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Missing covariate data hampers variable selection in multilevel regression settings. Current variable selection
techniques for multiply-imputed data commonly address missingness in the predictors through list-wise deletion,
stepwise-selection methods which are problematic. Moreover, most variable selection methods are developed
for independent linear regression models and do not accommodate multilevel mixed effects regression models
with incomplete covariate data. We develop a novel methodology that is able to perform covariate selection
across multiply-imputed data for multilevel random effects models, when missing data is present. Specifically,
we propose to stack the multiply-imputed data sets from a multiple imputation procedure and to apply a group
variable selection procedure through group lasso regularization to assess the overall impact of each predictor
on the outcome across the imputed data sets. Simulations confirm the advantageous performance of proposed
method, compared with the competing methods. We applied the method to reanalyze the Healthy Directions-
Small Business cancer prevention study, which evaluated a behavioral intervention program targeting multiple
risk-related behaviors in a working-class, multi-ethnic population.
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1. Introduction
Multilevel models are commonly used in large-scale, community-based intervention or medical trial studies to describe
the relationship of the predictors on mean response through fixed effects while also describing the clustering of data
(e.g. workers within worksites, students within schools) through random effects. It is becoming standard practice to
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collect as many predictors as possible to study the impact of contextual, social or comorbidity conditions on the
scientific outcome of interest. When performing multilevel models with high number of predictors, variable selection is
useful for discovering and understanding important underlying associations. A demonstrative example is the Healthy-
Directions Small-Business (HD-SB) study which studied workers clustered within worksites that were randomized to
an intervention or control group. The aim of the HD-SB study was to identify relevant factors that relate to increased
consumption of fruits and vegetables. As often encountered in multilevel and longitudinal studies, the selection of
important variables is hindered by missing data in the covariates and by the introduction of random effects.

There has been considerable amount of work on the topic of variable selection for mixed effects models (Fan & Li,
2004; Qu & Li, 2006; Johnson et al., 2008; Ni et al., 2010; Chen & Dunson, 2003; Zhu & Zhang, 2006; Crainiceanu,
2008; Zhang & Lin, 2008; Kinney & Dunson, 2008; Wang et al., 2010; Bondell et al., 2010; Ibrahim et al., 2011).
These methods require the data to be fully observed (i.e. no missing data). The need to adequately handle missing
data is being recognized as a very important aspect of statistical practice with implications for main analyses and
sensitivity analyses. Often, researchers resort to complete case analyses where subjects are only included if there are
no missing values for all the variables included in the analysis. This strategy is widely known to give rise to bias in model
parameters, except for the very special setting where the missing values are missing completely at random (MCAR)
(Little & Rubin, 2002).

To address these issues, methods have been developed to perform variable selection with missing data. Garcia et al.
(2010) proposed an expectation-maximization (EM) algorithm to simultaneously optimize the penalized likelihood
function and estimate the tuning parameter in the presence of missing data. Johnson et al. (2008) considered a
penalized estimating function approach to variable selection when missing data is present. Variants of the Akaike
information criterion (AIC) to select models from partially observed data have been proposed by Shimodaira (1994),
Hens et al. (2006), and Claeskens & Consentino (2008). A criterion for model selection in the presence of incomplete
data based on Kullback’s symmetric divergence was also proposed by Seghouane et al. (2005). Similarly, Ibrahim
et al. (2008) developed a class of information-based model selection criteria dependent only on output from the EM
algorithm to address the missing data problem. A similar EM approach for model selection is taken by Bueso et al.
(1999). While these methods are important, there is a gap in the literature for performing variable selection when the
method of dealing with missing data is through multiple imputation.

Multiple imputation is a statistical technique that maintains the observed relationship of the data while reflecting
the uncertainty present in the missing data through multiple datasets. Performing multiple imputations in lieu of EM
and GEE approaches for statistical inference is appealing since it is easy to communicate with collaborators and it
tends to be robust against departures from the complete-data model (Schafer, 1997). Multiple imputation methods
for linear mixed-effects models are a recent development (Schafer & Yucel, 2002; Demirtas, 2004; Stuart et al., 2009;
Demirtas & Hedeker, 2008; Schafer, 1997; Schafer & Yucel, 2002; Liu et al., 2000; Yucel, 2008; Goldstein et al., 2009;
Van Buuren & Groothuis-Oudshoorn, 2011). Whichever imputation method is chosen, a total of m complete data sets
each with p predictors will be produced. The appealing quality of these m imputed data sets is that complete-data
methods can be used.

Although much attention has been given to constructing parameter estimates with an appropriate measure of
uncertainty for multiply imputed data, there is no clear guidance on how to perform variable selection on the multiply
imputed data sets. Practically, variable selection can be performed on each imputed dataset. However, it is unclear
how to combine the selection results as each data set will presumably select different variables in the model. Brand
(1999) proposed an ad-hoc procedure that constructs a final model with variables that are deemed significant in at
least 60% of the imputed models. Yang et al. (2005) proposed two Bayesian alternative strategies for variable selection
in classical linear regression models with missing covariates. Heymans et al. (2007) and Wood et al. (2008) developed
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methodology that performs automatic backward selection of multiply-imputed data sets. Moreover, none of these
methods tackle missing data in the context of mixed models. To fill this serious knowledge gap, we propose a new
framework for performing variable selection for multilevel models when multiply-imputed data are considered.

We make several contributions in this paper. First, we describe a penalized likelihood approach for multilevel models that
simultaneously uses every multiply-imputed data set to select relevant predictors. Secondly, to overcome the challenges
of combining across multiply- imputed datasets, we propose a novel approach that stacks the multiply-imputed data
sets which can allow the use of group variable selection via group lasso regularization to assess the overall significance
of each predictor on the outcome across all the imputed data sets. Finally, as the selection of an appropriate tuning
parameter poses additional problems for multiply imputed data sets, we provide a Bayesian information criterion (BIC)
for tuning parameter selection.

The format of this paper is as follows. In section 2, we present the multilevel model and develop a penalized procedure
to perform variable selection for multiply-imputed multilevel data. Section 3 provides simulation studies of the proposed
methodology. Section 4 applies the developed methodology to the analysis of the Healthy Directions-Small Business
cancer prevention study, followed by our concluding remarks in Section 5.

2. Penalized Multiply Imputed Likelihood
2.1. Model Representation
Suppose that there are n clusters indexed by i = 1, 2, . . . , n and the nth cluster has a total of ki subjects indexed
by j = 1, 2, . . . , ki . Let Yi j denote the response on the j th subject within the i th cluster. For example, Yi j can denote
the outcome for the j th worker in the i th worksite. Associated with each Yi j is a p × 1 vector of covariates, X i j .
The vector X i j can include covariates defined at each of the two levels and can also include covariates formed by
aggregating values over lower-level units. We consider a two-level linear mixed-effects model, though the proposal can
be extended to a more general mixed-effects setting. In particular, it can be adapted to longitudinal multilevel data
because longitudinal data is a special case of multilevel data with only a single level of clustering and a specific ordering
of observations within the cluster.

The two-level linear mixed model (i.e. multilevel model) is given by

Yi j = XT
ijβ + ZTij bi + εi j (1)

where β is the p × 1 vector of regression coefficients, Z i j is a q × 1 design matrix for the random effects which
is typically formed from a subset of the covariates, bi is a q × 1 vector of latent random effects and is distributed
MV N(0, σ2Φ) and εi j are assumed to be i .i .d N(0, σ2).

For the i th cluster, let Y i = (Yi1, . . . , Yiki )
T denote the ki × 1 vector of outcomes and εi = (εi1, . . . , εiki )

T the residual
vector. Similarly, let XT

i = (X i1, . . . ,X iki ) denote the ki × p design matrix of covariates and Z i the appropriate subset
of X i . Model (1) can be expressed as

Y i = X iβ + Z ibi + εi (2)

where εi ∼ N(0,Σ). We assume independence among the different (Y i ,X i). We also assume that portions of X i are
ignorably missing (i.e. MCAR or MAR). Let Xmis

i denote the missing parts of X i and denote Xobs
i the observed parts.
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2.2. Multiply Imputed Likelihood
We propose a penalized likelihood method that performs variable selection simultaneously on the multiply imputed data
sets for multilevel models via the group lasso. The group lasso was first introduced by Yuan & Lin (2006) as a means
of selecting grouped factors for accurate prediction in regression. The procedure begins by stacking the m complete
data sets into one wide complete data set. We transform m different multilevel models into one multilevel model with
up to p ×m covariates where each predictor will be represented by up to m imputed variables. The scheme of the
data stacking procedure is found in figure 1.

[Figure 1 about here.]

We propose the following multilevel model to identify relevant variables across multiply-imputed data sets is

Y i = X
(1)
i1 β

(1)
1 +X

(2)
i1 β

(2)
1 + · · ·+X

(m)
i1 β

(m)
1 +X

(1)
i2 β

(1)
2 + · · ·+X

(m)
i2 β

(m)
2

+ · · ·+X
(1)
ip β

(1)
p + · · ·+X

(m)
ip β(m)p + Z

(·)
i bi + εi (3)

where X(`)ig denotes the gth predictor for the i th cluster from the `th imputed data set (g = 1, . . . , p and ` = 1, . . . , m)

and β(`)g denotes its corresponding regression coefficient. For simplicity, we rewrite model (3) as

Yi = X
(·)
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i bi + εi (4)
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p ). Under model (4), we have that the marginal distribution of outcome Y i ∼ MV N(X
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where Di = σ2(Z
(·)
i ΦZ

(·)T
i + Iki ). For multilevel model (4), we build our variable selection procedure on the restricted

maximum likelihood (REML) method of estimation in linear mixed models. The REML log-likelihood for the data
under model (4) is

`R(β(·), σ2,Φ) = −
1

2
ln

∣∣∣∣∣
n∑
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(5)

The maximum likelihood estimate of β(·) is obtained by maximizing (5) with respect to β(·).

To perform variable selection and to identify non-zero components of β(·), we maximize the profile penalized log-REML
function

QR(β(·)) = `R(β(·), σ2,Φ)− λ
p∑
g=1

√
ug ||β(·)g || (6)

where λ is a nonnegative tuning parameter, ug is the group size for the gth group (ug = 1 when there is no missing
data on covariate g and ug = m when missing data is present on covariate g and m imputations were performed),
and || · || is the L2 norm on the Euclidean space. The penalty term in (6) encourages sparsity at the group level since
the Euclidean norm of a vector β(·)g is zero if all the components of β(·)g are zero. The innovation of the data stacking

scheme and group lasso penalization formulation is that by treating (β
(1)
g , β

(2)
g , . . . , β

(m)
g ) as a group and by summing

the Euclidean norms of the loadings in each group, we can shrink all the regression estimates in one group to zero
simultaneously, leading to overall variable selection across imputed data sets. For some values of λ, an entire predictor
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(across the m imputations) can be removed entirely out of the model across imputations, leading to overall variable
selection.

There are a few subtleties regarding the proposed procedure that merit attention. If there is no missing data present
in the design matrix and no imputations are performed, then (6) reduces to the typical lasso by considering each
covariate as their own individual group. The same is true if there exists missingness in the design matrix and only one
imputation is performed. If one imputed data set is generated then by treating each variable in the imputed data as
its own group, (6) reduces to

QR(β(·)) = `R(β(·), σ2,Φ)− λ
p∑
g=1

∣∣∣β(1)g ∣∣∣
which is equivalent to the traditional lasso penalized likelihood.

Another subtlety that needs to be addressed is the number of predictors to be used in the final stacked data set. When
performing the m imputations, the columns without missing data will be exactly the same across the m imputed data
sets (i.e. X(1)g = X(2)g = · · · = X(m)g ) for all Xg with completely observed data. It would be inappropriate to treat the
these variables as a group with m members, as they are perfectly collinear. In the case of a fully observed variable,
we simply construct a stacked data set where the m imputed columns of a fully observed covariate is represented
by only one of the columns of the complete variable. For example, consider the situation where X = (X1,X2). Of
the two predictors of Y , suppose X1 contains some missing values and X2 is fully observed. For sake of illustration,
suppose that to address the missingness in X1, only two imputations (m = 2) are performed. The new stacked data
structure will contain three predictors, (X

(1)
1 ,X

(2)
1 ,X2). The two imputed variables for X1 (i.e. X

(1)
1 and X(2)1 ) will be

represented as one group and X2 as its own group because no missing data was present in X2 and thus no imputation
was constructed for that predictor. The proposed conditional penalized likelihood function for this illustration will take
on the following form

QR(β(·)) = `R(β(·), σ2,Φ)− λ
√

2×
√[

β
(1)
1

]2
+
[
β
(2)
1

]2
− λ |β2| (7)

which is an intermediate between the `2 penalty used in ridge regression for the imputed variable and an `1 penalty for
the completely observed variable.

2.3. Algorithm
Maximizing the penalized profile log-REML function (6), with respect to β(·), presents some computational challenges.
To maximize (6) with respect to β(·), we consider an approach similar to Lin & Zhang (2006) and Wang et al. (2010)
that transforms the optimization problem into a simpler, but equivalent optimization function.
Proposition 1 Consider the following two optimization procedures

max
β
(`)
g
Q1R(β(·)) = `R(β(·), σ2,Φ)− λ

p∑
g=1

√
ug ||β(·)g || (8)

max
τg ,β

(`)
g
Q2R(β(·)) = `R(β(·), σ2,Φ)−

p∑
g=1

τ2g − λ2
p∑
g=1

ug
4τ2g

[
||β(·)g ||

]2
(9)

Denote the maximizer of (8) as β̂(`)g and the maximizer of (9) as (β̃
(`)
g , τ̃g) for g = 1, . . . , p and ` = 1, . . . , m. Then

it follows that
β̂(`)g = β̃(`)g for g = 1, . . . , p; ` = 1, . . . , m (10)
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τ̃g =

√
λ
√
ug

2
||β̃
(·)
g || for g = 1, . . . , p (11)

The proof of Proposition 1 is provided in the appendix. The relevance of Proposition 1 is that instead of maximizing
(8) directly, we can maximize (9) and obtain equivalent results for β(·)g . Computationally, we prefer objective function
(9) over (8) because (9) resembles a generalized ridge regression, which can be solved through a Newton-Raphson
algorithm when τg is fixed.

We propose to maximize (9) by iteratively cycling between β(`)g and τg. The algorithm is as follows:

1. Initialize β(`)(0)g and τ (0)g with conceivable values. Unless other information is known, initial β(`)(0)g values can be
set to 0 and τ (0)g can be set to 1.

2. For iteration k , update β(`)(k)g through

β(`)(k)g = argmax
β
(`)
g
`R(β(·)g , σ

2,Φ)−
p∑
g=1

(
τ (k−1)g

)2
− λ2

p∑
g=1

ug

4
(
τ
(k−1)
g

)2 [||β(·)g ||]2

3. For iteration k , update τ (k)g through

τ (k)g =

√
λ
√
ug

2
||β(·)(k)g ||

4. Continue steps 2 and 3 until maxg,`
{∣∣∣β(`)(k)g − β(`)(k−1)g

∣∣∣} is sufficiently small.

2.4. Penalty Selection Procedure
A fundamental issue with the proposed penalty procedure is how to choose the best approximating model among a
class of competing models with varying number of parameters. This is equivalent to deciding how to choose the tuning
parameter λ. Widely used variable selection criterion for selecting λ include the BIC and the general cross-validation
(GCV) method. It is widely known that GCV and BIC are not easily computed in the presence of missing data because
they are functions of the missing data, which lead to intractable integrals (Garcia et al., 2010). However, one of
the advantage of our proposed methodology is that because we generate m complete multiply imputed datasets, our
procedure avoids the limitation of GCV and BIC under missing data. It has been shown that GCV significantly over
fits in most problems, and the BIC has been shown to provide consistent variable selection (Wang et al., 2007). We
propose a BIC-type criterion to choose the appropriate tuning parameter. Given any two estimated models, we choose
the tuning parameter, λ, that minimizes the following BIC criterion

BIC = −2`R(β̂
(·)
, Φ̂) + q × ln(N) (12)

where N =
∑n

i=1 ki , the total sample size. Although N is not the effective sample size (Jiang et al., 2008), this BIC
criterion has performed well in our simulation studies and data analysis and has some precedence in this form (Pu &
Niu, 2006; Bondell et al., 2010). Additionally, the degrees of freedom q is the total number of nonzero estimates of

β̂
(·)
.

2.5. Post-Procedure Estimation
Once the m multiple imputations have been constructed and the proposed procedure has performed variable selection,
it is of interest to obtain parameter estimates of the final model. For each of the m unstacked imputed data sets, a
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linear mixed-effects model with only the selected variables from the proposed procedure can be performed. To obtain
an overall estimate of the regression coefficients and standard errors, we can combine the results from each of the m
data sets using Rubin’s Rules (Rubin, 1987). Rubin’s Rules proceed as follows: let β̂(`)j denote the estimated regression

coefficient for the j th predictor and the `th imputation and V̂AR(β̂
(`)
j ) its corresponding estimated variance. The overall

regression parameter estimate can be obtained through

β̄j =
1

m

m∑
`=1

β̂
(`)
j

and its variance estimate as

V̂AR(β̄j) =
1

m

m∑
`=1

V̂AR(β̂
(`)
j ) + (1 +

1

m
)

m∑
`=1

(β̂
(`)
j − β̄j)2

m − 1

where the first component of the addition takes into account the variability within each imputed data set and the
second component accounts for the between-imputation variance. A 95% confidence interval for βj can be obtained
using the approximation β̄j ± tdf ŜE(β̄j) where

df = (m − 1)

(
1 +

(m − 1)
∑m

`=1 V̂AR(β̂
(`)
j )

(m + 1)
∑m

`=1(β̂
(`)
j − β̄j)2

)
.

It has been shown by Rubin (1987) that a small number of imputations can lead to high-quality inference.

3. Numerical Studies
We performed simulation studies to compare the merits and finite sample performance of the proposed methodology
with standard statistical practices. We compare our proposed penalized likelihood procedure to multiple competitors.
First, to the regularized lasso on full data without any missingness. This will be considered the gold standard as
variable selection will be performed on the complete data. Second, we compare the proposed methodology to the
regularized lasso on complete-cases only data. This will assess how missing data under a MAR mechanism affects
variable selection and whether the proposed model improves variable selection performance. We also compared our
approach to the Brand ad-hoc procedure of selecting covariates that are significant in at least 60% of imputed models.

We simulated complete data from a two-level linear mixed effects model with a random intercept. We consider three
scenarios:

• SCENARIO 1. Data is generated from n = 40 independent clusters with 5 observations in each cluster where

Yi j = X i jβ + bi + εi j

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , εi j ∼ N(0, 1), X i j = (Xi j,1, . . . , Xi j,8) and Xi j,1, . . . , Xi j,8 are N(0, 1) variables
and Corr(Xi j,g, Xi j,g′) = ρ|g−g

′| with ρ set to 0.3.
• SCENARIO 2. The setting is similar to scenario 1, except we increase the number of clusters to n = 60 and the
number of observations per cluster to be 25 to assess a larger sample performance.
• SCENARIO 3. The setting is similar to scenario 2, except we increase the number of clusters to n = 150 to
correspond to large cluster studies.
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We induced missing values Xmis
i j from an MAR mechanism. Let ri j indicate the missingness of Xmis

i j , where ri j = 1

when X i j is observed and ri j = 0 when X i j is missing. We select ri j from Bernoulli sampling with success probability
given by logit(π(Xobs ;α0,α)) = α0 + αXobs , thus imposing MAR. The values of α0 and α were selected to induce
25% missing data (missing data was only induced on X1, X2 and X3).

For each of the scenarios above, 500 data sets were produced. For the full data and complete cases lasso regularization,
the traditional BIC was used to select predictors. For the proposed methods, the BIC in (12) was used to select relevant
predictors. Multiple imputations were performed on the missing data using the MICE methodology (White et al., 2011).

We considered changes in the values of m (number of imputations) in our simulation study. The results of the numerical
studies are presented in table 1. In particular, we present the model selection frequency (the percentage of times the
true model was selected), the average model size, the percentage of false negatives, and the percentage of false
positives.

[Table 1 about here]

Using the full data and performing lasso to select variables as our benchmark method, the results from table 1 indicate
that having missing observations in the covariates present in any data set lowers the ability for any method to select
the correct model. Overall, when missing data is present, the method that performs the best at recovering the correct
model is our proposed method (with m = 5 imputations). We note that performing lasso on the complete cases only
data set performs adequate variable selection. We also note that having more subjects within a cluster (ki = 25),
results in higher model selection frequency for all methods expect for the Brand approach. As cluster and sample size
increases, the Brand approach does not select the correct model as frequently as our proposed method.

Simulation results suggest that one imputation is not sufficient to obtain reliable variable selection. For instance,
the CCO lasso and the proposed methodology have very similar model selection frequencies (CCO: 63.6%, proposed:
72.4%; scenario 2) when m = 1, well below the full data selection frequency of 87.0%. This should be expected because
one imputation does not account for the uncertainty in the imputation method. However, when more imputations are
considered (m = 3), the proposed method outperforms the complete case method (proposed: 74.6%, CCO: 63.6%;
scenario 2). The proposed methodology is almost as good at identifying the correct model as having the full data (full:
91.6%, proposed: 88.0%; scenario 3) after 5 imputations.

In terms of model size, the full model lasso selects models that are closest to the true model size on average. Both the
CCO and the Brand procedure tend to select larger models on average. The proposed methodology produces smaller
models than the CCO and Brand methods as the number of imputations increase.

4. Data Analysis
This statistical work was motivated by the Healthy-Directions Small-Business study (Sorensen et al. 2005). Current
epidemiological studies have shown the relationship between dietary patterns and physical inactivity to multiple cancers
and chronic diseases. One of the primary goals of the Healthy-Directions Small-Business study is to investigate whether
or not the cancer prevention that incorporates occupational health and health promotion can lead to significant
improvements in the mean consumption of fruits and vegetables, levels of physical activity, smoking cessation and
reduction of occupational carcinogens. The HD-SB study was a randomized, controlled intervention study conducted
between 1999 and 2003 as part of the Harvard Center Prevention Program Project. The study population of the
HD-SB study were small manufacturing worksites that employed multi-ethnic, low-wage workers. Details of worksite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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eligibility and recruitment can found in Sorensen et al. (2005). Participating worksites were randomized to either the
18-month intervention group or minimal intervention control group.

For the purpose of this data analysis, we focus on predictors that are hypothesized to relate to mean consumption of
fruits and vegetables at followup. Along with intervention status, a substantial number of covariates were collected to
determine their impact on the primary outcome: consumption of red meat per week, levels of leisure physical activity,
smoking status (1 current and 0 otherwise), educational level (1 if college degree or more and 0 otherwise), gender
(1 if female and 0 otherwise), body mass index, at least one child in household less than eighteen years of age (1
if true and 0 otherwise), marital status (1 if married and 0 otherwise), race (1 if nonwhite and 0 otherwise), age,
multivitamin use (1 if takes ≥ 6 days/week and 0 otherwise), poor (1 if ≥ 185% of poverty threshold and 0 otherwise)
and nonimmigrant (1 if participant was born in the United States and 0 otherwise). The study had 974 respondents of
which only complete information on all the variables of interest was obtained for 793 respondents (i.e. 18.5% missing
data present).

The linear mixed model to answer the primary goal takes on the following form:

FruitVeg_followup ∼ FruitVeg_baseline + Intervention + Meat + PhysAct +

Smoking+ Education + Gender + BMI + Kidslt18 + Married +

Race + Age + Multivitamin + Poor + Nonimmigrant

where these 15 predictors were considered for selection. A random intercept model was used to model the clustering
of workers within worksites. We constructed a multilevel model for the complete cases data (all missing observations
removed) and also using the proposed methodology for m = 1, m = 3 and m = 5 imputations. Selection of the tuning
parameter was based on the BIC in (12). Regression estimates selected by the m = 5 proposed model are provided
using Rubin’s Rules. The results of the data analysis are in table 2.

[Table 2 about here]

The complete-cases only multilevel model does not perform variable selection; the estimated regression coefficients
are non-zero for the 15 predictors. What is commonly done in practice is to select significant variables to be those with
p − value < 0.05. Based on the p-value criterion, the significant predictors of fruits and vegetables under the CCO
scenario are baseline fruit, intervention, gender and BMI. Performing lasso on the complete case data reveals a model
with 11 relevant predictors. The proposed methodology with m = 1, m = 3 and m = 5 imputations selected baseline
fruit, intervention, meat consumption, smoking, gender, multivitamin and nonimmigrant, with m = 3 additionally
including age.

The proposed methodology in this data analysis produces smaller models than the complete cases only lasso; a pattern
which was observed in the simulations section. Compared to choosing significant variables via p-values, the proposed
methodology additionally identifies meat consumption, smoking status, immigrant status and multivitamin use to be
relevant predictors of follow-up fruit/vegetable intake. The parameter estimates for the final model, as selected by
the proposed method with five imputations, are presented in the last column of table 2. Overall, there seems to be a
strong positive intervention effect on follow-up fruit and vegetable intake. We note the gender gap where females tend
to consume more fruits and vegetables at followup on average than men, which has been shown in previous studies
(Sorensen et al., 2007).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stat 2016, 00 1–16 9 Copyright c© 2016 John Wiley & Sons, Ltd.
Prepared using staauth.cls



Stat M. Marino, O. Buxton and Y. Li

5. Discussion
We describe methodology that can perform variable selection for multilevel models with missing covariate data.
When the method of handling missingness in the covariates is through multiple imputation, we describe a penalized
likelihood approach that performs variable selection across the m imputed data sets simultaneously through group lasso
regularization. Numerical studies demonstrate the benefits of imputing and then performing variable selection instead
of doing a complete-cases only analysis, which is typically done in practice. Ignoring missing data through methods
like complete-cases analyses potentially undermine scientific credibility of causal conclusions from intervention studies
(Little et al., 2012).

The proposed methodology may be extended to generalized linear-mixed models (GLMMs) as our approach is likelihood
based. An additional aspect of the analysis of mixed models is the selection of random effects. There are two types of
variable selection approaches for multilevel models: the first is selecting significant fixed-effect variables (i.e. columns
from X i when the random effects are not considered in the selection) and the second is selection of both fixed and
random effects (i.e. columns from Z i). The mean and variance of Y i based on model (2) are given by

E(Y i) = X iβ

V AR(Y i) = σ2(Z iΦZ
T
i + Iki ).

The fixed-effects selection through X i affects the mean structure of Y i and the selection through Z i affects the
covariance structure of Y i . We focus our methodology on fixed effects variable selection, though extensions of this
work could be developed to identify both significant fixed and random effects.

This study does have limitations and areas to focus future research on. First, after completing the post-estimation
procedure described in this paper, it remains necessary to account for modeling bias. Performing variable selection and
then using the selected model to perform estimation is commonly done in practice, but is likely to yield overly optimistic
inferences. This is due to the underestimation of variability of the estimated parameters. Shen et al. (2004), Hu &
Dong (2007), Wang & Lagakos (2009) and Minnier et al. (2011) have used data perturbation methods to account
for the variable selection process to make approximately unbiased inferences. Extensions of data perturbation methods
to multiply-imputed variable selection is needed. Second, the proposed procedure requires a substantial amount of
observations and clusters to successfully perform these models: as the number of covariates with missing data are
considers, the larger the model (by multiple of m) and the higher likelihood of model instability. Third, more works
needs to be developed to provide rules of thumb for how many imputations are needed. In general, more imputations
are preferred (Bodner, 2008), but this has the potential to introduce very large, potentially unstable proposed models.
Lastly, model (3) is a working model and not the true model. Other selection criterion such as prediction error or
likelihood could have been entertained for the selection of the final model. We hope the proposed developments will
make it possible for researchers to maximize the use of available information in their data and uncover important
underlying associations.
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Appendix
PROOF OF PROPOSITION 1. We begin by showing (11). Denote the objective function Q1R and Q2R corresponding
to the two optimization equations respectively

Q1R = `R(β(·), σ2,Φ)− λ
p∑
g=1

√
ug ||β(·)g ||

Q2R = `R(β(·), σ2,Φ)−
p∑
g=1

τ2g − λ2
p∑
g=1

ug
4τ2g

[
||β(·)g ||

]2
The result in (11) falls after rewriting Q2R as

`R(β(·), σ2,Φ)−
p∑
g=1

[
τ2g +

λ2ug
4τ2g

[
||β(·)g ||

]2]
The expression inside the square brackets can be rewritten as

τ2g +

(
λ
√
ug

2τg
||β(·)g ||

)2
We know that a2 + b2 ≥ 2ab, thus

τ2g +

(
λ
√
ug

2τg
||β(·)g ||

)2
≥ λ√ug ||β(·)g ||

Equality holds if and only if τg =

√
λ
√
ug
2 ||β

(·)
g ||. To show (10), we first show Q1R(β̃

(`)
g ) = Q2R(β̃

(`)
g , τ̃g).

Q2R(β̃(`)g , τ̃g) = `R(β̃
(·)
, σ2,Φ)−

p∑
g=1

τ̃2g − λ2
p∑
g=1

ug
4τ̃2g

[
||β̃
(·)
g ||
]2

= `R(β̃
(·)
, σ2,Φ)−

λ

2

p∑
g=1

√
ug ||β̃

(·)
g || −

λ

2

p∑
g=1

√
ug

||β̃
(·)
g ||

[
||β̃
(·)
g ||
]2

= `R(β̃
(·)
, σ2,Φ)− λ

p∑
g=1

√
ug ||β̃

(·)
g ||

= Q1R(β̃(`)g )

Therefore, Q2R(β̃
(`)
g , τ̃g) ≥ Q1R(β̂

(`)
g ). Now, let τ̂2g =

λ
√
ug
2 ||β̂

(·)
g ||. After some algebra similar to above, we get observe

that Q1R(β̂
(`)
g ) = Q2R(β̂

(`)
g , τ̂g). Thus Q1R(β̂

(`)
g ) = Q2R(β̂

(`)
g , τ̂g) ≥ Q2R(β̃

(`)
g , τ̃g). As a result, Q2R(β̃

(`)
g , τ̃g) = Q1R(β̂

(`)
g ) =

Q2R(β̂
(`)
g , τ̂g), which leads to the unique maximizer β̃(`)g = β̂

(`)
g because Q2R is convex.
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Table 1. Simulation study results for lasso on complete data (Lasso-Full), lasso on complete cases only (Lasso-CCO)
and proposed methodology. “Model Size”, “F+”, “F-” indicate the mean model size, false positive rate and false negative
rate over the 500 simulated data sets, respectively. “Correct Model” denotes the percentage of times the correct model

was selected.

Method Model Correct F+ F- X1 X2 X3 X4 X5 X6 X7 X8
Size Model

SCENARIO 1: Small Study (n = 40, ki = 5)

Lasso-Full
Lasso-CCO 3.46 62.6 0.11 0.02 1.00 0.98 0.22 0.18 0.92 0.10 0.03 0.02
Brand-m1 3.43 64.4 0.09 0.00 1.00 1.00 0.15 0.08 1.00 0.06 0.09 0.06

Proposed-m1 2.69 62.8 0.02 0.08 1.00 0.78 0.03 0.04 0.81 0.02 0.00 0.00
Brand-m3 3.34 68.2 0.07 0.00 1.00 1.00 0.17 0.06 1.00 0.03 0.06 0.03

Proposed-m3 3.60 63.4 0.13 0.01 1.00 0.97 0.20 0.26 1.00 0.14 0.02 0.01
Brand-m5 3.32 72.6 0.06 0.00 1.00 1.00 0.14 0.05 1.00 0.04 0.05 0.03

Proposed-m5 3.07 66.2 0.05 0.04 0.99 0.83 0.07 0.12 0.96 0.05 0.00 0.00
SCENARIO 2: Medium Study (n = 60, ki = 25)

Lasso-Full 3.29 87.0 0.06 0.00 1.00 1.00 0.12 0.10 1.00 0.06 0.00 0.00
Lasso-CCO 3.61 63.6 0.12 0.00 1.00 1.00 0.32 0.21 1.00 0.08 0.00 0.00
Brand-m1 4.08 15.8 0.22 0.00 1.00 1.00 0.79 0.08 1.00 0.07 0.09 0.06

Proposed-m1 3.58 72.4 0.12 0.00 1.00 1.00 0.24 0.22 1.00 0.12 0.00 0.00
Brand-m3 4.01 15.6 0.20 0.00 1.00 1.00 0.82 0.06 1.00 0.05 0.06 0.03

Proposed-m3 3.35 74.6 0.08 0.00 1.00 0.98 0.09 0.23 1.00 0.06 0.00 0.00
Brand-m5 4.03 14.0 0.21 0.00 1.00 1.00 0.82 0.05 1.00 0.06 0.08 0.03

Proposed-m5 3.05 78.8 0.03 0.02 0.99 0.89 0.04 0.10 0.97 0.04 0.00 0.00
SCENARIO 3: Large Study (n = 150, ki = 25)

Lasso-Full 3.00 91.6 0.01 0.01 1.00 1.00 0.02 0.02 0.94 0.02 0.00 0.00
Lasso-CCO 3.44 77.0 0.09 0.00 1.00 1.00 0.22 0.12 1.00 0.10 0.00 0.00
Brand-m1 4.25 0.60 0.25 0.00 1.00 1.00 0.99 0.08 1.00 0.05 0.08 0.05

Proposed-m1 0.82 3.45 0.09 0.00 1.00 1.00 0.17 0.16 1.00 0.13 0.00 0.00
Brand-m3 4.20 0.60 0.24 0.00 1.00 1.00 0.99 0.07 1.00 0.04 0.06 0.03

Proposed-m3 3.22 84.4 0.04 0.00 1.00 1.00 0.04 0.15 1.00 0.03 0.00 0.00
Brand-m5 4.17 0.60 0.23 0.00 1.00 1.00 0.99 0.04 1.00 0.04 0.06 0.03

Proposed-m5 3.15 88.0 0.03 0.00 1.00 1.00 0.02 0.12 1.00 0.02 0.0 0.0
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Table 2.Data analysis results for the Healthy Directions - Small Business study. The stars represent the variables
selected from the given variable selection procedure. CCO denotes the complete cases only results, where all
observations with missing data were removed and the remaining observations were used in estimation and variable

selection. The final column provides regression for estimates for the proposed m = 5 model.

Variable Selection Method
Variable % CCO CCO CCO Proposed Proposed

miss β̂ P-value LASSO m=1 m=3 m=5 β̂ (95% CI)

Baseline Fruit 0.6 0.56 * * * * * 0.51 (0.45,0.57)
Intervention 0.0 0.34 * * * * * 0.31 (0.07,0.54)
Meat 0.7 -0.01 * * * * -0.03 (-0.05, 0.00)
Phys. Act. 6.4 0.02 *
Smoking 0.1 -0.18 * * * * -0.23 (-0.46,0.00)
Education 1.3 0.23 *
Female 0.0 0.40 * * * * * 0.24 (0.02,0.45)
BMI 4.8 0.03 * *
Kids≤ 18 0.9 0.12
Married 0.4 0.03
NonWhite 0.0 -0.02
Age 1.1 0.01 * *
Multivit 0.7 0.17 * * * * 0.10 (-0.11,0.32)
Poor 1.1 0.14
Immigrant 0.4 -0.04 * * * * -0.16 (-0.37,0.04)
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Figure 1. Data stacking scheme for proposed variable selection procedure. STEP 1: Identify covariates to be included for selection
and their corresponding missing values. STEP 2: Perform m imputations to produce m complete data sets. STEP 3: Stack the
m complete data sets into a single wide complete data to be analyzed. Group relevant variables from the m imputed data sets.
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