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SUMMARY. Increasingly, genetic studies of tumors of the same histologic diagnosis are elucidating subtypes 
that are distinct with respect to clinical endpoints such as response to treatment and survival. This raises 
concerns about the efficiency of using the simple log-rank test for analysis of treatment effect on survival 
in studies of possibly heterogeneous tumors. Furthermore, such studies, designed under the assumption of 
homogeneity, may be severely underpowered. We derive analytic approximations for the asymptotic relative 
efficiency of the simple log-rank test relative to the optimally weighted log-rank test and for the power of the 
simple log-rank test when applied to subjects with unobserved heterogeneity, as reflected in a continuous 
frailty, that may interact with treatment. Numerical studies demonstrate that the simple log-rank test may 
be quite inefficient if the frailty interacts with treatment. Further, there may be a substantial loss of power 
in the presence of the frailty with or without an interaction with treatment. 

KEY WORD: Omitted covariate. 

1. Introduction 
The North American and European Intergroup trials com- 
paring chemotherapy plus radiotherapy versus radiotherapy 
alone for patients with anaplastic oligodendroglioma, a type 
of malignant brain tumor, are currently nearing completion. 
These trials were designed prior to the discovery of at least 
three clinically distinct genetic subtypes among patients with 
the histological diagnosis of this disease (In0 et al., 2001). Pa- 
tients with allelic loss of chromosome l p  respond to chemo- 
therapy and have long survival times. In contrast, patients 
with chromosome l p  intact and no mutation of the TP53 gene 
respond infrequently to chemotherapy and have short survival 
times. Patients with chromosome l p  intact and a TP53 muta- 
tion follow an intermediate course. It is well known that un- 
recognized heterogeneity among patients, such as is conferred 
by genetic subtype, can undermine the power of a randomized 
trial to detect a truly beneficial treatment. 

Within the context of the proportional hazards model, sev- 
eral authors have considered the problem of unrecognized het- 
erogeneity that divides the patients into two distinct groups 
(e.g., Lagakos and Schoenfeld, 1984; Struthers and Kalb- 

fleisch, 1986; Chastang, Byar, and Piantadosi, 1988; Schmoor 
and Schumacher, 1997). In statistical terms, this amounts to 
an omitted binary covariate. Almost all of these articles have 
assumed that the omitted covariate is independent of the 
treatment assignment and have precluded the possibility of 
an interaction between treatment and the omitted covariate. 
An exception to this is presented by Lagakos and Schoen- 
feld (1984), in which such an interaction is allowed. As in the 
example motivating this work, there will frequently be an in- 
teraction between treatment and the omitted covariate when 
it describes a genetic subtype. 

Another important extension of the omitted binary covari- 
ate problem is to assume that heterogeneity confers a contin- 
uum of relative risk. This is more plausible than the assump- 
tion of two underlying subgroups within the disease diagnosis, 
as there are likely to be several as yet unrecognized molecu- 
lar or other features that operate jointly to confer different 
risks. A natural way to allow for this is to assume that each 
individual has a distinct realization of a frailty that modifies 
his or her hazard for death. This approach has been consid- 
ered for the case in which the frailty does not interact with 
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treatment by Keiding and Andersen (1997) for a Weibull ac- 
celerated failure time model and by Lagakos and Schoenfeld 
(1984) for the proportional hazards model. In this article, we 
extend the results of Lagakos and Schoenfeld (1984) to ex- 
amine the impact of unmeasured heterogeneity, as captured 
through a continuous frailty that interacts with treatment, 
on the efficiency and power of the simple log-rank test for 
treatment effect. 

There are two distinct concepts of asymptotic relative ef- 
ficiency in the literature on omitted covariates, which are of- 
ten used interchangeably, with ensuing confusion. The more 
common concept relates the simple log-rank test to the op- 
timally weighted log-rank test assuming the model of unob- 
served heterogeneity to be true. This concept was used, e.g., 
by Lagakos and Schoenfeld (1984, Appendix 1) and Oakes 
and Jeong (1998). This measure is useful, as it is informative 
about the loss of efficiency in using the simple log-rank test 
relative to the more complicated optimally weighted log-rank 
test in a situation in which there is heterogeneity. The sec- 
ond concept of efficiency compares the simple log-rank test 
when applied to data without heterogeneity with the same 
test when applied to data with unobserved heterogeneity. It 
was used by Lagakos and Schoenfeld (1984, Appendix 3) and 
Morgan (1986). This concept is useful when evaluating the 
power of the simple log-rank test for a study that was designed 
assuming there to  be no heterogeneity, when in fact there is 
heterogeneity (as in Betensky et al., unpublished manuscript). 
We evaluate both of these types of efficiency for the scenario 
that we consider because they each provide useful and com- 
plementary information. To avoid confusion, we translate the 
second measure from that of efficiency into the actual power 
of the simple log-rank test. All future references to efficiency 
imply the first usage. 

In Section 2, we introduce notation and the models. In Sec- 
tion 3, we relate the parameters of the naive model that ig- 
nores the frailty to those of the correct model that incorpc- 
rates the frailty. In Section 4, we derive an analytic expres- 
sion for the asymptotic relative efficiency (ARE) of the simple 
log-rank test under the true model of heterogeneity. In Sec- 
tion 5 ,  we derive an analytic approximation for the power of 
the simple log-rank test when applied to heterogeneous data. 
We conclude in Section 6 with numerical illustrations of these 
results. 

2. Notation and Models 
Suppose each of n patients is randomly assigned to one of the 
two treatment arms according to the distribution P ,  leading 
to nl  patients receiving treatment 1 and n2 patients receiv- 
ing treatment 2. Let 2 indicate the treatment received, with 
2 = 0 for patients who receive treatment 1 and Z = 1 for 
patients who receive treatment 2. Associated with each sub- 
ject is a death time, Ti, and a censoring time, Ci, distributed 
according to G such that G(t)  = P(C > t ) .  However, only 
X i  = min(Ti,Ci) is observed, along with an indicator for 
whether death was observed, 6i = 1 if Ti 5 Ci and bi = 0 
if Ti > Ci. Associated with each subject is an unobserved 
frailty, b, where b N F(b;O) and I9 parameterizes the frailty 
distribution, F. 

We assume that, conditional on the unobserved frailty, the 
survival time, T, follows a proportional hazards model, 

X ( t  I 2, b)  = X o ( t )  exp(p2 + b + abZ).  (1) 

Here P measures the main effect for treatment and a measures 
the effect of the interaction between the frailty and treatment. 
If the heterogeneity among the subjects is not recognized, the 
naive proportional hazards model, 

X * ( t  I Z )  = $(t)exp(p*Z), ( 2 )  

is assumed instead. 

3. Heuristic Connection Between the Models 
Following derivations in the measurement error literature 
(e.g., Carroll et al., 1995), the induced hazard function based 
on the true model (1) is given by 

X ( t  I 2) = Xo(t)E[exp(PZ + b + abZ) I T > t ,  21. 

The expectation in this expression involves the baseline haz- 
ard function, Xo( t ) ,  which complicates its evaluation. How- 
ever, if the event is rare and {T > t }  occurs with high prob- 
ability, and assuming that b N N(0,02), the induced hazard 
function can be approximated as 

X ( t  I 2) = Xo(t)E[exp(PZ + b + abZ) I 21 
= X o ( t )  exp(02/2) exp [ ( p  + 02a + 02a2/2) Z] . 

Note that the induced hazard function is now of exactly the 
same form as the naive hazard function (2), with p* corre- 
sponding to p + n2a + a2a2/2. Thus, the treatment effect 
based on the naive model is a function of the treatment effect 
from the correct model, (p, a) ,  as well as the variance of the 
frailty. 

This correspondence illustrates that rejection of the naive 
null hypothesis for no treatment effect, Ho: P* = 0, implies 
rejection of the correct null hypothesis for no treatment effect, 
Ho: P = 0,a = 0. However, it is possible for neither p nor a 
to be zero and yet for p* to be zero, i.e., if a = -0.5 * 
0.5( 1 - 2 p / c ~ ~ ) l / ~ .  Thus, it is apparent, heuristically, through 
some simplifying assumptions that the simple log-rank test 
based on the naive model (2) will be inefficient relative to 
the optimally weighted log-rank test. We explore this more 
formally in the next section. 

4. ARE of the Simple Log-Rank Test 
Here we derive the asymptotic relative efficiency (ARE) of the 
simple log-rank test (i.e., the score test based on model (2)) 
versus the optimally weighted log-rank test for a treatment ef- 
fect based on data that follow the proportional hazards frailty 
model with a treatment x frailty interaction (1). The log-rank 
test can be written in the following general form: 

(3) 

where, for k = 1,2,  the total number of subjects at risk in each 
treatment group at time t is Y k ( t )  = CF=L=l Y,( t ) l (Zi  = k - l), 
the total number of observed failures in each treatment group 
by t is N I , ( ~ )  = C;==, Ni(t)I(Zi = k - l), and 

In the simple log-rank test, w(s) 

1 group is 

1. 
Under model ( l ) ,  the marginal hazard function for the Z = 
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where Ro(t)  = Ao(t) exp(P) and Po(s) = J e-sexp(b fab)dF(b)  
is the Laplace transform for the random variable exp(b+ ab) .  
Note that X ( t ;  0,O) is the marginal hazard function for the 
2 = 0 group. Further, assuming differentiability of X ( t  1 P, a )  
with respect to 0, a in a neighborhood of (0,  0), a Taylor series 
expansion yields 

To examine the behavior of the ARE, we consider a se- 
quence of alternatives that converges to the null hypothesis 
at  the appropriate rate as sample size increases to infinity. Un- 
der such alternatives, the log-rank statistic has asymptotically 
a finite mean and variance. Assuming some regularity condi- 
tions and such a sequence of local alternatives, the weighted 
log-rank test (3) converges to 

where K is the probabilistic limit of { (n l+n2) / (n in2 ) }1 /2K( t ) ,  

y is the probabilistic limit of { (n ln2 ) / (n1  + 7 ~ 2 ) } l / ~ [ ( X ( t  I 
p ,a ) /X( t ;O ,o ) )  - 11 for k = 1,2 ,  ak = P(Zz = k - I), 7rk is 
the probabilistic limit of Y k / n k ,  and h(t) = Ji X ( s  I Z,O, 0)ds. 
Hence, its asymptotic efficacy is defined by its noncentrality, 
given by 

(1” KTdA)2 

J ’a1~; ; ;272  K 2 dA 

If we specify the sequence of alternatives as 

it then follows that 

Hence, by the Cauchy-Schwarz inequality, the optimal effi- 
ciency is achieved by taking w ( t )  K y ( t ) ,  in which case the 
efficacy is 

J’ al7r:~27r2 r2( t )dW).  

Therefore, the ARE comparing the log-rank test to the opti- 
mally weighted test is 

Assuming that the censoring distribution is the same for both 
treatment groups, i.e., P(C > t I 2) = P(C > t )  = G ( t ) ,  it 
follows that ~ l ( t )  = 7 r 2 ( t )  = ~ ( t )  = G(t)exp(-h(t)). This 
leads to a simpler form of ARE given by 

5. Power of the Simple Log-Rank Test 
For a sequence of local alternatives (i.e., P = O(n-1/2) ) ,  the 
distribution of the simple log-rank test under the naive model 
(2) is approximately given by 

where AG(t) = J A * ( s ) d s  and 7 r i  is the probabilistic limit of 
Y / n k  under model (2). Similarly, the approximate distribu- 
tion of the simple log-rank test under the true model (1) is 
given by 

where 

We assume for simplicity that the two treatment groups 
have the same censoring distributions and that there is equal 
allocation of treatments (i.e., a1 = a2 = 0.5). It then follows 
that the sample size needed to detect Ha: P* = P > 0 versus 
Ho: P* = 0 under the naive model (2) with power S and one- 
sided type I error level of E is 

4(2 i - ,  + 26)’ 
Nnaive = 

P2 J’7r* (t)dAG(t) ’ 

where 2, is the 100 x q percentile of a standard normal dis- 
tribution. Thus, for a study designed under the incorrect as- 
sumption of the naive model (2) when in fact the model of 
heterogeneity (1) holds, the actual power is 

where a(.) is the standard normal cumulative distribution 
function. 
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Figure 1. 
frailty, and f + 0.5 is the mean time to censoring. 

Normal frailty model: 6 is the variance of b, the 

6. Numerical Studies  
In this section, we evaluate numerically, under several pa- 
rameter configurations, the ARE of the simple log-rank test 
relative to the optimally weighted log-rank test and the power 
of the simple log-rank test for a study designed under the in- 
correct model (2). We design our numerical calculations in 
the context of a clinical trial with an accrual period a and a 
follow-up period f assuming that patients enter the study at a 
constant rate and are randomized to  the two treatments with 
equal probability. The follow-up period is often introduced in 
clinical trials to reduce the number of patients needed (i.e., to 
increase the number of failures observed). Hence, the poten- 
tial censoring time for patient i is Ci = a x Ui + f, where the 
{Ui ,  i = 1 , .  . . , n }  are i.i.d. uniform random variables on the 
interval [0, 11. This corresponds to a censoring distribution of 

U 

In the following calculation, we keep the accrual period fixed 
at a = 1, we let f = 0.5,1,1.5,2, and we assume a constant 
baseline hazard function ( X o ( t )  = 1) in model (1). Finally, we 
vary the frailty parameter 6 == 0.0,0.1,0.2,. . . , 1.0. 

We examine the ARE and power under both the no-inter- 
action model (i.e., a = 0) and the interaction model (i.e., 
a # 0) and for normal and log-gamma frailty distributions, 
with 6 N N(0,B) and exp(b) N gamma(8-1,8-1). For the 
normal frailty model, 8 is the variance of 6 ,  and for the log- 
gamma frailty model, 6 is the variance of exp(b). Last, in our 
evaluations of power, we take /3 = 0.3 and cy = 0.3. 

Figure 1 displays the ARE and power as functions of 6 for 
the normal frailty model. For the model with interaction, Fig- 
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Figure 2. Log-gamma frailty model: 6 is the variance of 
exp(b), where b is the frailty, and f + 0.5 is the mean time to 
censoring. 

ure la shows that the ARE decreases with increasing variance 
of b (i.e., 8 ) .  Further, at fixed 8, the ARE decreases with the 
mean time to censoring; with more censoring, there is less of 
an opportunity for the heterogeneity to have an impact. In 
contrast, Figure l b  shows that the ARE remains very close 
to one over the range of 6 and mean times to censoring in 
the model without interaction. Thus, it appears that, as long 
as the heterogeneity does not interact with treatment, i.e., 
patients of different genetic subtypes respond in the same 
way to the treatment, the simple log-rank test is nearly fully 
efficient relative to the more complicated optimally weighted 
log-rank test. 

Figure l c  and Id displays the power as a decreasing func- 
tion of t9 for all different follow-up periods. Also, at fixed 8, it 
is decreasing in the mean time to censoring. It should be noted 
that the specified follow-up period corresponds to a specific 
accrual rate to guarantee a certain power under the naive 
model. For example, to obtain 80% power under the naive 
model (2), f = 0.5,1,1.5,2 correspond to accrual rates of 900, 
660, 567, and 520, respectively. At 0 = 1, the power drops to 
about 15% in the model with interaction and to about 30% 
in the model without interaction. Figure l b  and Id shows 
that, although the simple log-rank test achieves nearly full 
efficiency relative to the optimally weighted log-rank test, it 
requires a sufficiently large sample size to achieve 80% power; 
i.e., if the study is designed assuming the simple hazard model 
(2), the simple log-rank test may be severely underpowered. 

Figure 2 displays the same results for the log-gamma frailty 
model. The qualitative conclusions from the nornial frailty 
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model hold for this model as well. The one minor difference is 
that the ARE for the model without interaction drops slightly 
lower at Q = 1 yet remains above 90%. 

7. Discussion 
Increasingly, genetic studies of tumors of the same histologic 
diagnosis are elucidating subtypes that are distinct with re- 
spect to clinical endpoints such as response to treatment and 
survival. This raises concerns about the efficiency of using the 
simple log-rank test for analysis of treatment effect in studies 
of possibly heterogeneous tumors. Further, the power of such 
studies, designed under the assumption of homogeneity, is of 
serious concern. For these reasons, we undertook this inves- 
tigation of ARE and power of the simple log-rank test under 
models of continuous heterogeneity that may interact with 
treatment. 

Based on our numerical studies, we conclude that the sim- 
ple log-rank test is nearly fully efficient relative to the opti- 
mally weighted log-rank test if the unobserved heterogeneity 
among patients does not interact with treatment; i.e., if the 
effect of treatment is the same among all patients, regardless 
of the individual frailty, the simple test is efficient. This is not 
the case, however, if the frailty interacts with treatment, as 
appears to be the situation among patients with anaplastic 
oligodendroglioma. It is now known that patients whose tu- 
mors are of one genetic subtype have a much greater response 
rate to chemotherapy than do patients whose tumors are not 
of this genetic subtype. Thus, our results suggest that an op- 
timally weighted log-rank test should be used to analyze the 
on-going clinical trials of anaplastic oligodendroglioma that 
have not recorded genetic alterations, as the simple log-rank 
test will suffer from lack of efficiency. 

Further, our results suggest that lack of power is a real con- 
cern for the on-going clinical trials that were designed assum- 
ing the simple model (2) to be true. This is true both when the 
frailty interacts with treatment and when it does not. Thus, 
while the simple log-rank test may theoretically achieve a cer- 
tain level of efficiency, it may also be severely underpowered 
in practice. This suggests that, if there are suspicions of het- 
erogeneity among the patients, an adaptive design should be 
implemented to guarantee that the test is fully powered. 
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RESUME 
De plus en plus d’6tudes gBn6tiques de tumeurs qui ont le 
meme diagnostic histologique ont fait apparaitre des sous- 
types diffkrents pour la rBponse au traitement ou la survie 
mesurkes lors des bilans cliniques intermBdiaires. Ceci souli?ve 

le problkme de l’utilisation du test simple du log-rank pour 
l’analyse de l’effet du traitement sur la survie dans des Btudes 
de tumeurs potentiellement hBt6rogknes. En outre, de telles 
etudes, construites sous l’hypothkse d’homogBnCit6, peuvent 
avoir une perte sBv6re de puissance. Nous proposons des ap- 
proximations analytiques pour l’efficacitb relative asympto- 
tique du test simple du log-rank par rapport au test du log- 
rank pondkx-6 de faqon optimale et pour la puissance du test 
simple du log-rank quand on l’applique B des sujets avec 
une h6t6rogBnBitB non-observke, traduite par une variable de 
fragilite continue qui peut interagir avec le traitement. Des 
etudes num6riques montrent que le test simple du log-rank 
peut 6tre assez inefficace si la fragilitB interagit avec le traite- 
ment. De plus il peut y avoir une perte substantielle de puis- 
sance en presence de fragilit6 qu’elle interagisse ou non avec 
le traitement. 
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