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Summary. Public health concerns over the occurrence of birth defects and developmental ab-
normalities that may occur as a result of prenatal exposure to drugs, chemicals, and other envi-
ronmental factors has led to an increasing number of developmental toxicity studies. Because
fetal pups are commonly evaluated for multiple outcomes, data analysis frequently involves a
joint modeling approach. In this paper, we focus on modelling clustered binary and continuous
outcomes in the setting where both outcomes are potentially observable in all offspring but,
due to practical limitations, the continuous outcome is only observed in a subset of offspring.
The subset is not a simple random sample (SRS) but is selected by the experimenter under a
prespecified probability model.
While joint models for binary and continuous outcomes have been developed when both out-
comes are available for every fetus, many existing approaches are not directly applicable when
the continuous outcome is not observed in a SRS. We adapt a likelihood-based approach for
jointly modelling clustered binary and continuous outcomes when the continuous response
is missing by design and missingness depends on the binary trait. The approach takes into
account the probability that a fetus is selected in the subset. Through the use of a partial like-
lihood, valid estimates can be obtained by a simple modification to the partial likelihood score.
Data involving the herbicide 2,4,5-T are analyzed. Simulation results confirm the approach.

Keywords: Fetal toxicity; Clustering; Dose response modeling; Partial likelihood; Correlated
probit model

1. Introduction

Growing concern over the occurrence of birth defects and developmental abnormalities that
may occur as a result of prenatal exposure to drugs, chemicals and other environmental
factors has led to agencies such as the U.S. Environmental Protection Agency (EPA) and
the Food and Drug Administration (FDA) to place emphasis on setting exposure limits in
order to protect the public from the adverse effects of these substances. Because data on
humans are often unavailable, information from controlled animal experiments accounts for
a large proportion of the data on the effects of toxins.

Fetal toxicity studies often involve exposing a pregnant dam to the study agent at
the peak of fetal organogenesis. Experiments known as segment II studies, intended to
evaluate dose response, follow federal testing guidelines and have been described in detail
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elsewhere (Manson, 1994). Briefly, these experiments typically involve 3–4 dose groups
including a control group, with each dose group containing 20-30 dams. Just prior to
normal delivery, the dams are sacrificed and the uterine contents are examined. Typically,
offspring are evaluated on multiple outcomes which may include a mix of discrete and
continuous responses. Outcomes include prenatal loss (i.e., resorptions and fetal deaths),
and among viable offspring, a number of outcomes including fetal weight, externally visible
malformations, and malformations of internal organs and the skeleton. In addition, as it is
well known that offspring from the same dam tend to respond more similarly than those from
different dams, possibly due to genetic similarity and a shared maternal environment during
gestation, clustering within litter is a common characteristic of data from these experiments.
The statistical challenges involved have been discussed by others (Ryan, 1992; Aerts et al.,
2002).

While much is known about a number of toxins, the biological mechanisms involved are
usually not well established. Another area of fetal toxicity studies involves experiments that
are intended to evaluate specific mechanisms of the developmental processes that may be
interrupted by prenatal exposure to a toxin. Often, these studies require detailed assess-
ments of offspring involving a continuous response, that may reflect minute changes that are
not easily determined by gross examination of the fetus. These studies extensively evaluate
a small number of animals and are often restricted to two groups, exposed and unexposed.
For example, in studies of ocular development, Inagaki & Kotani (2003) reported the rate of
microphthalmia and conducted detailed morphometric evaluation of the embryos of rats ex-
posed to soft X-ray irradiation. Examination by stereo-microscope revealed reduced growth
of the optic cup in exposed offspring. Others have included detailed evaluation in studies
of lung maturation, development of the eye and of the liver (Grasty et al., 2005; Martins
et al., 2005; Rogers & Hurley, 1987).

Although these types of studies differ somewhat in their objectives, they have some
shared characteristics which includes evaluating multiple outcomes. Some outcomes may
be cheap and quick to assess, such as malformation determined by gross examination, while
others, such as the size of the ocular cup, are time-consuming and expensive to measure.
While there may be sufficient resources to evaluate all offspring in small toxicity studies, in
large studies, cost constraints limit the extent to which detailed assessments can be made,
so collecting detailed measures on all subjects is unrealistic. To overcome this limitation,
some studies evaluate a fixed number of pups per litter (Rogers & Hurley, 1987; Grasty
et al., 2005) while others select pups from a fixed number of litters (Kennedy & Elliott,
1986).

If exposure-related changes in the detailed measure are more likely to occur in affected
offspring, the experimenter might preferentially select affected offspring in which to observe
the detailed measure. While there might be resources to do detailed assessment among a
fraction of offspring, a simple random sample (SRS) might not be the best use of limited
resources and therefore, selecting a SRS may not be optimal. One approach to selecting a
subset is to oversample the affected offspring. Oversampling has arisen before in evaluating
eye size and malformation of the eye (Weller et al., 1999).

We consider a case in which a binary trait, such as malformation, is observed in all
offspring while a continuous outcome, corresponding to the detailed assessment, is observed
in a subset of offspring selected from the main study. The subset is not a SRS in the sense
that the probability of selecting an affected offspring is not equal to that of an unaffected
offspring. We were motivated by the idea that a probability-based subsample that is not a
SRS might be obtained, and sought an approach to analyze these data. Our approach pairs
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existing methods for mixed effects models, which have been previously applied to analyze
fetal toxicity data (Gueorguieva & Agresti, 2001; Dunson, 2000), with the concept of two-
phase sampling, which has been used in screening and surveys in psychiatry (Deming, 1977;
Shrout & Newman, 1989). In our approach, the screening variable, which is the variable
at the first phase of sampling (i.e., malformation), does not necessarily reflect the same
phenomenon as the variable at the second phase (the detailed assessment), though the two
are expected to be correlated. Our intent, in the application of two-phase sampling, differs
somewhat from the screening context in that malformation status itself is of interest because
it carries information on exposure. Thus, we were concerned with analyzing the variable
at the first phase as well as the variable at the second phase. We refer to the sampling
procedure at the second phase as subsampling to reflect this difference in intent. While the
application to toxicology is presented as a working example, our approach can be applied
more generally to analyze a mix of binary and continuous outcomes when the continuous
response is missing by design. We apply our approach to a segment II study involving a
number of doses that also allows for estimation of a joint dose response curve.

We begin with a bivariate regression model in Section 2. The model is an extension
of the clustered ordinal regression approach of Hedeker & Gibbons (1994) that includes
the continuous outcome. To handle subsampling, we then derive a partial likelihood (PL)
that is based on the bivariate model, and give an expression for the PL score in Section 3.
We show that consistent estimates can be obtained by adjusting the PL score via a simple
weighting scheme that accounts for the sampling design. Results from a data analysis
involving the herbicide 2,4,5-T are presented in Section 4 and a simulation study confirms
the PL approach in Section 5. Some of the technical details are relegated to a separate
technical report available from the authors.

2. Bivariate random effect regression model (BRM)

Our approach follows the method of Hedeker & Gibbons (1994) for modelling clustered or-
dinal outcomes. Central to the model are a normally distributed unobservable latent trait
and fixed but unknown threshold values which generate the observed ordinal outcomes. In
extending the model of Hedeker & Gibbons (1994) to account for a continuous outcome,
the latent trait and continuous outcome are assumed to have a bivariate normal distribu-
tion. For the purpose of modelling fetal malformation, attention is restricted to clustered
binary outcomes. The bivariate random effect model (BRM) accounts for a binary and a
continuous outcome. We assume that mean fetal response depends only on fixed effects so
a one-dimensional mean zero random effect for litter is assumed. As the latent trait and
the continuous outcome may not be in the same scale, a parameter for each outcome is
used to scale the random effect. In addition, consistent with assumptions typical for fetal
toxicity studies, no fetus-specific effects are assumed so that only litter-level covariates are
considered. Finally, the latent trait and the continuous outcome are assumed to be posi-
tively correlated, so that small values of the latent variable, corresponding to malformation,
are correlated with lower values of the continuous outcome. We first assume there is a
latent variable for malformation, M∗

ik, with unknown latent variance σ2
1 , and a continuous

outcome, Sik, for fetus k in litter i. The joint model for (M∗

ik Sik)T is written

M∗

ik = w
T
1iα̃

∗

1 + σ̃b1θi + ε̃1ik

Sik = w
T
2iα2 + σb2θi + ε2ik
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where the random effect, θi
iid∼ N(0, 1), is independent of the vector of error terms (ε̃1ik ε2ik)

where (ε̃1ik ε2ik)T ∼ N(0, Σ̃) and

Σ̃ =

(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)

.

As M∗

ik is unobservable, the unknown latent variance σ2
1 is not uniquely identifiable. M∗

ik can
be rescaled by the unknown latent variance producing a second latent variable, Y ∗

ik, with
variance 1. Denoting Y ∗

ik and Sik for latent malformation and the continuous outcome,
respectively, for fetus k in litter i, the joint model for (Y ∗

ik Sik)T , for a single fetus is
written

Y ∗

ik = z1ik + ε1ik

Sik = z2ik + ε2ik

where z1ik = w
T
1iα

∗

1 + σb1θi, z2ik = w
T
2iα2 + σb2θi, α∗

1 = α̃∗

1/σ1, σb1 = σ̃b1/σ1, and ε1ik =
ε̃1ik/σ1. εik = (ε1ik ε2ik)T is a mean zero bivariate normal random variable with covariance
matrix

Σ =

(

1 σ2ρ
σ2ρ σ2

2

)

.

We assume ρ > 0 so that malformations are correlated with lower values of the continuous
outcome.

A malformation occurs when the latent variable falls below the fixed threshold, γ1. The
observable pair of variables is (Oik, Sik) where Oik = 1, a fetal malformation, if γ0 < Y ∗

ik ≤
γ1 and Oik = 2 (no malformation) if γ1 < Y ∗

ik ≤ γ2. We take γ0 = −∞ and γ2 =∞. When
a binary outcome is generated from the unobservable latent variable, it is well known that
the unknown threshold is not individually estimable. Therefore, while α∗

1 is not estimable,
a parameter, α1, that is a transformation of α∗

1 that depends on γ1 can be estimated. For
example, in the simplified case where there is no clustering, if the latent mean is α∗

11 +α∗

12d,
only α11=γ1−α∗

11 and α12 = −α∗

12 are estimable since only the probability of malformation
can be estimated from the data. For the data analysis, we were primarily interested in
modeling the dose effect of a toxin. For convenience, we chose to set γ1 = 0, although other
values could be chosen, which would result in shifting the intercept term for malformation.

Supressing the subscript for litter, i, temporarily, the marginal between-fetus and within-
fetus correlations are found to be

ρY = cor(Y ∗

k , Y ∗

k′ ) =
σ2

b1

σ2

b1
+1

ρS = cor(Sk, Sk′) =
σ2

b2

σ2

b2
+σ2

2

ρY S = cor(Y ∗

k , Sk) = σ2ρ+σb1σb2√
(σ2

b1
+1)(σ2

b2
+σ2

2
)

ρY S′ = cor(Y ∗

k , Sk′) = σb1σb2√
(σ2

b1
+1)(σ2

b2
+σ2

2
)
.

This marginal correlation structure is represented in Figure 1. The marginal joint distribu-
tion is

(

Y
∗

S

)

∼ N2n

((

w
T
1 α11n

w
T
2 α21n

)

,V =

(

V11 V12

V21 V22

))

where V11 = In + σ2
b1Jn, V21 = V12 = σ2ρIn + σ2

b2Jn, and V22 = σ2
2In + σ2

b2Jn. V can be
rewritten

V =

(

σ2
Y [(1− ρY )In + ρY Jn] σY σS [(ρY S − ρY S′)In + ρY S′Jn]

σY σS [(ρY S − ρY S′)In + ρY S′Jn] σ2
S [(1− ρS)In + ρSJn]

)

.
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where σ2
Y = σ2

b1+1 and σ2
S = σ2

b2+σ2
2 . Of interest is to estimate η = (α1 α2 σb1 σb2 σ2 ρ)T .

The mean parameters, α1 and α2, and the within-litter variance for fetal weight, σ2, are
uniquely identifiable as they can be estimated by analyzing the outcomes separately. As
the marginal correlations, ρY , ρS , and ρY S can be individually estimated, σb1, σb2, and
ρ are also uniquely identifiable which is seen by rewriting the expressions relating model
parameters and the marginal correlations (see Appendix A).

2.1. Estimation for complete data pairs
If (oik, sik) are observed for every fetus k = 1, · · · , ni and litter i = 1, · · · , N, the marginal
joint likelihood is given by

L(η) =

N
∏

i=1

h(oi, si; η) =

N
∏

i=1

∫

P (oi, si|θi)g(θi)dθi (1)

where P (oi, si|θi) =
∏ni

k=1 P (oik, sik|θi). Estimation proceeds via Fisher scoring in a fashion
similar to the univariate ordinal model. Estimates are obtained by solving the score equation

U(η) =

N
∑

i=1

h(oi, si; η)−1 ∂

∂η
h(oi, si; η)

where derivatives of the log likelihood are obtained by directly differentiating the log of (1)

∂h(oi, si; η)

∂η
=

∫ ni
∑

k=1





∂
∂η P (sik|θi)

P (sik|θi)
+

2
∑

j=1

1(oik = j)

∂
∂η P (Oik = j|sik, θi)

P (Oik = j|sik, θi)



P (oi, si|θi)g(θi)dθi

(2)
where P (sik|θi) = ϕ(s

′

ik)/σ2i, P (Oik = 1|sik, θi) = Φ(vik), P (Oik = 2|sik, θi) = 1− Φ(vik),

vik = −mik/
√

1− ρ2, mik = z1ik + ρ(sik − z2ik)/σ2, and s
′

ik = (sik − z2ik)/σ2. ϕ() and Φ()
denote, respectively, the probability density function and cumulative distribution function
of the normal distribution. Substituting terms, the right hand side of (2) is written

∫ ni
∑

k=1

[

∂

∂η
log P (sik|θi) +

(

1(oik = 1)

Φ(vik)
− 1(oik = 2)

1− Φ(vik)

)

∂Φ(vik)

∂η

]

P (oi, si|θi)g(θi)dθi. (3)

Standard error estimates are based on the inverse observed information. Marginal quantities
are approximated by numerical quadrature (Najita, 2006).

3. Partial likelihood approach

To account for subsampling, the mechanism generating the observed data is viewed in terms
of two steps: a sampling step and an additional selection step. In the sampling step, a fetus
potentially observable for the data pair, (o, s), is sampled at random from the population,
depicted on the left in Figure 2. This step corresponds to viable offspring observed when
the uterine contents are examined. The sampled data pair falls in one of two strata, based
on malformation status. At the selection step, a subsample is obtained where offspring are
selected from stratum 1 (abnormality or affected) with probability p1 and from stratum 2
(healthy or unaffected) with probability p2. The continuous outcome, S, is observed only
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for pups selected at the second step. Thus, in affected pups, a data pair is observed with
probability p1 while in unaffected pups, the data pair is observed with probability p2. For
pups not selected at the second step, only malformation status is observed.

The case p1 = p2 = 1 corresponds to the complete data setting where the selection
step is absent. p1 = p2 = p < 1 corresponds to the SRS case where the population-based
relative frequencies are retained in the subsample. p1 > p2 corresponds to oversampling
malformations while p1 < p2 corresponds to undersampling. When there is subsampling,
the likelihood involves a normalizing constant that depends on the unknown probability of
malformation, so the full likelihood is complex. We base inference on a PL in which the
selection process is not formally modeled.

3.1. Partial likelihood under subsampling
We now derive expressions for the PL and the PL score. Let ∆ik be the variable indicating
whether the continuous outcome is observed for the kth fetus where P (∆ik = 1|Oik = oik) =

p
1(oik=1)
1 p

1(oik=2)
2 . Write the data available for the kth fetus as d

′

ik = (oik, δik) if δik = 0 and

d
′

ik = (oik, sik, δik) if δik = 1. Conditional on the random effect for litter, the distribution

of the observed data for a single fetus is P (d
′

ik|θi) = P (oik, δik|θi)
1−δik P (oik, sik, δik|θi)

δik

which we write as

P (d
′

ik|θi) =
2
∏

j=1

[(1− pj)P (Oik = j|θi)]
d0jik [pj P (Oik = j, sik|θi)]

d1jik (4)

where dℓjik = 1(δik = ℓ, oik = j), ℓ = 0, 1 and j = 1, 2. Setting P (d
′

i|θi) =
∏ni

k=1 P (d
′

ik|θi)
and integrating over the random effect gives the PL

PL(η) =

N
∏

i=1

∫

P (d
′

i|θi) g(θi)dθi. (5)

Setting PLi =
∫

P (d
′

i|θi)g(θi)dθi, the PL score is obtained by substituting (4) in (5) and
directly differentiating the log PL:

U(η) =

N
∑

i=1

1

PLi

∫

D1(d
′

i; θi, η)P (d
′

i|θi) g(θi)dθi, (6)

where

D1(d
′

i; θi, η) =

ni
∑

k=1

2
∑

j=1

[

d0jik

∂
∂η P (Oik = j|θi)

P (Oik = j|θi)
+ d1jik

∂
∂η P (Oik = j, sik|θi)

P (Oik = j, sik|θi)

]

. (7)

Writing P (Oik = j|θi) = Φ(uik)1(j=1)(1 − Φ(uik))1(j=2) where uik = −z1ik, the derivatives
in (7) can be expressed as

∂
∂η P (Oik = j|θi)

P (Oik = j|θi)
=

(−1)1(j=2) ∂
∂η Φ(uik)

Φ(uik)1(j=1) [1− Φ(uik)]1(j=2)

∂
∂η P (Oik = j, sik|θi)

P (Oik = j, sik|θi)
=

(−1)1(j=2) ∂
∂η Φ(vik)

Φ(vik)1(j=1) [1− Φ(vik)]
1(j=2)

+
∂

∂η
log P (sik|θi)
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with P (sik|θi) and vik as defined in Section 2.1. Substituting terms, (7) can be written as

D1(d
′

i; θi, η) =

ni
∑

k=1

2
∑

j=1

[

d0jik(−1)1(j=2) ∂
∂η Φ(uik)

Φ(uik)1(j=1) [1− Φ(uik)]1(j=2)

+ d1jik

(

(−1)1(j=2) ∂
∂η Φ(vik)

Φ(vik)1(j=1) [1− Φ(vik)]
1(j=2)

+
∂

∂η
log P (sik|θi)

)]

.

(8)

It can be shown that when selection occurs at rates that differ by malformation status,
the expected value of (6) is non-zero for α2, the component corresponding to the mean
continuous outcome. To correct for bias, the PL score is modified by sampling weights.
The weighted PL score, Ũ(η), can be written Ũ(η) =

∑N
i=1 Ũi(η), where

Ũi(η) =
1

PLi

∫

Dw(d
′

i; θi, η)P (d
′

i|θi)g(θi)dθi. (9)

Dw has the form of D1 in (7) with wℓjdℓjik substituted for dℓjik where w1j = 1/pj and
w0j = 1/(1 − pj), j = 1, 2. It is straightforward to show that the weighted PL score
equation is an unbiased estimating equation by conditioning on the random effect and taking
expectations (Najita, 2006). PL estimates (PLE’s) are obtained by solving the weighted
score equation Ũ(η) = 0.

Standard error estimates are based on the robust sandwich estimator. To obtain an
expression for the robust SE, we write the estimating function GN (η) = 1

N

∑N
i=1 Ψ(d

′

i, η)

where Ψ(d
′

i, η) = Ũi(η). Expansion of GN around η0 gives, for large N,

√
N(η̂ − η0) ≈ −ĠN (η0)

√
NGN (η0)

where ĠN (η0) denotes ∂GN

∂ηT = ∂
∂ηT

1
N

∑N
i=1 Ũi(η) evaluated at η = η0. Following general

results for M-estimators (Huber, 1967), PL estimates are asymptotically normal, so, for

large N, η̂ ≈ N(η0, 1/N A(η0)
−1B(η0)

[

A(η0)
−1
]T

) where A(η0) = E
[

− ∂
∂ηT Ũi(η0)

]

and

B(η0) = E
[

Ũi(η0)Ũi(η0)
T
]

. Therefore, we estimate the robust sandwich variance by

(

1

N

∑

i

∂Ũi

∂η

)

−1
1

N

∑

i

Ũi(η)Ũi(η)T





(

1

N

∑

i

∂Ũi

∂η

)

−1




T
∣

∣

∣

∣

∣

∣

∣

η=η̂

. (10)

Expressions for the derivatives are obtained by direct differentiation (see Appendix B).

4. Application to 2,4,5-T data

We have confirmed the PL method via extensive simulations (Najita (2006) and summarized
in Section 5 below) and here we show results from an analysis of a large toxicity study. For
the data analysis, we wanted to evaluate the PL approach by comparing PLE’s to MLE’s
as we wanted to directly compare differences due only to subsampling. Our motivation
in this approach was to compare MLE’s obtained from an “expensive” study, in which all
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offspring are evaluated, with PLE’s that could be obtained had the study been implemented
by oversampling affected offspring, a potentially less expensive study.

In order to evaluate the PLE’s directly against MLE’s, we focused on live outcomes.
We believe that limiting the analysis to live outcomes was the simplest approach to make
the comparison as the subsampling is intended for live outcomes only. Thus, our analy-
sis excludes non-live outcomes and while experimenters who are interested in risk assess-
ment (evaluating safe doses) may eventually wish to include non-live outcomes, existing
approaches to augment the likelihood can be easily applied to the PL as well (Catalano &
Ryan, 1992; Regan & Catalano, 1999).

For live outcomes, we focused on malformation and fetal weight which are typical pri-
mary endpoints for live offspring. Given a subsampling of fetal weight, we wanted to show
that valid estimates could still be obtained when the subsample is not a SRS, and because
fewer pups would be evaluated, there is potential for cost-saving. For continuous outcomes
that are more expensive to measure than fetal weight, such as the size of the ocular cup or
eye size, the potential for cost-savings would be greater.

In applying the PL approach, we sought a single data set in which we could compare
MLEs with PLE’s. To make the comparison, we began with data containing information on
all offspring (complete pairs). A second data set was derived by oversampling malformations
from the complete pairs data set (subsampling data set). Because we were interested in
making a direct comparison between the MLE’s and PLE’s, a subsampling data set alone
was not sufficient for our purposes. We chose to analyze data from a large developmental
toxicity study of the herbicide 2,4,5-tricholorophenoxyacetic acid (2,4,5-T) in C57BL/6 mice
(Holson et al., 1992).

Between gestational days 4–16, dams were exposed to 2,4,5-T at one of seven dose levels
(0, 15, 30, 45, 60, 75, 90 mg/kg/day). The number of pregnant dams at each dose level
varied by dose group by design (13-66 dams per dose). The main study was comprised of
367 litters and we focus on the 337 litters containing at least one viable pup. While the
most pronounced effects were reduction in fetal weight and the incidence of cleft palate,
our analysis involved malformation of any type. Fetal weight and malformation status were
available for 2,295 fetuses, which comprise the complete pairs data set of 337 litters. Dose
effects of 2,4,5-T were evident in fetal weight and malformation. The proportion of fetal
malformations increased steadily with dose ranging from a background rate of approximately
1% to 37% at the highest dose (see left panel, Figure 3). A plot of malformation rate
transformed on a normal quantile scale suggested a linear trend in dose.

Fetal weight declined with dose, from 815 mg at the control dose to 548 mg at the highest
dose. As there appeared to be some deviation from this trend at 15 mg/kg (see right panel,
Figure 3), attempts were made to fit a quadratic term for dose in a univariate model for
fetal weight in order to determine whether non-linear terms were appropriate before fitting
the bivariate model. While the linear term for dose was significant, the quadratic term was
not significant (possibly due to a smaller number of litters at the 15 mg/kg dose level). We
fit the regression model

Y ∗

ik = α11 + α12di + σb1θi + ε1ik (11)

Sik = α21 + α22di + σb2θi + ε2ik (12)

var(εik) =

(

1 σ2ρ
σ2ρ σ2

2

)

(13)

where σb1, σb2, σ2, and ρ were included as fixed constants. A summary of dose levels,
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malformation rates and fetal weight are presented in Table 1.
To apply the PL approach, the subsampling data set was created from the complete data

set by oversampling malformations (p1=0.9, p2=0.6). The subsampling data set consisted
of data on fetal malformation (n=2295) and fetal weight (n=1469) for pups from the 337
litters. Seven litters contained no fetal weight observations while fetal weight was observed
for a single pup in 21 litters. Among the remaining 309 litters, there was information on
both outcomes for at least two pups. As a result of oversampling malformations, mean
fetal weight in the subsampling data set was generally lower than that in the complete data
set. MLE’s were obtained from the complete data set and PLE’s were obtained from the
subsampling data set. The regression estimates were used to calculate marginal fetus-level
correlations as described in Section 2.

A comparison of parameter estimates is presented in Table 2. Overall, regression esti-
mates were similar (see Figure 3). MLE’s of the within litter variance of fetal weight and the
PLE’s were similar (MLE: σ2 = 0.073 versus PLE: σ2 = 0.072). Estimates of the random
effect SD’s were also similar (MLE: σb1=0.48, σb2=0.09 versus PLE: σb1=0.54, σb2=0.10).
As a result, there was very good agreement in estimates of marginal correlations within
litter (MLE: ρY =0.19, ρS=0.62 versus PLE: ρY =0.23, ρS=0.67). In addition, the within-
fetus correlations between fetal weight and latent malformation were also similar (MLE:
ρ =0.40 versus PLE: ρ =0.39) and this led to similar estimates of the marginal within-fetus
correlations between outcomes (MLE: ρY S=0.56 versus PLE: ρY S=0.59). Between-fetus
correlations between outcomes were comparable (MLE: ρY S′=0.34 versus PLE: ρY S′=0.39).
As expected, robust SE’s tended to be larger than ML SE’s. Although robust SE’s for latent
malformation were twice that of the ML SE’s and the robust SE’s for fetal weight were 3–4
times the ML SE’s, all model parameters remained highly significant and qualitatively, the
overall conclusions were unaffected by the larger robust SE’s. The smaller sample size of
fetal weight may be one explanation for the larger robust SE’s.

We chose to model the variance and correlation terms, σb1, σb2, σ2, and ρ, as constants
because this is frequently assumed in developmental toxicity studies and because it is con-
sistent with a prior analysis of the data (Holson et al., 1992). In other toxicity studies, the
experimenter’s prior knowledge of the test agent’s effects on the animal species selected for
testing is expected to play a large role in specifying a model for these second order terms.
The model is generalizable in the sense that analysts who may not want to assume homo-
geneity in the variances and correlations can specify dose-dependence. This is possible when
studies involve a small number of doses and many replicates at each dose level, however,
the precision of estimates would be limited by the sample size at each dose level.

In developmental toxicity studies, litter size often carries information about the live
outcomes. For example, for fetal weight, it is well known that weight can be inversely
related to litter size as there are fewer pups competing for a fixed amount of nutritional
resources when the litter size is smaller. The dose effect can be underestimated if the test
agent induces embryolethality and therefore smaller litters. This bias has been described
previously by Romero et al. (1992). Approaches have proposed adjusting for litter size by
including it as a covariate (Catalano & Ryan, 1992; Regan & Catalano, 2000; Gueorguieva
& Agresti, 2001; Chen, 1993) while others have proposed jointly modeling litter size and the
live outcomes (Dunson et al., 2003; Catalano et al., 1993). In the data analysis, we focused
on modelling live outcomes, and therefore condition on the litter size. Thus, there is the
potential for biased inference of the dose effect. However, here we found that estimates of
the dose effect did not change when litter size was included in the model, hence we chose
to fit the simpler model including only dose effects in our bivariate model. The model we
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fit is also consistent with a prior analysis of the data.

5. Simulation Study

In applying the PL approach to the 2,4,5-T data, application was limited to the oversam-
pling case (p1 > p2). In this section, we give results from a simulation study where we
compared MLE’s and PLE’s under a range of subsampling scenarios. For the purpose of
the study, simulations involved binary and continuous outcomes with characteristics similar
to the 2,4,5-T data and while there are differences in some of the details, the simulated data
are consistent with data commonly seen in practice. Specifically, simulated experiments in-
cluded four doses and a control, assuming the rate of malformation, transformed by the
inverse probit function, increased linearly with dose while mean fetal weight decreased lin-
early with dose. The malformation rate ranged from 7% (background) to 69% at the highest
dose. Comparing controls and those exposed to the highest dose, mean fetal weight was
reduced by 300 mg. For each outcome, within-litter correlations were modest (ρY =0.10,
ρS=0.10) while a moderately high within-fetus correlation was assumed (ρY S=0.60). Cor-
relations were held constant over dose. Therefore, we fit the models in Equations (11)–(13)
with α1w1i=1.5-2di, α2w2i=5-3di, σb1=0.33, σb2=0.33, σ2=1.0, and ρ=0.56. Dose levels
were spaced equally between the control dose and the maximum (i.e., set to 0, 0.25, 0.50,
0.75, and 1.0). The number of live offspring in each litter was fixed at 10 and the number
of dams assigned to each dose level was fixed at 30, corresponding to study sizes of 1,500
pups.

Subsampling scenarios were achieved by varying the sampling rates in malformation
strata (p1 and p2). Specifically, for the SRS case, we sampled fetal weight from 90% of fetuses
(p1 =0.9, p2 =0.9). For the oversampling case, we sampled fetal weight from 90% affected
offspring while only 60% of healthy fetuses were sampled (p1=0.9, p2 = 0.6). These sampling
rates were exchanged (p1 =0.6, p2 =0.9) for the undersampling case. To demonstrate the
robustness of PLE’s over a range of subsampling rates, we also sampled fetal weight at rates
with greater discrepancy as we expected bias to occur only when subsampling rates were
different, and that the size of the bias would increase as the difference in sampling rates
increased. We fixed the sampling rate at 0.90 for one stratum (e.g., affected offspring) and
sampled at lower rates in the other (p=0.30, 0.40, 0.50). While our intent was to confirm
the PL method for bias correction, we also calculated robust SE’s for comparison with
simulation-based estimates.

To evaluate the PL approach, we compared the PLE’s to the true parameter values
under oversampling and undersampling. To understand the potential bias in the over- and
undersampling cases, in addition to PLE’s, we also calculated uncorrected estimates for the
oversampling and undersampling cases, which were obtained by maximizing the PL without
adjustment by sampling weights. Finally, for comparison purposes, we calculated MLE’s
when there were complete data or the subset was a SRS. For each case, 100 experiments
were simulated.

Parameter estimates are summarized in Tables 3, 5 and 6. Simulations confirmed MLE’s
when fetal malformation and weight were available for all fetuses. When fetal weight was
available in an SRS, evidence of bias was not observed. However, as expected for the
unweighted PL, dose response was overestimated when malformations were oversampled (see
uncorrected estimates, Table 3). Similarly, with the unweighted estimates, the dose effect
was underestimated when malformations were undersampled, demonstrating the importance
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of including sampling weights. The magnitude of bias in the unweighted estimates increased
as the discrepancy between the sampling rates increased and was greatest when the sampling
rate was 0.30 (Tables 5 and 6). Agreement between PLE’s and the true parameter values was
very good. Model-based SE’s agreed well with empirical estimates when there were complete
data or the subsample was a SRS (Table 4). Robust SE’s were similar to empirical estimates
and robust SE’s increased as the discrepancy in sampling rates increased (see Tables 7 and
8).

We elected not to sample at rates lower than 0.30 for practical reasons. First, it was
thought to be unlikely that experimenters would choose rates lower than 0.30 as there
might be interest in evaluating the continuous outcome alone and a small subsample might
be viewed as having limited utility on its own. Second, while the simulations were designed
to estimate the dose effect assuming all data pairs were available, subsampling at lower
rates was thought to impact sample size sufficiently to reduce power. Hence subsampling
at rates lower than 0.30 was not thought to be of practical interest. Third, simulation runs
became impractical at rates lower than 0.30 because convergence was substantially slower
so fitting the data required many more iterations than when p2=0.50 or 0.60. Although
infrequent, when fitting the simulated data, we observed sensitivity to the starting value
when the sampling rate was 0.30. While we hypothesize this sensitivity to become more
frequent with subsampling rates lower than 0.30, futher study would be needed to determine
whether our results are unique to the experiment we have simulated.

6. Discussion and Future Work

Accounting for multiple endpoints may be appropriate for characterizing overall toxicity
compared with approaches that focus on the most sensitive outcome thus motivating a
joint modelling approach. In this paper, we have presented a joint model for binary and
continuous outcomes that are clustered within litter and, using a PL, an approach when the
continuous outcome is missing by design. To account for the non-representative subsample,
the approach weights fetus-level terms by the inverse of subsampling probabilities. As
methods that specify the joint distribution directly are limited by the lack of a natural joint
distribution for a mix of discrete and continuous outcomes, a latent variable framework
provides a convenient means with which to model this mix of outcomes, as others have
done (Catalano & Ryan, 1992; Regan & Catalano, 1999; Gueorguieva & Agresti, 2001; Faes
et al., 2004; Dunson, 2000). In contrast to approaches in which estimates depend on a
litter-level statistic (Ochi & Prentice, 1984; Regan & Catalano, 1999), the mixed model
formulation naturally lends itself to incorporating fetus-specific sampling weights because
estimators can be expressed in terms of fetus-level responses. For segment II studies, prior
approaches have incorporated non-live outcomes such as prenatal loss in evaluating dose
response (Catalano & Ryan, 1992; Ryan, 1992; Dunson, 2000; Gueorguieva, 2005; Faes et al.,
2006). While others have incorporated non-live outcomes, we were interested in modeling
the live outcomes because we were interested in evaluating the PL approach, an approach
intended for live outcomes. Although our method does not handle non-live outcomes,
adjustments described by Regan & Catalano (2000) are possible. The PL approach is easily
paired with a model for prenatal loss because our approach conditions on the number of
live offspring. This can be accomplished by fitting a separate model for non-live outcomes
followed by the PL approach for live outcomes.

In our model, outcomes within offspring are linked through a one-dimensional random
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effect corresponding to a random intercept model. We chose to analyze the 2,4,5-T data
assuming a random intercepts model as a prior analysis found this assumption to be appro-
priate because with C57BL/6 mice, doses in this range had only a small negative effect on
net maternal weight gain that was not statistically significant and decrement in maternal
weight gain had a relatively small effect on fetal weight (Holson et al., 1992). In other exper-
iments, a toxin could adversely impact dams and therefore, the maternal environment. In
this case, it would be reasonable to include a multivariate random effect in order to account
for a random intercept and random slope. One way to link outcomes with a multivariate
random effect is to include a linear combination of random effects for each outcome, where
the random effect components are related through a joint normal distribution, as suggested
by Gueorguieva & Agresti (2001). In our approach, because the estimation requires inte-
grating over the random effect, there would be practical limits as approximating the integral
by numerical quadrature can become computationally challenging as the dimension of the
random vector increases.

While we apply the PL approach to data from a segment II study, the method can be
used in other settings as well. The PL approach might aid researchers who wish to conduct
experiments in order to understand the complex processes involved in fetal development
and the role that toxins play in disrupting normal development during organogenesis. If
the continuous outcome is important for understanding the processes that lead to affected
offspring, such as malformations, and affected offspring are relatively less common, then
oversampling the affected pups may confer cost savings compared with approaches that
assess all pups or a fixed proportion of pups. For example, if 10% of pups are affected,
sampling 90% of affected pups and 30% of unaffected pups would lead to evaluating slightly
more than one-third of all offspring, compared with approaches that sample one-half of all
fetuses, for example. Greater savings are achievable by reducing the fraction of unaffected
pups that are sampled. Our approach might also be of interest in the context of epidemi-
ologic investigations. For example, in studies of respiratory health in children, the impact
of indoor environmental exposures on childhood asthma may be of interest. Measures of
respiratory health in children who share the same household environment may be correlated
so that accounting for clustering within household when exposure occurs at the household
level may be important. While self-reported information on physician-diagnosed asthma
may be easily obtained for all subjects, it may not be feasible to do detailed assessment for
every participant if the assessments involve the use of tissue or serum.

In the PL approach, essential parameters are the subsampling probabilities which are
specified at the time of study design. Future work with this approach would include a
method for choosing the probabilities in order to achieve a desired precision for a parameter
of interest or an overall cost requirement. While we have presented simulation results for
one experiment with several choices of p1 and p2, further study is needed to understand
more generally how to choose sampling rates during the planning phase of a study.

Appendix A Estimability of parameters in the joint model

As the mean parameters and the variance for fetal weight are estimable, it remains to show
that the remaining parameters, σb1, σb2, and ρ are uniquely identifiable. Estimability of
these parameters can be seen by rewriting the expressions relating the marginal correlations



PL Estimation for Bivariate Regression 13

to the model parameters as follows:

σb1 =
√

ρY /(1− ρY ) (14)

σb2 =
√

ρSσ2
2/(1− ρS) (15)

ρ =

(

ρY S

√

(σ2
b1 + 1)(σ2

b2 + σ2
2)− σb1σb2

)

/σ2 (16)

The marginal correlation ρY can be estimated from the data by fitting the binary outcome
alone. The estimate for σb1 is obtained by substituting the estimate for ρY in (14). Similarly,
the estimate for σb2 is obtained by substituting estimates for ρS and σ2 in the expression
for σb2 in (15). Finally, as the marginal correlation ρY S is also estimable from the data,
estimates of parameters on the right-hand side of (16) can be substituted to estimate ρ.

Appendix B BRM partial likelihood robust standard error estimates

Let GN (η) = 1
N

∑N
i=1 Ũi(η) be the scaled modified PL score function. The derivative of the

estimating function is given by

ĠN (η) =
∂

∂η

1

N

N
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Ũi(η
T ) =

1
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N
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1
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∂Li

∂η

∂L̃i

∂ηT
.

Writing the derivative ∂L̃i

∂η =
∫

Dw(d
′

i; θi, η)P (d
′

i|θi)g(θi)dθi and recalling ∂
∂η P (d

′

i|θi) =

D1(d
′

i; θi, η)P (d
′

i|θi), the second derivative is obtained by direct differentiation
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(17)

Expressions for derivatives of Φ(uik), Φ(vik) and log P (sik|θi) are provided in Appendix C.

Appendix C Derivatives useful for robust standard error estimates

The derivatives in (17) take the form

∂2Φ(vik)

∂η∂ηT
= −vikϕ(vik)

∂vik

∂η

∂vik

∂ηT
+ ϕ(vik)

∂2vik

∂η∂ηT
,
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∂2Φ(uik)
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because the second derivatives of uik are zero. In addition, with
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The non-zero first derivatives are
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Table 1. Summary of malformation rate and fetal weight observed in C57BL/6 mice in the 2,4,5-T
study. All viable litters (litters with at least one live pup) were included. Number of viable pups per
litter refers to the average number over all litters at the specified dose. Malformation rate refers
to the proportion of malformation over all pups at the given dose. Mean fetal weight per litter (in
grams) refers to the mean fetal weight in the litter averaged over all litters at the given dose.

2,4,5-T dose level (mg/kg/day)
Response 0 15 30 45 60 75 90 Total

Total litters 71 13 56 75 73 47 32 367
Viable litters 71 13 54 74 69 37 19 337

Viable pups 494 95 364 526 463 247 106 2295
# Viable pups per litter 7.13 7.31 7.2 7.28 6.97 6.83 6.8

# Malformations 7 3 24 50 69 64 38
% Malformation 0.014 0.032 0.067 0.095 0.150 0.260 0.373

Mean fetal weight per litter 0.81 0.94 0.73 0.71 0.67 0.61 0.55
SD 0.07 0.12 0.06 0.06 0.06 0.06 0.05

Table 2. Comparison of MLE’s and PLE’s for the complete data set and the subsam-
pling data set in the 2,4,5-T study. RE SD refers to the SD of the random effect for litter.
Fetal weight SD refers to the SD in fetal weight within a litter. The within-fetus correla-
tion refers to the correlation between latent malformation and fetal weight conditional
on the litter.

complete pairs sampled fetal weight
n= 2295 n= 1469

Term Parameter Est SE×102 Est Robust SE ×102

Malformation
Int α11 2.626 8.63 2.697 16.31
Dose α12 -0.0222 0.13 -0.0227 0.25

Fetal weight
Int α21 0.8465 0.24 0.850 0.73
Dose α22 -0.0027 0.005 -0.0026 0.02
SD σ2 0.0730 0.06 0.0722 0.24

RE SDY ∗ σb1 0.4848 2.41 0.5390 8.02
Within-fetus corr ρ 0.3958 2.65 0.3922 6.52
RE SDS σb2 0.0930 0.10 0.1020 0.29



18 Najita et al.

Table 3. Simulation results: comparison of MLE’s and PLE’s. Uncorrected estimates refer to parameter
values that maximize the PL without accounting for sampling weights. Estimates were averaged over
100 replications.

Complete SRS Oversampling Undersampling

(p1=p2=1) (p1=p2=0.90) (p1=0.90, p2=0.60) (p1=0.60, p2=0.90)
parameter true MLE MLE uncorrected PLE uncorrected PLE

α11 1.50 1.5005 1.5098 1.1801 1.4933 1.7508 1.4882
α12 -2.00 -2.0077 -2.0167 -2.0980 -1.9886 -1.8391 -1.9892
α21 5.00 4.9934 4.9982 4.8472 4.9875 5.0830 4.9896
α22 -3.00 -2.9950 -2.9969 -3.1008 -2.9785 -2.8262 -2.9861
σb1 0.33 0.3221 0.3296 0.3320 0.3210 0.3052 0.3190
σ2 1.00 0.9994 0.9992 1.0039 0.9991 0.9926 0.9987
ρ 0.56 0.5597 0.5615 0.5659 0.5619 0.5543 0.5600

σb2 0.33 0.3196 0.3224 0.3409 0.3318 0.3131 0.3276

Table 4. Simulation results: comparison of model-based and robust standard error estimates with empirical
estimates. Robust standard error estimates are based on bias-corrected PL approach.

Complete SRS Oversampling Undersampling

(p1=p2=1) (p1=p2=0.90) (p1=0.90, p2=0.60) (p1=0.60, p2=0.90)
parameter model SE emp SE model SE emp SE robust SE emp SE robust SE emp SE

α11 0.092 0.090 0.122 0.143 0.103 0.107 0.117 0.110
α12 0.142 0.140 0.186 0.251 0.167 0.172 0.175 0.171
α21 0.066 0.064 0.080 0.098 0.076 0.082 0.074 0.076
α22 0.107 0.112 0.128 0.181 0.126 0.143 0.123 0.134
σb 0.058 0.054 0.089 0.081 0.063 0.063 0.064 0.062
σ2 0.020 0.020 0.029 0.028 0.023 0.023 0.020 0.023
ρ 0.029 0.027 0.042 0.043 0.032 0.033 0.033 0.032

σb2 0.040 0.041 0.059 0.057 0.044 0.043 0.042 0.040
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Table 5. Simulations results: comparison of uncorrected estimates and PLE’s when
oversampling over a range (p1=0.90 and p2=0.30, 0.40, 0.50).

Oversampling

(p1=0.9, p2=0.50) (p1=0.90, p2=0.40) (p1=0.90, p2=0.30)
parameter true uncorr PLE uncorr PLE uncorr PLE

α11 1.50 1.0454 1.5093 0.8317 1.5013 0.5771 1.4918
α12 -2.00 -2.1495 -2.0175 -2.1465 -2.0205 -2.1227 -2.0168
α21 5.00 4.7817 5.0024 4.6743 4.9957 4.5195 4.9947
α22 -3.00 -3.1337 -3.0056 -3.1425 -3.0074 -3.0921 -3.0019
σb1 0.33 0.3281 0.3193 0.3289 0.3170 0.3153 0.3133
σ2 1.00 1.0013 0.9989 0.9995 0.9965 1.0006 0.9946
ρ 0.56 0.5662 0.5635 0.5689 0.5618 0.5761 0.5649

σb2 0.33 0.3275 0.3222 0.3217 0.3182 0.3155 0.3213

Table 6. Simulations results: comparison of uncorrected estimates and PLE’s when un-
dersampling over a range (p1=0.30, 0.40, 0.50 and p2=0.90).

Undersampling

(p1=0.50, p2=0.90) (p1=0.40, p2=0.90) (p1=0.30, p2=0.90)
parameter true uncorr PLE uncorr PLE uncorr PLE

α11 1.50 1.8865 1.5150 2.0014 1.5260 2.1615 1.5583
α12 -2.00 -1.7850 -2.0008 -1.7083 -2.0261 -1.5962 -2.0676
α21 5.00 5.1232 4.9976 5.1433 5.0008 5.1575 5.0127
α22 -3.00 -2.7662 -2.9895 -2.6768 -3.0000 -2.5467 -3.0159
σb1 0.33 0.3001 0.3225 0.2896 0.3157 0.2827 0.3165
σ2 1.00 0.9863 0.9980 0.9820 0.9995 0.9742 0.9976
ρ 0.56 0.5518 0.5643 0.5492 0.5660 0.5411 0.5677

σb2 0.33 0.3003 0.3231 0.2922 0.3231 0.2787 0.3231
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Table 7. Oversampling simulations. Robust SE estimates.
Oversampling

(p1=0.9, p2=0.50) (p1=0.90, p2=0.40) (p1=0.90, p2=0.30)
parameter robust SE emp SE robust SE emp SE robust SE emp SE

α11 0.109 0.106 0.114 0.112 0.126 0.123
α12 0.181 0.196 0.194 0.190 0.223 0.243
α21 0.081 0.077 0.086 0.086 0.098 0.101
α22 0.133 0.152 0.143 0.145 0.163 0.184
σb1 0.071 0.071 0.073 0.073 0.082 0.077
σ2 0.025 0.025 0.027 0.028 0.030 0.031
ρ 0.034 0.036 0.036 0.036 0.038 0.039

σb2 0.048 0.046 0.052 0.052 0.058 0.058

Table 8. Undersampling simulations. Robust SE estimates.
Undersampling

(p1=0.50, p2=0.90) (p1=0.40, p2=0.90) (p1=0.30, p2=0.90)
parameter robust SE emp SE robust SE emp SE robust SE emp SE

α11 0.133 0.131 0.146 0.155 0.170 0.190
α12 0.194 0.205 0.212 0.196 0.244 0.236
α21 0.078 0.079 0.082 0.085 0.090 0.099
α22 0.130 0.152 0.139 0.138 0.155 0.160
σb1 0.073 0.076 0.079 0.076 0.087 0.080
σ2 0.023 0.023 0.025 0.025 0.027 0.027
ρ 0.035 0.039 0.038 0.037 0.042 0.040

σb2 0.045 0.045 0.047 0.050 0.052 0.057
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fetus k fetus k′

malformation Yk ←− ρY −→ Yk′

↑ տ ր ↑

ρY S ρY S′ ρY S

↓ ւ ց ↓

weight Sk ←− ρS −→ Sk′

Fig. 1. Marginal correlation structure of the bivariate model.
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Fig. 2. Selection model in the subsampling setting.
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Fig. 3. Estimated dose response for fetal malformation and mean fetal weight based on fitting the
joint model to the complete data set and the sampled data set. Left panel: litter-specific proportion of
fetal malformation plotted by dose. Right panel: litter-specific mean fetal weight in grams plotted by
dose. Estimate based on the complete data set (MLE) is indicated by the solid line. Estimate based
on the sampled data set (PLE) is indicated by the dashed line.


