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Web Appendix A. Some details for the simulation study in Section 6

Web Appendix A.1 Preliminary simulations for time-invariant exposures

We considered a conditional normal error model with a time-invariant covariate, with key

parameters motivated by the Health Professionals’ Follow-up Study (HPFS) as considered

in Section 7. In this model, we first generated the true exposure c ∼ N(E(c), Var(c)) with

E(c) = 0.45, Var(c) = 0.0225 as in HPFS. The surrogate exposure C has E(C) = 0.5,

Var(C) = 0.04. Define ω = Var(C)/Var(c). For each c, we generated the surrogate exposure C

from the conditional distribution C|c, which also had a normal distribution with conditional

mean E(C|c) = α+ξc and variance Var(C|c) = ω(1−ρ2)Var(c), where ρ = Corr(c, C), which

we allowed to vary as 0.3, 0.6, 0.9, ξ = ρ
√

ω and α = E(C) − ξE(c).

The survival time T 0 was generated by T 0 = 1
ν
(−e−βc log(1 − U1))

1/θ with U1 ∼ U(0, 1).

Then, the follow-up time, T = min(T 0, V, t∗), for t∗ = 50 and V is the censoring time

assuming to be exponential with a rate of 1% per year. And, the event indicator, D =

I(T 0 6 min(V, t∗)).

The simulation results are given in Web Table 1. We found equally good performance of the

ORC and RRC methods with Var(c) = 0.0225. When we increased Var(c) to be greater than

1, for example, as shown in lower part of Web Table 1, with the means chosen as previously,

but with Var(c) = 1.0 and Var(C) = 2.0, then the results indicated a clear advantage of the

RRC method over the ORC method, especially in the common disease situation. Additional

simulations demonstrated that this advantage became even greater when Var(c) got even

bigger (data not shown).

Web Figure 1 shows the percent change in the regression slope α̂1(t) as a function of the

failure time t, where the percent change of α̂1(t) is with respect to the value of α̂1 from the

ORC method, and is defined as 100∗ [α̂1(t)− α̂1]/α̂1. We fitted a lowess smoother to the data

from 1000 simulations. We can see from Web Figure 1 that, with a relatively big variance,
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i.e. Var(c) = 1 in the conditional normal error model, there was a big change of α̂1(t) with

respect to the baseline value of α̂1 estimated by ORC when the disease was common, while

the change was much smaller when the disease was rare. However, with a small variance, i.e.

Var(c) = 0.0225, the changes in α̂1(t) over time were both very small no matter whether the

disease was common or rare. This exactly explained why the RRC estimates were superior

in the scenario with big Var(c), especially in the common disease situation, and agreed with

the results presented in Web Table 1.

[Web Table 1 about here.]

[Web Figure 1 about here.]

Web Appendix A.2 Simulation of survival data for time-varying exposures

The following is the way to generate the survival time T 0 for cumulatively updated average

exposure x(t).

The cumulative incidence function for T 0 was

F (t|x(t)) = 1 − exp(−
∫ t

0

λ(s|x(s)) ds) = 1 − exp(−θνθ

∫ t

0

sθ−1 exp(βx(s)) ds) (A.1)

If tk 6 t < tk+1 for some integer k, we next derived the cumulative incidence function for

the cumulatively updated average exposure, x(t), which is

F (t|x(t)) = 1 − exp

{

−θνθ

(

k−1
∑

i=0

∫ ti+1

ti

sθ−1 exp(βx(s)) ds +

∫ t

tk

sθ−1 exp(βx(s)) ds

)}

= 1 − exp

{

−θνθ

(

k−1
∑

i=0

exp(βx(ti))

∫ ti+1

ti

sθ−1 ds + exp(βx(tk))

∫ t

tk

sθ−1 ds

)}

= 1 − exp

{

−νθ

(

k−1
∑

i=0

exp(βx(ti))(t
θ
i+1 − tθi ) + exp(βx(tk))(t

θ − tθk)

)}

(A.2)

with t0 = 0, x(0) = 0. For each subject i, we generated the censoring time Vi in the same
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way as in Web Appendix A.1. Then, for each subject i, we calculated Fij using (A.2) as

Fij = 1 − exp

{

−νθ

(

j−1
∑

u=0

exp(βxi(tu))(t
θ
u+1 − tθu)

)}

at each observation time tj , j = 1, · · · , p. After generating Ui ∼ U(0, 1), if Fij 6 Ui < Fi,j+1,

we solved the following equation for t:

Ui = 1 − exp

{

−νθ

(

j−1
∑

i=0

exp(βx(ti))(t
θ
i+1 − tθi ) + exp(βx(tj))(t

θ − tθj )

)}

. (A.3)

Then the solution of (A.3) will be the survival time, which is given by

T 0
i =

{

tθj − exp(−βx(tj))

(

ν−θ log(1 − Ui) +

j−1
∑

i=0

exp(βx(ti))(t
θ
i+1 − tθi )

)}

1

θ

. (A.4)

If Ui > Fi,p, then we set T 0
i to be a big constant M > t∗. The follow up time Ti =

min(T 0
i , Vi, t

∗) and Di = I(T 0
i 6 min(Vi, t

∗)).

Web Appendix A.3 Simulation results for time-varying exposures

Web Table 2 presents the complete results for the CS covariance structure using ρICS
=

0.3, 0.6, 0.9 through different scenario. Web Table 3 presents the results for the AR(1)

covariance structure using ρIAR
= 0.938, 0.978, 0.996, which can be compared with the results

in Web Table 2.

[Web Table 2 about here.]

[Web Table 3 about here.]

Web Appendix B. Asymptotic distribution theory for β̂RRC

Web Appendix B.1 Approximate consistency of β̂RRC

We assume the following regularity conditions:

1. supt∈[0,t∗]‖α̂0(t) −α0(t)‖
p−→ 0, supt∈[0,t∗]‖α̂1(t) −α1(t)‖

p−→ 0,

supt∈[0,t∗]‖α̂2(t) −α2(t)‖
p−→ 0.

2. s(0)(β, t), s(1)(β, t) and s(2)(β, t) are continuous functions of β ∈ B, uniformly in t ∈
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[0, t∗]. s(0)(β, t), s(1)(β, t) and s(2)(β, t) are bounded on B × [0, t∗]; s(0)(β, t) is bounded

away from zero on B × [0, t∗].

3. Define

S(2)(β, t) = n1
−1

n1
∑

i=1

Ym(i, t)







x̂i(t)

Zi(t)







⊗2

exp{β′
1x̂i(t) + β′

2Zi(t)},

then for j = 0, 1, 2, supt∈[0,t∗],β∈B‖S(j)(β, t) − s(j)(β, t)‖ p−→ 0. For a vector v, we denote

v⊗0 = 1, v⊗1 = v, v⊗2 = vv′.

Denote the left-hand side of equation (6) as U(β) and notice that U(β) = ∂L(β)/∂β,

where L(β) is the log-likelihood function with the expression:

n−1
1 L(β) = n−1

1

n1
∑

i=1

∫ t∗

0

[(β′
1x̂i(t) + β′

2Zi(t)) − log{S(0)(β, ψ̂, t)}]Ni(dt).

We can show that, under the regularity condition 1 - 3, n−1
1 L(β)

P−→ H(β) with

H(β) =

∫ t∗

0

[β′s(1)(t) − log{s(0)(β, t)}s(0)(t)] dt

for each β in its parameter space B, with s(m)(β, t) and s(m)(t) defined as follows:

s(m)(β, t) = E









Ym(t)







x̃i(ψ̂, t)

Zi(t)







⊗m

exp{β′
1x̃(t) + β′

2Z(t)}









,

where x̃(t) = α0(t) +α1(t)X(t) +α2(t)Z(t), and

s(m)(t) = λ0(t)E









Ym(t)







x̃i(ψ̂, t)

Zi(t)







⊗m

E {exp(β′
01x(t) + β′

02Z(t))|T > t,X(t),Z(t)}









,

where m = 0, 1, 2, β0 = (β′
01,β

′
02) is the true value of β = (β′

1,β
′
2).

Then, the first derivative, h(β)
.
= ∂H(β)/∂β, is

h(β) =

∫ t∗

0

[s(1)(t) − {s(1)(β, t)/s0(β, t)}s(0)(t)] dt
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and the second derivative, −I(β)
.
= ∂2H(β)/∂β2, is

−I(β) = −
∫ t∗

0

[

s(2)(β, t)

s(0)(β, t)
−
{

s(1)(β, t)

s(0)(β, t)

}⊗2
]

s(0)(t) dt.

We assume I(β) is positive definite, then the second derivative is negative definite. Set

h(β∗) = 0, thus H(β) is a concave function with a unique maximum at β = β∗. Since β̂RRC

maximizes the concave function n−1
1 L(β), by convex analysis (Andersen and Gill, 1982), we

have β̂RRC
P−→ β∗.

Web Appendix B.2 Asymptotic normality of β̂RRC

Since the regression coefficients ψ(t) = (α0(t),α1(t),α2(t)) are estimated from the validation

study, the variability of these estimates needs to be taken into account. We write the score

equation (6) as U(β,ψ) to indicate explicitly the dependence on ψ(t). Denote the true value

of ψ(t) by ψ0(t), which is now estimated by ψ̂(t). Then, our estimating equation (6) is now

U(β̂RRC , ψ̂) = 0. Using Taylor’s theorem, we can write

0 = U(β̂RRC , ψ̂) ≈ U(β∗,ψ0) +
∂U(β∗,ψ0)

∂β
(β̂RRC − β∗) +

∂U(β∗,ψ0)

∂ψ
(ψ̂ −ψ0).

Then,

n
1

2

1 (β̂RRC − β∗) ≈
[

−n−1
1 · ∂U(β∗,ψ0)

∂β

]−1

· n−
1

2

1

[

U(β∗,ψ0) +
∂U(β∗,ψ0)

∂ψ
(ψ̂ −ψ0)

]

.

Set

Î(β∗) = −n−1
1

∂U(β∗,ψ0)

∂β
= n−1

1

n1
∑

i=1

∫ t∗

0

[

S(2)(β∗, t)

S(0)(β∗, t)
−
{

S(1)(β∗, t)

S(0)(β∗, t)

}⊗2
]

Ni(dt),

then it can be easily verified that Î(β∗)
P−→ I(β∗) by following the proof in Anderson and

Gill(1982). The matrix Î(β∗) can be estimated by Îβ in (12).

Also, it can be shown by following an argument similar to one used in the proof of theorem

2.1 in Lin and Wei (1989), that n
−

1

2

1 U(β∗) is asymptotically equivalent to n
−

1

2

1

∑n1

i=1 Gi(β
∗),
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where

Gi(β
∗) =

∫ t∗

0

















x̂i(t)

Zi(t)






− s(1)(β∗, t)

s(0)(β∗, t)











Ni(dt)

−
∫ t∗

0

Ym(i, t) exp(β∗
1x̂i(t) + β∗

2Zi(t))

s(0)(β∗, t)

















x̂i(t)

Zi(t)






− s(1)(β∗, t)

s(0)(β∗, t)











F̃ (dt)

with F̃ (t) = E(
∑n1

i=1 Ni(t)/n1).

So n
−

1

2

1 U(β∗)
D−→ N(0,M1(β

∗)) by the multivariate central limit theorem, with M1(β
∗) =

E(Gi(β
∗)⊗2), which can be estimated by Ĥβ in (13).

To show the asymptotic normality of ψ̂, denote the left-hand side of (8) as Uψ(ψ). Then

Uψ(ψ̂) = 0. By the Taylor theorem, we have

0 = Uψ(ψ̂) ≈ Uψ(ψ0) +
∂Uψ

∂ψ
(ψ0)(ψ̂ −ψ0),

and it follows that

n
1

2

2 (ψ̂ −ψ0) ≈ −
[

1

n2

∂Uψ

∂ψ
(ψ0)

]−1

n
−

1

2

2 Uψ(ψ0)

Hence, similar reasoning shows that n
1

2

2 (ψ̂ − ψ0)
D−→ N(0,M2(ψ0)) and M2(ψ0) can be

estimated by V̂ψ̂ in (10).

Therefore, n
1

2

1 (β̂ − β∗) is asymptotically normal with zero mean and covariance matrix

V (β∗) = Î(β∗)−1M̃(β∗)Î(β∗)−1, with M̃(β∗) = M1(β
∗) + 1

n1n2

∂U(β∗ ,ψ0)
∂ψ

M2(ψ0)(
∂U(β∗,ψ0)

∂ψ
)′.

V (β∗) can be consistently estimated by Î−1
β Ĥβ,ψÎ

−1
β in (11).
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Web Figure 1. Plots were based on α̂1(t) from the conditional error model simulation
with both Var(c) = 1.0 and Var(c) = 0.0225 scenario, ρ = Corr(c, C) = 0.3.
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Web Table 1

Results for simulation of time-invariant exposure with a conditional normal error model, for different correlation ρ
between c and C.

Estimated β̂(ŜE[β̂]) Percent Bias(%) 95% CI Coverage(%)
ρ Naive ORC RRC Naive ORC RRC Naive ORC RRC

Parameters : E(c) = 0.45, Var(c) = 0.0225, E(C) = 0.5, Var(C) = 0.04

n1 = 50000, n2 = 150, Rare disease

0.3 0.114(0.223) 0.590(1.361) 0.559(1.313) -77.2 18.0 11.7 59.9 96.9 98.1

0.6 0.226(0.223) 0.509(0.509) 0.512(0.514) -54.7 1.7 2.4 76.2 95.5 95.4

0.9 0.339(0.223) 0.504(0.333) 0.505(0.333) -32.2 0.7 1.0 88.7 95.2 94.7

n1 = 50000, n2 = 500, Rare disease

0.3 0.114(0.223) 0.524(1.029) 0.539(1.052) -77.2 4.9 7.9 58.1 95.9 96.6

0.6 0.224(0.223) 0.500(0.500) 0.501(0.502) -55.2 0.0 0.3 75.6 96.4 96.7

0.9 0.335(0.223) 0.497(0.331) 0.497(0.331) -33.0 -0.6 -0.6 87.7 95.5 95.3

n1 = 1000, n2 = 150, Common disease

0.3 0.109(0.224) 0.503(1.112) 0.512(1.275) -78.1 0.6 2.4 58.7 97.6 98.6

0.6 0.230(0.225) 0.520(0.513) 0.523(0.527) -54.0 4.0 4.6 78.2 95.2 95.9

0.9 0.341(0.225) 0.505(0.334) 0.507(0.336) -31.7 1.0 1.3 88.9 94.7 95.4

n1 = 1000, n2 = 500, Common disease

0.3 0.115(0.225) 0.515(1.034) 0.530(1.086) -77.1 3.1 6.0 59.4 95.7 96.7

0.6 0.227(0.224) 0.508(0.503) 0.509(0.506) -54.5 1.6 1.7 77.0 95.9 96.0

0.9 0.334(0.225) 0.494(0.333) 0.494(0.334) -33.3 -1.2 -1.1 88.3 94.7 95.0

Parameters : E(c) = 0.45, Var(c) = 1.0, E(C) = 0.5, Var(C) = 2.0

n1 = 50000, n2 = 150, Rare disease

0.3 0.107(0.032) 0.557(0.316) 0.566(0.327) -78.6 11.4 13.2 0.0 94.8 93.8

0.6 0.211(0.032) 0.505(0.095) 0.507(0.103) -57.7 0.9 1.5 0.0 96.0 95.5

0.9 0.319(0.032) 0.502(0.054) 0.503(0.056) -36.3 0.4 0.7 0.0 94.5 94.9

n1 = 50000, n2 = 500, Rare disease

0.3 0.105(0.032) 0.508(0.172) 0.516(0.185) -79.0 1.6 3.2 0.0 95.8 95.8

0.6 0.212(0.032) 0.501(0.081) 0.503(0.084) -57.6 0.2 0.6 0.0 95.8 95.8

0.9 0.318(0.032) 0.500(0.051) 0.500(0.052) -36.5 -0.1 0.0 0.0 95.9 95.6

n1 = 1000, n2 = 150, Common disease

0.3 0.095(0.032) 0.474(0.220) 0.494(0.276) -81.1 -5.3 -1.1 0.0 89.1 89.1

0.6 0.198(0.032) 0.473(0.095) 0.506(0.116) -60.4 -5.3 1.3 0.0 91.6 93.8

0.9 0.311(0.033) 0.490(0.056) 0.500(0.061) -37.7 -2.1 0.0 0.0 94.6 95.6

n1 = 1000, n2 = 500, Common disease

0.3 0.095(0.032) 0.457(0.170) 0.506(0.207) -81.0 -8.6 1.3 0.0 93.6 95.1

0.6 0.198(0.032) 0.468(0.082) 0.500(0.093) -60.5 -6.4 0.0 0.0 91.3 94.7

0.9 0.310(0.033) 0.487(0.053) 0.497(0.056) -38.0 -2.6 -0.5 0.0 94.3 95.6

True β = 0.5, the study duration t∗ = 50, the number of simulation replications B = 1000.
In the rare disease situation, the cumulative incidence is about 1% with n1 = 50000.
In the common disease situation, the cumulative incidence is about 50% with n1 = 1000.
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Web Table 2

Results for simulation of cumulatively updated average exposure with a compound symmetry covariance structure,
for different intra-class correlation ρICS

.

Estimated β̂(ŜE[β̂]) Percent Bias(%) 95% CI Coverage(%)
ρICS

ρ Naive RRC Naive RRC Naive RRC

n1 = 50000, n2 = 150, Rare disease

0.3 0.3 0.117(0.036) 0.502(0.179) -76.6 0.4 0.0 95.6
0.6 0.318(0.058) 0.500(0.098) -36.3 0.1 12.8 94.1
0.9 0.464(0.070) 0.499(0.077) -7.3 -0.3 91.2 95.6

0.6 0.3 0.172(0.032) 0.509(0.118) -65.6 1.7 0.0 95.0
0.6 0.373(0.048) 0.498(0.069) -25.4 -0.4 24.5 95.6
0.9 0.474(0.054) 0.495(0.057) -5.1 -0.9 92.6 94.9

0.9 0.3 0.212(0.030) 0.502(0.090) -57.5 0.3 0.0 94.2
0.6 0.405(0.041) 0.503(0.056) -19.1 0.6 37.4 95.0
0.9 0.486(0.045) 0.501(0.047) -2.9 0.2 92.8 94.5

n1 = 50000, n2 = 500, Rare disease

0.3 0.3 0.119(0.036) 0.501(0.157) -76.2 0.2 0.0 94.5
0.6 0.313(0.058) 0.489(0.093) -37.3 -2.1 9.0 95.2
0.9 0.460(0.070) 0.494(0.076) -8.0 -1.1 90.8 93.7

0.6 0.3 0.172(0.033) 0.499(0.101) -65.6 -0.2 0.0 95.0
0.6 0.374(0.048) 0.499(0.066) -25.2 -0.2 24.6 95.2
0.9 0.474(0.054) 0.495(0.057) -5.2 -0.9 91.6 94.4

0.9 0.3 0.215(0.030) 0.506(0.077) -57.0 1.2 0.0 94.9
0.6 0.403(0.041) 0.498(0.052) -19.5 -0.3 34.2 94.4
0.9 0.486(0.045) 0.501(0.047) -2.9 0.2 94.4 95.4

n1 = 1000, n2 = 150, Common disease

0.3 0.3 0.105(0.035) 0.492(0.193) -79.1 -1.5 0.0 94.5
0.6 0.293(0.058) 0.490(0.103) -41.3 -2.1 4.7 94.4
0.9 0.438(0.071) 0.490(0.078) -12.5 -2.0 87.3 95.6

0.6 0.3 0.153(0.033) 0.509(0.135) -69.4 1.8 0.0 94.1
0.6 0.352(0.049) 0.503(0.076) -29.6 0.7 14.3 94.8
0.9 0.457(0.057) 0.498(0.061) -8.5 -0.5 88.2 95.1

0.9 0.3 0.185(0.031) 0.502(0.107) -62.9 0.3 0.0 94.3
0.6 0.380(0.044) 0.504(0.063) -24.1 0.8 22.0 94.1
0.9 0.466(0.049) 0.501(0.052) -6.8 0.1 89.8 94.6

n1 = 1000, n2 = 500, Common disease

0.3 0.3 0.103(0.035) 0.483(0.167) -79.3 -3.3 0.0 94.7
0.6 0.297(0.058) 0.497(0.096) -40.7 -0.7 6.1 95.4
0.9 0.440(0.071) 0.492(0.077) -12.1 -1.7 86.9 94.7

0.6 0.3 0.152(0.033) 0.498(0.113) -69.6 -0.4 0.0 93.8
0.6 0.348(0.049) 0.497(0.071) -30.5 -0.5 12.5 93.9
0.9 0.460(0.057) 0.501(0.060) -8.0 0.1 89.9 95.0

0.9 0.3 0.187(0.031) 0.504(0.089) -62.5 0.8 0.0 96.2
0.6 0.378(0.044) 0.503(0.059) -24.3 0.5 21.8 93.9
0.9 0.464(0.049) 0.498(0.051) -7.3 -0.4 88.3 95.5

True β = 0.5, the study duration t∗ = 50, the number of simulation replications B = 1000.
In the rare disease situation, the cumulative incidence is about 1% with n1 = 50000.
In the common disease situation, the cumulative incidence is about 50% with n1 = 1000.
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Web Table 3

Results for simulation of cumulatively updated average exposure with an AR(1) covariance structure, for different
intra-class correlation ρIAR

.

Estimated β̂(ŜE[β̂]) Percent Bias(%) 95% CI Coverage(%)
ρIAR

ρ Naive RRC Naive RRC Naive RRC

n1 = 50000, n2 = 150, Rare disease

0.938 0.3 0.202(0.031) 0.500(0.095) -59.7 0.0 0.0 95.2
0.6 0.396(0.043) 0.500(0.059) -20.9 0.0 30.6 94.6
0.9 0.482(0.047) 0.499(0.049) -3.6 -0.3 92.7 94.8

0.978 0.3 0.216(0.030) 0.506(0.089) -56.7 1.2 0.0 94.2
0.6 0.405(0.040) 0.498(0.055) -19.0 -0.5 33.7 95.7
0.9 0.482(0.044) 0.497(0.046) -3.6 -0.7 94.3 96.1

0.996 0.3 0.223(0.029) 0.503(0.085) -55.4 0.7 0.0 94.4
0.6 0.411(0.039) 0.504(0.053) -17.8 0.7 39.5 94.6
0.9 0.486(0.043) 0.501(0.045) -2.7 0.1 93.2 94.5

n1 = 50000, n2 = 500, Rare disease

0.938 0.3 0.204(0.031) 0.501(0.081) -59.2 0.3 0.0 94.5
0.6 0.392(0.043) 0.492(0.055) -21.7 -1.6 25.7 94.6
0.9 0.481(0.047) 0.497(0.049) -3.8 -0.5 92.1 93.5

0.978 0.3 0.216(0.030) 0.498(0.074) -56.9 -0.5 0.0 94.5
0.6 0.405(0.040) 0.499(0.051) -18.9 -0.1 35.4 94.6
0.9 0.481(0.044) 0.496(0.046) -3.8 -0.8 92.4 93.7

0.996 0.3 0.225(0.029) 0.506(0.072) -55.0 1.2 0.0 95.3
0.6 0.409(0.039) 0.498(0.049) -18.3 -0.3 37.1 94.2
0.9 0.486(0.043) 0.501(0.044) -2.7 0.1 94.2 95.1

n1 = 1000, n2 = 150, Common disease

0.938 0.3 0.178(0.031) 0.496(0.109) -64.5 -0.9 0.0 93.7
0.6 0.368(0.045) 0.493(0.065) -26.3 -1.4 17.4 94.8
0.9 0.460(0.050) 0.495(0.054) -8.0 -1.0 87.9 96.0

0.978 0.3 0.190(0.031) 0.507(0.105) -62.0 1.5 0.0 93.5
0.6 0.382(0.044) 0.502(0.062) -23.6 0.5 22.1 94.1
0.9 0.464(0.048) 0.499(0.051) -7.1 -0.3 88.9 95.4

0.996 0.3 0.194(0.030) 0.501(0.101) -61.3 0.1 0.0 93.9
0.6 0.385(0.043) 0.503(0.061) -22.9 0.7 23.1 94.4
0.9 0.467(0.047) 0.501(0.050) -6.6 0.1 89.4 94.3

n1 = 1000, n2 = 500, Common disease

0.938 0.3 0.176(0.031) 0.489(0.092) -64.7 -2.2 0.0 94.6
0.6 0.370(0.045) 0.498(0.060) -25.9 -0.5 17.4 95.6
0.9 0.461(0.050) 0.496(0.053) -7.8 -0.8 88.1 94.4

0.978 0.3 0.189(0.031) 0.497(0.086) -62.1 -0.6 0.0 94.1
0.6 0.378(0.044) 0.498(0.057) -24.4 -0.4 19.9 93.7
0.9 0.467(0.048) 0.501(0.051) -6.7 0.2 89.1 94.1

0.996 0.3 0.195(0.030) 0.503(0.084) -60.9 0.6 0.0 96.3
0.6 0.384(0.043) 0.502(0.056) -23.3 0.3 23.4 93.3
0.9 0.465(0.047) 0.498(0.049) -7.0 -0.3 88.2 95.3

True β = 0.5, the study duration t∗ = 50, the number of simulation replications B = 1000.
In the rare disease situation, the cumulative incidence is about 1% with n1 = 50000.
In the common disease situation, the cumulative incidence is about 50% with n1 = 1000.
ρIAR

= 0.938, 0.978, 0.996 are respectively in an equal footing with ρICS
= 0.3, 0.6, 0.9 according to the equation (15).


