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There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiologic studies. In this article we
propose a new class of semiparametric normal transformation models for right-censored spatially correlated survival data. This class of
models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint
distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivari-
ate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides
a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of
survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the
spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonpara-
metric maximum likelihood estimation in such models is practically prohibited due to the high-dimensional intractable integration of the
likelihood function and the infinite-dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric es-
timating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously.
We study the asymptotic properties of the proposed estimators and show that they are consistent and asymptotically normal. The proposed
method is illustrated with an analysis of data from the East Boston Asthma Study, and its performance is evaluated using simulations.

KEY WORDS: Asymptotic normality; Consistency; Cox model; Cross ratio; Dependence measure; Likelihood; Population-average inter-
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1. INTRODUCTION

Biomedical and epidemiological studies have spawned an in-
creasing interest in and practical need for developing statisti-
cal methods for modeling time-to-event data that are subject to
spatial dependence. Our motivating example, the East Boston
Asthma Study (EBAS) conducted by the Channing Laboratory
of Harvard Medical School, aimed at understanding the etiol-
ogy of the rising prevalence and morbidity of childhood asthma
and the disproportionate burden among urban minority chil-
dren. Subjects were enrolled at community health clinics in
the east Boston area, and questionnaire data, documenting age
at onset of childhood asthma and other environmental factors,
were collected during regularly scheduled visits. Apart from the
basic demographic data, residential addresses were geocoded
for each study subject, so that the latitudes and longitudes were
available. Residents of east Boston are mainly relatively low-
income working families. Children residing in this area have
similar social economical backgrounds and are often exposed to
similar physical and social environments. These environmental
factors are important triggers of asthma but are often difficult to
measure in practice. Age at onset of asthma of the children in
this study was hence likely to be subject to spatial correlation.
The statistical challenge is to identify significant risk factors as-
sociated with age at onset of childhood asthma while taking the
possible spatial correlation into account.

Prevailing modeling techniques, such as marginal models
(see, e.g., Wei, Lin, and Weissfeld 1989; Prentice and Cai 1992)
and frailty models (see, e.g., Murphy 1995; Parner 1998; Oakes
1989), have been successfully developed for handling clus-
tered survival data, where individuals are grouped into indepen-
dent clusters. In a marginal survival model, survival outcomes
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are assumed to marginally follow a Cox proportional hazard
model, whereas the within-cluster correlation is regarded as a
nuisance parameter. In contrast, a frailty model directly models
the within-cluster correlation using random effects or frailties,
and regression coefficients typically do not have a population-
average interpretation (Kalbfleisch and Prentice 2002, p. 306).
However, there has been virtually no literature on modeling spa-
tially correlated survival data, where both population-level re-
gression coefficients and spatial dependence parameters are of
interest.

Over the past two decades, spatial statistical methods have
been well established for normally distributed data (Cressie
1993; Haining, Griffith, and Bennett 1989) and discrete data
(Journel 1983; Cressie 1993; Carlin and Louis 1996; Diggle,
Tawn, and Moyeed 1998). Statistical models for such uncen-
sored data are often fully parameterized, and inference proce-
dures are based on maximum likelihood (Clayton and Kaldor
1987; Cressie 1993), penalized maximum likelihood (Breslow
and Clayton 1993), and Markov chain Monte Carlo (Besag,
York, and Mollie 1991; Waller, Carlin, Xia, and Gelfand 1997).

Little work has been done for modeling survival data that
are subject to spatial correlation, however. We are interested
in developing a semiparametric likelihood model for spatially
correlated survival outcomes, where observations marginally
follow the Cox proportional hazard model and regression co-
efficients have a population-level interpretation and their joint
distribution can be specified using a likelihood function that
allows for flexible spatial correlation structures. But it is not
straightforward to extend the existing models used for clustered
survival data to spatial survival data with these features. Specif-
ically, for clustered survival data, a semiparametric model that
allows regression coefficients to have a population-level inter-
pretation can be specified using a copula model (Oakes 1989)
or a frailty model with a positive-stable frailty distribution
(Hougaard 1986). Such models allow for only a simple con-
stant correlation structure and are difficult to extend to allow
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for a flexible spatial correlation. For example, it is very difficult
to specify a multivariate positive-stable frailty distribution in
frailty models. Hence one needs to seek an alternative route
to specify a semiparametric likelihood model that allows for
regression coefficients to have a marginal interpretation and
to allow for a flexible spatial correlation structure. From the
Bayesian perspective of conditional modeling, Banerjee and
Carlin (2003) and Banerjee, Carlin, and Gelfand (2004, chap. 9)
considered hierarchical frailty spatial survival models. But in
their models regression coefficients do not have a population-
level interpretation.

In contrast to the existing methodology, in this article we de-
velop a semiparametric normal transformation model for spatial
survival data, where observations marginally follow a Cox pro-
portional hazard model and their joint distribution is specified
by transforming observations into normally distributed vari-
ables and assuming a multivariate normal distribution for the
resulting transformed variables. A key feature of this model
is that it provides a rich class of models for which regres-
sion coefficients have a population-level interpretation and the
spatial dependence of survival times is conveniently modeled
using flexible normal random fields. We investigate the rela-
tionship of the spatial correlation of the transformed normal
variables and the dependence measures of the original survival
times. As in the conventional Cox model, the baseline haz-
ard function is left unspecified and is regarded as nuisance in
semiparametric normal transformation models. In view of the
high-dimensional integration of the likelihood function and the
infinite-dimensional baseline hazard, we develop an estimation
procedure for regression coefficients and spatial dependence
parameters using unbiased spatial semiparametric estimating
equations, in a similar spirit to the composite likelihood ap-
proach in parametric settings (Lindsay 1988; Heagerty and Lele
1998). Recently, Parner (2001) applied the composite likeli-
hood approach to clustered survival data under a fully parame-
terized survival model.

The rest of the article is structured as follows. In Section 2 we
introduce a semiparametric normal transformation model for
spatially correlated survival data. In Section 3 we study the de-
pendence measures of survival times under this model. In Sec-
tion 4 we develop spatial semiparametric estimating equations
for regression coefficients and spatial correlation parameters,
and also study the asymptotic properties for the resulting esti-
mators. In Section 5 we evaluate through simulations the finite-
sample performance of the proposed method. We apply the
proposed method to the analysis of data from the East Boston
Asthma Study in Section 6, followed by a discussion in Sec-
tion 7.

2. THE SEMIPARAMETRIC NORMAL
TRANSFORMATION SPATIAL SURVIVAL MODEL

2.1 The Model

Consider in a spatial region of interest a total of m subjects
who are followed up to failure or being censored, whichever
comes first. For individual i (i = 1, . . . ,m), we observe a
r × 1 vector of covariates Zi, an observed event time Xi =
min(Ti,Ci), and a noncensoring indicator δi = I(Ti ≤ Ci),
where Ti and Ci are underlying true survival time and censoring

time and I(·) is an indicator function. We assume independent
censoring; that is, the censoring times Ci are independent of the
survival times Ti, given the observed covariates, and the distrib-
utions of Ci do not involve parameters of the true survival time
model. We also assume that the maximum follow-up time is
τ > 0. The covariates Zi are assumed to be a predictable time-
dependent process. Each individual’s geographic location ai

(e.g., latitude and longitude) is also documented.
Our model specifies that the survival time, Ti, marginally fol-

lows the Cox proportional hazard model,

λ{t|Zi(·)} = λ0(t)e
β ′Zi(t), (1)

where β is a regression coefficient vector and λ0(t) is an un-
specified baseline hazard function. The marginal model refers
to the assumption that the hazard function (1) is, with re-
spect to each individual’s own filtration, Fi,t = σ {I(Xi ≤ s,
δi = 1), I(Xi ≥ s),Zi(s),0 ≤ s ≤ t}, the sigma field generated
by the survival and covariate information up to time t. The re-
gression coefficients β hence have a population-level interpre-
tation.

We are interested in specifying a spatial joint likelihood
model for T1, . . . ,Tm that allows Ti to marginally follow the
Cox model (1) and allows for a flexible spatial correlation struc-
ture among the Ti’s. Denote by �i(t) = ∫ t

0 λi(s|Zi)ds the cumu-
lative hazard and �0(t) = ∫ t

0 λ0(s)ds the cumulative baseline
hazard. Then �i(Ti) marginally follows a unit exponential dis-
tribution, and its probit-type transformation,

T∗
i = �−1{1 − e−�i(Ti)

}
, (2)

follows the standard normal distribution marginally, where
�(·) is the cumulative distribution function (cdf ) of the stan-
dard normal distribution. We can then conveniently impose
a spatial structure on the underlying random fields of T∗ =
{T∗

i , i = 1, . . . ,m} within the traditional Gaussian geostatistical
framework. Hence such a normal transformation of the cumula-
tive hazard provides a general framework to construct a flexible
joint likelihood model for spatial survival data by preserving the
Cox proportional hazards model for each individual marginally.
This also provides a convenient way to generate spatially corre-
lated survival data whose marginal distributions follow the Cox
model.

Specifically, we assume T∗ to be a Gaussian random field, a
special case of the Gibbs field (Winkler 1995), such that T∗ fol-
lows a joint multivariate normal distribution as

T∗ = {T∗
i , i = 1, . . . ,m} ∼ N(0,�), (3)

where � is a positive definite matrix with diagonal elements
being 1. Denote by θij the (i, j)th element of �. We assume that
the correlation θij between a pair of normalized survival times,
say T∗

i and T∗
j , depends on their geographic locations ai and aj,

that is,

corr(T∗
i ,T∗

j ) = θij = θij(ai,aj), (4)

for i �= j (i, j = 1, . . . ,m), where θij ∈ (−1,1). Generally a para-
metric model is assumed for θij, which depends on a parameter
vector α as θij(α). We discuss common choices of models for
θij(α) in Section 2.2.
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Under noninformative censoring, the likelihood function for
the unknown parameters {�0(·),β,α}, based on the observed
data (Xi, δi,Zi), i = 1, . . . ,m, is

(−1)δ1+···+δm

× ∂δ1+···+δm

∂tδ1
1 · · · ∂tδm

m

∫ ∞

�−1{1−e−�m(tm)}
· · ·

∫ ∞

�−1{1−e−�1(t1)}
ψ

(
x1,

. . . , xm;�)
dx1 · · ·dxm,

(5)

evaluated at (X1, . . . ,Xm), where ψ(x1, . . . , xm;�) is the den-
sity function for an m-dimensional normal distribution with
mean 0 and variance �. A direct application of maximal like-
lihood estimation procedure is very difficult, if not infeasible,
because of the high dimensionality of the intractable integral
involved in the likelihood function and the infinite dimensional-
ity of the nuisance baseline hazard �0(·). As an alternative, we
explore a spatial semiparametric estimating equation approach
to draw inference in Section 4.

2.2 Specifications of the Spatial Correlation
of the Transformed Times T∗

Because the transformed times T∗ are normally distributed,
a rich class of models can be used to model the spatial depen-
dence by specifying a parametric model for θij. For instance,
we may parameterize θij(α) = ρ(dij,α), an isotropic correla-
tion function that decays as the Euclidean distance dij between
two individuals increases. A widely adopted choice for the cor-
relation function is the Matèrn function

ρ(d,α) = α1

2α3−1�(α3)
(2α2

√
α3d)α3 Kα3(2α2

√
α3d), (6)

where α = (α1, α2, α3), α1 is a scale parameter that corre-
sponds to the “partial sill” as described by Waller and Gotway
(2004, p. 279), α2 measures the correlation decay with the dis-
tance, α3 is a smoothness parameter, �(·) is the conventional
gamma function, and Kα3(·) is the modified Bessel function
of the second kind of order α3 (see, e.g., Abramowitz and
Stegun 1965). This spatial correlation model is rather general,
with special cases including the exponential function ρ(d,α) =
α1 exp(−dα2) when the smoothness parameter α3 = .5 and
the “Gaussian” correlation function ρ(d,α) = α1 exp{−d2α2

2}
when α3 → ∞ (see, e.g., Waller and Gotway 2004, p. 279). In
all of these formulations, we require 0 ≤ α1 ≤ 1 and α2, α3 ≥ 0.
Note that such spatial dependence models distinguish local and
global spatial effects, where α1 measures local correlation [i.e.,
α1 = limd→0+ ρ(d,α)], whereas α2 controls the spatial decay
over the distance. The smoothness parameter α3 characterizes
the behavior of the correlation function near the origin, but its
estimation is difficult, because it requires dense space data and
may even run into identifiability problems. Stein (1999) has ar-
gued that data cannot distinguish between α3 = 2 and α3 > 2.
Hence we follow the strategy adopted by common spatial soft-
ware (e.g., geoR) by fixing α3 to estimate the other parame-
ters and performing a sensitivity analysis by varying α3 in data
analysis.

3. DEPENDENCE MEASURES OF THE ORIGINAL
SURVIVAL TIMES T

The correlation coefficient θij conveniently specifies the spa-
tial correlation of the normally transformed survival times
T∗

i and T∗
j through the conventional spatial correlation struc-

ture. It is of substantial interest to understand how such a
correlation of the transformed times T∗

i and T∗
j implies for the

dependence structure of the original survival times Ti and Tj,
that is, how the dependence between the original survival times
Ti and Tj depends on θij. Two types of bivariate dependence are
commonly used to describe multivariate survival times: local
dependence and global dependence (Hougaard 2000). In this
section we investigate these dependence measures under the
semiparametric transformation model.

3.1 The Local Time Dependence Measure:
The Cross-Ratio Function

Let T1 and T2 be arbitrary bivariate survival times. A com-
mon local dependence measure of T1 and T2 is the cross-ratio,
defined as follows (Kalbfleisch and Prentice 2002):

c12(t1, t2) = λ1(t1|T2 = t2)

λ1(t1|T2 ≥ t2)
= λ2(t2|T1 = t1)

λ2(t2|T1 ≥ t1)
,

where λ(·|·) denotes the conditional hazard function for a pair
of survival times [e.g., (T1,T2)]; more specifically,

λ1(t1|t2) = lim
dt↓0

(dt)−1P(t1 < T1 ≤ t1 + dt|T1 > t1,T2 = t2).

The cross-ratio c12(t1, t2) measures the dependence of T1 and
T2 at the time point (t1, t2). If c12(t1, t2) = 1, then T1 and T2 are
independent at (t1, t2). If c12(t1, t2) > 1, then T1 and T2 are pos-
itively correlated at (t1, t2), and vice versa. If c12(t1, t2) is a con-
stant, then (T1,T2) follows the Clayton model (Clayton 1978).

Under the general spatial model (4) for the transformed sur-
vival times T∗

i , we are interested in investigating how the cross-
ratio of any arbitrary survival time pairs Ti and Tj depends on
their marginal survival functions and the spatial correlation θij

of the transformed survival times T∗
i and T∗

j . Specifically, un-
der (4), one can easily calculate the joint tail probability func-
tion for the normally transformed survival time pair (T∗

i ,T∗
j ) as


(z1, z2; θij) = P(T∗
i > z1,T∗

j > z2; θij)

=
∫ ∞

z1

∫ ∞

z2

�2{dx1,dx2; θij},

where �2(·, ·;σ) is the cdf for a bivariate normal vector with
mean (0,0) and covariance matrix

(1 σ
σ 1

)
. It follows that the

bivariate survival function for the original survival time pair
(Ti,Tj) is

Sij(t1, t2; θij) = P(Ti > t1,Tj > t2; θij)

= 

[
�−1{Fi(t1)},�−1{Fj(t2)}; θij

]
, (7)

where Fi(·),Fj(·) are the marginal cdf’s of Ti and Tj.
Equation (7) shows that the joint bivariate survival function

is a functional of two marginal distributions. It follows that
model (7) belongs to the common copula family (Hougaard
1986). In particular, when θij = 0, (7) becomes {1 − Fi(t1)}{1 −
Fj(t2)}, corresponding to the independent case. One can easily
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show that the bivariate survival function (7) approaches the up-
per Fréchet bound min{1 − Fi(t1),1 − Fj(t2)} as θij → 1−, the
independent case when θij → 0, and the lower Frechet bound
max{1 − Fi(t1) − Fj(t2),0} as θij → −1+.

Using the Cholesky decomposition and variable transforma-
tion, we can rewrite the two-dimensional integral in (7) as

Sij(t1, t2; θij) = 1 − Fi(t1)

−
∫ ∞

�−1{Fi(t1)}
�

{
�−1{Fj(t2)} − θijy

(1 − θ2
ij)

1/2

}

d�( y).

Some calculations show that the cross-ratio function is given by
the survival functions

cij(t1, t2) = λi(t1|Tj = t2)

λi(t1|Tj ≥ t2)

=
∂2

∂t1 ∂t2
Sij(t1, t2; θij) × Sij(t1, t2; θij)

∂
∂t1

Sij(t1, t2; θij) × ∂
∂t2

Sij(t1, t2; θij)
,

where standard calculus gives

∂

∂t1
Sij(t1, t2; θij)

= −F(1)
i (t1)

[

1 − �

{
�−1{Fj(t2)} − θij�

−1{Fi(t1)

(1 − θ2
ij)

−1/2

}]

,

∂

∂t2
Sij(t1, t2; θij)

= −F(1)
j (t2)

[

1 − �

{
�−1{Fi(t1)} − θij�

−1{Fj(t2)

(1 − θ2
ij)

−1/2

}]

,

and

∂2

∂t1 ∂t2
Sij(t1, t2; θij) = F(1)

i (t1)F
(1)
j (t2)

(1 − θ2
ij)

1/2φ[�−1{Fj(t2)}]

× φ

[
�−1{Fj(t2)} − θij�

−1{Fi(t1)}
(1 − θ2

ij)
1/2

]

.

Here φ(·) is the density function of a standard normal random
variable, and for an arbitrary function H(·), H(1)(·) denotes the
first derivative. These results show that the cross-ratio is fully
determined by the marginal survival functions and θij, the cor-
relation of the corresponding normally transformed variables
T∗

i and T∗
j .

To numerically illustrate the functional dependence of the
cross-ratio cij(t1, t2) on the spatial correlation coefficient of the
transformed survival times θij, Figure 1 shows the cross-ratio
curve as a function of θij when the marginal survival functions
are assumed to be exponential 1. One can see that the cross-ratio
cij(t1, t2) is a nonlinear monotone increasing function of θij. As
θij → 0, cij(t1, t2) → 1, indicating independence of Ti and Tj.

3.2 The Global Time-Dependence Measures

An alternative measure of the dependence of an arbitrary
pair of the original bivariate survival time is based on global
measures, which measure the overall dependence of a pair of
individuals over the entire lifespan by integrating over time.
Kendall’s τ and Spearman’s ρ are the commonly used global

Figure 1. The Cross-Ratio at (t1, t2) = (.5, .5) as a Function of the
Correlation Coefficient of the Transformed Survival Times θ ij. The indi-
vidual survival times marginally follow a unit exponential distribution.

dependence measures. Both are based on concordance and dis-
cordance, and hence do not depend on the parametric forms
of baseline hazard functions. They lie in [−1,1], where the
value 1 corresponds to perfect concordance and the value −1
corresponds to complete discordance. Hence they are parallel
to the classical correlation coefficient. However, as a global de-
pendence measure, they are not informative about how the cor-
relation varies with time.

Consider a copula function C(u1,u2) such that P(T1 > t1,
T2 > t2) = C{F1(t1),F2(t2)}, for a pair of nonnegative ran-
dom variables T1 and T2, where Fi(·) is the marginal cdf
of Ti (i = 1,2). Kendall’s τ and Spearman’s ρ are defined as
(Kalbfleisch and Prentice 2002)

τ = 4
∫ 1

0

∫ 1

0
C(u1,u2)C(du1,du2) − 1

and

ρ = 12
∫ 1

0

∫ 1

0
C(u1,u2)du1 du2 − 3.

As shown in Section 2.2, the bivariate survival function of Ti
and Tj under the semiparametric normal transformation model
belongs to the copula family. Hence we can easily use (7) to
calculate the relationships between the Kendall’s τ and Spear-
man’s ρ of the original survival times Ti and Tj and the spatial
correlation θij of the transformed time T∗

i and T∗
j as

τ(θij) = 4
∫ ∞

−∞

∫ ∞

−∞

(z1, z2; θij)�2(dz1,dz2; θij) − 1

and

ρ(θij) = 12
∫ ∞

−∞

∫ ∞

−∞

(z1, z2; θij)�(dz1)�(dz2) − 3,

where 
(·) and �2(·) are defined in (7). Hence Kendall’s τ and
Spearman’s ρ are uniquely determined by the marginal survival
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functions of Ti and Tj and the spatial correlation coefficient
θij of the transformed times T∗

i and T∗
j . Although the expres-

sions of τ(θij) and ρ(θij) do not have closed forms, both can
be easily evaluated numerically. Note that both τ(θij) and ρ(θij)

approach 0 as θij → 0, approach 1 as θij increases to ∞, and
approach −1 as θij decreases to −∞.

4. THE SEMIPARAMETRIC
ESTIMATION PROCEDURE

The likelihood function in (5) involves a high-dimensional
integration, and the dimension of the required integration is the
same as the sample size. In view of the numerical difficulties of
directly maximizing the likelihood function, we consider spa-
tial semiparametric estimating equations, constructed using the
first two moments of individual survival times and all pairs of
survival times, to estimate the regression coefficients β and the
spatial correlation parameters α in θij(α).

4.1 The Martingale Covariance Rate Function

We first derive the martingale covariance rate function under
the semiparametric normal transformation model (2)–(3). We
define the counting process Ni(t) = I(Xi ≤ t, δi = 1) and the at-
risk process Yi(t) = I(Xi ≥ t). We define a martingale, which is
adapted to the filtration Fi,t = σ(Ni(s),Yi(s),Zi(s),0 ≤ s < t),
as

Mi(t) = Ni(t) −
∫ t

0
Yi(s)e

β ′Zi(s) d�0(s).

To relate the correlation parameters α to the counting
processes, we need to consider the joint counting process of
two individuals. We define the conditional martingale covari-
ance rate function for the joint counting process of two indi-
viduals, a multidimensional generalization of the conditional
hazard function, as (Prentice and Cai 1992)

Ai,j(dt1,dt2) = E
{
Mi(dt1)Mj(dt2)|Ti > t1,Tj > t2

}
.

Then we have

E

{

Mi(t1)Mj(t2) −
∫ t1

0

∫ t2

0
Yi(s1)Yj(s2)Ai,j(ds1,ds2)

}

= 0.

We denote by S̃ij(v1, v2) the joint survival function of �i(Ti)

and �j(Tj), the exponential transformations of the original sur-
vival times. Then

S̃ij(v1, v2; θij) = P{�i(Ti) > v1,�j(Tj) > v2; θij}
= Sij{�−1

i (v1),�
−1
j (v2); θij}, (8)

where Sij(·) is defined in (7). Following Prentice and Cai
(1992), we can show that the covariance rate can be written as

Ai,j(dt1,dt2; θij) = A0{�i(t1),�j(t2); θij}�i(dt1)�j(dt2),

where

A0(v1, v2; θ) =
{

∂2

∂v1 ∂v2
S̃ij(v1, v2; θ) + S̃ij(v1, v2; θ)

+ ∂

∂v1
S̃ij(v1, v2; θ) + ∂

∂v2
S̃ij(v1, v2; θ)

}

/
S̃ij(v1, v2; θ).

As a special case, A0(v1, v2; θ = 0) ≡ 0. A first-order approx-
imation to A0(v1, v2; θ) when θ is near 0 is given in the Ap-
pendix. It is also shown in the Appendix that as θ → 0+,
A0(v1, v2; θ) converges to 0 uniformly at the same rate as that
when (v1, v2) lies in a compact set.

4.2 The Semiparametric Estimating Equations

We simultaneously estimate the regression coefficients β (an
r × 1 vector) and the correlation parameters α (a q × 1 vector)
by considering the first two moments of the martingale vector
(M1, . . . ,Mm). In particular, for a predetermined constant τ > 0
such that it is within the support of the observed failure time,
that is, P(τ < Ci ∧ Ti) > 0 (in practice, τ is usually the study
duration), we consider the following unbiased estimating func-
tions for � = {β,α} for an arbitrary pair of two individuals,
indexed by u and v:

• If u = v, then

Uu,u(�) =
[∫ τ

0 Zu(s)W(u,u)(s)dMu(s)

vuu{M2
u(τ ) − ∫ τ

0 Yu(s)d�u(s)}

]

,

where W(u,u)(s) (a scalar) and vuu (a length-q vector) are
nonrandom weights.

• If u �= v, then

Uu,v(�) =
[∫ τ

0 Zu,v(s)W(u,v)(s)dMu,v(s)

vuv{Mu(τ )Mv(τ ) − Auv}

]

,

where Zu,v(s) = {Zu(s),Zv(s)}, dMu,v(s) = {dMu(s),

dMv(s)}′, W(u,v)(s) = {w(u,v)
ij }2×2, and vuv (a length-q vec-

tor) are nonrandom weights, and

Auv =
∫ τ

0

∫ τ

0
Yu(s)Yv(t)

× A0{�u(s),�v(t); θuv}d�u(s)d�v(t)

=
∫ �u(Xu∧τ)

0

∫ �v(Xv∧τ)

0
A0{t1, t2; θuv}dt1 dt2.

We show in the Appendix that Auv, the covariance of mar-
tingales, decays to 0 at the same rate as the spatial corre-
lation parameter θuv. In the Appendix we also provide a
first-order approximation to Auv when θuv is small.

It can be easily shown that Uu,v is an unbiased estimating
function, because E{Uu,v(�0)} = 0, where the expectation is
taken under the true �0 = (β0,α0) and the true cumulative
hazard function �0(·). Note that the first component of Uu,v,
which is the estimating equation for β , is unbiased even when
the spatial correlation structure is misspecified. Hence the re-
gression coefficient estimator β̂ is robust to misspecification of
the spatial correlation structure.

Nonetheless, this estimator is not immediately computable,
because �0(t) in the estimating equations is unknown. A nat-
ural alternative is to substitute it with the Breslow estimator,

�̂0(t) =
∫ t

0

∑m
i=1 dNi(s)

∑m
i=1 Yi(s)eβ ′Zi(s)

.
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As a result, the parameters of interest � = (β,α) are estimated
by solving the following estimating equations, which are con-
structed by weightedly pooling individual martingale residuals
and weightedly pooling all pairs of martingale residuals:

Gm = m−1
∑

u≥v

Ûu,v(�) = 0. (9)

Note that Û(·) is used to reflect the fact that �0(t) is estimated
by �̂0(t).

Using the matrix notation, we can conveniently express (9)
as

m−1

[∫ τ

0 Z(s)W dM̂(s)

M̂′(τ )V1M̂(τ ) − tr(VjÂ)

]

= 0, (10)

where j = 1, . . . ,q, W and Vj are weight matrices, M̂ =
(M̂1, . . . , M̂n)

′, Z(s) = {Z1(s), . . . ,Zn(s)}′, Â is an n × n ma-
trix whose uvth (u �= v) entry is Âuv obtained from Auv with
�0(t) replaced by �̂0(t), and Âuu = ∫ τ

0 Yu(s)d�̂u(s).
The weight matrices W and V1, . . . ,Vq are introduced

to improve efficiency and convergence of the estimator of
β and α. In particular, to specify W, following Cai and
Prentice (1997) in clustered survival data, we can specify W
as (D−1/2AD−1/2)−1, the inverse of the correlation matrix of
the martingale vector M(τ ), where D = diag(A11, . . . ,Amm).
In the absence of spatial dependence, W is an identity matrix,
and hence the first set of equations of (10) is reduced to the
ordinary partial likelihood score equation for regression coef-
ficients β . To specify Vj ( j = 1, . . . ,q), we could assume that
Vj = A−1(∂A/∂αj)A−1. Under this specification, the second
set of estimating equations in (10) resembles the score equa-
tions of the variance components α if the “response” M̂ fol-
lows a multivariate normal distribution N(0,A) (Cressie 1993,
p. 483).

For numerical considerations, a modification of the spatial
estimating equation (10) is created by adding a penalty term,

G∗
m(�) = Gm(�) − 1

m
��,

where � is a positive definite matrix, acting like a penalty
term. This penalized version of the spatial estimating equa-
tion (10) can be motivated from the perspective of ridge regres-
sion or, from Bayesian perspectives, by putting a Gaussian prior
N(0,�−1) on �, and results in stabilized variance component
estimates of α, for example, for moderate sample sizes, and is
likely to force the resulting estimates to lie in the interior of
the parameter space (Heagerty and Lele 1998). Therefore, in
our simulations, especially when the sample size is not large,
we consider using a small penalty, � = ωI, where 0 < ω < 1,
to ensure numerical stability. Note as the sample size m goes
to ∞, we have 1

m�� → 0. Therefore, Gm(�) and G∗
m(�) are

asymptotically equivalent, and the large-sample results of the
original and penalized estimating equations are equivalent.

4.3 Asymptotic Properties and Variance Estimation

In this section we study the asymptotic properties of the es-
timators proposed in Section 4.2 and propose a finite-sample
covariance estimate. Under the regularity conditions listed in
the Appendix, the estimators obtained by solving Gm(�) = 0

exist and are consistent for the true values of �0 = (β0,α0),
and n1/2{�̂ − �0} is asymptotic normal with mean 0 and a co-
variance matrix that can be easily estimated using a sandwich
estimator. The results are stated formally in Proposition 1.

Proposition 1. Assume that the true �0 is an interior point
of an compact set, say, B × A ∈ R

r+q, where r is the di-
mension of β and q is the dimension of α. Under the regu-
larity conditions 1–5 in the Appendix, when m is sufficiently
large, the estimating equation Gm(�) = 0 has a unique solu-
tion in a neighborhood of �0 with probability tending to 1, and
the resulting estimator �̂ is consistent for �0. Furthermore,√

m{�(2)}−1/2�{(β̂, α̂)′ − (β0,α0)
′} d→ N{0, I}, where I is an

identity matrix whose dimension is equal to that of �0, and

� = 1

m

∑

u≥v

E

{
∂

∂�
Uu,v(�)

}

and

�(2) = 1

m2

∑

u1≥v1

∑

u2≥v2

E
{
Uu1,v1(�0)Uu2,v2(�0)

}
.

It follows that the covariance of �̂ can be estimated in finite
samples by

I−1
m = �̂−1�̂(2){�̂−1}′, (11)

where �̂ and �̂(2) are estimated by replacing Uuv(·) by Ûuv(·)
and evaluated at �̂0.

Although each E{Ûu1,v2(�0)Û′
u2,v2

(�0)} could be evaluated
numerically, the total number of these calculations would be
prohibitive, especially when the sample size m was large. To
numerically approximate �̂(2), we explore the resampling tech-
niques of Carlstein (1986) and Sherman (1996). Specifically,
under the assumption that, asymptotically,

m × E{GmG′
m} → �∞,

we can estimate �∞ by averaging K randomly chosen subsets
of size mj ( j = 1, . . . ,K) from the m subjects as

�̂∞ = K−1
K∑

j=1

mj
{
ĜmjĜ

′
mj

}
,

where Ĝmj is obtained by substituting � by �̂ in Gmj . The
mj is often chosen to be proportional to m so as to capture
the spatial covariance structure. In our later simulations we
chose mj to be roughly 1/5 of the total population. Given the
estimates �̂∞ and �̂, the covariance of �̂ can be estimated
by �̂−1[1/m × �̂∞](�̂−1)′. For the covariance estimate of
the penalized estimator obtained by solving G∗

m(�) = 0, �̂ is
replaced by �̂ − 1

m�. A similar procedure was adopted by
Heagerty and Lele (1998) for analyzing spatial binary data.

5. SIMULATION STUDY

We performed a simulation study to evaluate the finite-
sample performance of the proposed methods. The locations
of subjects were sampled uniformly over region [0,m]2, where
m is the number of subjects. The survival times T were gener-
ated marginally under the hazard model

λ(t) = exp{β1Z1 + β2Z2 + β3Z3}



Li and Lin: Semiparametric Normal Transformation Models 597

and models (2) and (3), where Z1 and Z2 were generated in-
dependently from the uniform distribution over [−2,2] and Z3
was generated as a binary variable taking 0 or 1 with equal prob-
ability. The spatial dependence between two arbitrary individ-
uals, i and j, was specified by the Matèrn function (6), where
dij = |ai − aj|, ai = (xi, yi) are the two-dimensional coordinates
for subject i and | · | is the Euclidean distance. In particular, we
first generated the T∗

ij using the multivariate normal model (3)
under the Matèrn covariance matrix, then transformed the T∗

ij
back to the original survival time scale to obtain Tij using (2)
and the foregoing marginal Cox model.

We set the true values β1 = 1, β2 = .5, β3 = .5, α1 = .5,
and α2 = 2.5. We varied α3 in (6) to be .5 and 1. We generated
censoring times cij as independent uniform random variables on
[0,1] and [0,2], resulting in 70% and 50% censoring. For each
set of parameters, we considered the number of subjects (m) to

be 100 and 200. We also considered m = 400 with α3 = .5 and
70% censoring. In our calculations we set the penalty parameter
as ω = .1. As indicated in the previous section, this penalty term
was introduced to increase numerical stability by forcing the
estimate to be in the interior of the parameter space.

A total of 500 simulated datasets were generated for each
configuration, and the averages of the point estimates and their
standard errors (SEs) were calculated, along with the cover-
age rates of the corresponding 95% confidence intervals. The
results, summarized in Table 1, show that our estimator per-
formed well in finite samples. The finite-sample biases of the
regression coefficient estimates β were negligible, and the SE
estimates agreed well with their empirical counterparts, al-
though the coverage rates were a little below the nominal level.
For the spatial correlation parameters, the performance of the
estimator of α1 was very good and similar to that of β . The

Table 1. Simulation Results Based on 500 Runs

Sample size α3 Censoring Parameter Estimate SEe SEa Coverage probability

100 .5 70% β1 .9909 .2491 .2456 91.5%
β2 .5068 .2138 .1933 99.0%
β3 .5044 .2149 .1916 92.6%
α1 .4789 .1827 .1915 89.2%
α2 2.0555 .9275 .7994 73.0%

.5 50% β1 .9920 .1971 .2033 92.9%
β2 .5134 .1731 .1628 92.5%
β3 .4831 .1702 .1548 90.4%
α1 .4656 .1520 .1533 90.8%
α2 2.1292 .9958 .8916 79.0%

1 70% β1 .9836 .2511 .2467 90.3%
β2 .5112 .2127 .1897 89.1%
β3 .5113 .2066 .1936 91.5%
α1 .4767 .1814 .1935 90.6%
α2 2.3043 .9685 .7941 71.9%

1 50% β1 1.007 .2052 .2114 91.2%
β2 .5139 .1845 .1659 90.6%
β3 .4986 .1699 .1566 91.2%
α1 .4796 .1539 .1507 88.0%
α2 2.358 1.0239 .8176 74.3%

200 .5 70% β1 .9869 .1556 .1702 94.7%
β2 .4940 .1341 .1312 92.8%
β3 .4882 .1421 .1323 92.8%
α1 .4902 .1400 .1397 92.2%
α2 2.3575 1.0620 .9496 80.4%

.5 50% β1 .9819 .1300 .1441 95.1%
β2 .4951 .1133 .1100 93.8%
β3 .4792 .1223 .1100 90.2%
α1 .4990 .1011 .1094 92.2%
α2 2.4218 .9966 .8051 82.4%

1 70% β1 .9993 .1740 .1688 91.9%
β2 .4909 .1387 .1245 92.3%
β3 .4960 .1303 .1296 92.5%
α1 .5118 .1395 .1380 90.0%
α2 2.6356 1.1288 .9811 80.1%

1 50% β1 .9838 .1437 .1395 92.1%
β2 .4830 .1204 .1066 90.2%
β3 .4803 .1174 .1076 90.2%
α1 .5136 .1113 .1042 92.7%
α2 2.5033 1.0106 .7608 84.1%

400 .5 70% β1 .9616 .1055 .1285 94.0%
β2 .4960 .1040 .1032 96.0%
β3 .5083 .0970 .0990 94.0%
α1 .5077 .1093 .0963 94.2%
α2 2.4439 1.2866 1.0205 90.4%

NOTE: Estimates were calculated using the spatial semiparametric estimating equation method assuming the Matèrn correlation structure with 70% and 50%
censoring proportions. The true parameters are β1 = 1, β2 = β3 = .5, α1 = .5, and α2 = 2.5. Both the empirical (SEe) and estimated (SEa) SEs are reported,
along with the 95% coverage probabilities.
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(a) (b)

(c) (d)

(e)

Figure 2. Empirical Density Plots of the Model Parameter Estimates
From the Simulation Study With m = 200, α3 = .5, and Censoring
Proportion = 50%. (a) β1; (b) β2 ; (c) β3 ; (d) α1; (e) α2 .

estimate of α2 had slightly more bias, and its estimated SE un-
derestimated its true SE, resulting in a worse coverage proba-
bility. This indicates α2 is more difficult to estimate for small
samples. As the sample size increased, the biases decreased,
and all of the estimates quickly approached the true values, the
estimated and empirical SEs became very close, and the cover-
age rates became closer to the nominal level. Figure 2 depicts
the estimated density plots of the parameter estimates when
m = 200, α3 = .5, and the censoring proportion = 70%. They
indicated that the estimates were approximately normally dis-
tributed in finite samples. These empirical results support our
asymptotic findings.

To assess the robustness of the model with respect to the
parameterization of the spatial dependence, we conducted an
additional simulation study by intentionally misspecifying the
correlation model (4) in our calculations. Specifically, using the
same parameter configurations as before, with m = 100 and
censoring proportion = 70%, we generated the survival data
with the spatial dependence specified by the “spherical” cor-
relation,

ρ(d) = .5

(

1 − 3d

4
+ d3

8

)

I(d ≤ 2),

but assumed the Matèrn correlation (6) in our estimation. Al-
though the estimates of the spatial dependence parameters were
biased due to the misspecification of the spatial correlation
structure, the estimates of the regression coefficients were still

close to the true values. The averages of the point estimates
were .9950, .5232, and .5028, which were close to the true val-
ues. These results support our theoretical findings.

6. ANALYSIS OF THE EAST BOSTON ASTHMA DATA

We applied the proposed method to analyze the East Boston
Asthma data introduced in Section 1. For our analysis, we fo-
cused on assessing how the familial history of asthma may have
attributed to disparity in disease burden. In particular, the inves-
tigator was interested in the relationship between the low respi-
ratory index (LRI) in the first year of life, ranging from 0 to 16,
with high values indicating worse respiratory functioning, and
the age at onset of childhood asthma, controlling for maternal
asthma status (MEVAST), which was coded as 1 = ever had
asthma and 0 = never had asthma, and log-transformed mater-
nal cotinine levels (LOGMCOT). Such an investigation would
help the investigator better understand the natural history of
asthma and its associated risk factors and thus develop future
intervention programs.

Subjects were enrolled at community health clinics through-
out the east Boston area, and questionnaire data were collected
during regularly scheduled well-baby visits, so that the age at
onset of asthma could be identified. Residential addresses were
recorded and geocoded. The geographic distance was calcu-
lated in kilometers. A total of 606 subjects with complete infor-
mation on latitude and longitude were included in the analysis,
with 74 events observed at the end of the study. The median
follow-up was 5 years. East Boston is a residential area of rel-
atively low-income working families. Participants in this study
were largely white and Hispanic children ranging in age from
infancy to age 6 years. Asthma is a disease strongly affected by
environmental triggers. Because the children had similar back-
grounds and living environments and were exposed to similar
unmeasured physical and social environments, their age at on-
set of asthma was likely to be subject to spatial correlation.

We considered the spatial semiparametric normal transfor-
mation model and assumed that the age at onset of asthma mar-
ginally followed the Cox model,

λ(t) = λ0(t) exp{βL × LRI + βM × MEVAST

+ βC × LOGMCOT}. (12)

We assumed the Matèrn model (6) for the spatial dependence.
We estimated the regression coefficients and the correlation pa-
rameters using the spatial semiparametric estimating equation
approach proposed in Section 4.2, and calculated the associated
SE estimates (11). For checking the robustness of the method,
we also varied the smoothness parameter α3 in (6) to be .5, 1,
and 1.5.

Because the East Boston Asthma Study was conducted in
a fixed region, to examine the performance of the variance
estimator in (11), which was developed under the increasing-
domain asymptotic, we also calculated the variance using
a “delete-a-block” jackknife method (see, e.g., Kott 1998).
Specifically, we divided the samples into B nonoverlapping
blocks based on their geographic proximity and then formed B
jackknife replicates, where each replicate was formed by delet-
ing one of the blocks from the entire sample. For each repli-
cate, we computed the estimates based on the semiparametric
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estimating equations developed in Section 4.2 and obtained the
jackknife variance as

varjackknife = B − 1

B

B∑

j=1

(�̂j − �̂)(�̂j − �̂)′, (13)

where �̂j is the estimate produced from the jackknife repli-
cate with the jth “group” deleted and �̂ is the estimate based
on the entire population. We chose B = 40, which appeared
large enough to render a reasonably good measure of variabil-
ity. This jackknife scheme, in a spirit similar to that of a sub-
sampling scheme proposed by Carlstein (1986, 1988), treated
each block as approximately independent and seemed plausi-
ble for this dataset, especially in the presence of weak spatial
dependence. Loh and Stein (2004) called this scheme the split-
ting method and found that it worked even better than more-
complicated block-bootstrapping methods (e.g., Kunsch 1998;
Liu and Singh 1992; Politis and Romano 1992; Bulhmann and
Kunsch 1995). Other advanced resampling schemes for spatial
data are also available, including a double-subsampling method
(Lahiri, Kaiser, Cressie, and Hsu 1999; Zhu and Morgan 2004)
and linear estimating equation jackknifing (Lele 1991), but
these are subject to a much greater computational burden com-
pared with the simple that jackknife scheme we used.

The results are presented in Table 2, with the large-sample
SEs (SEa) computed using the method described in Section 4.3
and the jackknife SEs (SEj) computed using (13). The estimates
of the regression coefficients and their SEs were almost con-
stant with various choices of the smoothness parameter α3 and
indicated that the regression coefficient estimates were not sen-
sitive to the choice of α3 in this dataset. The SEs obtained from
the large-sample approximation and the jackknife method were
reasonably similar. Low respiratory index was highly associ-
ated with the age at onset of asthma, for example, β̂L = .3121
(SEa = .0440,SEj = .0357) when α3 = .5, β̂L = .3118 (SEa =
.0430,SEj = .0369) when α3 = 1.0, and β̂L = .3124 (SEa =
.0432,SEj = .0349) when α3 = 1.5, indicating that a child with
a poor respiratory function was more likely to develop asthma,
after controlling for maternal asthma, and maternal cotinine lev-
els, and accounting for the spatial variation. No significant asso-
ciation was found between age at onset of asthma and maternal
asthma and cotinine levels. The estimates of the spatial depen-
dence parameters, α1 and α2, varied slightly with the choice
of α3. The scale parameter α1 corresponds to the partial sill
(Waller and Gotway 2004, p. 279) and measures the correlation
between subjects in close geographic proximity. Our analysis
showed that such a correlation was small. The parameter α2

measures global spatial decay of dependence with the spatial
distance (measured in kilometers). For example, when α3 = .5
(i.e., under the exponential model), α2 = 2.2977 means that the
correlation decays by 1 − exp(−2.2977 × 1)

.= 90% for every
1-km increase in distance. As pointed out by a reviewer, the
value of α2 should be interpreted with caution, because its in-
terpretation depends on the unit of distance.

7. DISCUSSION

We have proposed a semiparametric normal transformation
model for spatial survival data. Although statistical methods for
clustered survival data and noncensored spatial data have been
well developed, little work has been done on modeling censored
spatial survival data. However, direct extensions of models for
clustered survival data to censored spatial survival data are diffi-
cult to use in constructing a semiparametric likelihood to allow
each survival outcome to marginally follow the Cox propor-
tional hazard model. An attractive feature of our semiparamet-
ric normal transformation models is that they provide a general
semiparametric likelihood framework within which to generate
censored spatial survival data with a flexible spatial correlation
structure and individual observations marginally following the
Cox proportional hazard model. Hence such models provide an
elegant connection between classical spatial models for normal
continuous spatial outcomes and the traditional Cox model for
censored survival data, and allow the regression coefficients to
have marginal interpretations. To our knowledge, this article is
the first attempt to develop such semiparametric marginal mod-
els for spatial survival data.

In view of the intractable high-dimensional integration re-
quired by maximum likelihood estimation and the presence of
the infinite-dimensional nuisance baseline hazard parameter in
the likelihood function, we develop a class of spatial semipara-
metric estimating equations using individual and pairwise sur-
vival times. The proposed method is computationally easy and
is shown to yield consistent and asymptotically normal estima-
tors and to yield a regression coefficient estimator that is robust
to misspecification of the correlation structure. Our simulation
study shows that the proposed method performs well in finite
samples.

The estimating equation for the spatial correlation para-
meter α mimics the normal-likelihood score equation for
martingale residuals. It would be of interest to develop quasi-
likelihood–type estimating equations to improve the efficiency
of the estimator of α as it characterizes the underlying spa-
tial dependence, which is sometimes of practical interest. Such
a quasi-likelihood–type estimating equation for α, however,

Table 2. Results of Analysis of the East Boston Asthma Study Under the Normal Transformation Model Assuming
the Matèrn Correlation and the Marginal Cox Model

α3 = .5 α3 = 1 α3 = 1.5

Parameters Estimate SEa SEj Estimate SEa SEj Estimate SEa SEj

βL .3121 .0440 .0357 .3118 .0430 .0369 .3124 .0432 .0349
βM .2662 .3314 .3222 .2644 .3289 .3309 .2676 .3283 .3340
βC .0294 .1394 .1235 .02521 .1270 .1063 .0277 .1288 .1083
α1 1.68E−3 9.8E−3 .0127 .74E−3 5.0E−3 7.1E−3 .72E−3 5.5E−3 4.8E−3
α2 2.2977 4.974 3.708 2.1917 4.7945 4.1988 1.8886 6.5005 5.01617

NOTE: Estimates were calculated by the spatial semiparametric estimating equation method, the large-sample SEs (SEa) were computed using the method described in Section 4.3, and the
jackknife SEs (SEj) were computed using the formulation (13) in Section 6.
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would involve third- and fourth-order moments of the martin-
gale residuals Muv(s), the computation of which can be diffi-
cult. It would be of future research interest to investigate the
efficiency loss of the proposed estimator of α relative to such a
more-complicated quasi-likelihood estimator.

Although rather computationally demanding, it might be fea-
sible to develop a full nonparametric maximum likelihood es-
timator (MLE) of the regression coefficient estimator β and
the spatial correlation parameter α based on the semiparametric
normal transformation likelihood (5), with the baseline hazard
estimated nonparametrically by a step function with jumps at
distinct failure times. For example, an EM-type analysis un-
der (5) might be possible by viewing the censoring-prone sur-
vival times as missing values. It would be of future research
interest to study the theoretical properties of such nonparamet-
ric MLEs and compare the efficiency and robustness of the
spatial semiparametric estimating equation–based estimators in
this article with the nonparametric MLEs. It is likely that the
nonparametric MLEs of the regression coefficients are sensi-
tive to the misspecification of the spatial correlation structure,
whereas the spatial semiparametric estimating equation–based
estimators are robust to such misspecifications. But if the semi-
parametric normal transformation model is a true model, then
the spatial semiparametric estimating equation–based estima-
tors may be less efficient than the nonparametric MLEs. More
research is needed.

In this article we have focused on normal transformation
models assuming a marginal Cox proportional hazard model
in view of the popularity of the Cox model in health sciences
research and the attractive interpretation of regression coeffi-
cients. We may extend the normal transformation model to the
accelerated failure time models that specify

log Ti = −β ′Zi + εi, i = 1, . . . ,m,

where εi follows an unspecified distribution. This model is
equal to, marginally, Ti ∼ S0(t exp(β ′Zi)), where S0(t) is an un-
specified survival function. Then we define the normal transfor-
mation as T∗

i = �−1{1 − S0(Ti exp(β ′Zi))}. Hence T∗
i follows

the standard normal distribution marginally. We can then con-
veniently impose a spatial structure on the underlying random
fields of T∗ = {T∗

i , i = 1, . . . ,m} within the traditional Gaussian
geostatistical framework as described in Section 2. However,
further research is needed for drawing inference based on this
new class of models, because the proposed martingale-based
estimating equations in Section 4.2 are not directly available to
fit this model, especially in the presence of unknown baseline
survival function S0(·). A rank-based procedure along the line
of that of Jin, Lin, and Wei (2003) may need to be adopted. We
will pursue this idea in future work.

APPENDIX: TECHNICAL DETAILS

A.1 A First-Order Expansion of the Martingale
Covariance Rate Function

Following Moran (1983) and Kotz, Balakrishnan, and Johnson
(2000, eq. 45.89), some algebra shows that when θ is sufficiently
small, we can approximate the following bivariate tail probability:


(z1, z2; θ) =
∫ ∞

z1

∫ ∞
z2

�2(dx1,dx2; θ)

by


(z1, z2; θ) = {1 − �(z1)}{1 − �(z2)} + θφ(z1)φ(z2) + o(θ),

where �(·) and φ(·) are the CDF and density function for a standard
normal distribution and o(θ) holds uniformly with respect to (z1, z2)

in any bounded set. Then

∂

∂z1

(z1, z2; θ) = −[

φ(z1){1 − �(z2)} + θz1φ(z1)φ(z2)
] + o(θ),

∂

∂z2

(z1, z2; θ) = −[

φ(z2){1 − �(z1)} + θz2φ(z1)φ(z2)
] + o(θ),

and

∂2

∂z1 ∂z2

(z1, z2; θ) = φ(z1)φ(z2) + θz1z2φ(z1)φ(z2) + o(θ). (A.1)

Using a copula representation and a first-order Taylor expansion,
Sungur (1990) also derived (A.1) for approximating the standard bi-
variate normal density function.

Hence, from (7) and (8), we can approximate S̃ij(t1, t2; θ), the joint
survival function of the exponential transformations of the original sur-
vival times, by

S̃ij(t1, t2; θ) = 

{
�−1(1 − e−t1 ),�−1(1 − e−t1); θ}

= e−(t1+t2) + θφ(x1)φ(x2) + o(θ),

where xk = �−1(1 − e−tk ) (k = 1,2), o(θ) holds uniformly for
(t1, t2) ∈ [ε1,M1] × [ε2,M2] for any 0 < εk < Mk < ∞, k = 1,2.
Then, by the chain rule,

∂

∂t1
S̃ij(t1, t2; θ) = ∂

∂x1

(x1, x2; θ)

dx1

dt1

= −e−(t1+t2) − θx1e−t1φ(x2) + o(θ),

∂

∂t2
S̃ij(t1, t2; θ) = −e−(t1+t2) − θx2e−t2φ(x1) + o(θ),

and

∂2

∂t1 ∂t2
S̃ij(t1, t2; θ) = e−(t1+t2) + θx1x2 + o(θ).

Then it follows that the martingale covariance function is

A0(t1, t2; θ) = θ{et1φ(x1) − x1}{et2φ(x2) − x2} + o(θ).

Again, o(θ) holds uniformly for (t1, t2) ∈ [ε1,M1] × [ε2,M2].
Hence, for any τ1 < M1 < ∞ and τ2 < M2 < ∞, writing the double

integral
∫ τ1

0

∫ τ2
0 as

∫ τ1

0

∫ τ2

0
=

∫ τ1

ε1

∫ τ2

ε2

+
∫ τ1

ε1

∫ ε2

0
+

∫ ε1

0

∫ ε2

0
+

∫ ε1

0

∫ τ2

ε2

,

we have
∫ τ1

0

∫ τ2

0
θ−1∣

∣A0(t1, t2; θ)

− θ
(
et1φ(x1) − x1

)(
et2φ(x2) − x2

)∣∣dt1 dt2

≤
∫ τ1

ε1

∫ τ2

ε2

θ−1∣
∣A0(t1, t2; θ)

− θ
(
et1φ(x1) − x1

)(
et2φ(x2) − x2

)∣∣dt1 dt2

+
∫ τ1

ε1

∫ ε2

0
θ−1|A0(t1, t2; θ)|dt1 dt2

+
∫ τ1

ε1

∣
∣et1φ(x1) − x1

∣
∣dt1

∫ ε2

0

∣
∣et2φ(x2) − x2

∣
∣dt2

+
∫ ε1

0

∫ ε2

0
θ−1|A0(t1, t2; θ)|dt1 dt2
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+
∫ ε1

0

∣
∣et1φ(x1) − x1

∣
∣dt1

∫ ε2

0

∣
∣et2φ(x2) − x2

∣
∣dt2

+
∫ ε1

0

∫ τ2

ε2

θ−1|A0(t1, t2; θ)|dt1 dt2

+
∫ ε1

0

∣
∣et1φ(x1) − x1

∣
∣dt1

∫ τ2

ε2

∣
∣et2φ(x2) − x2

∣
∣dt2.

It can be shown that A0(t1, t2; θ) is integrable over any finite rectangle
[0, τ1] × [0, τ2] and that etkφ(xk) − xk (k = 1,2) are integrable over
any finite interval [0, τk]. Therefore, using (ε − δ)-type arguments, we
can show that all of the foregoing components converge to 0 as θ → 0.
Hence
∫ τ1

0

∫ τ2

0
A0(t1, t2; θ)dt1 dt2

= θ

∫ τ1

0
{et1φ(x1) − x1}dt1

∫ τ2

0
{et2φ(x2) − x2}dt2 + o(θ).

Furthermore, integration by parts yields, for k = 1,2,
∫ τk

0
{etkφ(xk) − xk}dtk

= τk�
−1(1 − e−τk ) − eτkφ{�−1(1 − e−τk )}

+
∫ �−1(1−e−τk )

−∞

[

log{1 − �(x)} − xφ(x)

1 − �(x)

]

dx.

Hence when the spatial dependence is weak, we are able to approxi-
mate the two-dimensional integral of the martingale covariance by the
product of two univariate integrals, which greatly facilitates computa-
tion. This result also indicates that the covariance between two martin-
gales decays to 0 at the same rate as the spatial correlation parameter θ ,
warranting the large-sample theory.

A.2 Regularity Conditions

For the asymptotic properties of the estimator, we assume that the
spatial domain is increasing regularly in the sense of Guyon (1995).
That is, we consider increasing-domain asymptotics, wherein the do-
main Dm ⊂ R2 is a sequence of increasing domains over which the
data are collected. Let |Dm| be the associated cardinalities and assume
that there exists an a > 0 and mn, a strictly increasing sequence of
integers such that

∑

n≥1

na∣
∣Dmn

∣
∣−1

< ∞

and

∑

n≥1

( |Dmn+1/Dmn |
|Dmn |

)2
< ∞.

Another commonly used asymptotic framework in spatial statistics
is in-fill asymptotics, which has been found to be most useful when
considering the asymptotics of kriging. Because we are mainly con-
cerned with the asymptotic behavior of the estimates of the population-
level regression parameters as well as correlation parameters, we have
adopted the increasing-domain asymptotics in the following deriva-
tions. In practice, increasing-domain asymptotics are appropriate when
the spatial domain of interest is extendable, and new observations are
added beyond existing ones, generating an expanding surface.

Next, we state the other sufficient regularity conditions, which war-
rant the large-sample theory on a random field:

1. Stability. Denote by s(k)(β, t) = E{Yj(t)Z
⊗k
j (t)eβ ′Zj(t)} for k =

0,1,2. Assume that these functions exist and are bounded in

B × [0, τ ). In particular, s(0)(β, t) is bounded away from 0.
Moreover,

sup
(β,t)∈B×[0,τ )

∣
∣S(k)(β, t) − s(k)(β, t)

∣
∣ p→ 0

for k = 0,1, . . . ,3.
Assume that of all the covariates Zi are uniformly bounded

and that the weight functions, W(i,j)(t), are chosen such that

there exist (bounded) functions sw(k)
ij (β, t), i, j = 1,2, which sat-

isfy, for k = 0,1,

sup
(β,t)∈B×[0,τ ]

∥
∥
∥
∥m−1

∑

i≥ j

Zi(t)w
(i,j)
11 (t)Yi(t)e

βZi(t) ⊗ Zk
i (t)

− sw(k)
11 (β, t)

∥
∥
∥
∥

p→ 0,

sup
(β,t)∈B×[0,τ ]

∥
∥
∥
∥m−1

∑

i≥ j

Zi(t)w
(i,j)
12 (t)Yj(t)e

βZj(t) ⊗ Zk
j (t)

− sw(k)
12 (β, t)

∥
∥
∥
∥

p→ 0,

sup
(β,t)∈B×[0,τ ]

∥
∥
∥
∥m−1

∑

i≥ j

Zj(t)w
(i,j)
21 (t)Yi(t)e

βZi(t) ⊗ Zk
i (t)

− sw(k)
21 (β, t)

∥
∥
∥
∥

p→ 0,

and

sup
(β,t)∈B×[0,τ ]

∥
∥
∥
∥m−1

∑

i≥ j

Zj(t)w
(i,j)
22 (t)Yj(t)e

βZj(t) ⊗ Zk
j (t)

− sw(k)
22 (β, t)

∥
∥
∥
∥

p→ 0.

Here, for two column vectors, say, a and b, a ⊗ b = ab′.
2. Boundness. Assume that the covariate processes Zi(·) and

weights w(uv)
ij (·),vij are uniformly bounded. Also assume that

�0(τ ) < ∞ for τ < ∞.
3. Differentiability. Assume that the covariance function A0 is at

least twice differentiable.
4. Positive definiteness of the information. Assume that matrix � =

(�ij)2×2, has positive eigenvalues, where

�11 =
2∑

p=1

2∑

q=1

∫ τ

0

{

sw(1)
pq (β0, t)

− sw(0)
pq (β0, t) ⊗ s(1)(β0, t)

s(0)(β0, t)

}

d�0(t),

�12 = 0,

�21 =
∫ τ

0
lim

m→∞ m−1

×
∑

i≥ j

vij ⊗
[{

Zi(t) − s(1)(β0, t)

s(0)(β0, t)

}

× Yi(t)e
β ′

0Zi(t)
{
Mj(Xj ∧ τ ) + A(100)

ij

}

+
∫ τ

0

{

Zj(t) − s(1)(β0, t)

s(0)(β0, t)

}

× Yj(t)e
β ′

0Zj(t)
{
Mi(Xi ∧ τ ) + A(010)

ij

}
]

d�0(t),
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and

�22 = lim
m→∞ m−1

∑

i>j

vij ⊗ A(001)
ij ,

for i = j;

A(100)
ii = A(010)

ii = 0,

for i �= j; and

A(100)
ij =

∫ �i(τ∧Xi)

0

∫ �j(τ∧Xj)

0
A(100)

0 {s1, s2; θij(α0)}ds1 ds2,

A(010)
ij =

∫ �i(τ∧Xi)

0

∫ �j(τ∧Xj)

0
A(010)

0 {s1, s2; θij(α0)}ds1 ds2,

and

A(001)
ij =

∫ �i(τ∧Xi)

0

∫ �j(τ∧Xj)

0
A(010)

0 {s1, s2; θij(α0)}

× ∂

∂α
θij(α0)ds1 ds2.

Here �i(t) = ∫ t
0 eβ ′

0Zi(s)d�0(s), A(100)
0 (u, v; θ) = ∂

∂u A0(u,

v; θ), A(010)
0 (u, v; θ) = ∂

∂v A0(u, v; θ), and A(001)
0 (u, v; θ) =

∂
∂θ

A0(u, v; θ). All of the foregoing limits are the probabilistic
limits (provided existence) when m → ∞.

5. At �0, supi,j E(Ûi,jÛ′
i,j) < ∞ and �(2) = mE(GmG′

m) is

bounded below by a positive definite matrix and supm �(2) < ∞.

A.3 Sketchy Proof of Proposition 1

In this section we provide a sketchy proof of Proposition 1. A de-
tailed proof is given in a technical report that can be obtained from
the authors. We first apply the inverse function theorem (see, e.g.,
Foutz 1977) to prove consistency. Specifically, we need to check the
three sufficient conditions based on a straightforward extension of the
work of Foutz (1977): (1) asymptotic unbiasedness of the estimating

equation, that is, Gm(�0)
p→ 0; (2) existence, continuity, and uniform

convergence of the partial derivatives of the estimating equations in a
neighborhood of the true parameters, that is, (∂/∂�)Gm(�) converges
uniformly in a neighborhood of �0; and (3) the negative definiteness
of the partial derivatives of the estimating equations at the true val-
ues, that is, (∂/∂�)Gm(�0) converges in probability to a matrix with
strictly negative eigenvalues.

Rewrite Gm(�) = {Û(1)
1 + Û(1)

2 + Û(1)
3 + Û(1)

4 , Û(2)}′, where

Û(1)
1 = m−1

∑

u≥v

∫ τ

0
Zu(t)w(uv)

11 (t)dM̂u(t),

Û(1)
2 = m−1

∑

u≥v

∫ τ

0
Zu(t)w(uv)

12 (t)dM̂v(t),

Û(1)
3 = m−1

∑

u≥v

∫ τ

0
Zv(t)w

(uv)
21 (t)dM̂u(t),

Û(1)
4 = m−1

∑

u≥v

∫ τ

0
Zv(t)w

(uv)
22 (t)dM̂v(t),

and

Û(2) = m−1
∑

u≥v

vuv{M̂u(τ )M̂v(τ ) − Âuv},

where Âuv is as defined in (10).

We next show that Gm(�0) → 0 in probability. Consider Û(1)
1 (�0),

with �0(t) substituted by its Breslow estimator,

Û(1)
1 = m−1

∑

u≥v

∫ τ

0
Zu(t)w(uv)

11 (t)dMu(t)

− m−1
∑

u≥v

∫
Zu(t)Yu(t)eβ ′Zu(t)w(uv)

11 (t)

×
∑m

i=1 dMi(t)
∑m

i=1 Yi(t)e
β ′

0Zi(t)
(A.2)

= 1

m

m∑

i=1

∫ τ

0

{

Zi(t)

{∑

j≤i

w(ij)
11 (t)

}

− sw(0)
11 (t)

s(0)(t)

}

dMi(t) (A.3)

− 1

m

m∑

i=1

∫ τ

0

1

s(0)(t)

{

m−1
∑

u≥v

Zu(t)Yu(t)eβ ′
0Zu(t)w(uv)

11 (t)

− sw(0)
11 (β0, t)

}

dMi (A.4)

− 1

m

m∑

i=1

∫
sw(0)

11 (t)

[(

m−1
m∑

i=1

Yu(t)eβ ′
0Zu(t)

)−1

− {s(0)(t)}−1

]

dMi(t) (A.5)

− 1

m

m∑

i=1

∫ τ

0

{

m−1
∑

u≥v

Zu(t)Yu(t)eβ ′
0Zu(t)w(uv)

11 (t)

− sw(0)
11 (t)

}

(A.6)

×
[(

m−1
m∑

i=1

Yu(t)eβ ′
0Zu(t)

)−1

− {s(0)(t)}−1

]

dMi(t),

(A.7)

where Mi(u) = Ni(u) − ∫ u
0 Yi(u) exp(β ′

0Zi)d�0(t), a martingale with
respect to the filtration generated by each individual’s own survival
status and covariate processes. It can be shown that (A.2)–(A.5) all

converge to 0 in probability. Similarly, it can be shown that Û(1)
2 , Û(1)

3 ,

and Û(1)
4 all converge to 0 in probability. It can also be shown that Û(2)

is asymptotically equivalent to

U(2) = 1

m

∑

u≥v

vuv

{

Mu(τ )Mv(τ )

−
∫ τ

0

∫ τ

0
Yu(s)Yv(t)

× A0{�u(s),�v(t)}d�u(s)d�v(t)

}

,

which also converges to 0 in probability under the mixing condition
using the Chebyshev inequality. Therefore, we conclude that Gm(�0)

converges to 0 in probability.
For any fixed m, the continuity of ∂Gm(�)/∂� in � follows from

the smoothness assumption of the covariance rate function A0(·). We
then consider the large-sample behavior for ∂Gm(�)/∂� in a small

neighborhood of �0. For example, we can show that ∂Û(1)
1 /∂β con-

verges uniformly in a neighborhood of �0 and, at β0,

∂
Û(1)

1
∂β

→
∫ τ

0

{

sw(2)
11 (β0, t) − sw(0)

11 (β0, t) ⊗ s(1)(β0, t)

s(0)(β0, t)

}

d�0(t)
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in probability. The same arguments also apply to ∂Û(1)
2 /∂β , ∂Û(1)

3 /

∂β , and ∂Û(1)
4 /∂β , which converge uniformly in a neighborhood

of �0. Hence, in particular, at �0, the (1,1)th block of ∂Gm(�)/∂�

converges to −�11. Similarly, we can show that other blocks of
∂Gm(�)/∂� converge uniformly at �0 to −�, which has negative
eigenvalues by condition 4. Thus it follows from the inverse function
theorem (Foutz 1977) that when n is sufficiently large, in a neighbor-
hood of �0 there exists a unique sequence of �̂ = (β̂, α̂)′ such that

Gm(�̂) = 0 with probability going to 1 and �̂
p→ �0 = (β ′

0,α′
0)′.

We now consider the asymptotic normality of �̂. A Taylor expan-
sion of Gm(�̂) at the true value �0 gives

−√
m

{
∂

∂�
Gm(�∗)

}

(�̂ − �0) = √
mGm(�0),

where �∗ is on the segment between �0 and �̂. With condition 5 and
the assumed spatial dependence, a central limit theorem (Guyon 1995,
chap. 3) applies to the sequence of Gm(�0) such that

√
m

{
�(2)

}−1/2Gm(�0) → N(0, I)

in distribution. Note that ∂Gm(�∗)/∂� converges to −� in probabil-
ity. Application of the Slutsky theorem gives

√
m

{
�(2)

}−1/2
�(�̂ − �0) → N(0, I)

in distribution.

[Received August 2004. Revised September 2005.]
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