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Abstract

Comparative meta-analyses of groups of subjects by integrating multiple obser-
vational studies rely on estimated propensity scores (PSs) to mitigate covariate
imbalances. However, PS estimation grapples with the theoretical and practi-
cal challenges posed by high-dimensional covariates. Motivated by an integrative
analysis of breast cancer patients across seven medical centers, this paper tack-
les the challenges of integrating multiple observational datasets. The proposed
inferential technique, called Bayesian Motif Submatrices for Covariates (B-MSC),
addresses the curse of dimensionality by a hybrid of Bayesian and frequentist
approaches. B-MSC uses nonparametric Bayesian “Chinese restaurant” pro-
cesses to eliminate redundancy in the high-dimensional covariates and discover
latent motifs or lower-dimensional structures. With these motifs as potential pre-
dictors, standard regression techniques can be utilized to accurately infer the
PSs and facilitate covariate-balanced group comparisons. Simulations and meta-
analysis of the motivating cancer investigation demonstrate the efficacy of the
B-MSC approach to accurately estimate the propensity scores and efficiently
address covariate imbalance when integrating observational health studies with
high-dimensional covariates.

Keywords: B-MSC, Data integration, Covariate imbalance, High-dimensional
covariates, Hybrid Bayesian-frequentist
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1 Introduction

The primary goal of integrative analysis across multiple observational health studies
is to compare two or more exposure groups, delineated, for instance, by risk behavior,
disease subtype, or treatment. Covariate imbalance can introduce bias into group
comparisons [1–4], making covariate balance essential for valid comparisons [2, 3].
However, achieving covariate balance becomes more challenging when dealing with
high-dimensional covariates.

This work is motivated by a multiple-study breast cancer investigation of female
patients at seven nation-wide medical centers such as Mayo Clinic, University of
Pittsburgh, and University of Miami. The data are publicly available for download
from The Cancer Genome Atlas (TCGA) portal [5] and include 30 demographic and
clinicopathological attributes, 20,531 mRNA expression levels and 24,776 copy num-
ber alteration (CNA) measurements. Some study-specific summaries are presented in
Table 1 of Supporting Information. The inferential focus is the covariate-balanced
comparisons of overall survival between infiltrating ductal carcinoma (IDC) and infil-
trating lobular carcinoma (ILC), two major subtypes of breast cancer, by integrating
the cancer cohorts from these seven centers. This knowledge may inform the devel-
opment of viable guidelines for regulating targeted therapies and precision medicine
among the breast cancer population, specifically tailored to different disease subtypes
[6]. However, the highly unbalanced groups in Table 1 of Supporting Information
present a challenge by confounding naive group comparisons. Indeed, the literature
present conflicting findings due to the disease subtype’s confounding with, for exam-
ple, cancer stage [7]. Therefore, it is imperative to implement covariate-balancing. The
high-dimensional biomarkers, featured by these studies, pose additional challenges
when ensuring covariate balance and analyzing data.

When analyzing single observational studies with two groups, the propensity score
(PS) [3] is critical for covariate-balancing methods such as weighting and matching,
and can be estimated in a robust manner [8]. However, propensity scores are not
appropriate for data integration in multigroup, multistudy settings. In these inves-
tigations, [9] achieved covariate-balanced inferences by generalizing the PS to the
multiple propensity score (MPS), defined as the probability of a patient or subject
belonging to a study-group combination given their covariates. Due to their pivotal
role in covariate-balanced data integration by weighting or matching, the unknown
MPSs must be estimated. This is achieved by regressing the study-group combina-
tion on the covariates using frequentist or Bayesian methods. Ridge regression [10],
lasso [11], adaptive lasso [12], group lasso [13], and the causal inference techniques of
[14] and [15] are arguably the most popular regularization techniques in the frequen-
tist causal inference paradigm. Bayesian methods for covariate-balanced inference are
reviewed by [16], [17], [18], and [19], and include regularization methods [e.g., 20–22]
and Bayesian Additive Regression Tree (BART) models [23]. However, these methods
are often not as effective when the number of covariates is large.
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High-dimensional covariates

While accurate MPS estimates are crucial to achieve covariate balance, they encounter
significant challenges in high-dimensional observational studies such as the motivat-
ing TCGA breast cancer application. The pervasive collinearity in “small N -large
p” regression settings leads to unstable estimation and erroneous out-of-the-bag pre-
dictions. Generally, in high-dimensional regression settings, the predictors become
virtually unidentifiable without robust priors, making it difficult to identify a sparse
subset of covariates [24]. In TCGA studies, numerical collinearity arises due to the sin-
gularity of the sample variance-covariance matrix. This occurs because the number of
covariates, such as demographic factors, clinicopathological data, mRNA expression,
and CNA measurements, exceeds the sample size. Identifiability issues in regression
coefficients prevent the determination, based solely on a likelihood function, of the
true covariate associations with MPS.

For tackling these critical impediments to the accurate estimation of MPS as a
first step of data integration, we propose a new Bayesian inferential procedure called
Bayesian Motif Submatrices for Covariates (B-MSC). The method leverages non-
parametric Bayesian Chinese restaurant processes (CRPs) [25, 26], and effectively
eliminates redundancy in high-dimensional covariates. The method exhibits several
advantages in comparison to existing techniques. Departing from existing Bayesian
methods [e.g., 16, 17], our method is not “dogmatically Bayesian,” but rather a
hybrid of Bayesian and frequentist solutions that permits flexible, out-of-the-box use
of available software for regularization. Specifically, the proposed Bayesian nonpara-
metric methods effectively mitigate the curse of dimensionality and unveil the latent
structure or motif in the covariates. Then, using these identified motif elements as
potential predictors, B-MSC applies existing frequentist or Bayesian regression tech-
niques for lower-dimensional settings to estimate the MPS. This allows accurate and
computationally efficient estimation of MPS and, subsequently, facilitates integrative
comparative analyses of retrospective cohorts via weighting or matching methods.

Section 2 introduces some basic notation and theoretical assumptions. Section 2.1
describes the B-MSC hierarchical model and prior. A Bayesian inferential procedure,
including a fast-mixing MCMC algorithm, is described in Section 2.2. Section 3 applies
the proposed techniques to make integrative group comparisons with right-censored
outcomes and high-dimensional covariates. We conduct simulations in Section 4 to
demonstrate the efficacy of the B-MSC approach in dimension reduction and MPS esti-
mation. Section 5 analyzes the high-dimensional TCGA breast cancer studies. Section
6 concludes with some remarks.

2 Bayesian Propensity Score Estimation for
Meta-Analysis of Retrospective Cohorts with
High-Dimensional Covariates

The investigation comprises J observational studies and focuses on comparing K
groups of subjects. We assume J andK are small; in the context of the TCGA database
discussed earlier, J = 7 and K = 2. For subject i = 1, . . . , N , let Zi ∈ {1, . . . ,K}
denote their groups and Si ∈ {1, . . . , J} be the observational study to which the ith
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subject belongs. The database contains a large number of p covariates shared by all J
studies. For the ith subject, let the vector of covariates, xi, belong to a space X ⊂ Rp

shared by the JK groups and studies. Further, let xi = (x
[1]
i ,x

[2]
i ), where vector

x
[1]
i consists of p1 continuous covariates, and x

[2]
i contains p2 factor-valued covariates

belonging to the set {1, 2, . . . , A} for an integer A > 1; thus, p = p1 + p2. [9] defines
the multiple propensity score or MPS as δsz(x) =

[
S = s, Z = z | X = x

]
+

for

(s, z) ∈ Σ ≡ {1, . . . , J} × {1, . . . ,K} and x ∈ X . In many applications, both p1 and
p2 are large, and min{p1, p2} far exceeds N . Stacking these N row vectors, we obtain
an N × p1 matrix, X[1], of continuous covariates and an N × p2 matrix, X[2], of fac-
tor covariates. Since the covariates are subsequently used in regression settings, the
columns of continuous submatrix X[1] are assumed to be empirically standardized to
zero means and unit standard deviations. It is trivial to extend this framework to
accommodate additional factor variables, e.g., with binary and trinary covariates, we

set xi = (x
[1]
i ,x

[2]
i ,x

[3]
i ) with A2 = 2 and A3 = 3. Denote by T

(z)
i the counterfac-

tual outcome if Zi were z. The realized outcome is Ti = T
(Zi)
i . Denoting by Ci the

censoring time, Yi = min{T (Zi)
i , Ci} is the observed survival time with event indica-

tor ϑi = I(T (Zi)
i ≤ Ci), where I(·) is an indicator function. In the TCGA datasets,

submatrices X[1] and X[2] of the covariate matrix X include high-dimensional demo-
graphic and clinicopathological variables in addition to mRNA and CNA biomarkers.
The CNAmeasurements are coarsened as binary factors: 1 (no CNA) or 2 (some CNA),

i.e., A = 2. Also in this context, T
(1)
i and T

(2)
i represent the counterfactual outcomes if

patient i was diagnosed with disease subtype IDC and ILC, respectively; ϑi = 1 if Yi,
the observed survival time of the ith patient, is uncensored, and equals 0 otherwise.

As index (i) contains no meaningful information, the individual measurements are
a random sample from an observed distribution, [S,Z,X, T ]+, where the symbol [·]+
represents distributions or densities under the observed population. Following [27],
we make the following assumptions: (a) Stable unit treatment value: a subject’s
study and group memberships do not influence the potential outcomes of any other
subject. Furthermore, each subject has K potential outcomes of which only one is
observed; (b) Study-specific weak unconfoundedness: Conditional on study S
and covariate X, the event [Z = z] is independent of counterfactual outcome T (z) for
all z = 1, . . . ,K; and (c) Positivity: Joint density [S = s, Z = z,X = x]+ is strictly
positive for all (s, z,x), ensuring that the study-group memberships and covariates do
not have non-stochastic, mathematical relationships.

2.1 Bayesian motif submatrices for dimension reduction

B-MSC utilizes the sparsity-inducing property of Bayesian mixture models to detect
lower-dimensional structure in the covariate submatrices. We perform bidirectional,
unsupervised global clustering of X[1] and X[2]. A nonparametric Chinese restaurant

process (CRP), denoted by C
[1]
r , discovers q

[1]
r latent subpopulations or cliques among

the N rows of submatrix X[1]. Simultaneously, another CRP, C
[1]
c , discovers q

[1]
c latent

clusters among the p1 continuous covariates (submatrix X[1] columns). This gives a
“denoised” lower-dimensional version of submatrix X[1] called the motif submatrix,
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Φ[1], of dimension q
[1]
r ×q

[1]
c . For the factor covariate matrix X[2], another set of CRPs,

C
[2]
r and C

[2]
c , performs global unsupervised clustering of the rows and columns of X[2]

to give a q
[2]
r × q

[2]
c motif submatrix, Φ[2].

CRPs attempt to reverse the curse of dimensionality by guaranteeing with high

probability that q
[1]
r ≪ N and q

[1]
c ≪ p1, while allowing the number of cliques and clus-

ters to be apriori unknown. Instead of the highly collinear covariates X = (X[1],X[2]),
the estimated motif matrices act as covariates to reliably infer the MPS, as demon-
strated later by simulation studies. The meta-analytical weighting methods outlined in
Introduction are then employed to make covariate-balanced comparisons of the health
outcomes of the K groups.

For g = 1, 2, biomarker clusters are likely to exist in submatrix X [g] because N
is much smaller than pg; since the rank of X [g] is N or less, its pg columns have
high redundancy. Closely related to some aspects of the proposed B-MSC approach
are global clustering algorithms for continuous covariate matrices [e.g., 28, 29], which
assume that the matrix rows and columns can be independently permuted to reveal
the underlying lower-dimensional signal. Alternatively, B-MSC can be viewed as an
adaptation of local clustering algorithms for continuous covariates [24, 30] and binary
covariates [31] to multiple factor levels and computationally efficient global clustering
implementations. From a scientific perspective, biomarkers do not act in isolation but
in concert to perform biological functions, resulting in similar biomarker profiles [e.g.,
32]. Biomarkers exhibiting similar patterns in high-dimensional genomic, epigenomic,
and microbiome data have been exploited to achieve dimension reduction via mixture
models [e.g., 33, 34]. However, to our knowledge, this phenomenon has not been fully
utilized to achieve efficient inferences in covariate-balanced integrative analyses.

More formally, for the columns of covariate submatrix X [g], where g = 1, 2, we

envision biomarker-cluster mapping variables, c
[g]
1 , . . . , c

[g]
pg , with c

[g]
i = u representing

the event that the jth biomarker of X [g] is allocated to the uth latent cluster, for

biomarker j = 1, . . . , pg, and cluster u = 1, . . . , q
[g]
c . For a positive mass parameter α

[g]
c ,

CRP prior C
[g]
c

(
α
[g]
c

)
assigns the following PMF to the vector of pg cluster mapping

variables: [
c[g] | α[g]

c

]
=

Γ(α
[g]
c )

(
α
[g]
c

)q[g]c

Γ(α
[g]
c + pg)

q[g]c∏
u=1

Γ(m[g]
u ), c[g] ∈ Qpg

,

where m
[g]
u is the number of biomarkers belonging to the uth latent cluster in mapping

vector c[g], and Qp is the set of all possible partitions of p objects into one or more

sets [26]. Dimension reduction occurs because the random number of clusters, q
[g]
c , is

approximately equal to α
[g]
c log(pg) as pg is sufficiently large [25].

Analogously, for the N rows of covariate submatrix X [g], there exists subject-clique

mapping variables, r
[g]
1 , . . . , r

[g]
n , with r

[g]
i = u representing the event that the ith

subject is allocated to the uth latent clique, where i = 1, . . . , N , and u = 1, . . . , q
[g]
r .

For a positive mass parameter α
[g]
r , the vector of clique mapping variables is given

a CRF prior, r[g] ∼ C
[g]
r

(
α
[g]
r

)
, for which the unknown number of cliques, q

[g]
r , is

asymptotically lower order than N .
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Motif submatrices

Unlike the CRP allocation models for dimension reduction, the priors for motif subma-
tricesΦ[1] andΦ[2] depend on the covariate types (continuous or factor) of submatrices

X [1] and X [2]. Consider motif submatrix Φ[1] = (ϕ
[1]
rc ). We assume ϕ

[1]
rc

i.i.d.∼ N(0, τ2)

for r = 1, . . . , q
[1]
r and c = 1, . . . , q

[1]
c , with τ2 assigned an inverse gamma hyperprior.

Next, consider motif submatrix Φ[2] = (ϕ
[2]
rc ). Submatrix X [2] consists of factors with

levels belonging to {1, 2, . . . , A}. Therefore, for r = 1, . . . , q
[2]
r and c = 1, . . . , q

[2]
c , we

assume ϕ
[2]
rc

i.i.d.∼ BA(g), a generalized Bernoulli or categorical distribution on A cat-
egories, with the probability vector g = (g1, . . . , gA) given a Dirichlet distribution
hyperprior. This implies that motif submatrixΦ[2] also consists of factors taking values
in {1, 2, . . . , A}.

Likelihood functions for covariates

We model the matrix X [1] elements as noisy versions of the mapped elements of Φ[1].
We specify distributional assumptions guaranteeing that all biomarkers in a cluster
have similar, but not necessarily identical, column profiles in X [g] and these biomark-
ers map to the same column of motif submatrix Φ[g]. Additionally, all subjects in a
clique have similar, but not necessarily identical, row profiles in X [g] and these sub-
jects map to the same row of Φ[g]. The elements of submatrix X [1] are conditionally

Gaussian: x
[1]
ij

∣∣Φ[1], c[1], r[1]
indep∼ N(ϕ

[1]

r
[1]
i c

[1]
j

, σ2), where i = 1, . . . , N, j = 1, . . . , p1,

and σ2 has a truncated inverse gamma hyperprior that ensures R2 is sufficiently large.
At first glance, the Gaussian likelihood and common variance σ2 may appear to be
a strong parametric assumption. However, if the biomarker and subject labels are
non-informative, the assumed CRP priors for the clusters and cliques constitute a semi-
parametric model for the X [1] elements and the arbitrary, true underlying distribution
of the i.i.d. submatrix elements is consistently inferred a posteriori [35].

The matrix X [2] elements as possibly corrupted versions of the mapped motif ele-

ments with low probabilities of corruption or covariate-motif mismatch, i.e., x
[2]
ij ̸=

ϕ
[2]

r
[2]
i c

[2]
j

. The elements of factor submatrix X [2] are related to the mapped ele-

ments of Φ[2] as follows: P

(
x
[2]
ij = x | ϕ[2]

r
[2]
i c

[2]
j

= ϕ,Φ[2], c[2], r[2],W

)
= wϕx, ϕ, x ∈

{1, 2, . . . , A} for a corruption probability matrix W = (wϕx) of dimension A × A.
Low corruption levels are achieved by a diagonally dominant W . Since matrix W is
row-stochastic, row vectors w1, . . . ,wA are assigned independent priors on the unit
simplex in RA. Let 1 be the vector of A ones. For ϕ = 1, . . . , A, let 1ϕ be the vector
in RA with the ϕth element equal to 1 and the other (A− 1) elements equal to zero.
The ϕth row vector of W is wϕ = lϕ1ϕ + (1 − lϕ)w̃ϕ, where w̃ϕ ∼ DA (α1/A) and
lϕ ∼ beta(lα, lβ) · I(ls > l∗), for prespecified constants l∗, lα and lβ , and DA repre-
senting a Dirichlet distribution in RA. The condition l∗ > 0.5 implies W is diagonally
dominant. Through extensive simulations, we find that l∗ > 0.85 produces sufficiently
“tight” clusters and cliques in submatrix X [2].
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2.2 Estimating MPS in the presence of high-dimensional
covariates

For integrative covariate-balanced inferences, we propose a hybrid Bayesian and fre-
quentist approach for MPS estimation. Since the MPS is δsz(x) =

[
S = s, Z = z | X =

x
]
+
we could estimate it in theory by regressing (Si, Zi) on the p-dimensional covari-

ate xi (i = 1, . . . , N). Indeed, for low-dimensional covariates, the MPS is accurately
estimated using parametric (e.g., multinomial logistic) or nonparametric, Bayesian or
frequentist regression models. Unsurprisingly, this strategy is inefficient or even unten-
able in the presence of high-dimensional covariates. When p is large, we propose the
following two-step inferential procedure using the lower-dimensional approximation of
xi as predictor:

Step 1 We first obtain MCMC estimates Φ̂[1] and Φ̂[2] of the lower-dimensional
motif submatrices and the least squares allocations r̂[1] and r̂[2] of the clique mapping
variables:

Step 1a Following initialization using naive estimation strategies, the B-MSC
model parameters are iteratively updated using MCMC techniques until the chain con-
verges to the posterior. In Supporting Information, we summarize a computationally
efficient, fast-mixing MCMC algorithm. Exploiting the B-MSC model structure, the
MCMC sampler can be parallelized to separately update the non-intersecting param-
eters related to submatrices X[1] and X[2]. Using the post-burn-in MCMC samples,
Bayes estimates are computed for the posterior probability of each biomarker pair
belonging to the same cluster and each subject pair belonging to the same clique.
Following [28], these probabilities are used to compute point estimates for the cluster
and clique mapping variables, called least-squares allocations. The estimated cluster
variables are denoted by ĉ[1] and ĉ[2]. The estimated clique variables are denoted by
r̂[1] and r̂[2].

Step 1b Setting the cluster and clique mapping variables equal to their least-
squares allocations, a second MCMC sample is generated and post-processed to obtain
Bayes estimates of motif submatrices, denoted by Φ̂[1] and Φ̂[2].

Step 2 Conditional on Bayes estimates Φ̂[1] and Φ̂[2] of the lower-dimensional
motif submatrices and the least squares allocations r̂[1] and r̂[2] of the clique mapping
variables, the B-MSC approach regresses (Si, Zi) on the subject-specific motif vector(
ϕ̂

[1]

r̂
[1]
i
, ϕ̂

[2]

r̂
[2]
i

)
of length q

[1]
c + q

[2]
c ≪ p. Commonly used regression techniques for low-

or high-dimensional covariate-balanced inference that have been implemented in R
packages, e.g., multinomial logistic regression, random forests, ridge regression, lasso,
adaptive lasso, group lasso, and BART, may then be employed to efficiently discover
the relationship between the study-group memberships and the clique-specific rows of

the motif matrices. We then obtain MPS estimate δ̂sz(xi) = δ̂sz
(
ϕ̂

[1]

r̂
[1]
i
, ϕ̂

[2]

r̂
[2]
i

)
, for s =

1, . . . , J , z = 1, . . . ,K. Although other methods like PCA regression could potentially
be used, they are perhaps less popular in the causal inference literature because they
do not perform feature selection that helps deduce the sparse associations (if any)
between MPS and the covariates or their clusters; in that sense, the inferred regression
relationships lack scientific interpretability with these methods [16, 24].
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3 Application: Covariate-balanced survival function
estimation by meta-analyzing right-censored
outcomes

After the MPS estimates are available, weighting methods may be applied to achieve
covariate-balanced inferences. In single observational studies, since weighting infer-
ences utilizing inverse probability weights (IPWs) may be unstable when some subjects
have very small PSs [36], several authors [e.g., 4, 36–38] have proposed alternative
PS-based weighting strategies. [9] introduced a general framework that extends sev-
eral weighting methods in the literature to effectuate covariate-balanced integrative
analyses of multiple cohorts with multiple groups. We briefly summarize the method-
ology here. For any weighting method, the unnormalized weight function, denoted
by ρ̃(s, z,x), and the empirically normalized balancing weight of the ith subject,

ρ̄i = Nρ̃(si, zi,xi)/
∑N

l=1 ρ̃(sl, zl,xl), can be computed, producing sample weights that

sum to N . For example, ρ̃(s, z,x) = 1/δ̂sz(x) extends IPWs and generalized IPWs
[27] to integrative combined (IC) weights in meta-analytical settings. Similarly, gen-
eralized overlap weights [36] can be extended to integrative generalized overlap (IGO)

weights by assuming ρ̃(s, z,x) = δ̂−1
sz (x)/

∑J
s′=1

∑K
z′=1 δ̂

−1
s′z′(x). In addition to incor-

porating equal amounts of information from the J studies, most weighting methods
provide accurate inferences only for hypothetical pseudo-populations in which the
K groups are equally prevalent. For natural populations with unequally distributed
groups, [9] developed FLEXOR weights to create more realistic pseudo-populations.
Suppose the relative group prevalence in the natural population of interest is the
probability vector, θ = (θ1, . . . , θK), e.g., in the TCGA breast cancer studies, θ =
(8/9, 1/9) matches the known U.S. proportions of breast cancer subtypes IDC and

ILC. Then ρ̃(s, z,x) = δ̂−1
sz (x)

(∑J
s′=1

∑K
z′=1

γ̆2
s′θ

2
z′

δ̂s′z′ (x)

)−1
gives the FLEXOR pseudo-

population with the characteristics: (i) the relative weights of the groups matches that
of the natural population; (ii) probability vector γ̆ = (γ̆1, . . . , γ̆J) represents optimal
study weights and is easily estimated by an efficient numerical procedure with neg-
ligible computational costs; and (iii) FLEXOR maximizes the effective sample size
in a broad-ranging family encompassing many meta-analytical weighting methods,
including IC and IGO weights.

Covariate-balanced weighted survival analysis

As an application, we apply the proposed MPS estimation, in conjunction with the
weighting methods of [9], to analyze right-censored outcomes with unbalanced high-
dimensional covariates. Consider survival functions of the counterfactual outcomes
T (z) in the pseudo-population: S(z)(t) = P

[
T (z) > t

]
for t > 0 and group z = 1, . . . ,K.

As previously noted, realized outcome T = T (Z). Analogously to the weak uncon-
foundedness assumption for the observed population, we make an identical assumption
for the pseudo-population. That is, [T |S,Z,X] = [T |S,Z,X]+, where [·] denotes
pseudo-population densities. Unlike the observed population, the covariate-balanced
pseudo-population gives us [T | Z = z] = [T (z)], facilitating weighted estimators
of different features of pseudo-population potential outcomes. Specifically, using the
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empirically normalized generalized balancing weights, the single-study estimator of [39]
can be extended in a straightforward manner to obtain the balance-weighted Kaplan-
Meier estimator (BKME) of pseudo-population survival function S(z)(t) as follows.
Among the N subjects, suppose the observed failures, with possible ties, occur at the
distinct times 0 < t1 < . . . < tD. For the zth group, using the empirically normalized
generalized balancing weights, the weighted number of deaths and the weighted num-

ber of subjects at risk at time tj are, respectively, d
(z)
j = N

∑
i:Yi=tj ,ϑi=1 ρ̄i I(Zi = z)

and R
(z)
j = N

∑
i:Yi≥tj

ρ̄i I(Zi = z), for j = 1, . . . , D. The BKME of the zth survival
function in the pseudo-population is then

Ŝ(z)(t) =
∏

j:tj≤t

(
1− d

(z)
j /R

(z)
j

)
(1)

Variance estimate V̂ar
(
Ŝ(z)(t)

)
=

(
Ŝ(z)(t)

)2 ∏
j:tj≤t

d
(z)
j

R
(z)
j

(
R

(z)
j −d

(z)
j

) is used for point-

wise confidence intervals. The BKME is consistent and asymptotic normal as an
estimator of S(z)(t) and its variance estimate is consistent [40]. If some groups are
undersampled, large-sample inferences may not be valid for those groups. Using B
bootstrap samples of size N each, we could apply nonparametric bootstrap methods
to estimate the standard error of BKME and construct asymptotic or distribution-free
confidence intervals for the group-specific pseudo-population survival functions.

4 Simulation Study

We aimed to evaluate the effectiveness of the proposed B-MSC approach in (i) achiev-
ing dimension reduction in X, (ii) inferring the clique memberships of additional test
case patients, and (iii) when used in conjunction with existing Bayesian or frequen-
tist regression approaches, inferring the MPS of the training and test set subjects,
compared to using the same regression approaches with X as the high-dimensional
predictor. Since the primary focus is “outcome-free” dimension reduction and MPS
estimation, no responses were generated in this simulation study. Using the actual
p1 = 758 continuous (intercept + 750 most variable mRNA biomarkers + 7 clinico-
pathological) and p2 = 522 binary (500 most variable CNA biomarkers + 22 binary
clinicopathological or socioeconomic) covariates of the seven TCGA breast cancer
studies, we generated the study-group memberships of R = 500 simulated datasets.
We examined two scenarios (labeled “high” and “low”) characterized by the degree of
association between MPS and its predictors, and determined by a simulation param-
eter, µ. Each dataset consisted of J = 4 observational studies and K = 2 groups to
match the TCGA application.

Specifically, we sampled with replacement the p = p1+p2 = 1, 280 covariates of the
TCGA breast cancer patients and randomly allocated the Ñ = 450 subjects of each
artificial dataset to JK = 14 study-group combinations. For dataset r = 1, . . . , 500,
and association parameter µ belonging to {10, 15}, we generated:
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1. Covariate matrix For i = 1, . . . , Ñ , covariate vector xir = (xi1r, . . . , xipr)
′

was sampled with replacement from the TCGA datasets to obtain matrix Xr of
dimension Ñ × p, comprising p = 1, 280 binary or continuous covariates.

2. True MPS predictors Without exception, the rank of Xr was Ñ in all the
generated datasets. Let the singular value decomposition of Xr be HrDrBr

′

where Hr is an Ñ×Ñ matrix with orthonormal columns, Dr is a Ñ×Ñ diagonal
matrix with positive diagonal entries, and Br is a p×Ñ matrix with orthonormal
columns. Setting ñ = 50 < Ñ , we let X̂r = ĤrD̂r(B̂r)

T , where D̂r is a ñ × ñ
diagonal matrix containing the highest ñ diagonal elements of Dr, and Ĥr and
B̂r extract the matching ñ columns of Hr and Br.
Each of the p covariates in matrix X̂r was randomly designated as either

a non-predictor, linear, or quadratic predictor of the true MPS. For covariate
j = 1, . . . , p, we independently generated category Hjr ∈ {0, 1, 2} with prob-
abilities 0.5, 0.25, and 0.25, respectively, signifying that the jth covariate is a
non-predictor, linear and quadratic predictor. Let the H̃r =

∑p
j=1 I(Hjr > 0)

linear or quadratic regression predictors derived from X̂r be arranged in an
Ñ × (H̃r+1) matrix denoted by Qr = (qilr), with column 1 consisting of Ñ ones.

3. True MPS and study-group memberships Study sir and group zir were
generated:
(a) Regression coefficients Let (s, z) = (1, 1) be the reference study-group com-

bination. For the remaining (JK−1) combinations, regression vectors υszr =

(υsz0r, . . . , υszH̃rr
)′

i.i.d.∼ NH̃r+1

(
0,Σ + µ2IH̃r+1

)
, where Σ−1 = Qr

′Qr, and

let ηiszr =
∑H̃r

l=0 υszlr qilr. For the reference combination, ηi11r = 0. Setting
µ = 10 (15) produced low (high) signal-to-noise ratios.

(b) True MPS For the ith subject, set δszr(xir) =

exp(ηiszr)/
∑J

s′=1

∑K
z′=1 exp(ηis′z′r). Evaluate true MPS vector, δr(xir) =

{δszr(xir) : s = 1, . . . , J, z = 1 . . . ,K}.
(c) Study-group memberships Independently generate (sir, zir) from the cate-

gorical distribution with probability vector δr(xir).
Disregarding knowledge of all simulation parameters, we meta-analyzed the Ñ

study-group memberships and Ñ×p covariate matrixXr of each artificial dataset using
the proposed B-MSC methodology. First, the Ñ = 450 subjects of each dataset were
randomly split into training and test samples in a 4 : 1 ratio, so that Ñtrain = 360 and
Ñtest = 90. The MCMC algorithm of Supplementary Material was applied to generate
posterior samples. We discarded a burn-in of 10,000 MCMC samples and used 50,000
post-burn-in draws for posterior inferences. Convergence was informally assessed by
trace plots of hyperparameters to determine the appropriate MCMC sample sizes. The
post-burn-in MCMC draws was processed to estimate the lower-dimensional motif
submatrices Φ[1] and Φ[2] as described previously. Then, the estimated motif subma-
trices and study-group memberships of the Ñtrain subjects were used to infer the MPS
using various regression techniques, namely, ridge regression, lasso, adaptive lasso,
group lasso, random forests, multinomial logistic regression, and BART techniques
implemented in the R packages glmnet, randomForest, nnet, and BART, respectively.

Next, focusing on the Ñtest subjects, posterior estimates of the latent cliques r̂
[1]
i and
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r̂
[2]
i and motif vectors

(
ϕ̂

[1]

r̂
[1]
i
, ϕ̂

[2]

r̂
[2]
i

)
of length q̂

[1]
r + q̂

[2]
r were estimated from their p

fully observed covariates, xi, using the Supporting Information MCMC algorithm.
Finally, for these test case subjects, the estimated MPS vector δ̂(xi) of length JK

were computed using only motif vectors
(
ϕ̂

[1]

r̂
[1]
i
, ϕ̂

[2]

r̂
[2]
i

)
.

For the p1 = 758 continuous covariates, the average number of estimated clusters,

q̂
[1]
c , of the 500 datasets was 173.8 with a standard error of 0.2. For the p2 = 522

binary covariates, the average number of estimated clusters, q̂
[2]
c , was 38.3 with a

standard error of 0.2. In other words, the estimated motif submatrices of B-MSC
were substantially smaller than the full set of covariates. Next, for each dataset, and
using the estimated motif matrices of the training samples, we evaluated the accuracy

of the estimated cliques r̂
[g]
i of the test samples using a measure called the parity,

∆[g], for covariate types g = 1, 2. Since the “true” cliques of the TCGA datasets are
unknown, the parity compares two quantities: (a) the estimated clique motifs of the
test subjects when the B-MSC model is fitted to the Ñtrain subjects and applied to the
Ñtest subjects, versus (b) the estimated clique motifs for the same test subjects when
the B-MSC model is fitted to all Ñ subjects. A high parity indicates that out-of-sample
individuals are mapped to their latent cliques in a reliable manner.

More specifically, when the entire sample of Ñ subjects is used to estimate the

unknown B-MSC model parameters, denote the subject-specific latent cliques by r̃
[1]
i

and r̃
[2]
i , and the motif vectors by

(
ϕ̃

[1]

r̃
[1]
i
, ϕ̃

[2]

r̃
[2]
i

)
of length q̃

[1]
r + q̃

[2]
r . For the continuous

covariates X
[1]
r , the parity ∆

[1]
r is defined as the correlation between the motif element

pairs,
(
ϕ̃
[1]

r̃
[1]
i c̃

[1]
j

, ϕ̂
[1]

r̂
[1]
i ĉ

[1]
j

)
, over all j = 1, . . . , p1, and test cases i. Notice that the first

term depends on latent clique r̃
[1]
i whereas the second term depends on latent clique

r̂
[1]
i . For the binary covariatesX

[2]
r , the parity ∆

[2]
r is the proportion of matches between

the motif elements, i.e., the average of I
(
ϕ̃
[1]

r̃
[1]
i c̃

[1]
j

= ϕ̂
[1]

r̂
[1]
i ĉ

[1]
j

)
over all j = 1, . . . , p2,

and test cases i. Averaging over the 500 datasets in the low association simulation

scenario (µ = 10), the average clique parity ∆
[g]
r % of test cases was 64.79% with an

estimated standard error of 0.1% for continuous covariates (g = 1), and 97.00% with
an estimated standard error of 0.03% for binary covariates (g = 2). Irrespective of
the covariate type, the test case latent clique characteristics when Ñtrain samples were
used to fit the B-MSC model, were similar to the latent clique characteristics when
all Ñ samples were used to train the B-MSC model. For perspective, in the case of
binary covariates, a parity exceeding 96% corresponds to fewer than 1,883 mismatches
among the 47,070 bits of the test subjects’ motifs, demonstrating the high reliability of
inferring the latent cliques. The results were similar in the high association simulation
scenario.

For the rth dataset, the study-group memberships and estimated motif subma-
trices of the B-MSC method, estimated using only the Ñtrain subjects, were used to
estimate MPS using different regression techniques. The correlation between the esti-
mate δ̂szr(xir) and true MPS, δszr(xir), i = 1, . . . , Ñ , was computed for each (s, z)
combination. For the low association scenario (µ = 10), the average correlations over
the R = 500 datasets are reported in the columns labeled “B-MSC” in Tables 1-3.
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BART

Training cases Test cases

B-MSC Full B-MSC Full

Study 1 Group 1 38.0 (1.1) 20.6 (1.0) 37.1 (1.2) 17.9 (1.1)
Group 2 52.8 (1.3) 28.7 (1.1) 51.0 (1.3) 22.3 (1.3)
Group 3 53.0 (1.3) 30.4 (1.1) 51.1 (1.3) 23.2 (1.3)
Group 4 52.5 (1.2) 29.5 (1.1) 49.8 (1.4) 22.2 (1.3)

Study 2 Group 1 52.8 (1.3) 31.0 (1.1) 50.2 (1.4) 24.0 (1.2)
Group 2 52.5 (1.4) 29.6 (1.1) 49.9 (1.4) 23.7 (1.3)
Group 3 50.4 (1.3) 31.5 (1.1) 48.2 (1.4) 25.4 (1.2)
Group 4 52.4 (1.3) 29.5 (1.1) 50.5 (1.4) 23.5 (1.2)

Random forests

Training cases Test cases

B-MSC Full B-MSC Full

Study 1 Group 1 23.3 (0.8) 19.0 (1.1) 24.1 (0.9) 22.5 (1.3)
Group 2 37.3 (1.1) 24.8 (1.3) 39.0 (1.2) 27.2 (1.4)
Group 3 38.9 (1.1) 29.2 (1.2) 38.6 (1.2) 32.1 (1.4)
Group 4 37.5 (1.1) 27.2 (1.3) 38.1 (1.2) 29.0 (1.5)

Study 2 Group 1 37.1 (1.1) 27.0 (1.3) 36.7 (1.2) 30.4 (1.4)
Group 2 37.5 (1.2) 26.0 (1.3) 37.8 (1.3) 29.5 (1.4)
Group 3 36.4 (1.1) 28.9 (1.3) 37.1 (1.2) 32.1 (1.4)
Group 4 37.9 (1.1) 25.7 (1.3) 38.8 (1.3) 29.1 (1.4)

Table 1: In the low association simulation scenario, accuracy of
inferred MPS utilizing the smaller motif submatrices of the proposed
B-MSC method as the covariates compared to the high-dimensional
set of covariates (“Full”). For BART and random forest estima-
tion procedures (row block) and study-group combination (row), the
displayed numbers are the percentage correlations between the true
and estimated MPS of the 360 training and 90 test cases (column
blocks), averaged over 500 artificial datasets. Shown in parentheses
are the estimated standard errors of the correlations. Separately for
the training samples and test samples of each row, a covariate set
(B-MSC or Full) with a significantly higher correlation is highlighted
in bold.

For comparison, the columns labeled “Full” display the corresponding numbers when
all p (fully observed) covariates are used as MPS predictors. Although the multino-
mial logistic regression model implemented in the nnet package was easily able to
accommodate the smaller motif submatrices of B-MSC, the full covariate matrix of
dimension Ñtrain× p was too large to be fit on a University of Florida HiPerGator2
supercomputer with Intel E5-2698v3 processors and 4 GB of RAM per core. However,
the BART and random forests regression models analyzed the full set of covariates.
In Tables 1-3, we find that, for most study-group combinations, and irrespective of
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Ridge regression

Training cases Test cases

B-MSC Full B-MSC Full

Study 1 Group 1 47.4 (1.7) 24.4 (1.6) 47.3 (1.7) 22.4 (1.7)
Group 2 55.9 (1.6) 30.8 (1.5) 54.3 (1.6) 27.1 (1.6)
Group 3 57.8 (1.5) 33.5 (1.5) 56.6 (1.5) 29.0 (1.6)
Group 4 56.4 (1.5) 33.7 (1.4) 53.7 (1.7) 28.5 (1.6)

Study 2 Group 1 56.4 (1.6) 34.7 (1.5) 54.3 (1.8) 31.0 (1.6)
Group 2 55.5 (1.6) 32.1 (1.5) 54.6 (1.7) 28.4 (1.7)
Group 3 55.2 (1.5) 36.0 (1.4) 53.9 (1.6) 33.0 (1.5)
Group 4 56.4 (1.5) 33.1 (1.5) 55.1 (1.7) 30.2 (1.6)

Lasso

Training cases Test cases

B-MSC Full B-MSC Full

Study 1 Group 1 41.9 (1.9) 21.2 (1.6) 41.3 (1.9) 19.2 (1.5)
Group 2 48.6 (1.8) 24.6 (1.5) 47.2 (1.8) 20.2 (1.4)
Group 3 50.5 (1.8) 26.3 (1.6) 49.4 (1.8) 22.9 (1.6)
Group 4 50.2 (1.6) 28.2 (1.4) 48.0 (1.8) 24.3 (1.4)

Study 2 Group 1 50.3 (1.7) 27.0 (1.5) 48.4 (1.8) 23.2 (1.4)
Group 2 50.2 (1.7) 25.7 (1.5) 49.4 (1.7) 21.1 (1.5)
Group 3 48.3 (1.8) 28.9 (1.5) 46.8 (1.9) 25.2 (1.5)
Group 4 50.4 (1.8) 25.6 (1.7) 49.2 (1.9) 21.8 (1.6)

Table 2: In the low association simulation scenario, accuracy of
inferred MPS utilizing the smaller motif submatrices of the proposed
B-MSC method as the covariates compared to the high-dimensional
set of covariates (“Full”). For ridge regression and lasso estima-
tion procedures (row block) and study-group combination (row), the
displayed numbers are the percentage correlations between the true
and estimated MPS of the 360 training and 90 test cases (column
blocks), averaged over 500 artificial datasets. Shown in parentheses
are the estimated standard errors of the correlations. Separately for
the training samples and test samples of each row, a covariate set
(B-MSC or Full) with a significantly higher correlation is highlighted
in bold.

the regression technique, the lower dimensional predictors provided by B-MSC yielded
significantly better MPS estimates for both training and test samples, as evidenced
by the significantly higher correlations marked in boldface. In the high association
scenario (µ = 15), the results were more strongly in favor of B-MSC; in Tables 2-4 of
Supporting Information, B-MSC almost uniformly and significantly outperformed the
full set of covariates.

These results demonstrate the success of B-MSC in providing a lower dimen-
sional representation of X with minimal loss of information, correctly inferring the
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Adaptive lasso

Training cases Test cases

B-MSC Full B-MSC Full

Study 1 Group 1 44.3 (1.8) 22.2 (1.6) 43.2 (1.9) 20.4 (1.5)
Group 2 51.5 (1.7) 26.0 (1.4) 49.8 (1.7) 20.9 (1.5)
Group 3 53.0 (1.6) 29.0 (1.5) 51.6 (1.7) 25.1 (1.6)
Group 4 51.7 (1.6) 29.1 (1.5) 49.3 (1.8) 24.5 (1.5)

Study 2 Group 1 52.1 (1.7) 28.3 (1.5) 49.7 (1.8) 24.2 (1.4)
Group 2 52.0 (1.6) 27.7 (1.5) 50.9 (1.7) 22.9 (1.4)
Group 3 49.5 (1.7) 31.7 (1.5) 48.3 (1.8) 28.3 (1.5)
Group 4 52.0 (1.8) 28.4 (1.6) 51.1 (1.9) 24.1 (1.7)

Group lasso

Training cases Test cases

B-MSC Full B-MSC Full

Study 1 Group 1 44.3 (1.8) 20.5 (1.5) 43.5 (1.8) 18.6 (1.5)
Group 2 51.0 (1.7) 24.6 (1.4) 49.2 (1.7) 19.7 (1.4)
Group 3 52.5 (1.7) 26.7 (1.5) 51.4 (1.7) 22.5 (1.6)
Group 4 52.3 (1.5) 27.9 (1.5) 49.9 (1.7) 23.9 (1.4)

Study 2 Group 1 51.2 (1.7) 26.9 (1.5) 48.7 (1.8) 22.8 (1.4)
Group 2 51.1 (1.7) 26.3 (1.5) 50.2 (1.7) 21.7 (1.4)
Group 3 50.2 (1.7) 29.3 (1.5) 48.8 (1.8) 26.4 (1.5)
Group 4 52.2 (1.7) 25.6 (1.6) 51.3 (1.8) 20.9 (1.6)

Table 3: In the low association simulation scenario, accuracy of
inferred MPS utilizing the smaller motif submatrices of the proposed
B-MSC method as the covariates compared to the high-dimensional
set of covariates (“Full”). For adaptive lasso and group lasso esti-
mation procedures (row block) and study-group combination (row),
the displayed numbers are the percentage correlations between the
true and estimated MPS of the 360 training and 90 test cases (column
blocks), averaged over 500 artificial datasets. Shown in parentheses
are the estimated standard errors of the correlations. Separately for
the training samples and test samples of each row, a covariate set
(B-MSC or Full) with a significantly higher correlation is highlighted
in bold.

clique memberships of test cases, and accurately estimating the MPS for subse-
quent covariate-balanced analyses. This instills confidence in employing the B-MSC
technique for analyzing the TCGA data.

5 Integration and analysis of breast cancer datasets

Integrating the TCGA breast cancer patients from the J = 7 medical centers, we aimed
to compare the overall survival (OS) ofK = 2 breast cancer subtypes, namely IDC and
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Table 4: B-MSC clusters, along with their allocated covariates, that are predictive of
multiple propensity score (MPS) in the TCGA breast cancer datasets. See the text
for a detailed discussion.

Cluster Covariate(s)

1 LRRC31, DNMBP-AS1, PYDC1, NPGPR
2 CCNB3
3 RPL29P2, RPS26P11
4 ABCC6P1, SPINK8
5 WFIKKN2
6 OR2T8, OR2W8P
7 GDF3, CST2
8 C1QTNF9B, HBA1
9 LOC100130264, KAAG1
10 OR2L13, TAC2, CLDN19, GRIA4, PROL1,

SLC7A3, SLC22A11, RNF186, CDH22
11 P2RY11, KCNG2, Year of initial diagnosis
12 ERVFRD-1, GATA1, CMA1, GCSAML,

SIGLEC6, SLC8A3, LOC154544, CTSG,
SIGLEC17P, RGS13

13 C14ORF178, ENPP7, HCG4B, PLA2G1B,
RNF113B

14 KCNB1, SLC9A8, SPATA2, LINC00651,
UBE2V1, CEBPB, PTPN1, FAM65C,
MOCS3, PTGIS, B4GALT5, RNF114,
snoU13, SNAI1, TMEM189, MIR645,
PARD6B, BCAS4, ADNP, DPM1, 4
KCNG1, CBLN4

15 PR+

ILC, among these patients, with the intention of providing insights that can inform the
breast cancer population in the United States. An evident challenge is the disparity
between the relative percentages of IDC and ILC patients in the U.S., where they
stand at 88.9% and 11.1%, respectively [5], which differ much from those in the TCGA
studies. For example, the IGC study comprised only 28.9% IDC patients. An effective
method for integrative analysis must account for these discrepancies while adjusting
for patient attributes such as clinical, demographic, and high-dimensional biomarkers.
However, integrative combined (IC) weights [9], like the meta-analytical extensions
of most existing weighting methods, assume a hypothetical pseudo-population with
equally prevalent subtypes, i.e., 50% IDC and ILC patients, and so does not resemble
important aspects of the US patient population. By contrast, the FLEXOR weights
[9] guarantee relative weights of 88.9% and 11.1%, in conformity with the subtype
prevalence.

We analyzed the TCGA breast cancer datasets containing N = 450 patients,
covariate matrix X[1] with p1 = 758 continuous covariates that include mRNA
biomarker and clinicopathological measurements, and covariate matrix X[2] with
p2 = 522 binary CNA biomarker and other covariates, so that p = 1, 280 covariates.
For covariate-balanced inferences, the first task was MPS estimation. To implement
the proposed B-MSC methodology, we generated MCMC samples from the proposed
model using the Supporting Information algorithm. Following a burn-in period of
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10,000 MCMC samples, 50,000 additional samples were stored. Posterior convergence
was confirmed by trace plots. We applied the previously described inference strategy

to find Bayes estimates of the motif submatrices Φ[1] and Φ[2] with only q̂
[1]
c = 184 and

q̂
[2]
c = 43 columns, respectively, corresponding to the estimated clusters. We applied
the group lasso technique to regress (Si, Zi) on the lower-dimensional motifs of length

q̂
[1]
c + q̂

[2]
c = 227 and so obtain the MPS estimates. Table 4 displays the covariates

belonging to the 15 (out of 227) B-MSC clusters that were predictive of MPS. In
general, these predictive clusters are very different from the predictors of health out-
comes such as cancer survival. Thirteen predictive clusters corresponded to continuous
covariates and predominantly comprised mRNA biomarkers. The only exception was
the year of initial diagnosis, which (after standardization) exhibited across-patient
patterns similar to the genes P2RY11 and KCNG2. The remaining clusters consisted
of binary covariates; cluster 14 contained 22 CNA biomarkers and singleton cluster 15
represented positive progesterone receptor status.

The biological relevance of the clusters in Table 4 is attested by the medical
literature. As a byproduct of the methodology, regressing only the patient disease
subtypes on the motifs gives the B-MSC clusters that differentiate the disease sub-
types. Since out-of-bag prediction, variable selection, and differential analysis are not
relevant to MPS estimation, the proposed methodology does not focus on identi-
fying differential covariates. Nevertheless, performing the second regression analysis
using group lasso, we discovered the same predictor clusters as Table 4. Comparing
with the medical literature, we find each predictor cluster consists of known dif-
ferential biomarkers of IDC and ILC. Specifically, the biological role of the genes
LRRC31, DNMBP, PYDC1, CCNB3, RPL29P2, RPS26P11, SPINK8, WFIKKN2,
OR2T8, GDF3, CST2, C1QTNF9B, HBA1, KAAG1, OR2L13, P2RY11, ERVFRD-1,
C14ORF178, and snoU13 has been noted by scientific investigations listed in Sup-
porting Information. [41] show that PR status has an important biological function in
differentiating the disease progression of IDC and ILC.

Applying the techniques introduced in [9], we obtained the IC, IGO, and FLEXOR
weights for the N = 450 patients in the seven TCGA breast cancer datasets. The
percent ESS of the IC pseudo-population was 42.2% or 189.7 patients. The percent ESS
of the IGO pseudo-population was comparable: 42.1% or 189.3 patients. By contrast,
the FLEXOR pseudo-population had a higher percent ESS of 81.1% or 365.0 patients.
For FLEXOR, the optimal amounts of aggregated information from the seven datasets,
listed in the same order as Table 1 of Supporting Information, were estimated as 22%,
4%, 9%, 13%, 26%, 20%, and 7%, respectively. By contrast, all the study weights are
inflexibly set to 100

7 % in the IC and IGO pseudo-populations and may be suboptimal
for integrative analyses.

We analyzed 500 bootstrap samples of 450 patients drawn with replacement from
the TCGA breast cancer database. Side-by-side boxplots of the percent ESS of the
three weighting methods are displayed in the left panel of Figure 1. For the bootstrap
samples, we find that the FLEXOR pseudo-population had a significantly larger ESS
than the other pseudo-populations, indicating this weighting method may be more
precise for wide-ranging pseudo-population estimands such as percentiles and com-
parative group survival features such as differences of the mean or median survival
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Table 5: Covariate-specific absolute standardized
biases in the TCGA breast cancer studies for three
pseudo-populations.

FLEXOR IGO IC

Age at diagnosis 3.6 5.2 4.0
Cancer in nearby lymph nodes 2.8 3.8 3.1
Percentage genome altered 4.0 2.9 3.8
Year of diagnosis 5.8 5.3 5.6
Menopause status 1 or 2 5.1 3.8 5.1
Cancer stage 1 or 2 2.2 2.6 2.1
Positive ER status 3.7 3.2 3.6
Positive PR status 5.2 4.1 5.3
LRRC31 2.9 3.1 3.0
CCNB3 4.8 3.9 4.3
RPL29P2 3.9 3.1 4.1
HBA1 4.6 3.2 4.3
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Fig. 1: For 500 bootstrap samples of 450 patients each drawn from the TCGA breast
cancer datasets, side-by-side boxplots of the percent ESS (left panel) and absolute
standardized bias (right panel) for the IC, IGO, and FLEXOR pseudo-populations.

times. Boxplots of the absolute standardized bias [4] are shown in the right panel of
Figure 1. A smaller ASB is indicative of better covariate balance. We find that the
weighting methods are equally effective in mitigating imbalances in the large number
of covariates. We observe a comparable outcome in Table 5, showing the ASBs of cer-
tain covariates from the TCGA database. Finally, estimates of the survival functions of
the K = 2 disease subtypes (IDC and ILC) were meta-analyzed using different weight-
ing methods as follows. BKME (1) was evaluated using these quantities. Uncertainty
estimation was based on B = 500 bootstrap samples.

Adjusting for stages and grades, Figures 2A–2C provide unconfounded OS curves
for IDC and ILC patients using three different weighting methods: IC, IGO, and
FLEXOR. Our findings reveal that the IC and IGO weighting methods yield similar
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Fig. 2: For the TCGA breast cancer patients, estimated overall survival (OS) curves
for disease subtypes IDC (red, solid lines) and ILC (cyan, dashed lines) with integrative
combined (IC), integrative generalized overlap (IGO), and FLEXOR weights. The
standard error bands were estimated from 500 bootstrap samples and are shown in
pink and light cyan respectively for IDC and ILC.

conclusions regarding survival times, somewhat inconclusively concluding that IDC
generally has a poorer prognosis than ILC, except possibly for lower OS. Notably,
both subtypes show survival probabilities exceeding 50%. In contrast, the FLEXOR
weighting method indicates significantly worse health outcomes for IDC compared to
the other methods. For instance, the 10th percentile of OS for IC, IGO, and FLEXOR
weights were 55.0, 55.8, and 46.4 months, respectively—highlighting statistically sig-
nificant differences when accounting for standard errors. More importantly, FLEXOR
consistently suggests that IDC has uniformly worse outcomes than ILC, regardless of
OS, with a median IDC survival time of 122.7 months (SE: 0.1 months). The difference
in results may be attributed to the considerably lower ESS and somewhat unrealistic
assumptions (e.g., assuming equally prevalent disease subtypes) of the IC and IGO
pseudo-populations. This raises questions about the validity of IC and IGO inferences
for these datasets, emphasizing the need for careful consideration of methodological
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assumptions and their potential impact on study outcomes. Conversely, identifying
IDC as consistently associated with poorer outcomes than ILC (Figure 2C) could pave
the way for more precise and targeted therapeutic interventions, potentially benefiting
both patient groups.

6 Conclusion

Propensity scores play a pivotal role, serving as the foundation for weighting or
matching methods for covariate-balanced analyses. A primary barrier for integrating
retrospective cohorts is covariate imbalance across the studies and groups. In the con-
text of integrative analyses encompassing multiple observational studies with diverse
and unbalanced groups, the concept of propensity scores was generalized by [9] to the
multiple propensity score (MPS); this is defined as the probability of a study-group
combination given the subject’s covariates. However, the presence of high-dimensional
covariates introduces complexity in estimating the MPS and, consequently, poses a
challenge in integrating observational studies.

We have proposed a novel, hybrid Bayesian-frequentist technique called B-MSC.
Exploiting the dimension-reduction property of non-parametric CRPs, we discover
latent lower-dimensional archetypes in the covariates called motifs. Using these motifs
as potential regressors, standard regularization techniques can be employed to accu-
rately and flexibly estimate the propensity scores. Using a computationally efficient
MCMC algorithm, we foster an inferential procedure that discovers motif matrices
associated with high-dimensional covariates to accurately estimate the MPS. We then
apply these techniques to make covariate-balanced weighted inferences using censored
survival outcomes in integrative analyses of high-dimensional TCGA breast cancer
studies.

There are two main reasons for defining a separate matrix X [t] for factor covariates
with different At for t > 1, instead of combining all the factor covariates into a single
matrix X [2]. First, from a scientific perspective, the factor covariates are often created
from more basic, and often continuous, measurements by choosing a predetermined
number of thresholds informed by biological knowledge. For example, in the motivating
TCGA application, the CNA measurements are coarsened as binary factors. In a
different application, it may be more reasonable to create factor variables with A =
3 levels using the same CNA measurements, and we would then expect the latent
cluster structure, including the number of clusters, to depend on the chosen number of
levels. In other words, the CRP prior that drives the cluster structure depends on At,
necessitating different CRP priors for different X [t]. Second, from a purely modeling
perspective, as discussed in Section 2.1, the prior for the factor motif submatrix utilizes
a generalized Bernoulli or categorical distribution on At categories with a corruption
probability matrix of dimension At×At. For these reasons, it is appropriate to assume
separate factor matrices X [t] for different At when t > 1.

The B-MSC methodology is capable of accommodating a blend of retrospective
cohorts and RCTs. In future research, we will extend this strategy to transportability
[42] and data-fusion [43] problems, which utilize random samples from the natural
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population. R code implementing the proposed method is available on GitHub at
https://github.com/sguha-lab/CRP

Supplementary information. Web Appendices, Tables, and Figures referenced in
Sections A and B are available in “Supporting Information.”
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