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Summary: Variable screening has emerged as a crucial first step in the analysis of high-throughput data, but

existing procedures can be computationally cumbersome, difficult to justify theoretically, or inapplicable to certain

types of analyses. Motivated by a high-dimensional censored quantile regression problem in multiple myeloma

genomics, this paper makes three contributions. First, we establish a score test-based screening framework, which

is widely applicable, extremely computationally efficient, and relatively simple to justify. Secondly, we propose a

resampling-based procedure for selecting the number of variables to retain after screening according to the principle

of reproducibility. Finally, we propose a new iterative score test screening method which is closely related to sparse

regression. In simulations we apply our methods to four different regression models and show that they can outperform

existing procedures. We also apply score test screening to an analysis of gene expression data from multiple myeloma

patients using a censored quantile regression model to identify high-risk genes.
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1. Introduction

High-dimensional datasets are now common in clinical genomics research. Though regular-

ized estimation can consistently estimate sparse regression parameters even when p > n

(Bühlmann et al., 2011), in practice these methods still perform poorly if p � n (Fan and

Lv, 2008). Variable screening is crucial for quickly reducing tens of thousands of covari-

ates to a more manageable size. Our interest in screening is motivated by our work with

censored quantile regression in the study of the genomics of multiple myeloma, a blood

cancer characterized by the hyperproliferation of plasma cells in the bone marrow. We are

interested in identifying genes highly associated with the 10% quantile of the conditional

survival distribution in order to better understand the biological basis of high-risk myeloma,

in view of personalized medicine.

Perhaps the most popular screening framework is marginal screening, where each covariate

is individually evaluated for association with the outcome and those with associations above

some threshold are retained. Currently three major classes of marginal screening methods

have been proposed. Wald screening retains covariates with the most significant marginal

parameter estimates, and has been theoretically justified for generalized linear models and

the Cox model (Fan and Lv, 2008; Fan and Song, 2010; Zhao and Li, 2012). Semiparametric

screening assumes a functional form for the regression model but not for the probability

distribution, and uses model-free statistics to quantify the associations between covariates

and the outcome. Such methods have been proposed for single-index hazard models, linear

transformation models, and general single-index models (Fan and Song, 2010; Zhu et al.,

2011; Li et al., 2012). Finally, nonparametric screening does not assume a functional form

for the regression model and instead approximates it, using for example a B-spline basis. It

retains covariates whose estimated functional relationships have the largest L2-norms. Such

methods have been studied for linear additive models and censored quantile regression (Fan
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et al., 2011; He et al., 2013). The distance correlation-based screening method of Li et al.

(2012) requires very few assumptions about both the regression model and the probability

model. It is well-known that marginal screening can miss covariates that are only associated

with the outcome conditional on other covariates. To address this difficulty, iterative versions

of several of these procedures have been proposed, though without theoretical support.

However, there are several issues that make existing screening methods unsuitable for ap-

plication to our multiple myeloma analysis. Wald screening using censored quantile regression

estimators, such as those of Honore et al. (2002), Portnoy (2003), Peng and Huang (2008), or

Wang and Wang (2009), has not been theoretically justified. Semiparametric screening is not

appropriate because the probability model is actually critical in our case: we are interested

only in genes that affect the 0.1 quantile, whereas semiparametric screening would identify

genes that affect any quantile of the survival distribution. There were no nonparametric

screening methods for censored quantile regression until very recently, with the work of He

et al. (2013), but in practice their approach is still computationally cumbersome, especially

for resampling or cross-validation procedures where screening must be repeated multiple

times. There is also no efficient iterative screening procedure for this model.

To address these issues, we propose in this paper a marginal score testing framework,

where we use score tests rather than Wald tests to effect variable screening. This has several

advantages. First, score screening is a general approach which can be applied to any model

that can be fit using an estimating equation, including censored quantile regression, as well

as to semi- and nonparametric regression models. Second, theoretical justification for score

test screening is much simpler than for other screening methods and generally requires only

concentration inequalities. Third, because they only require fitting the null model, score tests

are exceedingly computationally efficient. Finally, the score test perspective suggests a new
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method for iterative screening that is easy to implement and is closely related to sparse

regression, suggesting a possible approach to a theoretical justification.

In this paper we make three contributions. First, in Section 2 we propose marginal score

test screening procedure and illustrate its application to several popular models. We give

theoretical justifications for these procedures in Web Appendix A. Second, in Section 3 we

propose a resampling-based method for choosing the number of covariates to retain after

screening, based on the principle of reproducible screening. This procedure is only practical

because score screening can be quickly computed. Third, in Section 4 we propose an iterative

score test screening procedure based on projected subgradient methods from the numerical

optimization literature. We illustrate our procedures on simulated data in Section 5, use

them in our MM analysis in Section 6, conclude with a discussion in Section 7.

2. Score test screening

2.1 Method

Let Xik = (Xik1, . . . , Xikpn)T be the vector of covariates measured at the kth observation

on the ith subject, where k = 1, . . . , Ki and i = 1, . . . , n, and let β0 be a set of possibly

infinite-dimensional parameters quantifying the association of the Xik with the outcome.

For example, in linear models the outcome is a function of XT
ikβ0 and β0 is a vector of

scalar coefficients, and in additive models the outcome is a function of
∑pn

j=1 fj(Xikj) and

β0 is the set of functions fj. We will say that β0j = 0 implies that the jth covariate is not

functionally associated with the outcome and is thus unimportant, though this is a slight

abuse of notation, as β0j for irrelevant covariates would equal the scalar zero in linear models

but the zero function in additive models. Finally, let U(β) be an estimating equation for β0,

such that U(β0)→ 0 in probability as n→∞.

Denote the set of important covariates by M = {j : β0j 6= 0}. We assume that its size
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|M| = sn is small and fixed or growing slowly. Our proposed marginal score test screening

proceeds as follows:

(1) Center and standardize each covariate to have mean 0 and variance 1.

(2) For each covariate j, construct an estimating equation for β0j assuming the marginal

model that all other covariates are unrelated to the outcome. Denote this marginal

estimating equation by UM
j (βj).

(3) Retain the parameters M̂ = {j : |UM
j (0)| > γn} for some threshold γn.

Each |UM
j (0)| is the numerator of the score test statistic for H0 : β0j = 0 under the jth

marginal model and thus is a sensible screening statistic. We could also screen after dividing

each UM
j (0) by an estimate of its standard deviation. However, this would add computational

complexity to our procedure, and even without doing so we will be able to achieve good

results and give theoretical performance guarantees. In the presence of nuisance parameters,

such as intercept terms, we propose using profiled score tests, where we first estimate the

nuisance parameters under the null model and then evaluate the UM
j (0) fixing the value

of nuisance terms at these estimates. To avoid theoretical difficulties we will assume that

nuisance parameters are either known, or can be well-estimated in independent datasets, so

that in the screening step they can be treated as constants.

In order for score screening to have desirable theoretical properties, we need the sam-

ple UM
j (0) to quickly approach its population limit. Let uMj (βj) be the limiting marginal

estimating equation, such that UM
j (βj)→ uMj (βj).

Condition 1: For κ ∈ (0, 1/2) and c2 > 0, pnP(|UM
j (0)− uMj (0)| > c2n

−κ)→ 0.

In Web Appendix A we discuss the verification of Condition 1, which is often a simple

consequence of a concentration inequality, and explicitly verify it for censored quantile

regression. We also show that under this condition and a few other mild assumptions:
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Theorem 1: If γn = c1n
−κ/2, then P(M⊆ M̂)→ 1.

Theorem 2: If γn = c1n
−κ/2, then P{|M̂| 6 O(σ∗maxn

2κ)} → 1, where σ∗max is related

to the largest singular value of the negative Jacobian of the limiting estimating equation.

Theorem 1 shows that marginal score testing can capture all of the important covariates

with high probability. This holds even if pn grows exponentially in n. Theorem 2 shows that

the number of selected covariates is not too large, with high probability. For example, if σ∗max

increased only polynomially in n, |M̂| would increase polynomially, and the false positive

rate would decrease quickly to zero.

2.2 Examples

When applied to the models studied thus far in the screening literature, score test screening

gives procedures that are very similar to previously proposed procedures. Throughout this

section we let Ki = 1, with each covariate vector Xi = (Xi1, . . . , Xipn)T . We also assume

that the Xij have mean 0 and variance 1.

First consider the usual ordinary least squares model studied by Fan and Lv (2008), where

Yi is a continuous outcome. The full model is E(Yi | Xi) = XT
i β0, so the jth marginal

score equation is UM
j (βj) = n−1

∑
iXij(Yi −Xijβj). Score test screening then retains M̂ =

{j : n−1|
∑

iXijYi| > γn}, which is exactly the correlation screening procedure originally

proposed by Fan and Lv (2008).

Next consider the Cox model. Let Ti be the survival time, Ci the censoring time, Yi =

min(Ti, Ci), δi = I(Ti 6 Ci), Ñi(s) = I(Ti 6 s, δi = 1), and Ỹi(s) = I(Yi > s). The marginal

score equations are UM
j (βj) =

1

n

n∑
i=1

∫ {
Xij −

∑n
i=1Xij exp(Xijβj)Ỹi(s)∑n
i=1 exp(Xijβj)Ỹi(s)

}
dÑi(s),

and M̂ = {j : |UM
j (0)| > γn}. This is exactly the screening procedure used by Gorst-

Rasmussen and Scheike (2013).
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Finally consider a nonparametric model, where we assume only that P(Yi < y | Xi) has

a continuous distribution function F0(y;Xi,β0) whose dependence on Xi is parametrized

by β0. Conditional on Xl and Xm, F0(Yl;Xl,β0) and F0(Ym;Xm,β0) are independent and

identically distributed uniform random variables. This motivates defining U(β) =

1

n2

n∑
m=1

n∑
l=1

Xl

[
I{F0(Yl;Xl,β) < F0(Ym;Xm,β)} − 1

2

]
.

Since E{U(β0)} = 0, this is an unbiased estimating equation for β0. Though it cannot

be used to estimate β0 because the functional form of F0 is unknown, it is still useful for

constructing a screening procedure. The marginal score equations are UM
j (βj) =

1

n2

n∑
m=1

n∑
l=1

Xlj

[
I{F0(Yl;Xlj, βj) < F0(Ym;Xmj, βj)} −

1

2

]
.

When βj = 0, F0(y;Xlj, 0) is a monotone function that does not depend on Xlj, which implies

that UM
j (0) = n−2

∑
lmXlj{I(Yl < Ym) − 1/2} and therefore M̂ = {j : |n−2

∑
lmXljI(Yl <

Ym)| > γn}. This is very similar to proposal of Zhu et al. (2011), who suggested M̂ = [j :

n−1
∑

m{n−1
∑

lXljI(Yl < Ym)}2 > γn].

Each of these screening procedures can be implemented as or more quickly than the corre-

sponding Wald screening. In addition, the nonparametric screening procedure is impossible

in the Wald framework. Each of these screening procedures can be theoretically justified by

verifying Condition 1 and applying Theorems 1 and 2.

3. Reproducible screening threshold

In practice, it is unclear how best to choose the screening threshold γn. Fan and Lv (2008)

suggested retaining the top n/ log n covariates. Zhao and Li (2012) proposed a method to

choose γn based on the desired false positive rate of the set of retained covariates. Similarly,

Zhu et al. (2011) suggested simulating auxiliary variables and setting the threshold so that no

auxiliary variables are retained, and proved that this procedure controls the false positive rate

of screening. Finally, He and Lin (2011) used the stability selection approach of Meinshausen
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and Bühlmann (2010) to retain covariates that are frequently selected when screening is

performed on multiple subsamples of the data.

Though controlling the false positive rate is important, we believe that in practice the

more relevant issue is the reproducibility of the screening procedure. Let M̂(j) be the top j

variables retained after screening our observed data. Suppose we had B other independent

samples of the same size, from the same generating distribution, and let M(j)
b be the top j

variables we retain after screening the bth sample. Finally, let O
(j)
b = |M(j)

b ∩M̂(j)| be the size

of the overlap between the two sets. We would like to choose j such that the O
(j)
b are large

on average, so that our screening results are reproducible across different samples. On the

other hand, when j is large, the O
(j)
b will be large even if no variables were truly associated

with the outcome, so reproducibility would be uninformative.

We propose comparing the size of the overlap to the number we would expect by chance

under the null hypothesis that none of the pn variables are associated with the outcome. The

variables in M(j)
b can then be thought of as having been chosen at random. Conditional on

the observed dataset, the O
(j)
b would therefore follow a hypergeometric distribution, with

EH0(O
(j)
b ) =

j2

p
, varH0(O

(j)
b ) =

j2(p− j)2

p2(p− 1)
,

where the subscripts indicate that the expectation and variance are calculated under H0. We

propose to retain the top j variables such that the average of the O
(j)
b shows the greatest

deviation from EH0(O
(j)
b ), standardized by varH0(O

(j)
b ).

Because we do not have B independent datasets, we approximate the M(j)
b using boot-

strap samples of our observed data. Specifically, our threshold for reproducible screening is

calculated as follows:

(1) Choose a step size s and let J = {is : i ∈ N, 1 6 is 6 pn}.

(2) For each j ∈ J , screen the observed data to obtain M̂(j).

(3) For each j ∈ J , generate B bootstrap samples and screen the bth sample to get M(j)
b .
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(4) Let O
(j)
b = |M(j)

b ∩ M̂(j)|.

(5) Retain M̂(j∗), where

j∗ = arg max
j∈J

B−1
∑

bO
(j)
b − EH0(O

(j)
b )

{B−1varH0(O
(j)
b )}−1/2

.

When the step size s = 1, we search for the optimal j across all j = {1, . . . , pn}. In practice,

to reduce computation time we can search over a smaller subset by taking a larger step size.

Our method is closely related to higher criticism thresholding (Donoho and Jin, 2008).

There, the authors also consider the null hypothesis that none of the pn variables are

associated with the outcome. They further assume that the variables are independent. Under

this null the p-values of association are independent uniform random variables, so the jth-

most significant p-value should approximately behave like a normal random variable with

mean j/pn and variance j/pn(1−j/pn). Higher criticism thresholding finds the j ∈ {1, . . . , pn}

such that the jth-most significant observed p-value shows the greatest deviation from j/pn,

standardized by the variance. It then retains the top j variables. Higher criticism thresholding

thus focuses on the significance levels of individual variables, while our procedure evaluates

the reproducibility of entire sets of retained covariates.

4. Iterative score test screening

When the covariates are highly correlated, marginal screening may incur a large number

of false positives, and may miss covariates that are only important conditional on other

covariates. Fan and Lv (2008) and Fan et al. (2009) therefore proposed iterative screening:

an initial set of covariates is first identified using marginal screening. Next a multivariate

regularized selection procedure is used to further select a subset of these covariates. Finally

the remaining covariates are again screened individually, but this time controlling for the

covariates in the subset. All selected covariates are subjected to multivariate selection again,

and the procedure iterates until some stopping rule is achieved.
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However, this algorithm requires fitting regularized regression estimates at each step,

which for complicated models can be difficult to implement and computationally intensive.

Furthermore, its theoretical properties are very difficult to analyze. Zhu et al. (2011) proposed

an alternative method which at each step performs marginal screening on the projections

of each remaining covariate onto the orthogonal complement of the columns space of the

already selected covariates. This method is akin to forward selection, so a covariate cannot

be dropped from the selected set once it has been added.

Our score-test screening perspective suggests a new approach to iterative screening:

(1) Set β(0) = 0.

(2) For k = 1, . . . , K:

(a) Let b(k) = β(k−1) − αkU(β(k−1)) for some step size αk.

(b) Let β(k) = ΠR(b(k)), where ΠR : Rpn → Rpn is the Euclidean projection onto the

`1-ball of radius R.

(3) Retain covariates M̂ = {j : β
(K)
j 6= 0}, where β

(k)
j is the jth component of β(k).

The intuition is that when k = 1, step 2(a) is equivalent to calculating the marginal score

statistics UM
j (0) and step 2(b) sets all but the largest of them to zero. Thus after a single

iteration, this procedure is identical to score test screening. When k > 1, step 2(a) controls

for the covariates selected in β(k−1) by using −αkU(β(k−1)) to update the importance of the

covariate. Step 2(b) then again selects only the top covariates. In the ideal case where the

sample size is infinite and β(k−1) = β0, step 2(a) gives b(k) = β0 and step 2(b) selects the

largest components of β0.

Our algorithm has several advantages. First, it does not require fitting any regularized

regression estimates and is relatively computationally convenient. The evaluations of the

U(β(k−1) are quick to compute, and a simple algorithm for implementing the projection

ΠR can be found in Daubechies et al. (2008), with a more efficient procedure proposed by
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Duchi et al. (2008). Second, covariates can be dropped from the retained set as the iteration

progresses, which is an improvement over forward selection. Third, our algorithm exactly

corresponds to projected subgradient methods for minimizing nonsmooth functions. In fact,

if U(β) is the subdifferential of some loss function f(β), it has been shown that

lim
k→∞

f(β(k)) = inf
‖β‖16R

f(β)

for certain choices of αk (Shor et al., 1985). The minimization problem on the right-hand

side is exactly equivalent to the lasso (Tibshirani, 1996) with loss function f , and this links

our iterative screening algorithm to sparse regression methods. Finally, when f is smooth,

Agarwal et al. (2012) proved that β(k) converges to β0 under certain conditions, and if a

similar result holds for nonsmooth f , this connection may allow for a theoretical analysis of

iterative score test screening.

There are three tuning parameters we must set when implementing iterative screening:

the radius R, the step sizes αk, and the maximum number of iterations. We can choose

R by either guessing the `1-norm of the true β0. Since our algorithm can be viewed as a

regression estimator, we can also minimize information criteria or cross-validated prediction

errors. Since iterative screening tends to be time-consuming in high-dimensions, it is easiest

to avoid cross-validation and to use a liberal guess for ‖β0‖1. To set the step sizes, one

popular rule is to let the αk be square summable but not summable, with αk = γ/k. To

choose γ, we first note that it can be shown that

min
k=1,...,K

f(β(k))− inf
‖β‖16R

f(β) 6
D2 +G2

∑K
k=1 α

2
k

2
∑K

k=1 αk
,

where D is the Euclidean distance from β(0) to a point that minimizes f and G is an

upper bound on U(β(k)) for all k (Shor et al., 1985). When αk = γ/k, this converges to

zero as K → ∞, but fixing K we can derive that the right-hand side is minimized at

γ2 = D2(G2
∑K

k=1 α
2
k)
−1 → D2(G2π2/6)−1. We propose approximating D by R and G by

‖U(β(0))‖2 to get step sizes αk = R
√

6/{kπ‖U(0)‖2}. Finally, the maximum number of
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iterations should ideally be as large as possible, with the speed of convergence depending

on the restricted convexity and smoothness of f (Agarwal et al., 2012). In practice we stop

after either U(β(k)) ≈ 0, β(k−1) ≈ β(k), or K = 250 iterations. Early stopping can be viewed

as another way of regularizing the regression estimate β.

5. Simulations

5.1 Settings

We illustrate our marginal and iterative score test screening on data simulated from four

models, described below along with their corresponding estimating equations. We ran 100

simulations, each with n = 400 observations and pn = 10, 000 covariates. We compared our

methods to the semiparametric screening of Zhu et al. (2011), and when possible we also

compared to Wald and nonparametric screening.

Example 1 (accelerated failure time model). The accelerated failure time model is a useful

alternative to the Cox model for survival outcomes (Wei, 1992) and posits that log(Ti) =

XT
i β0 + εi, where Ti are the survival times, Xi are pn × 1 covariate vectors, and εi are

independent of Xi. We only observe follow-up times Yi = min(Ti, Ci) and censoring indicators

δi = I(Ti 6 Ci), but the β0 can be estimated using the estimating equation U(β) =

n−1
n∑
l=1

n∑
m=1

(Xm −Xl)I{el(β) 6 em(β)}δi,

where ei(β) = log(Yi)−XT
i β (Tsiatis, 1996; Jin et al., 2003; Cai et al., 2009).

Score test screening retains

M̂ = {j : |
∑
lm

(Xmj −Xlj)I(Yl 6 Ym)δl| > γn},

and it is simple to verify Condition 1 for this procedure using Berstein’s inequality for U-

statistics (Hoeffding, 1963). We implemented Wald test screening using the estimator of

Jin et al. (2003), available in the R package lss. Nonparametric screening has not been

developed for this model.
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We generated the covariates from a p-dimensional multivariate normal with a covariance

matrix whose jkth entry equaled 0.8|j−k|. We then let β0j = 1.5 for j = 5, 10, 15, 20, 25 and

j = 35, 40, 45, 50, β0j = −1.5 for j = 30, and β0j = 0 for all other j. Under this construction

the 30th covariate is marginally unimportant. We separated the nonzero entries of β0 so that

important covariates would be fairly correlated with a few unimportant covariates. Finally,

we generated εi from a standard normal distribution, Ti according to the model, and Ci from

an exponential distribution with rate parameter 0.3 to give 30% censoring.

Example 2 (linear censored quantile regression). For a quantile τ ∈ (0, 1), censored quantile

regression models posit h(Ti) = βint(τ) + XT
i β0(τ) + ei(τ), where the intercept βint(τ) and

the coefficients β0(τ) depend on τ and ei(τ) has τ th quantile equal to 0 conditional on Xi.

The h function is a known monotone transformation, and here we let it be the log function.

In contrast to global models such as the Cox or accelerated failure time model, this censored

quantile regression directly models the τ conditional quantile and makes no assumptions

about the other quantiles. Honore et al. (2002) proposed the estimating equation U(β) =

1
n

∑
iXiτI{h(Yi) > βint + XT

i β}−

1
n

∑
iXi(1− τ)Ŝh(C){h(Yi)}−1I{h(Yi) 6 βint + XT

i β}δiŜh(C)(βint + XT
i β),

where Ŝh(C) is an estimate of Sh(C)(t) = P{h(Ci) > t | Xi}. This estimate could be obtained

by positing a regression model for h(Ci) conditional on the Xi, but for theoretical and

practical simplicity we will make the common assumption that Ci is completely independent

of Ti and Xi and use the Kaplan-Meier estimator (see for example Cheng et al. (1995), Uno

et al. (2011), and He et al. (2013)).

Score test screening retains the parameters {j : |UM
j (0)| > γn}, where UM

j (0) =

1

n

∑
i

XijτI{h(Yi) > βint} −
1

n

∑
i

Xij(1− τ)Ŝh(C){h(Yi)}−1I{h(Yi) 6 βint}δiŜh(C)(βint).

In Web Appendix A we verify Condition 1 for this screening procedure. To use score

test screening, we first estimated the nuisance parameter βint under the null model in an
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independently simulated dataset. We implemented Wald screening using the estimator of of

Peng and Huang (2008), available in the package quantreg. He et al. (2013) developed a

nonparametric screening method for quantile regression, which we also applied.

We used the β0 and covariate structure as in Example 1, except that we thresholded each

Xij to have a magnitude of at most 2. We then simulated log(Ti) = XT
i β0+εi{9+1.5(Xi,55−

Xi,5)/Φ
−1(0.25)}, where εi followed a standard normal distribution. Under this construction

the covariates j ∈ {5, . . . , 50} are associated with the τ = 0.5 conditional quantile, and

j ∈ {10, . . . , 55} are relevant to the τ = 0.25 conditional quantile. Here the 30th covariate

is again marginally unimportant. Finally, we simulated Ci from an exponential distribution

with rate 0.15 to give 30% censoring.

Example 3 (nonlinear censored quantile regression). We generated survival times from a

nonlinear censored quantile regression model adapted from Example 4 of He et al. (2013).

If g1(x) = x, g2(x) = (2x − 1)2, g3(x) = sin(2πx)/{2 − sin(2πx)}, g4(x) = 0.1 sin(2πx) +

0.2 cos(2πx) + 0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3, we simulated

log(Ti) = 5g1(Xi,1) + 5g1(Xi,2) + 3g2(Xi,3) + 3g2(Xi,4)+

4g3(Xi,5) + 4g3(Xi,6) + 6g4(Xi,7) + 6g4(Xi,8) + εi,

where εi followed a standard normal distribution. We generated the Xi as in Example 1 and

log(Ci) from an exponential distribution with rate 0.15 to give 30% censoring.

Under the null hypothesis the functions gj = 0 for all j, so the marginal estimating

equations UM
j (0) evaluated at zero are identical to those from Example 2. The theoretical

justifications thus also follow from Example 2. We applied the nonparametric screening of

He et al. (2013) as well, which was designed for this nonlinear setting.

Example 4 (Cox model with measurement error). The Cox model is the most popular

method for modeling the effect of covariates on survival, but in many cases the covariates

may be measured with errors, where instead of observing Xi we observe only Wi = Xi + εi.
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Not accounting for measurement error can result in bias, and to address this issue Song and

Huang (2005) proposed the corrected score equation U(β) =

1

n

n∑
i=1

∫ [
Wi +D(β)−

∑n
i=1 W̃i(β, s) exp{W̃i(β, s)

Tβ}Ỹi(s)∑n
i=1 exp{W̃i(β, s)Tβ}Ỹi(s)

]
dÑi(s),

where W̃i(β, s) = Wi+D(β)dÑi(s), D(β) = E{εi exp(εTi β)}/E{exp(εTi β)}−E(εi), Ñi(s) =

I(Ti 6 s, δi = 1) is the observed failure process, and Ỹi(s) = I(Yi > s) is the at-risk process.

The D(β) term is unknown in general unless the distribution of εi is known.

Under the null hypothesis of β0 = 0, D(0) = 0, so score test screening retains

M̂ =

[
j :

∣∣∣∣∣ 1n
n∑
i=1

∫ {
Wij −

∑n
i=1WijỸi(s)∑n
i=1 Ỹi(s)

}
dÑi(s)

∣∣∣∣∣ > γn

]
regardless of the distribution of εi. Condition 1 can be verified using Lemmas 2 and 3 of

Gorst-Rasmussen and Scheike (2013). Wald screening is not possible without knowing the

distribution of εi, and nonparametric screening has not been developed for this model.

We generated the covariates and set β0 as in Example 1. We then generated the Ti from the

usual Cox model with baseline hazard function equal to 1. Next we let Wi = Xi + εi, where

the εi were independent of the Xi and normally distributed with a compound symmetry

covariance matrix with correlation parameter 0.5. We generated log(Ci) from an exponential

distribution with rate parameter 0.3 to give 30% censoring.

5.2 Results

[Table 1 about here.]

These simulations were run on machines with 2 GHz Intel Xeon cores with 4GB of memory

per core. Table 1 reports the average runtimes of these various screening methods and

shows that our marginal score test procedure is by far the most computationally efficient. In

Example 1 it is many orders of magnitude faster than Wald screening, and in Examples 2 and

3 it is 60 times faster than the nonparametric method of He et al. (2013). In each example

it is also at least twice as fast as the semiparametric estimator of Zhu et al. (2011).
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[Table 2 about here.]

Table 2 compares score test screening to existing methods in terms of the minimum

number of variables that need to be retained in order to capture all of the important

covariates. All methods were comparable in Example 1. In Example 2, score screening was

comparable to Wald screening and outperformed the nonparametric screening of He et al.

(2013). Semiparametric screening performed the best but was unable to identify the fact that

β0,5 was important only to the 0.5 quantile and β0,55 was important only to the 0.25 quantile.

Screening was difficult for all methods in Example 3. In Example 4 the only two screening

methods that could accommodate the unknown measurement error distribution were score

and semiparametric screening, which performed similarly.

[Table 3 about here.]

Table 3 compares the performance of our threshold for reproducible screening to the

n/ log n rule of Fan and Lv (2008) and the auxiliary variables method of Zhu et al. (2011).

The calculate our reproducible screening threshold we generated 100 bootstrap samples and

searched for the optimal threshold j across j = {10, 20, . . . , pn}. All methods performed well

in Example 1, giving high true positive rates along with substantial dimension reduction.

In Example 2 at τ = 0.5, Wald and score screening gave the best true positive rates, but

score screening had a higher true discovery rate and frequently retained fewer covariates. On

the other hand, at τ = 0.25 the final model sizes after score screening were close to 2000.

However, even retaining 2000 covariates still represents an 80% reduction in dimension.

Screening procedures are designed to be followed by a second sparse regression step like

lasso, and 2000 covariates is very manageable by these follow-up procedures. In Examples 3

and 4, score screening was able to retain very few covariates while still giving very high true

positive rates.

[Table 4 about here.]
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Table 4 reports the performance of our iterative screening procedure from Section 4, which

we applied to the parametric models in Examples 1 and 2 with R = 20. In those models the

30th covariate had a nonzero coefficient in the true model but was marginally unassociated

with the outcome. In Example 1 iterative screening was able to capture that covariate in

nearly all of the simulations. In Example 2, iterative screening was still to capture the variable

after retaining only around 200-300 variables, as opposed to marginal score screening, which

had to retain thousands of variables. However, the hidden covariate was only captured in

very few simulations, indicating that variable screening for Example 2 is a difficult problem.

6. Data analysis

6.1 Analysis methods

We were interested in identifying genes highly associated with the 10% conditional quantile

of the survival distribution of MM patients, because these genes are likely to important

in high-risk MM. Previous studies have searched for genes associated with patient survival

(Shaughnessy et al., 2007; Decaux et al., 2008), but their analyses did not recognize that

some genes may only affect certain quantiles of the conditional survival distribution.

We used gene expression and survival outcome data from newly diagnosed multiple myeloma

patients who were recruited into clinical trials UARK 98-026 and UARK 2003-33, which stud-

ied the total therapy II (TT2) and total therapy III (TT3) treatment regimes, respectively.

These data are described in Zhan et al. (2006) and Shaughnessy et al. (2007), and can be

obtained through the MicroArray Quality Control Consortium II study (Shi et al., 2010),

available on GEO (GSE24080). Gene expression profiling was performed using Affymetrix

U133Plus2.0 microarrays, and we averaged the expression levels of probesets corresponding

to the same gene, resulting in 33,326 covariates. We used the TT2 arm as a training set,

giving us 340 subjects and 126 observed deaths, we validated the results on the TT3 arm.
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To identify these high-risk genes we used the censored quantile regression of Honore et al.

(2002), described earlier in Example 2 in Section 5.1, with the transformation function

h = log. First, in the screening step we compared Wald screening with the estimator of

Peng and Huang (2008), marginal score screening, the semiparametric method of Zhu et al.

(2011), the nonparametric method of He et al. (2013), and iterative score screening. In the

score screening procedures we estimated the nuisance intercept parameter from another MM

dataset collected by Avet-Loiseau et al. (2009). For iterative score screening we set R = 20.

Second, to set a screening threshold we retained the top n/ log n covariates from Wald and

nonparametric screening, used our reproducible screening threshold for score screening, and

used the auxiliary variables procedure of Zhu et al. (2011) for semiparametric screening. For

reproducible screening we generated 100 bootstrap samples and searched for the optimal

threshold j across j = {10, 20, . . . , pn}, as in the simulations.

Finally, we used the screened covariates to estimate regression models. To our knowledge

there do not exist any computationally convenient procedures for censored quantile regression

for arbitrary quantiles that can be computed in high-dimensions, so we used our projected

subgradient method from Section 4 to serve as a regression estimator. We tuned the procedure

by selecting the value of R that minimized an approximate Bayesian Information Criterion,

which we calculated as ‖nU(β̂R)‖22 + ‖β̂R‖0 log n with U the estimating equation of Honore

et al. (2002) and β̂R the regression estimate for a given value of R.

6.2 Results

Wald screening required 930 seconds, the nonparametric screening of He et al. (2013) required

240 seconds, iterative score screening required 84 seconds, the semiparametric screening of

Zhu et al. (2011) required 44 seconds, and marginal score screening took only 5 seconds.

Because of the computational efficiency of score screening, calculating the reproducible

screening threshold required only 934 seconds, which was still just as fast as Wald screening.
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[Table 5 about here.]

Table 5 reports the genes selected in the final censored quantile regression models. Iter-

ative and reproducible score screening behaved very similarly, giving nearly identical final

models. However, they shared no genes in common with the results of the other screening

methods. One possible reason is that the correlations between the selected genes were not

low. For example, among the top 100 genes selected by Wald screening, 20% of the pairwise

correlations were above 0.25 and the largest reached 0.73, and for score screening 20% of

the correlations were at least 0.58 and reached 0.99. In other words, the different screening

methods most likely selected blocks of correlated covariates together, and the same covariates

could be ranked very differently by different methods if they were in different blocks. This

highlights the importance of reproducibility.

To choose between the four models, we used the fitted regression models to predict the 0.1

conditional quantiles in the TT3 arm and calculated validation metrics in two ways. First,

to estimate the quantile prediction error we used the loss function

n−1
∑
i

δi

Ŝh(C){h(Yi)}
{τ − I(Yi − Ŷi < 0)}Yi, (1)

where δi is the censoring indicator, Yi is the observed follow-up time, τ = 0.1 is the target

quantile, and Ŷi is the predicted τ conditional quantile. A similar loss function was described

by Honore et al. (2002). Second, we used the censored quantile regression approach of Peng

and Huang (2008) to estimate the associations between the predicted quantiles and the

true 0.1 quantile. We report the t-statistics of association. Table 5 shows that the models

selected after score screening performed the best under both validation metrics, followed by

semiparametric screening. In contrast, the quantiles predicted after Wald and semiparametric

screening were actually negatively associated with the true quantile. This suggests that the

true relationship between the genes and the quantile may be significantly nonlinear. This

nonlinearity can still be detected by the score screening methods.
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7. Discussion

Motivated by our analysis of genomic factors influencing the high risk multiple myeloma

patients, we introduced a new framework for variable screening based on score tests. Score

screening is widely applicable to parametric, semiparametric, and nonparametric models,

relatively easy to theoretically justify, and computationally efficient. Using score test screen-

ing in our MM analysis resulted in a predictive model for the conditional 10% quantile (high

risk group) which was more accurate the models obtained using other screening methods.

We introduced a method for selecting the number of covariates to retain based on the

principle of reproducible screening. It would be interesting to investigate the sure screening

and false positive control properties of this procedure, in the context of Theorems 1 and

2. Our score testing framework also suggested a new approach to iterative screening based

on projected subgradient methods, which can be applied even to nonsmooth estimating

equations. It is related to sparse regression techniques and it is possible that this connection

can lead to better a theoretical understanding of iterative screening, which is still elusive.

8. Supplementary Materials

Web Appendix A, which contains the theoretical justification of score screening and is

referenced in Section 2, is available with this paper at the Biometrics website on Wiley

Online Library. We also provide a zip file including an R implementation of our screening

methods, a simulation example, and instructions.
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Table 1
Average runtime (seconds) of different screening methods.

Example Wald Score Zhu et al. (2011) He et al. (2013)

1 16533.06 1.91 8.20
2 1206.89 2.42 7.16 123.27
3 0.21 0.88 5.41
4 2.19 5.76
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Table 2
Medians (interquartile ranges) of minimum model sizes required to retain the covariates in the second column. In

Example 2, β0,5 is relevant only when τ = 0.5 and β0,55 is relevant only when τ = 0.25. Similarly, in Example 3 β0,5
is relevant only when τ = 0.5 and β0,25 is relevant only when τ = 0.25.

Covariates Wald Score Zhu et al. (2011) He et al. (2013)

Example 1
All 5699.5 (4231) 5500 (4091) 5645 (5022.25)

Example 2, τ = 0.5
All 6070.5 (4655.75) 6168.5 (3832.5) 5742 (4609.25) 9166 (2057)
β0,5 30.5 (62.75) 36.5 (94.25) 23 (28.25) 3451 (5856.5)
β0,55 2393 (4184.5) 1882.5 (5565.75) 547.5 (1028.25) 3708.5 (5094.5)

Example 2, τ = 0.25
All 5111 (4736.5) 5094 (4104.5) 5742 (4376) 9720 (554)
β0,5 1724.5 (4758.25) 1763 (5112.75) 23 (28.25) 5516.5 (5380.5)
β0,55 67.5 (309) 88.5 (273.5) 547.5 (1028.25) 2381 (6252.5)

Example 3, τ = 0.5
All 9620 (548.25) 9729 (337.75) 9277.5 (361.75) 9945 (243)

Example 4
All 5495.5 (4365.5) 5584.5 (4367.5) 5483 (4237.25)
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Table 3
Performance of different methods for choosing the screening threshold. Methods: RS = reproducible screening,

described in Section 3; Auxiliary = auxiliary variables method of Zhu et al. (2011). Average performance metrics
(standard deviation): TP = true positive rate, TD = true discovery rate. Median size is reported (interquartile

range).

Screening Threshold TP TD Size

Example 1
Wald n/ log n 90 (0) 13.64 (0) 66 (0)
Score RS 86.2 (7.49) 22.84 (1.52) 40 (0)
Zhu et al. (2011) Auxiliary 89.4 (2.39) 21.02 (1.46) 43 (4)

Example 2, τ = 0.5
Wald n/ log n 68.9 (13.25) 10.44 (2.01) 66 (0)
Score RS 62.9 (27.35) 13.26 (13) 30 (1602.5)
Zhu et al. (2011) Auxiliary 40.7 (17.25) 31.18 (15.09) 15 (10.25)
He et al. (2013) n/ log n 3.9 (5.84) 0.59 (0.89) 66 (0)

Example 2, τ = 0.25
Wald n/ log n 62.8 (12.56) 9.52 (1.9) 66 (0)
Score RS 72 (25.74) 7.73 (12.06) 1540 (1642.5)
Zhu et al. (2011) Auxiliary 36.9 (15.87) 28.66 (15.87) 15 (10.25)
He et al. (2013) n/ log n 5.5 (8.57) 0.83 (1.3) 66 (0)

Example 3, τ = 0.5
Score RS 62.38 (15.02) 29.76 (22.56) 10 (130)
Zhu et al. (2011) Auxiliary 16.38 (17.65) 49.49 (44.36) 2 (2)
He et al. (2013) n/ log n 56.25 (22.86) 6.82 (2.77) 66 (0)

Example 4
Score RS 68 (15.04) 26.26 (6.76) 30 (10)
Zhu et al. (2011) Auxiliary 72.4 (14.36) 25.15 (4.23) 30.5 (12)
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Table 4
Performance of iterative screening. The second column reports the average percentage of times (SD) the marginally
unimportant variables (see Section 5.1) were capture by iterative screening. Average performance metrics (standard

deviation): TP = true positive rate, TD = true discovery rate. Median size is reported (interquartile range).

Hidden TP TD Size

Example 1
91 (28.76) 95.9 (6.21) 1.66 (0.42) 652 (259.5)

Example 2, τ = 0.5
1 (10) 79.8 (11.97) 2.71 (0.73) 282 (44.25)

Example 2, τ = 0.25
1 (10) 71.7 (10.83) 3.29 (0.93) 210 (64.5)
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Table 5
Final regression models for the 0.1 conditional quantile of MM patient survival. Validation metrics: PE = prediction
error (1); t-statistic = t-statistic of the regression of the true 0.1 quantile on the predicted quantile, using Peng and

Huang (2008).

Validation Wald Zhu et al. (2011) He et al. (2013) Iterative Score

CDK13 ADAR ATP6 hnRNPK hnRNPK
MAPKAP1 ATP6V0E1 CARD8 hnRNPKP4 hnRNPK4
PEX11B DPY30 CTCF MATR3 MATR3
VCP HNRNPU DDX3X OAZ1 OAZ1

NOLC1 RAB10 RAP10
RPS3A RPS3A
SPCS1 SPCS1
SPCS2 SPCS2
SUMO2 SUMO2
TMBIM4 TMBIM4
UBC UBC

SERP1
PE 0.660 1.158 0.430 0.079 0.083

t-statistic -1.133 -0.515 1.319 1.690 1.731


