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Spatial cluster detection has become an important methodology in quantifying the effect of ha-
zardous exposures. Previous methods have focused on cross-sectional outcomes that are binary or
continuous. There are virtually no spatial cluster detection methods proposed for longitudinal out-
comes. This paper proposes a new spatial cluster detection method for repeated outcomes using
cumulative geographic residuals. A major advantage of this method is its ability to readily in-
corporate information on study participants relocation, which most cluster detection statistics can-
not. Application of these methods will be illustrated by the Home Allergens and Asthma prospective
cohort study analyzing the relationship between environmental exposures and repeated measured
outcome, occurrence of wheeze in the last 6 months, while taking into account mobile locations.

Key words: Asthma; Cumulative residuals; Repeated measured; Spatial cluster detection;
Wheeze.

1 Introduction

The prevalence of allergic diseases in children have greatly increased in the last few decades
(Akinbami, Centers for Disease Control, and Prevention National Center for Health Statistics,
2006). What influences the onset of allergic diseases such as asthma and wheeze has become an
increasingly important public health question. The Home Allergens and Asthma Study is an on-
going prospective cohort study investigating environmental and socioeconomic (SES) risk factors
leading to early childhood respiratory diseases, such as asthma and wheezing, in the Boston, MA
metropolitan area (Celedon et al., 1999). Cross-sectional and longitudinal studies have tied home
allergen levels (e.g. from cockroach and mouse), mold in the home, lower SES, and other individual
or family-based measures of exposures to increased incidence or prevalence of wheeze, asthma, and
allergic rhinitis (Brugge et al., 2003; Finkelstein et al., 2002). Fewer studies have focused on the
larger area, or neighborhood, in which the individual resides as a source of environmental exposures
that may influence the risk of allergic diseases (Litonjua et al., 2005).

The immune development of an individual depends upon a complex interaction of factors related
to genetics and environmental exposures that may derive from the larger neighborhood as well as
the individual home. These exposures may have differing effects according to the age within which
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they occur and it is likely that an individual’s immune development is influenced by their entire
exposure history. Owing to this complexity, it is of substantial interest to detect spatial regions that
have significantly higher odds of disease dependent on the age of the child. High-risk areas may
indicate potential hazardous environmental sources (e.g. bus depots, poor housing, neighborhood
waste sites, neighborhood violence).

To make conclusions about these questions of interest in the Home Allergens and Asthma Study,
and other similar studies, there is a need to develop spatial cluster detection methods that handle
longitudinal outcomes. Currently, numerous spatial cluster detection methods are available for the
analysis of individual level data. For example, there are methods for binary outcomes assessing
areas with elevated prevalence of disease and count outcomes evaluating excess rates of incidence or
mortality (Kulldorff et al., 2006; Tango and Takahashi, 2005; Duczmal and Assunc- ão, 2004; Patil
and Taillie, 2004; Tango, 2000; Kulldorff, 1997; Turnball et al., 1990). There are even several
methods for censored continuous outcomes exploring potential spatial clusters for detection of time
to early event (Cook, Gold, and Li, 2007; Huang, Kulldorff, and Gregorio, 2007). However, there
are no methods available for longitudinal outcomes.

The Home Allergens and Asthma Study has information about occurrence of wheeze in the last six
months measured every six months from birth to age four. Previous analyses evaluated potential spatial
clusters with three failure time outcomes: time to doctor diagnosed asthma or censoring, time to allergic
rhinitis/hayfever or censoring, and time to eczema or censoring (Cook et al., 2007). For the two
outcomes, asthma and allergic rhinitis/hayfever, a significant cluster was found, but in very different
neighborhoods. Wheeze is a time-varying symptom. Factors influencing wheeze and its resolution or
persistence vary with age. Thus, the influence of a single geographical residence may vary with age.

A further innovation of the proposed method is the ability to incorporate study participant
relocation during the study. The Home Allergens and Asthma Study has still surveyed and con-
ducted home visits of study participants who have moved, even outside of the predefined study area.
It is crucial to include this information for analysis to reduce missingness in the analysis and
potential bias. For the Home Allergens and Asthma Study we will analyze the data using the
following three different spatial locations: (i) location at birth, (ii) location at age of repeated
measure, and (iii) weighted cumulative location history at age of repeated measure.

The outline of this manuscript begins by presenting in Section 2 a new method for spatial cluster
detection for repeated measured data. We then conduct a simulation study to assess type I error and
power for numerous situations in Section 3. In Section 4 the results from the analysis of the Home
Allergens and Asthma Study with outcome repeated wheeze is presented. We conclude with a
general discussion in Section 5.

2 Using Cumulative Residuals to Detect Clusters

We propose a new method for spatial cluster detection of repeated measured outcomes using
cumulative geographic residuals, which are correlated, and generalized estimating equations (GEE).
Previous cluster detection methods using cumulative geographic residuals have been developed for
failure time outcomes (Cook et al., 2007).

2.1 Theory of cumulative residuals for repeated measured data

We exemplify the development of our test statistic in the framework of a binary repeated
outcome, though the formulation may be easily generalized to any continuous/discrete data
with proper link functions (e.g. Poisson data with a log link function). Suppose the
outcome for individual i ði ¼ 1; . . . ; nÞ, at occasion k ðk ¼ 1; . . . ;KiÞ, Yik, is binary with a p� 1
vector of covariates, Xik, and geographic coordinate ðrik; tikÞ. Under the assumption that disease
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status is independent of geographic location (i.e. no spatial clusters), the marginal expectation
of Yik given covariates, Xik, is EðYikjXikÞ ¼ mik, where mik is linked to Xik through a logit link
function,

gðmikÞ ¼ logitðmikÞ ¼ bXik; ð1Þ

and b is a 1� p vector of regression parameters. The corresponding marginal variance, dependent
on mik, is VarðYikÞ ¼ mikð1� mikÞ.

Then define RiðaÞ as the ‘working’ correlation matrix for the ðKi � 1Þ response vector for in-
dividual i, Yi ¼ ðYi1; :::;YiKi

Þ
T. The matrix Ri may depend on unknown parameters a that will need

to be estimated. Define Ai ¼ diagfVarðYi1Þ; . . . ;VarðYiKi
Þg. Therefore, to estimate b and a utilizing

GEE theory one solves the following GEE:

Xn
i¼1

DT
i V
�1
i ei ¼ 0; ð2Þ

where ei ¼ Yi � li; for li ¼ ðmi1; . . . ;miKi
Þ
T, Vi ¼ A

1=2
i RiðaÞA

1=2
i , and Di ¼ f@li=@bj ; j ¼ 1; . . . ; pg.

Under mild regularity conditions and under the null hypothesis of no disease clusters, b̂ has been
shown to be consistent and asymptotically normal with covariance matrix

Xn
i¼1

D̂
T

i V̂
�1
i D̂i

 !�1Xn
i¼1

D̂
T

i V̂
�1

i eie
T
i V̂
�1

i D̂i

Xn
i¼1

D̂
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i V̂
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 !�1

even if RiðaÞ is misspecified, where ei ¼ Yi � l̂i; m̂ik ¼ g�1ðb̂XikÞ and D̂i and V̂i are obtained by
replacing unknown parameters in Di and Vi with their sample estimators by solving (2) (Liang and
Zeger, 1986).

These asymptotic results have formed the basis for checking whether the link function is correctly
specified for a particular component of the covariate vector, such as, Xj , or several components of
the covariate vector, Xq�1 with 1 � q � p (Su and Wei, 1991; Stute, 1997; Lin, Wei, and Ying.,
2002). The crux of this method lies in detecting whether there are significant patterns in the re-
siduals, eik, related to the particular covariates of interest. Patternless residuals often correspond to
‘correct’ model specifications (Lin et al., 2002).

However, in our particular setting for spatial cluster detection we study patterns of residuals from
a different perspective: instead of viewing the patterns dependent on covariates, we study whether
such patterns vary by geographic locations. Presented patterns across regions may indicate ex-
cessive, or exiguous, numbers of cases within those areas. In the next section, we propose a use of
cumulative residuals for cluster detection.

2.2 Cumulative geographic residuals

We begin by defining our cumulative geographic residuals, Wlocðx1;x2jbÞ, as a stochastic process
indexed by ðx1;x2Þ for a fixed radius b, which takes the form,

Wlocðx1; x2jbÞ ¼
1ffiffiffi
n
p
Xn
i¼1

Iðri; sijb;x1;x2Þ
Tei ð3Þ

where Iðri; sijb; x1;x2Þ is a Ki � 1 vector with each row corresponding to the indicator variable,
Iðx1 � b � rikox1 þ b;x2 � bosikox2 þ bÞ, with ðrik; sikÞ denoting the geographic location of
subject i at repeated measured location k ðk ¼ 1; . . . ;KiÞ, ei ¼ Yi � l̂i is a Ki � 1 vector of residuals
for subject i, and 2b is the edge length of the potential square cluster. To study the asymptotic
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behavior of Wlocð�; �jbÞ we define the stochastic process,

Ŵ locðx1; x2jbÞ ¼
1ffiffiffi
n
p
Xn
i¼1

Iðri; sijb; x1; x2Þ
Tei:þ nTðx1;x2; bjb̂Þ

Xn
j¼1

D̂
T

j V̂
�1

j D̂j

 !�1
D̂

T

i V̂
�1

i ei

9=
;Gi;

8<
:

where

nðx1;x2; bjb̂Þ ¼ �
Xn
i¼1

XKi

k¼1

I ½ðrik � x1Þ
2
þ ðsik � x2Þ

2
� b2�Xik

expðbXikÞ

½1þ expðbXikÞ�
2

� �
;

and ðG1; . . . ;GnÞ are independent variables from a unspecified distribution with mean 0 and variance
1 that are independent of ðYik;Xik; rik; sikÞ. The choice of specific distributional forms of Gi will be
discussed in Section 3. Assuming that the logit link function, Equation (1), is correctly specified (e.g.
proper adjustment has been made for known covariates) and under the null hypothesis that the
geographic location is independent of outcome, it can be shown that the conditional distribution,
Ŵ locð�; �jbÞ given the data ðYi;Xi; ri; siÞ, has the same limit distribution as the unconditional dis-
tribution of Wlocð�; �jbÞ. Details of the proof are provided in Appendix A. In summary it is a special
case of the covariate-dependent cumulative residuals method discussed by Lin et al., 2002, and
follows due to the independence between residuals, ei, and geographic location, ðri; siÞ, under the
null. Further, by the continuous mapping theorem, Sloc;b ¼ supx1;x2 Wlocðx1;x2jbÞ and Ŝloc;b ¼

supx1;x2 Ŵ locðx1;x2jbÞ have the same limiting distribution.
Therefore, to approximate the null distribution of Wlocð�; �jbÞ, one can simulate N realized paths

of Ŵ locð�; �jbÞ, e.g. (Ŵ1;locð�; �jbÞ; . . . ; ŴN;locð�; �jbÞ), by repeatedly simulating ðG1; . . . ;GnÞ, while fixing
the data ðYi;Xi; ri; tiÞði ¼ 1; . . . ; nÞ at their observed values.

To test for global spatial clusters of half edge length, b, would be to compute the probability of
how extreme Sloc;b is under the null distribution that the residuals are not dependent on location.
Formally testing this hypothesis would require calculating,

Ŝj;loc;b ¼ sup
x1;x2

Ŵj;locðx1;x2jbÞ;

for j ¼ 1; . . . ;N simulated Ŵ locðx1; x2jbÞ and estimating the probability, under the null hypothesis
that a simulated Ŝloc;b is equal to or more extreme than the observed Sloc;b, by the p-value
P ¼

PN
j¼1 I ½Sloc;b � Ŝj;loc;b�=N.

However, for spatial cluster detection it is particularly important to be able to range the values of
b to allow the data to depict maximum cluster size. To extend the method to incorporate a finite
range of edge lengths, define b ¼ ðb1; . . . ; bLÞ as a finite vector of potential b of length L. Since for a
fixed bl , Ŝloc;bl , conditional on the data, converges weakly to the same limiting distribution as Sloc;bl ,
Skorokhod’s representation theorem implies that

Ŝloc ¼ supðŜloc;b1 ; . . . ; Ŝloc;bL Þ

converges weakly to the same limiting distribution as

Sloc ¼ supðSloc;b1 ; . . . ;Sloc;bLÞ:

To test for global clusters using a finite range of half edge length, b, would be to compute the p-value
P ¼

PN
j¼1 I ½Sloc � Ŝj;loc�=N.

This hypothesis test can still easily be inverted to form confidence bands around the stochastic
process Wlocðx1;x2jbÞ to define values of ðx1; x2Þ and b which have significantly higher cumulative
residuals than expected under the null hypothesis of geographic independence. Explicitly, we can
form the confidence band fðx1;x2; bÞ :Wlocðx1;x2jbÞ � Ŝð0:95NÞg where Ŝð0:95NÞ is the 95-th percentile
of all Ŝj;loc.

By using cumulative geographic residuals, one would be able to locate significant clusters
with corresponding edge length, 2b. Another advantage is the fact that location is not treated as
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fixed for an individual, but can change at each repeated time point. Therefore this method
incorporates moving, which previous spatial cluster detection methods do not. So far the
incorporation of moving has not taken into account moving history, but only current location
of the individual. The handling of moving can be made even more flexible by incorporating a
weighting structure on an individual location to handle moving history. Specifically, define the test
statistic as

Wloc;hðx1;x2jbÞ ¼
1ffiffiffi
n
p
Xn
i¼1

Hðrhi ; s
h
i ;w

h
i jb;x1;x2Þ

Tei; ð4Þ

where Hðrhi ; s
h
i ;w

h
i jb; x1; x2Þ is a Ki � 1 vector with each row corresponding to a weight defined as

Hikðr
h
i ; s

h
i ;w

h
i jb;x1;x2Þ ¼

PMi

m¼1 Iðx1 � b � rhimox1 þ b;x2 � b � shimox2 þ bÞwikm 2 ½0; 1�, ðrhi ; s
h
i Þ is a

vector of all address locations, Mi, in which individual i has resided ðrhim; s
h
imÞðm ¼ 1; . . . ;MiÞ, and

wikm 2 ½0; 1� is the fixed weight assumed for address m of individual i at repeated measure k with the
condition that

PMi

m¼1 wikm ¼ 1 for all i and k. For example one could define the weights, wikm, as the
proportion of time individual i resided at address m at time tk. Wlocð�; �jbÞ is a special case of
Wloc;hð�; �jbÞ if one defined weights as 1 if individual i’s current residence at time tk is address m and 0
otherwise or some similar 0 or 1 weighting structure. Distribution of the test statistic, Wloc;hð�; �jbÞ,
under the null hypothesis would follow the same lines as Wlocð�; �jbÞ, except Iðri; sijb;x1;x2Þ would be
replaced by Hðrhi ; s

h
i ;w

h
i jb; x1; x2Þ. Under the null hypothesis, the residuals and the weighted location

vector are still independent similar to how the indicator location vector and residuals are
independent.

The proposed spatial cluster detection test using cumulative residuals will be able to
find exact locations, and size, of significant clusters and simultaneously give a p-value for
the global hypothesis test of existence of geographic clusters. It can flexibly handle moving
locations by applying different weighting structures by not treating location as fixed
and does not require model specification of the spatial surface. Section 3 will study the
properties of this approach to check the type I error and power. This approach will be applied
to the Home Allergens and Asthma study in Section 4, looking at the outcome repeated
wheeze.

However, the above spatial cluster detection method cannot pinpoint the times at
which the significant clusters occurred. Also, clusters may occur at different locations
at different time points. The previous method would only be valid if one assumes that
increased risk of disease from a location is constant over age/time. This scenario is not true
for most public health outcomes and, in particular, for the outcome wheeze were protective/
hazardous predictors in early age can become hazardous/protective in later ages. Therefore, in the
next section we will present an alternative method that can detect the time and location of the
clusters.

2.3 Cumulative time-dependent geographic cluster detection

The previous section presented a global test statistic utilizing all of the repeated measured data to
detect significant geographic clusters that occur throughout a study. However, often a cluster of
outcomes may occur only during a certain time point of a study. For example, in the
Home Allergens and Asthma Study one may hypothesize that important early in life
geographic exposures are different then later in life exposures and therefore locations of significant
clusters may change. To handle this important issue we present the following test statistics for each
repeated time point t ¼ t1; t2; . . . ; tK ,

Wloc;h;tðx1;x2jbÞ ¼
1ffiffiffi
n
p
Xn
i¼1

Hðrhi ; s
h
i ;w

h
i ; tijb;x1;x2; tÞ

Tei;
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where Hðrhi ; s
h
i ;w

h
i ; tijb; x1;x2; tÞ is a Ki � 1 vector with each row corresponding to a weight defined

as Ht
ikðr

h
i ; s

h
i ;w

h
i ; tijb;x1;x2; tÞ5 ½

PMi

m¼1 Iðx1 � b � rhimox1 þ b;x2 � b � shimox2 þ bÞwikm�Iðtik ¼ tÞ 2
½0; 1�. Therefore, Wloc;h;t is only summing over residuals of repeated measures that occurred at time
point t. Then we define the following time-dependent stochastic process, Ŵ loc;h;tð�; �jbÞ, as

Ŵ loc;h;tðx1; x2jbÞ ¼
1ffiffiffi
n
p
Xn
i¼1

Hðrhi ; s
h
i ;w

h
i ; tijb; x1; x2; tÞ

Tei:þ nTðx1; x2; bjb̂Þ
Xn
j¼1

D̂
T

j V̂
�1

j D̂j

 !�1
D̂

T

i V̂
�1

i ei

9=
;Gi;

8<
:

where nðx1;x2; bjbÞ, D, and V are defined as in Section 2.2, but I ½x1 � b � rikox1 þ b;x2 � b �
sikox2 þ b� is replaced by Ht

ikðr
h
i ; s

h
i ;w

h
i ; tijb;x1;x2; tÞ, and ðG1; . . . ;GnÞ are independent mean 0 and

variance 1 random variables. The asymptotic equivalency of Wloc;h;tð�; �jbÞ and Ŵloc;h;tð�; �jbÞ under
the null of geographic independence and correct model specification follows as did for the case for
cumulative geographic residuals without time dependence. The benefit of using the repeated mea-
sured analysis instead of a logistic model for each time point is the reduction of variance for
estimating the relationships of covariates, Xik, to outcome Yik, by using all of the repeated measured
information.

To make conclusions for each time point, t, one would approximate the null distribution of
Wloc;h;tð�; �jblÞ ðl ¼ 1; . . . ;LÞ by simulating N realizations of Ŵ loc;h;tð�; �jblÞ for a finite range of half
edge lengths, b, and then taking the suprema over ðx1;x2; bÞ for the observed and simulated dis-
tributions as discussed in Section 2.2. Corresponding p-values and ð1� aÞ confidence bands can be
formed for each Wloc;h;tð�; �jbÞ. Therefore, we would find significant cluster locations for all repeated
time points t. There is a slight multiple comparison problem due to the fact that we are separately
calculating K, the number of repeated measured, hypothesis tests. To be conservative one may want
to use Bonferroni critical values, a=K , instead of a. We chose not to do this for our analysis since it
would be overly conservative and the objective of the analysis is for exploratory purposes and not to
make definitive conclusions. This method is applied on the Home Allergens and Asthma Study in
Section 4.

3 Simulation Study

We conducted simulations calculating the type I error and power for the global cumulative geo-
graphic residual test. First, we will analyze the results for assessing type I error. Simulations were
conducted by generating 1000 test studies where location of an individual was randomly assigned
uniformly over an 8� 8 grid. For our simulations we chose to treat locations of individuals as fixed
over time and a finite range for b of 0.5 to 4 sequenced by 0.5, just to reduce computational
complexity. We simulated a repeated measured data set with exchangeable correlation structure and
overall probability of having the outcome to be approximately 0.2. The details of this simulation are
presented in Appendix B.

By choosing this simulation setup the outcomes for the same individual are correlated and there is
an effect of time. When running the simulation we assumed a profile analysis for the mean structure
on time and an exchangeable correlation structure. The results for the type I error calculations are
given in Table 1. We defined Type I error as the proportion of simulations that detect a significant
(a ¼ 0:05) cluster. The type I error converges to the a-level of 0.05 when the number of individuals
and repeated measures increase. However, it is very low when there are only 100 individuals in the
study.

For the power calculations we simulated the repeated measured study population as described for
the type I error. To create a single cluster we first considered an 8� 8 unit-less area and divided the
area into 16 equally sized squares of size 2� 2 as depicted in Fig. 1. To create the cluster in
consecutive grid areas 6 and 10, we gave a higher probability for individuals with more cases to be
within the cluster area. First, define SYi ¼

PK
k¼1 Yik where K is the number of repeated measures
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and Ai as a random sample from a Bernoulli distribution with probability (0:15SYi). If Ai ¼ 1 then
(xi; yi) is randomly drawn from a uniform distribution within grids 6 and 10 and if Ai ¼ 0 then
(xi; yi) is randomly drawn from a uniform distribution from the entire 8� 8 study area. We defined
power as the proportion of simulations that detect at least one significant (a ¼ 0:05) cluster and
which at least one of the significant clusters detected overlaps with grids 6 or 10. We define sen-
sitivity for a given simulation as the proportion of individuals included in a significant cluster that
reside in grids 6 or 10 out of all individuals included in the significant cluster. Sensitivity is 0 if no
clusters were significant. Overall sensitivity is the mean sensitivity for all simulations. We define
specificity as the mean proportion of individuals not included in the significant cluster that reside
outside of grids 6 or 10 out of all individuals not included in the significant cluster across all
simulations. For both sensitivity and specificity, we did a calculation for the highest significant
cluster and then for all spatial clusters detected with a p-value less than 0.05. Power calculations are
displayed in Table 1 for simulated data sets of size 1000.

Overall, the proposed cumulative geographic residual test statistic for repeated measures holds
the type I error rate and has relatively high power of finding clusters. The power, sensitivity, and
specificity increase as expected given more individuals and repeated measures in the study. The
sensitivity is relatively low indicating that the spatial cluster, or clusters, detected tend to be larger

Table 1 Type I error and power calculations of Cumulative Geographic Residual Test for different
sample sizes and number of repeated measured.

Number of time points

N 3 4 5

Type I error 100 0.034 0.023 0.041
300 0.026 0.039 0.049
500 0.024 0.040 0.051

Power 100 0.189 0.343 0.527
300 0.675 0.871 0.977
500 0.914 0.984 0.999

Sensitivity of highest cluster 100 0.055 0.123 0.222
300 0.187 0.294 0.394
500 0.246 0.340 0.409

Sensitivity of all significant clusters 100 0.045 0.098 0.169
300 0.128 0.182 0.213
500 0.140 0.167 0.189

Specificity of highest cluster 100 0.927 0.921 0.922
300 0.969 0.979 0.988
500 0.990 0.994 0.996

Specificity of all significant clusters 100 0.928 0.924 0.929
300 0.972 0.985 0.996
500 0.993 0.998 0.999

Type I error5 ð1=1000Þ
P1000

j¼1 Iðpvaluej � 0:05Þ. Power5 ð1=1000Þ
P1000

j¼1 IðfCRj \Grids 6 or 10g

6¼ ;Þ. Sensitivity5 ð1=1000Þ
P1000

j¼1 ð1=
PN

i¼1 Iððxi; yiÞ 2 CRjÞÞ
PN

i¼1 Iððxi; yiÞ 2 Grids 6 or 10; ðxi; yiÞ

2 CRjÞÞ. Specificity5 (1=1000)
P1000

j¼1 (1=
PN

i¼1 I((xi; yi) 62 CRj))
PN

i¼1 I((xi; yi) 62 Grids 6 or 10;

(xi; yi) 62 CRj)). CRj is the region which was detected as a spatial cluster and is ; if no spatial
clusters were detected.
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than the actual cluster. The specificity is very high indicating whether the detected cluster does not
include a given area, that area with high probability is not actually a cluster.

The next set of simulations evaluated the effect of covariate adjustment on cluster detection. In
particular we are evaluating the assumption that the proposed spatial cluster detection method is
valid even when there is dependence between the covariate and spatial location. We assumed 4
repeated measures and 300 observations for this simulation study. We first simulated the outcome
data following the procedure described for type I error. For simplicity, we will assume only one
covariate and that the covariate stays constant over time (Xik ¼ Xi). To create dependence between
the covariate and outcome we simulate Xi � Bernoulli(0:10þ nSYi) where n is a parameter de-
picting the degree of dependence between covariate and outcome. Then to create dependence
between location and both the covariate and outcome we simulated Ai � Bernoulli(cSYi þ gXi)
where g and c are parameters depicting the degree of dependence between covariate and cluster and
outcome and cluster, respectively. Given Ai we simulated ðxi; yiÞ as described for the power cal-
culation. We ran simulations varying g to be 0, 0.1, and 0.2, n to be sequenced from 0.05 to 0.20 by
0.05, and c to be 0 (no spatial cluster) and 0.15.

Table 2 displays the results from the simulation study evaluating the influence of covariate
adjustment. When there was no actual spatial cluster (c5 0) that existed independent of the
relationships between the covariate, Xi, and outcome, Yij , and the covariate and spatial location, Ai,
the type I error was held at less than 0.05 when the cumulative geographic residual method was
adjusted for Xi. However, when not adjusting for Xi as the dependence between Xi and Yij increases
(n increases) and Xi and Ai increases (g increases) the power increases as would be expected. For the
simulation when there is a spatial cluster (c5 0.15) when not adjusting for Xi the power increases as
both g and n increase, but when adjusting for Xi the power does not remain constant, but decreases
as the dependence between Xi and Yij increases (n increases) and dependence between Xi and Ai

increases (g increases). A potential reason why the power decreases when adjusting for Xi, instead of
remaining relatively constant, may be due to Yij being a binary outcome and therefore when
simulating Yij dependent on Xi affects both the mean and variance of YijjXi. In a simulation study
not shown for continuous outcome data, when there is no direct mean and variance relationship, the
power remained constant when adjusting for the covariate. Therefore, this observation may not be
due to the cluster detection method, but due to the nature of the outcome.

Figure 1 Grid system of study area for power simu-
lation data sets.
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Overall in this simulation section we have shown that the proposed cumulative geographic re-
sidual method holds the appropriate type I error with and without adjusting for covariates and
power follows expected patterns as it increases with increased sample size, increased number of
repeated measures, and increased dependence between outcome and spatial location. In the next
section, the proposed cumulative geographic residual method will be applied to the repeated
measured outcome wheeze.

4 Home Allergens and Asthma Study Analysis

We now apply the proposed method to the Home Allergens and Asthma prospective cohort study
with the longitudinal outcome wheeze in the last 6 months. The study was designed to investigate
potential environmental exposures and their relationship to childhood asthma and other respiratory
outcomes. A total of 499 study participants were enrolled in the study after being born at Brigham
and Women’s hospital in Boston, MA USA between September 1994 to June 1996. Details of the
study design have been previously published by Celedon et al. (1999). Of those 499 study partici-
pants, only 478 were used for this analysis due to the inability to geocode the missing participants’
birth addresses. The investigators for this analysis were interested in areas of significant disease
clusters for a range of outcomes. For this analysis we will study the clusters of the outcome repeated
wheeze in the first four years of life. Therefore, the repeated measures will be observed at ages 6, 12,
18, 24, 30, 36, 42, and 48 months.

The study area is a diverse population with a range of SES levels. Figure 2 displays the median
family income level in the study population. Previous analysis on the mothers of the infants
screened for the study had found elevated IgE levels, an indicator of allergic response, in southern
Boston, Chelsea, and Revere areas (Litonjua et al., 2007). These areas also correspond to lower
median family areas indicating a relationship between disparity and allergic reaction.

Table 2 Evaluation of the effect of covariate adjustment on the properties of the cumulative
geographic residual test for different degrees of dependence between outcome and covariate and

between covariate and location.

n No cluster (c5 0) Cluster (c5 0.15)

Unadjusted power Adjusted power Unadjusted power Adjusted power

0.05 0.034 0.040 0.885 0.867
Independence 0.10 0.023 0.025 0.884 0.840
(g ¼ 0) 0.15 0.038 0.035 0.872 0.797

0.20 0.031 0.025 0.871 0.741

Moderate 0.05 0.037 0.038 0.902 0.862
dependence 0.10 0.037 0.033 0.914 0.819
(g ¼ 0:10) 0.15 0.044 0.030 0.937 0.784

0.20 0.051 0.020 0.936 0.706

Strong 0.05 0.045 0.035 0.921 0.870
dependence 0.10 0.062 0.033 0.945 0.817
(g ¼ 0:20) 0.15 0.079 0.026 0.978 0.793

0.20 0.102 0.032 0.983 0.699

Power ¼ 1
1000

P1000
j¼1

Iðpvaluej � 0:05Þ

.
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A spatial cluster detection analysis on the children up to age four in this study using censored
outcomes asthma, allergic rhinitis/hayfever, and eczema found a significant cluster of the censored
outcome asthma in southern Boston, Chelsea, Revere, and their neighboring towns, but for the
censored outcome allergic rhinitis/hayfever the significant cluster resided in the western, more
affluent, towns (Cook et al., 2007). It is of interest to display significant disease clusters for the
outcome wheeze since it may be less vulnerable to underdiagnosis in lower SES areas compared with
the previous outcomes, particularly hayfever (Strunk, Ford, and Taggart, 2000). We hypothesize
that a cluster will exist in the southern less affluent Boston area early in life, similar to the asthma
cluster found in Cook et al. (2007), since the area has higher IgE levels (Litonjua et al., 2005) and
lower median family income (Fig. 2) and location of the cluster will change over time. One reason
for the change in location over time could be due to the differential drop-out within lower SES and
minority areas and therefore over time the cluster may move to more affluent areas. To infer
whether the cluster location movement over time is due to exposure change, or loss to follow-up, we
ran the analysis using all of the data (full data) and then checked for comparable results using only
the observations of study participants with complete follow-up up to age four (complete follow-up).
Note that we will present results only for the full data set since the complete data set results did not
change results substantially, except p-values were higher since we have fewer subjects in the com-
plete data set (Table 3).

First, we ran a GEE model without considering spatial clusters to assess change in percent wheeze
by age. Owing to the exploratory nature of all analyses in this manuscript, we did not adjust for
other predictors except age. We used a profile mean model on age and an unstructured correlation
structure with robust standard errors from the sandwich estimator. Table 3 summarizes the results
for two analyses that ran the GEE model for the full data set and the complete follow-up
subset. Note that estimates, and corresponding 95% confidence intervals, do not change
significantly depending on the full data set versus complete data set indicating missingness may be

Figure 2 Indicated areas of low, medium, and high median family income by US
census tract in the study population area.
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missing completely at random as assumed by the GEE. Overall, there is a definite change
in probability of wheeze over time indicated by a significant drop in wheeze rates after age 30
months.

It is of interest to assess if the environmental exposure is influenced by earlier months, i.e. the
birth location, current location, or complete location history is the important predictor. To answer
this question we ran three analyses (i) keeping location constant as birth location, (ii) location as the
current location at evaluation, and (iii) a weighted history of location with weights determined as
length of time resided in a particular location.

Results for the three analyses are reported in Table 4 and Figs. 3–5. The only significant
(a-level5 0.05) spatial cluster detected was at 6 months in the urban coastal Boston area. This is in a
similar area in which the censored outcome time to asthma and time to eczema found significant
clusters. The spatial clusters moved over time, starting in the urban coastal Boston area, and slowly
moving toward the southern, more suburban, study area. The movement of clusters is not
statistically significant since there are no significant clusters found for any time points after 6
months. However, this could be due to power issues since the prevalence of wheeze decreases over
time.

Table 3 Estimated probability wheeze per time period for all study participants and subset with
complete follow-up.

AGE Full data Complete follow-up

N p (95% CI) N p (95% CI)

6 Mos 494 0.22 (0.18, 0.26) 414 0.21 (0.18, 0.25)
12 Mos 494 0.27 (0.23, 0.31) 414 0.26 (0.22, 0.30)
18 Mos 486 0.20 (0.17, 0.24) 414 0.19 (0.16, 0.23)
24 Mos 487 0.21 (0.17, 0.24) 414 0.21 (0.17, 0.25)
30 Mos 471 0.12 (0.10, 0.16) 414 0.12 (0.09, 0.16)
36 Mos 462 0.10 (0.08, 0.13) 414 0.10 (0.07, 0.13)
42 Mos 455 0.12 (0.09, 0.15) 414 0.11 (0.08, 0.15)
48 Mos 460 0.11 (0.09, 0.15) 414 0.12 (0.09, 0.16)

Table 4 Summary of results from the cumulative geographic residual test by time point and
location definition indicating probability of wheeze within and outside cluster at each time point.

Birth Current Weighted

Na) pin pout Sloc (p-value) Na) pin pout Sloc (p-value) Na) pin pout Sloc (p-value)

6 Mos 147 0.32 0.17 3.9 (0.04) 147 0.32 0.17 3.9 (0.04) 147 0.32 0.17 3.9 (0.04)
12 Mos 46 0.57 0.25 3.0 (0.13) 55 0.51 0.25 2.9 (0.23) 53 0.52 0.25 2.9 (0.24)
18 Mos 104 0.31 0.18 2.9 (0.38) 198 0.27 0.17 3.2 (0.16) 100.4 0.31 0.18 2.9 (0.34)
24 Mos 123 0.28 0.18 1.8 (0.56) 111 0.30 0.18 2.7 (0.41) 159.1 0.27 0.18 2.7 (0.40)
30 Mos 102 0.22 0.10 3.7 (0.28) 88 0.23 0.10 3.6 (0.26) 95.7 0.22 0.10 3.7 (0.16)
36 Mos 72 0.18 0.09 2.9 (0.75) 157 0.14 0.08 3.1 (0.53) 109.4 0.15 0.09 2.5 (0.78)
42 Mos 64 0.23 0.10 3.2 (0.44) 67 0.22 0.10 3.1 (0.45) 54.9 0.26 0.10 3.4 (0.35)
48 Mos 111 0.16 0.10 2.2 (0.94) 16 0.38 0.11 1.8 (0.90) 14.7 0.38 0.11 1.7 (0.97)

a) N denotes the total number, or weighted number, of addresses that reside in the potential spatial
cluster.
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It is interesting to note that the performance of the cumulative spatial cluster detection is dependent on
the size of cluster detected and strength of cluster detected. The 6 months cluster comprises 31%ð171=478Þ
of the study population and was in an area with 32% prevalence of wheeze in the first 6 months compared
with 17% prevalence in the rest of the study population (Table 3). At 12 months, the cluster detected,

Figure 3 Spatial cluster detection every 6 months using birth place address.

812 A. J. Cook, D. R. Gold and Y. Li: Longitudinal spatial cluster detection

r 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



assuming birth address, comprises of only 10% of the study population, but had a much larger difference
in prevalence of wheeze of 57% compared with 25% even though the p-value was 0.13. There is a trade off
between prevalence, effect size, and size of cluster that needs to be further explored to assess the
performance of this method, but this case example indicates that the cumulative geographic residual
method has more power to detect clusters of larger size.

Figure 4 Spatial cluster detection every 6 months using current address.
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5 Discussion

In this manuscript we have proposed a new spatial cluster detection method for repeated measured
outcomes utilizing cumulative geographic residuals. Applying the new method, we detected a

Figure 5 Spatial cluster detection every 6 months using cumulative address history.
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significant cluster of wheeze in urban Boston for age 6 months. Further research is being conducted
to look into which exposures in urban Boston may be influencing this disease cluster, such as air
pollution.

We also performed type I error and power calculations for the cumulative geographic
residual method. Type I error was held at the appropriate a-level under the null of no
spatial clusters. By increasing the number of individuals, and repeated measures, power was shown
to increase substantially. Therefore, the method is performing as expected and is valid for
spatial cluster detection of repeated measured outcomes. Future work exploring the pro-
perties of the cumulative residual method, particularly how power is effected by cluster size,
effect size, and overall incidence rates would be of interest to assess the performance of the
method.

The importance of using the time-dependent cumulative geographic residual method
was presented as being able to pinpoint the location and time of significant clusters. This
method can be used to explore hypotheses and assess changes of outcomes and exposures over
time which virtually no previous spatial cluster detection methods have directly been able to
assess.

Supplementary Material

Software for the method can be found at http://faculty.washington.edu/acook
developed in the R statistical package (R Development Core Team, 2009).
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Appendix A

A.1 Asymptotic distribution of Wlocðx1;x2jbÞ and Ŵ locðx1; x2jbÞ, given the observed data

and independence between YijXi and ri; si, for the cumulative geographic residual

Throughout this proof we assume that gð:Þ (1) is the correct link function between Yi and Xi. We
also assume that YijXi and location, ðsi; riÞ, are independent. This may be violated when Xi and
ðsi; riÞ are dependent. We further assume that Xi; ri, and si are bounded.

Consider the following one-term Taylor series expansion of Wlocðx1;x2jbÞ at b:

Wlocðx1;x2jbÞ ¼
1ffiffiffi
n
p
Xn
i¼1

Iðri; sijb;x1; x2Þ
Tei

¼
1ffiffiffi
n
p
Xn
i¼1

Iðri; sijb;x1;x2Þ
Tei

þ
1

n

Xn
i¼1

Iðri; sijb;x1;x2Þ
TDi

ffiffiffi
n
p
ðb̂� bÞ þ opð1Þ:

ð5Þ

where ei ¼ Yi � g�1ðXibÞ, ei ¼ g�1ðXib̂Þ, b, b̂, and Di are defined as in Section 2.1.
It was shown in Section 2.1 that given the the conditional mean of Yi, EðYijXiÞ is correctly linked

to Xi through gð:Þ, the
ffiffiffi
n
p
ðb̂� bÞ converges as n!1 to a zero-mean Gaussian distribution with

covariance matrix,
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Xn
i¼1

DT
i V
�1
i Di

 !�1Xn
i¼1

DT
i V
�1
i eie

T
i V
�1
i Di

Xn
i¼1

DT
i V
�1
i Di

 !�1
:

This implies that Wlocðx1;x2jbÞ is asymptotically equivalent to

~W locðx1;x2jbÞ ¼
1ffiffiffi
n
p
Xn
i¼1

Iðri; sijb;x1;x2Þ
Tei

þ
1

n
nTðx1; x2; bjbÞ

1

n

Xn
j¼1

DT
j V
�1
j Dj

 !�1

�
1ffiffiffi
n
p
Xn
i¼1

DT
i V
�1
i ei

¼
1ffiffiffi
n
p
Xn
i¼1

Iðri; sijb;x1;x2Þ
T
þ

1

n
nTðx1;x2; bjbÞðBÞ

�1DT
i V
�1
i

� �
ei:

where B ¼ n�1
Pn

j¼1 DT
j V
�1
j Dj.

We will first establish the tightness of ~Wlocðx1; x2jbÞ, which implies the tightness ofWlocðx1;x2bjbÞ.
By the law of large numbers B converges to a constant matrix as n!1. By the uniform law of
large numbers n�1nðx1;x2; bjbÞ converges as n!1 uniformly in x1, x2, and b, to a nonrandom
function. Therefore,

1ffiffiffi
n
p

1

n
nTðx1;x2; bjbÞ

� �
ðBÞ�1

Xn
i¼1

DT
i V
�1
i ei

converges as n!1 to Gaussian process and therefore is tight. Since
Pn

i¼1 Iðri; sijb;x1; x2Þ
Tei is the

sum of monotonic step functions and therefore manageable (Pollard, 1998) and by the functional
central limit theorem it is tight. Hence, the entire process ~W locðx1;x2jbÞ is tight yielding
Wlocðx1;x2jbÞ is tight.

For fixed ðx1;x2Þ, ~W locðx1;x2jbÞ is a sum of n independent and identically distributed zero-mean
random vectors since EðeiÞ ¼ 0. By the multivariate central limit theorem, the finite-dimensional
distributions of ~W locðx1; x2jbÞ are asymptotically zero-mean normal, implying the same for
Wlocðx1;x2jbÞ. This fact, together with thetightness of Wlocðx1;x2jbÞ, implies that Wlocðx1;x2jbÞ
converges as n!1 weakly to a zero-mean Gaussian process with the covariance function between
ðx1a;x2aÞ and ðx1b;x2bÞ being

lim
n!1

1

n

Xn
i¼1

f½Iðri; sijb;x1a; x2aÞ
T
þ

1

n
nTðx1a; x2a; bjbÞðBÞ

�1DT
i V
�1
i �eig

� f½Iðri; sijb; x1b;x2bÞ
T
þ

1

n
nTðx1b;x2b; bjbÞðBÞ

�1DT
i V
�1
i �eig

Next we will establish the weak convergence distribution of Ŵ locðx1;x2jbÞ. Conditional on the data
ðYik;Xik; rik; tikÞ ði ¼ 1; . . . ; n; k ¼ 1; . . . ;KiÞ, the only random components in Ŵ locðx1;x2jbÞ are
ðG1; . . . ;GnÞ. Thus, it follows from the multivariate central limit theorem that, conditional on the
data, the finite-dimensional distributions of Ŵ locðx1; x2jbÞ are asymptotically zero-mean normal as
n!1. Since Ŵ locðx1;x2jbÞ consists of monotone functions in ðx1;x2Þ, which are manageable, the
functional central limit theorem implies that Ŵ locðx1;x2jbÞ is tight.
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The conditional covariance function of Ŵ locðx1;x2jbÞ at ððx1a; x2aÞ; ðx1b;x2bÞÞ is,

1

n

Xn
i¼1

fIðri; sijb;x1a;x2aÞ
Tei þ nTðx1a; x2a; bjb̂ÞðB̂Þ

�1D̂
T

i V̂
�1

i eig

� fIðri; sijb;x1b;x2bÞ
Tei þ nTðx1b;x2b; bjb̂ÞðB̂Þ

�1D̂
T

i V̂
�1

i eig

which converges as n!1 to the same deterministic limit as the covariance function of
Wlocðx1;x2jbÞ. Therefore, Wlocðx1;x2jbÞ and Ŵ locðx1;x2jbÞ converge to the same limiting zero-mean
Gaussian process as n!1.

Appendix B

B.1 Simulated repeated measures data

To simulate the repeated measured data under an exchangeable correlation structure we conducted
the following simulation design for the different number of repeated observations holding the
overall probability of being a case to be approximately 0.2.

Three repeated measures: Generate n multivariate normal outcome, Zi � N3ðð�0:1; 0; 0:1Þ
T;VÞ,

where V is a 3� 3 matrix with diagonal elements 1 and off diagonal elements r ¼ 0:2. Then define
binary repeated measures outcome, Yij ¼ IðZij � 0:85) to use for analyses.

Four repeated measures: Generate n multivariate normal outcome, Zi ¼ N4ðð�0:1;�0:05;
0:05; 0:1ÞT;VÞ, where V is a 4� 4 matrix with diagonal elements 1 and off diagonal elements r ¼ 0:2.
Then define binary repeated measures outcome, Yij ¼ IðZij � 0:85) to use for analyses.

Five repeated measures: Generate n multivariate normal outcome, Zi ¼ N5ðð�0:1;�0:05; 0;
0:05; 0:1ÞT;VÞ, where V is a 5� 5 matrix with diagonal elements 1 and off diagonal elements r ¼ 0:2.
Then define binary repeated measures outcome, Yij ¼ IðZij � 0:845) to use for analyses.
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