tik)− βT
1 Z1i(tik)− bT1 Z̃1i(tik))

2

2σ2
e

}]

×
∏

t



ΛR{t} q2i(t)G′
R(

∑

j:wjr≤t

q2i(wjr) ΛR{wjr})





Ri(t)∆N∗

i (t)

× exp







−GR(
∑

j:wjr≤Xi

q2i(wjr) ΛR{wjr})−GT (
∑

j:wjt≤Xi

q3i(wjt) ΛT{wjt})







×



ΛT{Xi} q3i(Xi)G
′
T (

∑

j:wjt≤Xi

q3i(wjt) ΛT{wjt})





∆i

× f(b; Σb) db, (6)

where q2i(t) = exp{βT
2 Z2i(t)+ bT2 Z̃2i(t)}, q3i(t) = exp{βT

3 Z3i(t)+(b◦φ)T Z̃3i(t)}, and wjr and

wjt are the j
th ordered observed recurrent and terminal event times, respectively. Hence the
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likelihood can be expressed as a function of a finite number of parameters, which include (β,

φ, σ2
e , Σb) and the jump sizes of ΛR and ΛT .

3.2 EM Algorithm

To obtain the NPMLEs and their variance estimators, we use the expectation-maximization

(EM) algorithm (Dempster et al., 1977), treating b as missing data. In the E-step, we com-

pute conditional expectations of the log-likelihood for the complete data, given the observed

data and current parameter estimates. Particularly, using a numerical approximation method

such as the Gaussian quadrature, we can evaluate the integration of certain functions of b,

say g(b). We denote such expectation by Ê[g(b) | Yi(t), Ni(t), Xi,∆i, Z(t)], hereafter abbre-

viated as Ê[g(b)]. In the M-step, we maximize the conditional expectation of the complete

data log-likelihood function given the observed data. Specifically, the closed-form of the

maximizers exist for (β1, σ
2
e , Σb) as follows:

β̂1 = (ZT
1 Z1)

−1ZT
1 (Y − Ê[Z̃1b1]),

σ̂2
e = Ê[(Y − Z1β1 − Z̃1b1)

T (Y − Z1β1 − Z̃1b1)] /
n

∑

i=1

mi,

Σ̂b = Ê[b bT ],

where Y denotes the vector of longitudinal measurements at the observed times, and Z1

and Z̃1 denote matrices with each row equal to the observed covariates Z1(t)
T and Z̃1(t)

T

at the same times, respectively. For the rest of parameters (β2, β3, φ, ΛR{·}, ΛT{·}), the

quasi-Newton algorithm is used to update the parameter estimates at each M-step.

When covariates of the recurrent and terminal events (Z2, Z̃2, Z3, Z̃3) are time-independent,

we propose to use recursive formulae, provided in Web Appendix 1, which reduce the num-

ber of parameters to be maximized to a very small set of parameters. Basic ideas of the

recursive formulae can be described as follows. In the forward recursive formula, since ΛR(t)
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and ΛT (t) can be calculated from the jumps which are observed before time t, only (λ1R,

λ1T ) are involved in the quasi-Newton iteration, where λ1R and λ1T are the jump sizes at the

first observed event times of the recurrent and terminal events, respectively. This forward

recursive formula is applicable to time-varying covariates with a slight modification. In the

backward recursive formula, similarly, ΛR(t) and ΛT (t) can be expressed as a function of

the jumps which are observed after time t and the sum of all jumps. Thus, the backward

recursive formula requires to maximize only the last jump sizes and the sums of all observed

jump sizes of the recurrent and terminal events. [The R code is available at http://xxx.]

To estimate the covariance matrix of the NPMLEs, we compute the observed information

matrix via the Louis formula (Louis, 1982) as given in Web Appendix 1. Then, the inverse

of the observation information is the estimator of the covariance matrix of the NPMLEs.

In implementation of the proposed EM algorithm, the choice of reasonable starting values

becomes more important as model complexity grows. In a simple random intercept model,

we use 0 for the initial values of β and φ, 1 for variances, 1/mr for ΛR{·}, and 1/mt for

ΛT{·}, where mr and mt are the numbers of the observed recurrent and terminal events,

respectively. However, with the same initial setting in the random intercept and slope

models, we experienced 1% of convergence failure in our simulation studies; the rest of them

converged within 50 iterations, on average. We think this was because of computational

instability brought to the terminal event component by the additional variation (the random

slope). As soon as we used reasonable initial values for these terminal jumps (the inverse

of the size of risk set for ΛT{·}, i.e., 1/
∑n

i=1 I(Xi ≥ wjt)), numerical convergence problems

were not encountered in any simulated datasets or real data examples we analyzed. The

EM algorithm we construct here is more reliable than imagined because the quasi-Newton

iteration involves only a small number of parameters due to the proposed recursive formulae

in Web Appendix 1.
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4 Asymptotic Properties

Let θ be the vector of (β, φ, σ2
e , Vec(Σb)) and let (θ0, Λ0R(t), Λ0T (t)) be the true parameter

values of (θ, ΛR(t), ΛT (t)), where Vec(Σb) denotes the vector consisting of the upper trian-

gular elements of Σb. We then establish the asymptotic properties of the NPMLEs under

the following conditions:

(A1) The parameter value θ0 belongs to the interior of a compact set Θ within the domain

of θ. Additionally, Λ′
0R(t) > 0 and Λ′

0T (t) > 0, for all t ∈ [0, τ ], where τ is the duration of

the study.

(A2) With probability 1, Z(.) is left-continuous with uniformly bounded left and right deriva-

tives in [0, τ ].

(A3) For some constant δ0, P (C ≥ τ |Z) > δ0 > 0 with probability 1.

(A4) E[N∗(τ)] < ∞ with probability 1.

(A5) For some positive constantM0 and ‖c‖ = 1,M−1
0 < σ2

0e < M0 andM−1
0 < cTΣ0b c < M0.

(A6) The transformation functionsGR(.) andGT (.) are four-times differentiable withGR(0) =

GT (0) = 0, G′
R(0) > 0, and G′

T (0) > 0. In addition, there exist positive constants µ0 and κ0

such that for any integer m ≥ 0 and for any sequence 0 < x1 < ... < xm ≤ y,

m
∏

j=1

{(1 + xj)G
′
R(xj)} exp{−GR(y)} ≤ µm

0 (1 + y)−κ0

and

(1 + x)G′
T (x) exp{−GT (x)} ≤ µ0(1 + x)−κ0.

Furthermore, there exists a constant ρ0 > 0 such that

sup
x

{

|G′′
R(x)|+ |G(3)

R (x)|+ |G(4)
R (x)|

G′
R(x) (1 + x)ρ0

}

+ sup
x

{

|G′′
T (x)|+ |G(3)

T (x)|+ |G(4)
T (x)|

G′
T (x) (1 + x)ρ0

}

< ∞,

where G
(3)
R , G

(4)
R , G

(3)
T , and G

(4)
T are the third and fourth derivatives.

(A7) For some t ∈ [0, τ ], if there exist a deterministic function c(t) and v such that c(t) +
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vTZ(t) = 0 with probability 1, then c(t) = 0 and v = 0.

(A8) For some t ∈ [0, τ ], Z̃T
i (t)Z̃i(t) (i = 1, 2) has full rank with some positive probability.

(A9) Let K be the number of repeated measures and let db be the dimension of b1. With

probability one, P (K > db) > 0.

Conditions (A1)-(A3) are the standard assumptions for survival analysis. Conditions

(A4)-(A5) are necessary to prove the existence of the NPMLEs. It can be easily verified that

Condition (A6) holds for all transformations commonly used, including the classes of Box-

Cox and logarithmic transformations described in Section 2. Conditions (A7)-(A8) entail

the linear independence of design matrices of covariates for the fixed and random effects.

Condition (A9) prescribes that some subjects have at least db repeated measures.

Under the above conditions, the following theorems show the consistency and asymptotic

normality of (θ̂, Λ̂R, Λ̂T ) and the asymptotic efficiency of θ̂.

Theorem 1 Under Conditions (A1)-(A9), almost surely,

|θ̂ − θ0| → 0, sup
t∈[0,τ ]

|Λ̂R(t)− Λ0R(t)| → 0, sup
t∈[0,τ ]

|Λ̂T (t)− Λ0T (t)| → 0.

Theorem 2 Under Conditions (A1)-(A9),
√
n (θ̂−θ0, Λ̂R−Λ0R, Λ̂T−Λ0T ) weakly converges

to a zero-mean Gaussian process in Rdθ ×BV [0, τ ]×BV [0, τ ], where dθ is the dimension of θ

and BV [0, τ ] denotes the space of all functions with bounded variations in [0, τ ]. Furthermore,

the asymptotic covariance matrix of
√
n (θ̂−θ0) achieves the semiparametric efficiency bound

for θ0.

Furthermore, in Web Appendix 2, we show that the inverse of the observed information

matrix is a consistent estimator of the asymptotic covariance matrix of the NPMLEs. This

result allows us to make inference for any functional of (θ,ΛR,ΛT ). To prove Theorems 1-2,

we apply the general asymptotic theory of Zeng and Lin (2007). The desired asymptotic

properties of the NPMLEs are established followed by the arguments in Appendix B of
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Zeng and Lin (2007) if we can verify that their regularity conditions hold for our joint model

setting. Checking the regularity conditions, however, is challenging in our cases. The detailed

proofs are provided in Web Appendix 2.

5 Simulation Studies

In this section, we examined the performance of the proposed methods through extensive

simulation studies. We considered a dichotomous covariate of Z1 taking the value of 0 or 1

with the equal probability of 0.5 and a continuous covariate of Z2 randomly sampled from

the uniform distribution on [-1, 1]. We generated data for the longitudinal outcomes from

Y (t |Z1, Z2; b1) = 0.7+Z1+0.5Z2+b1+ε(t), where ε(t)∼N(0, σ2
e) with σ2

e = 1, the recurrent

event process from the cumulative intensity Λ∗
R(t |Z1, Z2; b2) = GR(e

Z1+0.5Z2+b2ΛR(t)), where

ΛR(t) = ν1t, and the terminal event time from the cumulative hazard Λ∗
T (t |Z1, Z2; b1, b2) =

GT (e
Z1+0.5Z2+b1φ1+b2φ2ΛT (t)), where ΛT (t) = ν2t

2.

For each subject, the correlation within repeated measures was reflected by b1∼N(0, σ2
1),

and the correlation within recurrent event times was reflected by another random effect

b2 ∼ N(0, σ2
2). In addition, their dependence was given by ρ, which was the correlation

between (b1, b2). Particularly, we chose σ2
1 = σ2

2 = ρ = 0.5. We considered two cases of

φ = (0.5, 0.2) and (0, 0.2), where we simulated some positive dependence (i.e. φ1 = 0.5) or

no dependence (i.e. φ1 = 0) explained by b1 in the latter.

The non-informative censoring time Ci was randomly sampled from the uniform distri-

bution on [1, 5], and (ν1, ν2) was chosen according to the considered transformation models

in order to achieve the desired total number of recurrent event times of 2∼3 and the desired

censoring rate of 35%, on average. We set longitudinal observation times to be fixed intervals

so that a subject had about six longitudinal measurements, on average.

The results presented in Table 1 and Table 2 are based on 1000 replications for n=200

and n=400. Tables 1-2 include the difference between the estimate and true parameter
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(Bias), the sample standard deviation of the parameter estimators (SE), and the average

of the standard error estimators (SEE), and the coverage probability of 95% confidence

intervals (CP). The confidence intervals for ΛR(·) and ΛT (·) are constructed based on the

log transformation, and those for ρ are based on the Fisher transformation. In addition, we

use the Satterthwaite approximation to compute the confidence intervals of σ2
e , σ

2
1 , and σ2

2.

Table 1 shows that the NPMLEs under GR(x) = GT (x) = x are noticeably unbiased, the

standard error estimators calculated via the Louis formula well reflect the true variations of

the proposed estimators, and the coverage probabilities lie in a reasonable range, even with

a moderate sample size 200. As the sample size increases to 400, the estimators have smaller

bias, the variations of the parameter estimators become smaller, and the coverage probabil-

ities are more accurate overall. The simulation results shown in Table 2 are similar to Table

1, indicating that the proposed method seems to work well for the transformation GR(x) = x

and GT (x) = log(1+x) as well. We also studied other combinations of transformations such

as {GR(x), GT (x)} = {log(1 + x), x} and {GR(x), GT (x)} = {log(1 + x), log(1 + x)}, and

the results are similar and hence omitted here to save space.

To further investigate the performance of the proposed method, we also considered more

practical scenarios for the correlation and covariate structures of the longitudinal process;

including 1) random intercept and slope, and 2) time-dependent covariate Z2(t) = Z2t.

Simulation results reported in Web Tables 2-4 reveal that the good asymptotic properties

in the proposed method held even for more complicated correlation structure than just the

compound symmetry as well as even for time-dependent covariate processes.

6 Application

We applied the proposed method to the data from the Atherosclerosis Risk in Communities

(ARIC) study. The cohort study was designed to investigate the trends in rates of hospital-

ized myocardial infarction (MI) and coronary heart diseases (CHD) in men and women aged
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45-64 years from four US communities; Minneapolis suburbs (Minnesota), Forsyth County

(North Carolina), Washington County (Maryland), and Jackson County (Mississippi). It is

well known that some risk factors for coronary heart diseases differ considerably by race,

therefore, our research focused on a total of 870 white patients living in Forsyth County,

who were diagnosed with hypertension at the first examination in 1987-89.

The existing studies (Chambless et al., 2003; Wattanakit et al., 2005) found that systolic

blood pressure (SBP) was an important risk factor for both incidence and recurrence of CHD

in the ARIC data. We also observed from the preliminary analysis that patients who had

experienced more recurrent CHD events were likely to be in a higher risk of death. Thus,

the primary objective of this analysis was to characterize these relationships between SBP

changes over time, recurrent CHD events, and death together, to assess the effects of baseline

covariates on these three outcomes, and to utilize the final models for the accurate prediction

of risk of recurrent CHD events and death. To model such a complicated system, we propose

a joint transformation model for the main outcomes consisting of three components: (a)

longitudinal SBP measures, (b) recurrent CHD events, and (c) death.

Beginning with the first screen examination (baseline) in 1987-89, longitudinal measures

were collected at approximately three-year intervals, in 1990-92, 1993-95, and 1996-98. The

recurrent event of interest was the multiple occurrences of CHD events including MI, which

were classified based on Mortality and Morbidity Classification Committee (MMCC) reviews

or computer algorithm if MMCC reviews were not required. Follow-up process for the

recurrent CHD events and death continued until 2005 through reviewing death certificates

and hospital discharge records and investigating out-of-hospital deaths, while the follow-up

for longitudinal measures ended with each patient’s last examination (up to 1998). The

median follow-up time was 16.6 years with the largest follow-up time being 19 years, and

28% of patients died during the study period. 138, 28, and 8 patients experienced one, two,

and more than two CHD events, respectively.

In our joint model, we included the baseline covariates: age, sex, total-cholesterol, and
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indicators for hypertension lowering medication use, diabetes (with fasting glucose ≥126

mg/dL) and ever smoker along with visiting time in years. Among them, total-cholesterol

was standardized at mean 0 and standard deviation 1, and age variable was centered at the

mean age of 54 and divided by 10 to represent a decade. In addition, subject-specific random

intercepts b1 and b2 were included in the joint model to cope with correlations within and

between three outcomes, while quantifying the associations between processes.

We applied the logarithmic and the Box-Cox transformations in Section 2, and the Akaike

information criterion (AIC) was used to determine the best transformation model. Figure 1

shows the surfaces of the log-likelihood functions by the combinations of GR(x) and GT (x)

transformations, where the largest log-likelihood value corresponded to the proportional

intensity model for the recurrent CHD and the proportional odds model for death, i.e.,

GR(x) = x and GT (x) = log(1+x), based on both logarithmic and Box-Cox transformations.

Table 3 summarizes the estimation results under the selected best model. The analysis

results using our joint model are reported under the Full Model, while those from the model

ignoring the dependent censoring by death are reported under the Reduced Model. In the

Full Model, age at entry was significant for all three outcomes; elder patients had a higher

SBP level (β̂11 = 0.338, p < .001), a higher intensity rate of CHD occurrences (β̂31 = 0.837,

p = .002), and a higher risk of death (β̂31 = 2.187, p < .001). On average, SBP level increased

over time (β̂17 = 0.014, p = .001), and patients who took hypertension medications tended

to have lower SBP levels (β̂14 = −0.546, p < .001). The risk of CHD was significantly

different by sex; men were likely to be in a higher risk than women (β̂22 = 0.871, p = .001).

Both smoking and diabetes were associated with the elevation in the risk for CHD and death.

Examples of the quantitative interpretations related to applied transformations are as follows:

the estimate of diabetes effect β̂26 = 1.843 can be interpreted as the log relative risk of CHD

(the proportional intensity model), and the estimate β̂36 = 2.671 can be interpreted as the

log odds ratio of death (the proportional odds model) for diabetes vs. no diabetes.

For the model association, the significant correlation between b1 and b2 (ρ̂ = 0.241,
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p = .007) suggested that there seemed to be some positive association between SBP levels

and recurrence due to unobserved random factors, even after adjusting for the commonly

observed covariates. The non-significant φ̂1 indicated that the observed covariates in the

fitted model appeared to fully explain dependence between the longitudinal SBP pattern

and death. In contrast, the highly significant φ̂2 appeared to support the positive correlation

between recurrence of CHD and death, and comparing the magnitude of σ̂2 = 1.76 relative

to φ̂2 = 1.91 suggested that the strength of this association varied from patient to patient

as much as the common factor across patients. Note that, if we ignore this dependent

censoring by death, then the regression parameter estimators in the recurrent event become

biased towards the null, in which smaller standard error estimators would be observed as in

the Reduced Model (Table 3), while those in the longitudinal process remain very similar

to the results from the Full Model. To sum up, these results coincided with our initial

expectations that patients with higher SBP would be exposed to a higher risk of CHD and

that patients who get admitted to hospital more frequently with CHD would be at even

higher risk of death. These findings can easily flow to other interesting application points:

1) to predict the survival distribution after the incidence of CHD at a fixed time s, and 2)

to estimate the expected SBP levels over time after the incidence of CHD at a fixed time s.

To answer the question 1), the conditional survival distribution can be calculated as

P [T > t |Z,∆N∗(s) = N∗(s) = 1, T > s]

=

∫

b
e
−GT

(

∫ t

0 eβ
T
3 Z3(u)+(b◦φ)T Z̃3(u) dΛT (u)

)

f(∆N∗(s) = N∗(s) = 1, T > s|Z, b) f(b; Σb) db
∫

b
f(∆N∗(s) = N∗(s) = 1, T > s|Z, b) f(b; Σb) db

.

Also, for the question 2), the conditional expectation of longitudinal SBPs is given by

E[Y (t) |Z,∆N∗(s) = N∗(s) = 1, T > t]

=

∫

b

{

βT
1 Z1(t) + bT1 Z̃1(t)

}

f(∆N∗(s) = N∗(s) = 1, T > t|Z, b) f(b; Σb) db
∫

b
f(∆N∗(s) = N∗(s) = 1, T > t|Z, b) f(b; Σb) db

, for t > s.
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For illustration purposes, the predicted survival distribution for a female patient who has one

CHD event at study year 5 and has the average baseline measures of age and total-cholesterol

level, no hypertension medication, never smoking, and no diabetes is displayed in Figure 2,

along with the 95% pointwise confidence intervals. The confidence intervals are obtained by

applying the functional delta method and evaluating at the NPMLEs.

7 Concluding Remarks

We have presented joint transformation models for repeated measures and recurrent event

times with an informative terminal event. We have provided an efficient EM algorithm to

compute the maximum likelihood estimators of the model parameters. The nonparametric

maximum likelihood estimators are shown to be consistent, asymptotically normal, and

asymptotically efficient. The proposed approach has been applied to the ARIC data, and

the resulting joint models can be used in predicting a patient’s future survival rate and

longitudinal measures given his/her past history, for example.

To obtain the variance estimates of (θ̂, Λ̂R(t), Λ̂T (t)), we have used the inverse of the

observed information matrix evaluated at the NPMLEs. The validity of using the Fisher

information has been justified in many other models including frailty models (Parner, 1998)

and transformation models (Kosorok et al., 2004). The main reason is that the nonpara-

metric parameters can be estimated at the same rate (
√
n) as the parametric components,

which implying that the nonparametric baseline functions can be treated equally as usual

parameters. Even if this approach yields consistent variance estimators, in practice inverting

such a large dimensional matrix may be intimidating with the large number of observations.

This limitation can be overcome by using a profile likelihood variance estimation (Murphy

and van der Vaart, 2000) rather than a full likelihood approach if the parameter of interest

is only θ. Particularly, let p`n(θ) be the profile log-likelihood function for θ, expressed as

p`n(θ) = sup{ΛR,ΛT }

∑n
i=1 `i(θ,ΛR,ΛT ) =

∑n
i=1 `i(θ,Λ

∗
Rθ,Λ

∗
Tθ), where `i(θ,ΛR,ΛT ) is the ob-

17



served log-likelihood function for the ith subject. Then the negative second-order numerical

difference of p`n(θ) at θ = θ̂ can approximate the inverse of the asymptotic variance of θ̂

(Zeng and Cai, 2005). That is,

−n−1{p`n(θ̂ + rnc)− 2p`n(θ̂) + p`n(θ̂ − rnc))}/r2n

can estimate cT I∗θ c for any vector c such that ‖c‖=1 and any constant rn = O(n−1/2), where

I∗θ is the efficient information for θ. In this approach, the computation of Λ∗
Rθ and Λ∗

Tθ which

maximize the observed log-likelihood function for a fixed θ in the neighborhood of θ̂ (i.e.,

θ = θ̂ ± rnc) can be conducted by utilizing the EM algorithm in Section 3.2, but holding θ

fixed all the time in both the E-step and M-step.

In lack of modeling-checking technics for frailty models or joint models, if the proportional

hazards or odds models are misused, regression coefficients can be significantly biased as

shown in our simulation studies (Web Table 1). We expect that the transformation models

can be a useful tool in finding the model with better fit to data and less biased. The

transformation parameter can be easily tested using the profile likelihood ratio test. Let

p˜̀n(γ) be the profile log-likelihood function for γ, expressed as

p˜̀n(γ) = sup
{θ,ΛR,ΛT }

n
∑

i=1

`i(θ(γ),ΛR(t; γ),ΛT (t; γ)) =

n
∑

i=1

`i(θ̂(γ), Λ̂R(t; γ), Λ̂T (t; γ)), (7)

where {θ̂(γ), Λ̂R(t; γ), Λ̂T (t; γ)} are the NPMLEs for a fixed γ, treating GR and GT are

deterministic functions. Maximizing (7) with respect to γ yields the profile likelihood es-

timator γ̃. Substituting this estimate into (7) yields the profile likelihood p˜̀n(γ̃). On the

other hand, under the null hypothesis H0 : γ = γ0 for a constant γ0, the profile likelihood

is p˜̀n(γ0) =
∑n

i=1 `i(θ̂(γ0), Λ̂R(t; γ0), Λ̂T (t; γ0)). The profile likelihood ratio statistic is then

constructed as

Tn = −2[p˜̀n(γ0)− p˜̀n(γ̃)].

18



The test statistic Tn can be approximated by a chi-square distribution with 1 degrees of

freedom (Murphy and van der Vaart, 2000). For the boundary parameter γ0 = 0, we expect

that the test statistic follows asymptotically a mixture of two chi-square distributions with

0 and 1 degrees of freedom, respectively.

The proposed maximum likelihood estimation for the joint models requires distributional

assumptions of random effects, while the estimating equation approach proposed by Sun,

Sun, and Liu (2007) is free of these assumptions. As for future research, when modeling the

terminal event may not be a major concern, it may be interesting to compare our method to

their marginal approach in terms of computation complexity and efficiency gain in estimating

regression parameters. Our model assumes that longitudinal measures are linearly related to

all covariates considered. Where it is believed that the longitudinal measures are nonlinearly

related to some predictors, we can increase the flexibility of our joint models by including

some nonparametric functions of those predictors additively in the longitudinal components.

Another promising extension of our joint model would be to the context of generalized

linear mixed models (GLM) for analyses of discrete longitudinal outcomes. This is rather

straightforward in that random effects in GLMs are commonly assumed to follow a mean-

zero normal distribution as in our model. Therefore, the same inference procedures by EM

algorithm would also be applicable in GLMs. The only difference in computation would be a

lack of closed-form estimators in the M-step of the longitudinal process; instead, a numerical

method such as iteratively re-weighted least squares may be involved. We can also extend

our model to multiple types of recurrent and/or terminal events.

8 Supplementary Materials

Web Tables and Appendixes referenced in Sections 1, 3-5 and 7 are available under the

separate report Supplementary Materials.pdf.
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Table 1: Simulation results for GR(x) = GT (x) = x. Bias and SE are the bias and the
standard deviation estimates, SEE is the average of the standard error estimator, and CP is
the coverage probability of 95% confidence intervals. τ denotes the study duration.

N = 200 N = 400

Parameter True Bias SE SEE CP Bias SE SEE CP

φ = (0.5, 0.2)
β1 0.7 -.011 .083 .081 .934 -.010 .059 .058 .944

1.0 -.012 .123 .118 .935 -.012 .086 .083 .946
0.5 -.008 .102 .108 .947 -.007 .072 .072 .953

σ2
e 1.0 .002 .041 .041 .958 -.000 .031 .029 .940

β2 1.0 -.012 .138 .138 .951 -.021 .094 .097 .955
0.5 -.007 .118 .119 .952 -.009 .084 .083 .949

ΛR(τ/4) 1.0 -.014 .111 .112 .948 -.012 .077 .079 .955
ΛR(τ/2) 2.0 -.033 .213 .215 .942 -.026 .149 .152 .946
β3 1.0 .019 .199 .204 .962 -.003 .137 .141 .957

0.5 .012 .175 .171 .954 -.000 .118 .118 .954
φ 0.5 .028 .214 .211 .960 .005 .147 .143 .944

0.2 -.016 .219 .219 .960 -.010 .153 .149 .945
ΛT (τ/4) 0.1 -.003 .022 .022 .962 -.002 .016 .016 .953
ΛT (τ/2) 0.4 -.009 .069 .069 .953 -.003 .048 .049 .960
σ2
1 0.5 -.013 .068 .067 .951 -.006 .049 .048 .951

σ2
2 0.5 .013 .095 .092 .946 .013 .063 .064 .947

ρ 0.5 -.006 .091 .095 .955 -.005 .066 .066 .961

φ = (0, 0.2)
β1 0.7 -.009 .082 .082 .939 -.009 .057 .058 .950

1.0 -.014 .116 .118 .947 -.016 .084 .083 .936
0.5 -.001 .101 .103 .947 -.005 .072 .072 .952

σ2
e 1.0 .001 .042 .041 .952 -.000 .029 .029 .949

β2 1.0 -.016 .139 .139 .940 -.017 .099 .097 .932
0.5 -.004 .121 .118 .947 -.008 .082 .083 .949

ΛR(τ/4) 1.0 -.012 .108 .113 .955 -.015 .082 .079 .938
ΛR(τ/2) 2.0 -.028 .209 .216 .949 -.031 .159 .152 .942
β3 1.0 .015 .196 .191 .950 .003 .135 .133 .947

0.5 .009 .163 .160 .946 .003 .107 .110 .960
φ 0.0 .001 .204 .200 .954 .007 .139 .135 .953

0.2 -.008 .234 .221 .944 -.018 .157 .148 .947
ΛT (τ/4) 0.1 -.002 .022 .022 .958 -.001 .015 .015 .941
ΛT (τ/2) 0.4 -.001 .068 .067 .960 -.001 .047 .047 .944
σ2
1 0.5 -.007 .069 .068 .954 -.004 .046 .047 .960

σ2
2 0.5 .010 .092 .093 .946 .010 .063 .064 .948

ρ 0.5 -.002 .096 .094 .947 -.003 .066 .065 .941
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Figure 1: Log-likelihood surfaces under the (a) logarithmic transformations and the (b)
Box-Cox transformations for the ARIC study. The x-axis and y-axis correspond to the
transformation parameters (γL in (a) and γBC in (b)) for recurrent event and terminal event,
respectively.
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Table 2: Simulation results for GR(x) = x and GT (x) = log(1+x). Bias and SE are the bias
and the standard deviation estimates, SEE is the average of the standard error estimator,
and CP is the coverage probability of 95% confidence intervals. τ denotes the study duration.

N = 200 N = 400

Parameter True Bias SE SEE CP Bias SE SEE CP

φ = (0.5, 0.2)
β1 0.7 -.009 .084 .082 .935 -.008 .058 .058 .949

1.0 -.003 .120 .119 .956 -.006 .085 .084 .939
0.5 -.007 .104 .103 .943 -.002 .074 .073 .940

σ2
e 1.0 .002 .041 .041 .955 .001 .030 .029 .946

β2 1.0 -.003 .157 .156 .957 -.006 .107 .108 .956
0.5 -.009 .135 .132 .950 -.001 .091 .092 .949

ΛR(τ/4) 0.6 -.006 .081 .080 .949 -.006 .056 .056 .943
ΛR(τ/2) 1.2 -.012 .156 .154 .953 -.016 .109 .107 .939
β3 1.0 .010 .282 .284 .952 .001 .198 .198 .954

0.5 .004 .228 .241 .966 .005 .168 .169 .951
φ 0.5 -.009 .349 .367 .969 .007 .245 .246 .957

0.2 -.012 .436 .444 .969 -.011 .301 .299 .949
ΛT (τ/4) 0.1 .004 .036 .037 .965 -.002 .026 .026 .966
ΛT (τ/2) 0.4 -.000 .136 .131 .953 .000 .093 .092 .948
σ2
1 0.5 -.009 .070 .069 .956 -.004 .049 .049 .949

σ2
2 0.5 .015 .145 .112 .945 .009 .078 .078 .941

ρ 0.5 -.002 .108 .108 .961 -.004 .073 .075 .953

φ = (0, 0.2)
β1 0.7 -.008 .082 .082 .950 -.008 .057 .058 .954

1.0 -.001 .120 .119 .953 -.005 .084 .084 .948
0.5 .001 .106 .103 .945 -.006 .071 .072 .958

σ2
e 1.0 .001 .041 .041 .947 .001 .028 .029 .953

β2 1.0 -.011 .151 .152 .956 -.005 .111 .108 .938
0.5 .005 .134 .130 .944 -.002 .092 .092 .944

ΛR(τ/4) 0.15 -.001 .081 .079 .944 -.007 .056 .055 .943
ΛR(τ/2) 0.6 -.005 .151 .151 .947 -.019 .106 .106 .949
β3 1.0 .013 .276 .276 .951 .023 .193 .192 .947

0.5 .009 .234 .235 .950 .003 .163 .164 .947
φ 0.0 .014 .367 .357 .963 .008 .246 .241 .956

0.2 -.029 .459 .440 .956 -.045 .297 .293 .942
ΛT (τ/4) 0.1 -.004 .036 .036 .955 -.004 .025 .025 .949
ΛT (τ/2) 0.4 .004 .126 .128 .959 -.010 .085 .087 .952
σ2
1 0.5 -.006 .070 .068 .951 -.005 .049 .048 .955

σ2
2 0.5 .007 .112 .110 .943 .011 .077 .077 .946

ρ 0.5 -.007 .108 .107 .959 -.004 .073 .074 .959
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Table 3: Analysis results for the ARIC study. The Fisher transformation is used for testing
ρ, while 50:50 mixture of χ2 distributions is used for testing variances.

Effect Estimate Std.Err p-value Estimate Std.Err p-value

Full Model Reduced Model

Longitudinal measures of SBP
Intercept 1.026 .062 < .001 1.028 .061 < .001
Age 0.338 .044 < .001 0.336 .044 < .001
Male -0.043 .053 .413 -0.039 .053 .461
Total-cholesterol (mg/dL) -0.007 .023 .766 -0.007 .023 .772
Hypertension medication -0.546 .054 < .001 -0.550 .054 < .001
Ever smoker -0.046 .054 .394 -0.056 .052 .288
Diabetes 0.088 .070 .207 0.089 .070 .200
Visit Year 0.014 .004 .001 0.013 .004 .001
σ2
e 0.500 .016 < .001 0.500 .016 < .001

Recurrent CHD event
Age 0.837 .264 .002 0.506 .150 .001
Male 0.871 .220 < .001 0.795 .187 < .001
Total-cholesterol (mg/dL) 0.195 .109 .073 0.184 .071 .009
Hypertension medication 0.191 .234 .414 0.108 .181 .552
Ever smoker 0.862 .309 .005 0.352 .182 .053
Diabetes 1.843 .253 < .001 1.394 .179 < .001

Terminal event
Age 2.187 .405 < .001
Male 0.611 .364 .093
Total-cholesterol (mg/dL) 0.043 .231 .854
Hypertension medication 0.336 .393 .392
Ever smoker 2.336 .653 < .001
Diabetes 2.671 .374 < .001
φ1 -0.460 .471 .329
φ2 1.910 .317 < .001

Variance components for random effect
σ2
1 0.331 .024 < .001 0.332 .024 < .001

σ2
2 3.100 .883 < .001 0.809 .223 < .001

ρ 0.241 .086 .007 0.348 .107 .003
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Figure 2: Predicted survival probabilities for a subject who had no CHD event (upper 3
lines) and for a subject who had 1 CHD event (lower 3 lines) at the 5th year of study. The
solid curves are point estimates, and the dotted curves are the 95% point-wise confidence
intervals.
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