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This article is motivated by a time-to-event analysis where the covariate of interest was measured at the wrong time. We show that the
problem can be formulated as a special case of survival analysis with heterogeneous covariate measurement error and develop a general
analytic framework. We study the asymptotic behavior of the naive partial likelihood estimates and analytically demonstrate that under
the heterogeneous measurement error structure and the assumption that all components of the covariate vector and the measurement error
vector combined are mutually independent, these naive estimates will shrink toward 0, and that the degree of attenuation increases as the
measurement error increases. We also give counterexamples for reverse attenuation when the independence conditions are violated. We
use our analytical results to derive a simple bias-correcting estimator that performs well in simulations for small and moderate amounts of
measurement error. Our framework can be used to provide insight into the behavior of the commonly used partial likelihood score test for
testing no association between a failure outcome and an exposure, for example, in the presence of measurement error or mistiming error. In
particular, we derive the asymptotic distribution of the naive partial likelihood score test under a series of local alternatives and discuss the
asymptotic relative efficiency. As a result, a simple sample size formula to account for the contamination of covariates is obtained.

KEY WORDS: Asymptotic bias analysis; Asymptotic relative efficiency; Corrected estimator; Cox model; Mistimed covariate;
Schoenfeld’s sample size formula.

1. INTRODUCTION

One serious problem in survival analysis is that major time-
varying covariates of interest are often mistimed. For exam-
ple, in clinical trials, some baseline biometric measurements
(e.g., platelet count and serum creatinine) may not be avail-
able at time of entry but may be assessed during the early part
of treatment. The ongoing Home Allergen Study (Gold et al.
1999), which motivates this work, was designed to assess envi-
ronmental effects, such as bacterial endotoxin exposure at birth,
on immunological function, allergy, and asthma in infants and
young children. The scientific hypothesis is that immunologi-
cal response to endotoxin exposure in infancy helps to “prime”
the infant’s ability to respond to environmental triggers, and
hence exposure to bacterial endotoxins early in life may con-
fer protection against the development of allergy and asthma in
later childhood. However, most noticeably in the design of this
study, except for some new born infants, the endotoxin expo-
sure levels were not assessed at birth and were often substituted
with measurements made later in the same household. Issues of
mistimed covariates have been addressed in a heuristic way by
Keiding (1992) and in the context of a pharmacokinetic study
by Higgins, Davidian, and Giltinan (1997), but a detailed study
in the context of survival analysis has not been conducted.

Of course, failure time regression subject to covariate mea-
surement errors or missing covariates has aroused much interest
over the past two decades. Prentice (1982) has demonstrated the
impact of measurement error by deriving the induced hazard
function in the presence of covariate measurement error and
advocated a regression calibration method to draw inference.
Zhou and Pepe (1995) and Zhou and Wang (2000) have dis-
cussed the use of the calibration approach when some covari-
ates are missing. Xie, Wang, and Prentice (2001) and Wang,
Xie, and Prentice (2001) have applied a risk set calibration
procedure in a measurement error setting. Estimating equation
approaches have been proposed by Huang and Wang (2000),
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Tsiatis and Davidian (2001), and Hu and Lin (2002) in the con-
text of survival measurement error models and by Lin and Ying
(1993), Lipsitz and Ibrahim (1998), Leong, Lipsitz, and Ibrahim
(2001), and Chen (2002) in the context of missing-covariate
models. Nonparametric maximum likelihood approaches have
been adopted by Zhong, Sen, and Cai (1996), and Hu, Tsiatis,
and Davidian (1998), Chen and Little (1999), Martinussen
(1999), Herring and Ibrahim (2001), and Pons (2002), and max-
imum partial likelihood estimators have been suggested by Paik
and Tsai (1997). But none of these authors has derived expres-
sions describing the asymptotic behavior of the standard Cox
proportional hazards model when the covariates are contam-
inated. Furthermore, none has considered the setting of het-
erogeneous measurement error, that is, when the measurement
error variance changes across individuals. In a different con-
text, the issue of heterogeneous measurement error has been
addressed by Carroll and Stefanski (1990) for generalized lin-
ear models, but not for censored data. Our first objective, mo-
tivated by the work of Hughes (1993) on regression dilution
in the naive partial likelihood estimates under a specific mea-
surement error model, is to provide additional insight into the
asymptotic behavior of these naive estimates in a broader con-
text. Specifically, we recast the original mistiming problem in
a more general framework of measurement error models, and
discuss the asymptotic properties of the naive maximum par-
tial likelihood estimates. We prove that under the assumption
that all components of the covariate vector and the measure-
ment error vector combined are mutually independent, the naive
estimates shrink toward 0, and the degree of attenuation in-
creases as the measurement error becomes more severe. We also
give counterexamples for reverse attenuation when the indepen-
dence condition is violated. Moreover, based on our asymptotic
results, we derive a simple bias-correcting estimator, which can
be obtained with output from Cox regression analyses in stan-
dard software. Simulations indicate that this simple estimator
performs well in simulations for small and moderate measure-
ment errors. The second part of this article focuses on the be-
havior of the commonly used partial likelihood score test for

© 2004 American Statistical Association
Journal of the American Statistical Association

September 2004, Vol. 99, No. 467, Theory and Methods
DOI 10.1198/016214504000001079

724



Li and Ryan: Heterogeneous Covariate Measurement Error 725

hypothesis testing in the presence of general covariate measure-
ment error. In particular, we derive the asymptotic distribution
of the naive partial likelihood score test under a series of local
alternatives and compute its asymptotic relative efficiency. Our
results yield an appealing sample size formula, useful for de-
signing an observational study to compensate for the efficiency
loss due to covariate contamination in hypothesis testing.

2. MODELS AND NOTATION

2.1 Mistimed Covariates Model

Assume that the survival times of m independent individu-
als are subject to right censoring, and assume throughout that
censoring is noninformative. Let Ti = min(T̃i, C̃i ) be the ob-
served survival for subject i (i = 1, . . . ,m), where T̃i is the
true survival time and C̃i is the potential censoring time. The
individual-specific time origin is the date of a beginning event
(e.g., birth) which effectively excludes the possibility of left
censoring. Let δi = I (T̃i ≤ C̃i ) be the noncensoring indicator,
which takes value 1 if a failure was observed and 0 otherwise.
For subject i , let Xi (·) be an l1-dimensional covariate process,
which is actually continuous in time but may be observed only
at a few time points. In our motivating home allergen study, for
example, Xi (t) is the household endotoxin exposure for sub-
ject i at time t . Suppose that for each subject we are inter-
ested in relating the outcome Ti to the covariate process Xi (·)
measured at time 0, controlled for the effects of Zi , an l2 × 1
accurately measured covariate vector. That is, the outcomes
(Ti, δi), i = 1, . . . , n, are independent, with the hazard function
being linked to the covariates through the following model:

lim
dt→0

(dt)−1P
(
t ≤ T̃i ≤ t + dt|T̃i ≥ t,Xi (·),Zi

)

= λ{t,Xi (0),Zi}. (1)

By noninformative censoring, we mean that C̃i is indepen-
dent of T̃i conditional on Xi (0) and Zi . A common choice of (1)
is the proportional hazards model (Cox 1972),

λ{t,Xi (0),Zi ) = λ0(t) exp{β ′
xXi (0) + β ′

zZi}, (2)

where βx and βz are fixed effects and λ0(t) is an unspecified
baseline hazard function.

Model (1) indicates that, conditional on Xi (0) and Zi , the
measurements of Xi (·) at other time points provide no extra
information regarding the outcome, an analog to the classi-
cal assumption of nondifferential measurement error (Carroll,
Ruppert, and Stefanski 1995). The statistical challenge is that
Xi (·) is not measured at time 0 but is available at a later time,
say Ti (often prearranged in practice), which is assumed to be
independent of the outcome and the concerned covariates. It is,
however, customary in data analysis to fit a proportional hazards
model (2) by ignoring the mistiming error and directly replac-
ing the unobserved Xi (0) with the observed Xi (Ti ). Hence, it
will be imperative to analyze the resulting biases.

The mistimed covariate model is completed by specifying the
covariate process Xi (·). We assume that Xi (t) are iid stochastic
processes,

Xi (t) = Xi (0) + σ(t)Bi (t), (3)

where σ(t) controls the magnitude of perturbation and the
Bi (t) are independent mean 0 multidimensional stochastic

processes with variance–covariance matrix D(t), which may
depend on time t (see, e.g., Kakihara 1997). But for simplic-
ity (and identifiability), we assume that D(t) is independent
of t and hence write it as D. In a setting of mistimed covari-
ates, we typically assume that the scale variance function σ(t)

is a nondecreasing function of t , exemplifying that the depar-
ture from the true covariate tends to amplify with time. Choices
of σ(t), for example, include σ(t) ≡ constant or σ(t) = t or
σ(t) = exp(t)−1, which we use in our numerical studies. Often
a moment-based method can be used to consistently estimate
σ(t) and D when the process Xi (·) can be observed at multiple
time points (see, e.g., Carroll, Gail, and Lubin 1993; Carroll et
al. 1995). In a structural model, the true covariates Xi (0) are
considered to be independently generated from a parameterized
distribution (e.g., a multivariate normal distribution), whereas
in a functional model, they are considered fixed but unobserved
constants.

The naive estimator is the one under model (2) that ignores

the mistiming error with directly replacing Xi
def≡ Xi (0) with

Wi
def≡ Xi (Ti ). Thus the naively specified hazard function is

λi,naive(t|Wi ,Zi ) = λ0,naive(t) exp{W′
iβx,naive + Z′

iβz,naive}.
(4)

We would expect that ignoring the mistiming error and directly
using the common tools for survival analysis, such as the Cox
partial likelihood score approach (Cox 1972), will produce bi-
ased results. We investigate these issues analytically in Sec-
tion 4. First, however, we embed our mistimed covariates model
into a broader framework in the next section.

2.2 Heterogeneous Measurement Error Model

Model (3) differs from the classical measurement error
model by involving a heterogeneous measurement error vari-
ance that depends on other available information—in our
motivating example, the assessment time of covariates. This
motivates a more general measurement error structure for the
unobserved covariates,

Wi = Xi + ui , (5)

where, conditional on a subject-specific nonnegative random
variable τi , the measurement error ui are independently nor-
mally distributed with mean 0 and variance–covariance matrix
τiD and are independent of Xi , T̃i , and C̃i . Here D is a nonran-
dom positive definite matrix (which may depend on observed
quantities), and τi reflects the magnitude of measurement error.
We further assume that the τi ’s are independent random vari-
ables with mean σ 2 and a finite moment-generating function
Mτ(v,σ 2) (in a neighborhood of 0), where

Mτ(v,σ 2) = E(evτi ;σ 2).

Finally, we assume that Xi has variance–covariance �x , but
that its distribution function is left unspecified for the time
being. This new class of measurement error models, allowing
the measurement error variance to vary across subjects, is gen-
eral and encompasses the classical additive measurement error
structure (Carroll et al. 1995) and the heteroscedastic measure-
ment error structure (Carroll and Stefanski 1990). For example,
it reduces to the classical additive model with τi = σ 2 almost
surely, the heteroscedastic measurement error with τi = f (Xi )
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for a given function f (·), and the mistimed covariate model (3)
with τi = σ(Ti ), where Ti is the actual time when the error-
prone covariate was assessed. Measurement error models with
nonconstant numbers of replicated samples (see, e.g., Hu et al.
1998; Xie et al. 2001) also fall into (5).

We turn now to an assessment of the asymptotic behav-
ior of the naive estimates based on the standard Cox partial
likelihood approach in the presence of heterogeneous covari-
ate measurement errors. We proceed by introducing the stan-
dard counting process notation. Let Ni = I (Ti ≤ t, δi = 1), i =
1, . . . ,m, be a right-continuous process for individual i that
documents the number of observed failures, 0 or 1, in an in-
terval [0, t], and Yi(t) = I (Ti ≥ t), a predictable process indi-
cating whether a subject is still at risk at time t . We assume that
(Ni, Yi,Xi ,Zi ,Wi , τi) are iid copies of (N,Y,X,Z,W, τ ).

On a probability space, say (�,F ,P ), let Ft = σ {Ni(u),

Yi(u+),0 ≤ u < t,Xi ,Zi ,Wi , τi , i = 1, . . . ,m} denote the in-
creasing filtrations that contain the information about survival
and covariates up to time t . Suppose, with respect to Ft , that
Ni has an intensity function

Yi(t)λ(t; Xi ,Zi ), (6)

which may not necessarily be of the proportional form (2).
Hence Mi(t) = Ni(t)− ∫ t

0 Yi(u)λ(u; Xi ,Zi ) du are Ft -adapted
independent local square-integrable martingales with the
variation processes being 〈Mi,Mj 〉(t) = 0 if i �= j and
〈Mi,Mi〉(t) = ∫ t

0 Yi(u)λ(u;Xi,Zi ) du (see, e.g., Fleming and
Harrington 1991).

Now consider the situation where the intensity function
for Ni is misspecified by (4). Denote by Wi∗ = (Wi ,Zi ),
β = (β ′

x,β
′
z)

′, and introduce S(j)(t) = m−1 ∑
i W⊗j

i∗ Yi(t)λ(t;
Xi ,Zi ), s(j)(t) = E{S(j)(t)}, S(j)(β, t) = m−1 ∑

i W⊗j
i∗ Yi(t)×

exp(β ′Wi∗), and s(j)(β, t) = E{S(j)(β, t)}, where j = 0,1,2,
and the expectations are taken with respect to the true distribu-
tions of N,Y,X,W, and Z based on models (6) and (5) and for
a vector a, a⊗0 = 1,a⊗1 = a, and a⊗2 = aa′.

Under the naive model (4), the regression coefficients β
would typically be estimated by maximizing the log partial like-
lihood function (Cox 1972)

�(β) =
m∑

i=1

∫ To

0
β ′Wi∗ dNi −

∫ To

0
logS(0)(β, t)

m∑

i=1

dNi(t),

(7)

where To is a prespecified constant such that it is within the sup-
port of the observed failure time, that is, P {To < C̃i ∧ T̃i} > 0.
In practice, To is often the observed maximal study duration for
each individual.

The next theorem shows that the sequence of naive estimates
β̂naive converges in probability to β∗, the solution to

h(β) =
∫ To

0
s(1)(t) dt −

∫ To

0

s(1)(β, t)

s(0)(β, t)
s(0)(t) dt. (8)

Theorem 1. Under regularity conditions (R.1) and (R.2)
given in Appendix A.1, the maximum partial likelihood esti-
mate β̂naive is a consistent estimator of β∗.

Indeed, the asymptotic distribution of β̂naive can also be in-
vestigated along the line of Lin and Wei (1989), and a related
theorem is documented in Appendix A.2.

3. PROPORTIONAL HAZARDS MODELS

Given the established asymptotic property of the naive es-
timates, we can evaluate the distortion of the covariate effects
under various model misspecifications. In the following we fo-
cus on the setting where one correctly specifies the proportional
hazards model but fails to account for mistiming errors or co-
variate measurement errors.

3.1 Asymptotic Bias

Suppose that the true hazard follows a proportional hazards
model,

λ(t,X,Z) = λ0(t) exp
{
β

(0)
1x X1 + · · · + β

(0)
l1x

Xl1

+ β
(0)
1z Z1 + · · · + β

(0)
l2z

Zl2

}
, (9)

where X = (X1, . . . ,Xl1) and Z = (Z1, . . . ,Zl2). Assume
that X′∗ = (X′,Z′),W′∗ = (W′,Z′), and β ′

0 = {β(0)′
x ,β(0)′

z } =
{β(0)

1x , . . . , β
(0)
l1x

, β
(0)
1z , . . . , β

(0)
l2z

}. Let G(t,X∗), g(t,X∗), and
C(t,X∗) be the survival function for the survival time, the den-
sity function for the survival time, and the survival function for
the censoring time, where G(t,X∗) = exp{−�0(t) exp(β ′

0X∗)},
g(t,X∗) = − ∂

∂t
G(t,X∗), and C(t,X∗) is left unspecified. As

implied by Theorem 1, the asymptotic limit of the naive esti-
mate β̂naive, denoted by

β∗(σ 2) = {
β∗

x(σ
2)′,β∗

z(σ
2)′

}′

= {
β∗

1x(σ
2), . . . , β∗

l1x
(σ 2), β∗

1z(σ
2), . . . , β∗

l2z
(σ 2)

}′
,

is the solution to (8) or, more specifically, to

0 =
∫ To

0
E{gCX∗} − E(gC)

×
{

E(GCeβ ′X∗X∗)
E(GCeβ ′X∗)

+ FDβxp

(
1

2
β ′

xDβx, σ
2
)}

dt,

(10)

where p(v,σ 2)
def≡ ∂

∂v
logMτ (v,σ 2), F = (Il1,0l1×l2)

′, Il1 is
an l1 × l1 identity matrix, and 0l1×l2 is an l1 × l2 matrix
with all of its entries being 0. Here we write G = G(t,X∗),
g = g(t,X∗), and C = C(t,X∗) for notational simplicity.
That (8) equals (10) in the case of the proportional hazards
model follows from the nondifferentiality assumption of mea-
surement error and the double-expectation theorem.

With regularity condition (R.2) from Appendix A.1 and by
the implicit function theorem, the solution to (10) exists and
is a smooth function of σ 2, reflecting the average magnitude
of the measurement errors ui . In particular, when σ 2 = 0
(τi = 0 almost surely), β∗(0) = β0 is the solution to (10).
When σ 2 → ∞, β∗

x(σ 2) → 0, and the contaminated covari-
ate W provides no information about the outcome. In this
case we essentially deal with the Cox proportional hazards
model with omitted covariates, and the asymptotic limit β∗

z(∞)

is the same as that identified by Struthers and Kalbfleisch
(1986), Bretagnolle and Huber-Carol (1988), and Schmoor and
Schumacher (1997).

With the independence assumption on the true covariates and
the measurement error [(C.3) in App. A.3], a more in-depth in-
vestigation leads to the following theorem, which establishes
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that β∗(σ 2) is indeed a monotone function of σ 2, the aver-
age measurement error variance in the setting of heterogeneous
measurement error [cf. (5)]. That is, the attenuation in the naive
estimates becomes more severe as σ 2 increases; see Appen-
dix A.3 for a proof. We also provide counter examples when
these independence assumptions are violated.

Theorem 2. Under conditions (R.1) and (R.2) in Appen-
dix A.1 and (C.0)–(C.5) in Appendix A.3, the following results
are derived:

• If β(0)
x = 0, then β∗

x(σ
2) ≡ 0; for each j = 1, . . . , l1; if

β
(0)
jx > 0, then β∗

jx(σ
2) > 0 and ∂β∗

jx(σ
2)/∂σ 2 < 0; and if

β
(0)
jx < 0, then β∗

jx(σ
2) < 0 and ∂β∗

x (σ 2)/∂σ 2 > 0.

• If β(0)
x = 0, then β∗

jz(σ
2) = β

(0)
jz for each j = 1, . . . , l2.

Assume that there exists a 1 ≤ k ≤ l1 such that β
(0)
kx �= 0; if

β
(0)
jz > 0; then β∗

jz(σ
2) > 0 and ∂β∗

jz(σ
2)/∂σ 2 < 0, and if

β
(0)
jz < 0, then β∗

jz(σ
2) < 0 and ∂β∗

jz(σ
2)/∂σ 2 > 0.

Remark 1. Although Prentice (1982) and Hughes (1993)
demonstrated regression dilution in the naive partial likelihood
estimates under a specific measurement error model, this theo-
rem analytically elucidates the attenuation phenomenon under a
more general measurement error model. Specifically, under the
assumption of independence among the components of the true
covariates and the measurement error [(C.3) in App. A.3], the
presence of measurement error will attenuate the covariate ef-
fects, whereas the direction of impact will be preserved. In par-
ticular, the naive estimate of the effect for a correctly measured
covariate, albeit independent of the contaminated covariates, is
attenuated as well, and the degree of such attenuation increases
with the magnitude of measure error. This is in contrast to the
usual linear regression, where the naive estimates for the effects
of correctly measured covariates are consistent as long as they
are independent of the contaminated covariates (Carroll et al.
1995).

We performed numerical studies under the survival model (9)
and the mistimed covariate model (3) to illustrate our the-
oretical results, using the following parameter values: l1 =
l2 = 1; baseline hazard λ0 = 1; the true regression coefficients
β

(0)
x = 1, and β

(0)
z = 1; the true X and Z, independent and as-

sumed to follow the standard normal distribution; the condi-
tional variance of measurement error τi = σ 2

0 σ(Ti ) in (5); the
censoring time, to be independent of X and survival time and
to follow an exponential distribution, that is, C(t) = exp(−at);
and the maximal study duration for each individual To = 2. We
assumed that the measurement time Ti for the error-prone co-
variate follows a uniform U[0,1]. Denote by ρ = σx/(σ 2

x +
σ 2)1/2 the marginal correlation between the observed value W

and the true underlying covariate X. By varying σ 2
0 , we let

ρ range from 1 to 0, with ρ = 1 corresponding to no mistim-
ing error and ρ = 0 indicating the worst situation where the
observed covariate W contains no information about the true
underlying covariate X. We chose a to be .13, .47, 1.7, 5.25 to
obtain censoring proportions roughly equal to 10%, 30%, 60%,
and 80%. We calculated the asymptotic relative bias, defined by
the difference between the estimate and the true value divided
by the true value, in the naive estimates β̂x,naive and β̂z,naive, un-
der measurement error variance functions σ(t) = 1, σ(t) = t ,

and σ(t) = exp(t) − 1. An omitted plot shows that the biases
increase as the correlation between the true and the observed
covariates becomes weaker, which coincides with our theoreti-
cal results. In addition, we notice that the biases in the estimates
of β∗

x and β∗
z increase when more observations are censored.

Remark 2. Although it may be a common conception that
measurement error causes attenuation in the estimation of
regression coefficients, reverse-attenuation examples can be
found if the independence assumptions on the covariates and
the measurement error are violated. To see this, assume the true
covariate vector X∗ ∼ MVN(µ∗,�∗) and the measurement er-
ror u ∼ MVN(0,D∗), where D∗ is an (l1 + l2)× (l1 + l2) matrix
whose first l1 × l1 block is σ 2D and the rest 0. Then, under the
rare event assumption (i.e., the event occurs with a negligible
probability), for any t ≤ To < ∞,

λ(t|W∗) = E{λ(t|X∗)|T̃ ≥ t,W∗} .= E{λ(t|X∗)|W∗},
where the last approximation is due to P(T̃ ≥ t)

.= 1 (see
Carroll et al. 1995). Using the normality of X∗|W∗, we obtain

λ(t|W∗)
.= λ∗

0(t) exp{β ′
0�∗(�∗ + D∗)−1W∗}, (11)

where λ∗
0(t) = λ0(t) exp[β ′

0{I − �∗(�∗ + D∗)−1}µ∗
+ .5β′

0{�∗ − �∗(�∗ + D∗)−1�∗}β0]. Hence comparing mod-
els (11) and (4) indicates that the asymptotic limit of the naive
estimate is approximated by

β∗ = (�∗ + D∗)−1�∗β0. (12)

If either �∗ or D∗ is nondiagonal (i.e., the independence as-
sumptions are not satisfied), we can always construct the sce-
narios where some individual components of β∗ have upward
biases or zero crossings. For example, consider a bicovariate
model (9) with l1 = 2 and l2 = 0, and assume X = (X1,X2) ∼
MVN(0,�∗) and measurement error u ∼ MVN(0,D∗). Set the
true parameter values as β

(0)
1x = 1, β

(0)
2x = 3.6. Using (12), we

compute the asymptotic limits of the naive estimates by consid-
ering different structures of �∗ and D∗:

• Correlated covariates with independent error. Let �∗ =
(�ij )2×2, where �11 = �22 = 1, �12 = �21 = .9, and
D∗ = diag(.4, .4). Then β∗

1x = 1.64 (> β
(0)
1x ) and β∗

2x =
2.16.

• Independent covariates with correlated error. Let �∗ = I2
and D∗ = (Dij )2×2, where D11 = D22 = 1 and D12 =
D21 = −.65. Then β∗

1x = 1.21 (> β
(0)
1x ) and β∗

2x = 2.19.
• Zero crossing. Let �11 = �22 = 1, �12 = �21 = −.9, and

D∗ = diag(.4, .4). Then β∗
1x = −.61 (< 0) and β∗

2x = 1.53.

3.2 A First-Order Bias-Correcting Estimator

Immediately, when σ 2 is small, an approximation to the true
β0 can be obtained by inverting a Taylor expansion. Specifi-
cally, expanding β∗(σ 2) around σ 2 = 0 gives

β0 = β∗(σ 2) − σ 2 ∂

∂σ 2 β∗(σ 2)

∣
∣∣
∣
σ 2=0

+ o(σ 2), (13)

where

∂

∂σ 2
β∗(σ 2)

∣
∣
∣
∣
σ 2=0

= −
{∫ To

0
E(gC)dt

}
V−1(β0,0)FDβ(0)

x , (14)
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with

V(β, σ 2) =
∫ To

0

E(gC)

{E(GCeβ′X∗)}2

×
(

E

[
GCeβ ′X∗

{
X∗(X∗)′

+ p1

(
1

2
β ′

xDβx, σ 2
)

(FDβx)⊗2

+ p

(
1

2
β ′

xDβx, σ 2
)

FDF
}]

E
(
GCeβ ′X∗)

− {
E

(
GCX∗eβ ′X∗)}⊗2

)
dt. (15)

Omitting the higher-order terms in σ 2 from (13) and con-
sidering (14), we derive in Appendix A.5 a first-order bias-
correcting estimator,

β̃ = (I − σ 2N̄V̂−1FDF′)−1β̂naive, (16)

where I is an (l1 + l2) × (l1 + l2) identity matrix; and mN̄ =∑m
i=1 Ni(T0), the number of events observed during study;

β̂naive is the naive estimate; V̂ is an approximation to V(β0,0),
given by

V̂ =
∫ To

0

[
S(2)(β̂naive, t)

S(0)(β̂naive, t)
−

{
S(1)(β̂naive, t)

S(0)(β̂naive, t)

}⊗2]

× 1

m

m∑

i=1

dNi(t);

and S(j)(β, t) = m−1 ∑
i W⊗j

i∗ Yi(t) exp(β ′Wi∗), j = 0,1,2.
Here σ 2 is assumed to be known or can be consistently es-
timated from validation datasets or reliability samples. No-
tice that (mV̂)−1 is the naive variance–covariance estimate
of β̂naive, which is available from commonly used statistical
software (e.g., SAS PROC PHREG and S–PLUS COXPH).
Hence the corrected estimates can be conveniently obtained
from the output of the naive fitting, involving considerably less
computation. As indicated in Appendix A.5, the corrected es-
timator is applicable in much more general situations without
conditions (C.0)–(C.5) listed in Appendix A.3, particularly the
independent assumptions on the covariates and the measure-
ment error, which are required for the theoretical bias analyses.
Note that (16) reduces to the naive estimates when σ 2 = 0, and
that the form of (16) resembles the corrected estimator in linear
regressions (Carroll et al. 1995, chap. 2) and in survival analysis
with constant measurement error variance (Kong 1999).

An application of the delta method yields an approximate
“sandwich” variance estimator for (16),

v̂ar(β̃) = (I − σ 2N̄V̂−1FDF′)−1

× v̂ar(β̂naive)(I − σ 2N̄V̂−1FDF′)−T . (17)

Here v̂ar(β̂naive) is given in (A.1), Appendix A.2, and is avail-
able by invoking the option of robust variance in Splus COXPH
and SAS PHREG (version 8.1) (or SAS PHLEV macro, down-
loadable from www.mayo.edu/hsr/biostat.html), which agrees
well with the naive variance obtained from the Martingale resid-
uals for a relatively small σ 2.

However, (17) may lead to underestimation, especially when
σ 2 is large, as it fails to account for the variation of N̄ and V̂
in the formulation. A simple but effective alternative is to ap-
ply a Bootstrap procedure (Efron 1979). Specifically, we re-
sample m subjects, with replacement, from (Ti, δi,Wi∗)|mi=1
to obtain a new dataset {T(i), δ(i),W(i∗)}|mi=1. Given this new
dataset, we use (16) to compute the corrected estimates. Such
a procedure can be repeated K times to obtain a sequence of
estimates, β̃(k), k = 1, . . . ,K . The bootstrap variance estimates
can hence be calculated using the sample variances

varboot(β̃) = 1

K − 1

K∑

k=1

{
β̃(k) − β̄boot

}{
β̃(k) − β̄boot

}′
,

where β̄boot = 1
K

∑K
l=1 β̃(k). In practice, it is adequate to

choose a moderate number of resamplings, K , say, in the range
25 to 100 (Lange 1998, p. 301). We chose K = 30 for simula-
tions.

3.3 Simulations and Two Worked Examples

Simulations were performed to examine the finite sample
performance of the first-order corrected estimator (16). With
similar configurations as in the foregoing section, we varied the
sample size from 80 to 500 and the average measurement er-
ror variance from .05 to .90. The parameter in the censoring
distribution was taken to be .47, corresponding roughly to a
30% censoring proportion. A total of 1,000 simulations were
conducted for each configuration. It appears that with a small
sample size, the corrected estimator performs well for small and
moderate measurement errors (e.g., 0 ≤ σ 2 ≤ .5), while, with a
moderate or a large sample size (e.g., m = 200 or m = 500),
the corrected estimator performed well even for large measure-
ment errors (e.g., σ 2 = .9). To examine the performance of the
estimator with different magnitude of the underlying covari-
ate effect and variance function σ(·), we varied β

(0)
x and β

(0)
z

from .25 to 1.0 and chose σ(t) = 1 or exp(t) − 1, and found
similar patterns. We calculated the averages of the naive esti-
mates and the corrected estimates, along with their empirical
standard errors (SEs) and the average bootstrap standard er-
rors, with σ(t) = t . It appears that the bootstrap variances are
in agreement with the empirical counterparts for small sam-
ple sizes with small and moderate measurement errors and for
large sample sizes even with relatively large measurement er-
rors. For example, with m = 500, when σ 2 = .5, the averages
of the corrected estimates for β

(0)
x and β

(0)
z were .9918 (em-

pirical SE = .154, bootstrap SE = .157) and .9928 (empirical
SE = .104, bootstrap SE = .101), and when σ 2 = .9, the cor-
responding averages were 1.0003 (empirical SE = .231, boot-
strap SE = .296) and .9942 (empirical SE = .127, bootstrap
SE = .143).

We illustrate the practical use of (16) with two published
studies. The first is Framingham study, a subset of which was
analyzed by Xie et al. (2001). Of particular interest was the
effect of long-term average systolic blood pressure (SBP) on
developing coronary heart disease for middle-aged men. A to-
tal of 85 failures of 423 subjects were observed in a span of
10 years of follow-up. The true covariate Xi is the long-term
average SBP, which was subject to error due to variations of

http://www.mayo.edu/hsr/biostat.html
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SBP from time to time. Multiple measurements of SBP were
made for each individual, which were assumed to follow

Wij = Xi + uij (18)

for i = 1, . . . , ni . Here uij
iid∼ N(0, σ 2

u ), and are independent
of Xi . The within-subject average of measurements (e.g., W̄i =
1
ni

∑
i Wij ) was considered as the surrogate for Xi . Hence for

each individual, the measurement error variance is σ 2
u /ni . In

this data subset ni ≡ 2, and σ 2
u was identified to be .039, in-

dicating that for each individual, the average measurement er-
ror variance is .019. The reported naive estimate for the Cox
model was 1.441, with naive variance .089. Immediately, using
(16) and (17) with l1 = 1 and l2 = 0, we found that the first-
order–corrected estimate was 1.69 (SE = .350) which matches
well with the ordinary regression calibration estimate 1.74
(SE = .366) and the risk set regression calibration estimate 1.76
(SE = .372) reported by Xie et al. (2001).

Another example is the ACTG 116b/117 study (Kahn et al.
1992) on the relationship between the number of CD4 counts
and the disease progression-free survival. Of 912 patients ac-
crued, a total of 334 events, including disease progression
or death, were observed during study. The number of CD4
replicates varied across patients: 56 patients had 1 replicate
measurement, 310 patients had 2 replicate measurements,
541 patients had 3 replicate measurements, and 5 patients had
4 replicate measurements. Under model (18), Hu et al. (1998)
calculated σ 2

u = .1505 and reported a naive estimate of βx

of −.6015 with naive variance .00319. The average measure-
ment error variance were calculated by σ 2 = (56 × σ 2

u + 310 ×
σ 2

u /2 + 541 ×σ 2
u /3 + 5 ×σ 2

u /4)/912 = .0646. Hence applying
formulas (16) and (17) yielded the corrected estimate −.6497
(SE = .061), which is in agreement with the regression cali-
bration estimate of −.6307 (SE = .059), tha fully parametric
estimate of −.6597 (SE = .062), the fully nonparametric esti-
mate of −.6216 (SE = .057), and the semiparametric estimate
of −.6641 (SE = .063) reported by Hu et. al (1998).

4. HYPOTHESIS TESTING IN THE PRESENCE OF
GENERAL COVARIATE MEASUREMENT ERROR

A relatively unexplored subject in survival analysis is hy-
pothesis testing in the presence of mistiming error or general
measurement error. For simplicity of exposition, we postulate
that the true hazard adheres to a single covariate proportional
hazards model,

λ(t,Xi) = λ0(t) exp(βXi).

For testing the null hypothesis β = 0, a naive partial likeli-
hood score test would practically be used by ignoring mistiming
error or measurement error and computing

m−1/2Um = m−1/2
m∑

i=1

∫ To

0
{Wi − W̄ (t)}dNi(t), (19)

where W̄(t) = ∑m
i=1 Yi(t)Wi/

∑m
i=1 Yi(t). Under the null hy-

pothesis, the naive model (4) coincides with the true model.
Therefore, test (19) is asymptotically a mean-0, normally dis-
tributed random variable. With a properly calculated variance
(given in Thm. 4), test (19) is valid and retains the nominal level
under the null hypothesis. But, as shown in the following, the

induced survival model under the alternative hypothesis does
not preserve proportionality, and as a result, the loss of effi-
ciency in test (19) would be expected (Lagakos 1988). Hence,
it will be of substantial interest to analytically characterize the
efficiency loss due to covariate measurement errors.

4.1 Asymptotic Relative Efficiency and Its Applications

To facilitate the following discussion, suppose that we in-
vert (5) so that

Xi = α∗
i + ρ∗

i Wi + εi , (20)

where ρ∗
i = σ 2

x

σ 2
x +τi

, σ 2
x = var(X), α∗

i is a constant possibly de-

pending on τi , and εi is a mean-0 random variable that is in-
dependent of Wi , conditional on τi . Indeed, (20) holds if we
assume that the unobserved covariate Xi follows a normal dis-
tribution.

Similarly, we may calculate the hazard function for each
counting process Ni based on the observed covariates Wi and
measurement error variance τi ,

λ(t|Wi, τi) = λ0(t) exp{βα∗
i + βρ∗

i Wi + ψ(β,Wi, τi , t)},
(21)

where ψ(β,Wi, τi , t) = logE(eβεi |T̃i ≥ t,Wi, τi).
Note that ψ(β,Wi, τi, t) ≡ 0 when τi = 0 or β = 0, cor-

responding to the case of no measurement error and the null
model. More generally, in the presence of measurement error,
the induced hazard function fails to preserve the proportionality.
Hence the simple log-rank test (19) may be inefficient relative
to that in the absence of measurement error. We explore this
more formally by deriving the asymptotic relative efficiency
(ARE), a useful device for comparing tests, of the simple log-
rank test versus its counterpart in the absence of measurement
error. To proceed, we consider a sequence of local alternatives
that converges to the null hypothesis at the appropriate rate
as sample size increases to infinity (Fleming and Harrington
1991). Under these alternatives, the log-rank statistic has, as-
ymptotically, a finite mean and variance.

For notational convenience, denote

φ(β,Wi, τi, t) = βα∗
i + βρ∗

i Wi + ψ(β,Wi, τi, t), (22)

s
(j)
β (t) = E{Yi(t)W

j

i φβ(β,Wi, τi , t)λ0(t)}, (23)

and

s(j)(t) = E{Yi(t)W
j
i λ0(t)}, (24)

where the expectation is taken with respect to N,Y,W , and τ

for j = 0,1,2, and φβ(·) is the partial derivative of φ(·) with
respect to β . Assuming regularity conditions A–D of Andersen
and Gill (1982, sec. 3), and a sequence of local alternatives,
m−1/2η for some fixed η (−∞ < η < ∞), we have the follow-
ing theorem (the proof of which is given in App. A.6) about the
asymptotic behavior of the log-rank test (19).

Theorem 3. With conditions A–D given by Andersen and
Gill (1982, sec. 3) and under the hypothesis βm = m−1/2η,
m−1/2Um converges in distribution to a normal distribution
with mean

∫ To

0
η
s(1)(t)s

(0)
β (t) − s(0)(t)s

(1)
β (t)

s(0)(t)
dt
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and variance
∫ To

0

[
s(2)(t)

s(0)(t)
−

{
s(1)(t)

s(0)(t)

}2]
s(0)(t) dt,

where s
(j)
β (t) and s(j)(t) are defined in (23) and (24), and all of

the expectations are taken under the null hypothesis β = 0, and
the derivatives are evaluated at β = 0.

Therefore, under the null hypothesis (i.e., η = 0), the naive
score test is unbiased, and under the local alternatives (i.e.,
η �= 0), the asymptotic distribution of the naive score test is still
normal with the same variance as in the null case but with the
asymptotic mean shifted. Thus we can compute the asymptotic
efficacy of (19), which is defined by its noncentrality,

η2
(∫ To

0

s(1)(t)s
(0)
β − s(0)(t)s

(1)
β

s(0)(t)
dt

)2

/∫ To

0

[
s(2)(t)

s(0)(t)
−

{
s(1)(t)

s(0)(t)

}2]
s(0)(t) dt.

It is reasonable in practice to assume that the censoring time
is independent of Xi and Wi , which results in a more simplified
efficacy. Under the null hypothesis β = 0, because the observed
survival time T is independent of W , for j = 0,1,2,

s
(j)
β (t) = π(t)λ0(t)E{Wj

i φβ(β,Wi, τi, t)}
and

s(j)(t) = π(t)λ0(t)E(W
j

i ),

where π(t) = E{Yi(t)} = P(Ti ≥ t). Direct calculations yield

∂

∂β
ψ(β,W, τ, t)

∣
∣
∣∣
β=0

= 0, (25)

and hence φβ(β,W, τ, t)|β=0 = α∗ + ρ∗Wi , where ρ∗ =
σ 2

x /(σ 2
x + τ ). It follows that the simplified efficacy is

eff naive = η2[E(W)E(ρ∗W) − E(ρ∗W 2)]2

var(W)

×
∫ To

0
π(t)λ0(t) dt. (26)

Write PTo = ∫ To

0 π(t)λ0(t) dt . With basic martingale the-
ory, it follows that PTo = E{N(To)} under the null hypothesis,
indicating that PTo is the probability of observing a failure
by time T0. Moreover, using double expectation gives that
var(W) = σ 2

x + σ 2,E(ρ∗W) = E{E(ρ∗W |τ )} = E(ρ∗)E(X),
and E(ρ∗W 2) = E{E(ρ∗W 2|τ )} = E{ρ∗(σ 2

x + τ )} +
E(ρ∗){E(X)}2 = σ 2

x + E(ρ∗){E(X)}2. Hence (26) can be
rewritten as

eff naive = η2σ 4
x

σ 2
x + σ 2

PTo . (27)

Therefore, in the absence of measurement error (σ 2 = 0), the
maximum efficacy of test (19) is achieved at η2σ 2

x PTo .

By calculating the ratio of efficacies, it follows that the as-
ymptotic relative efficiency (ARE) comparing the log-rank test
in the presence of measurement error to that in the absence of
measurement error is σ 2

x /(σ 2
x + σ 2), which is a monotonically

decreasing function of σ 2/σ 2
x , the relative variability of mea-

surement error with respect to the true underlying covariate.
A relative efficiency less than 1 indicates that more observa-
tions are needed for the test in the presence of measurement
error. Noticeably in the context of mistimed covariate problem,
this result depends not on the specific forms of the variance
function σ(t) in (3) and the distribution of the measurement
time Ti , but only on σ 2, the average error variance.

The foregoing calculations have an immediate application in
the study design. Specifically, for a fixed alternative β = βa

which is in the range of O(m−1/2), by Theorem 4, the distribu-
tion of the simple log-rank test under the true model and under
the null hypothesis is approximately given by

N
{
m1/2βaσ

2
x PTo , (σ

2
x + σ 2)PTo

}
.

It then follows that the sample size needed to detect Ha :β =
βa �= 0 versus H0 :β = 0 for the naive test with power δ and
one-sided type I error level of ε is

(Z1−ε +Zδ)
2

β2
a eff naive

,

or, equivalently, the number of events required is

(Z1−ε +Zδ)
2 σ 2

x + σ 2

β2
aσ 4

x

, (28)

where Zq is the 100×q percentile of a standard normal distrib-
ution. Note that (28) is essentially an extension of Schoenfeld’s
sample size formula (Schoenfeld 1983), which applies in the
absence of measurement error. Hence if a conventional partial
likelihood score test is opted for, then the sample size should be
inflated by σ 2/σ 2

x to compensate for the efficiency loss due to
measurement error.

4.2 Optimality of Log-Rank Tests With General
Covariate Measurement Error

A natural question would be whether the efficiency of test
(19) can be improved within a more general class of weighted
log-rank tests,

m−1/2Ũm = m−1/2
m∑

i=1

∫ To

0
rm(t){Wi − W̄ (t)}dNi(t), (29)

by choosing a proper weight function rm(t). Here rm(t) is a
bounded predictable process, converging uniformly in proba-
bility to a bounded nonrandom function r(t) over [0, To]. For
example, rm(t) = {Ŝ(t−)}ρ{1 − Ŝ(t−)}γ , where Ŝ(·) is the
Kaplan–Meier survival estimate, corresponds to the Gρ,γ class
test (see, e.g., Fleming and Harrington 1991, chap. 7). Yet, as
revealed by the following theorem (proved in App. A.7), with
a noninformative censoring mechanism, test (19) is in fact the
optimal test within the general class (29).

Theorem 4. Assume that for each i , the censoring time
C̃i is independent of the observed covariate Wi . Test (19)
achieves the maximum efficacy within the general log-rank test
class (29).
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Hence tests beyond the classical log-rank test family (29)
need to be considered for improving efficiency. Alternative
choices, include generalized log-rank tests in which a subject-
specific weight function is assigned to each individual,

m−1/2Um = m−1/2
m∑

i=1

∫ To

0
rm,i(t){Wi − W̃m(t)}dNi(t),

where W̃m(t) = ∑m
i=1 Yi(t)rm,i (t)Wi/(

∑m
i=1 Yi(t)rm,i (t)).

A heuristic strategy would be to put more weight on subjects
whose covariates are measured with more precision, although
this warrants a detailed investigation. In a different context,
Kong and Slud (1997) and DiRienzo and Lagakos (2001) con-
sidered improving test (29) for two treatment comparisons with
a misspecified proportional hazard model.

5. DISCUSSION

In this article we have discussed survival analysis with mist-
imed covariates within a more general heterogenuous mea-
surement error framework. To understand the consequence of
mistiming error on parameter estimation, we have focused on
the asymptotic behavior of the naive maximum partial likeli-
hood estimates and have shown that under the heterogeneous
measurement error structure and the assumption that all compo-
nents of the covariate vector and the measurement error vector
combined are mutually independent, these naive estimates will
shrink toward 0, and that the degree of attenuation increases as
the measurement error increases. We also gave several coun-
terexamples for reverse attenuation when these independence
conditions are violated. To our knowledge, this result is also
new in the context of survival analysis and argues against the
common conception that measurement error will always lead to
attenuation.

Moreover, as a byproduct of our asymptotic bias-analyses,
we have obtained a simple bias-correcting estimator that per-
forms well for small sample sizes with small and moderate mea-
surement errors. Because the proposed estimator capitalizes on
the existing standard statistical software, the computational bur-
den is considerably less than that for the other bias-correcting
approaches, for example, calibration regression or corrected
partial likelihood score. However, because our estimator was
derived under the assumption of small and (conditionally) nor-
mal measurement error, more sophisticated methods, such as
likelihood-based methods, may be needed in cases with a large
amount of measurement error or nonnormal measurement error.

We have also considered the asymptotic behavior of the com-
monly used partial likelihood score test for assessing the as-
sociation between a failure outcome and an exposure in the
presence of measurement error or mistiming error. In particu-
lar, have derived the asymptotic distribution of the naive par-
tial likelihood score test under a series of local alternatives and
calculated the asymptotic relative efficiency. As a result, we
obtained a sample size formula, easily implementable by prac-
titioners when designing an observational study to compensate
for the efficiency loss due to covariate measurement errors.

APPENDIX: TECHNICAL DETAILS

A.1 Regularity Conditions and a Proof of Theorem 1

We assume the following regularity conditions:

(R.1) There exists a neighborhood B of β∗ such that

sup
t∈[0,To],β∈B

∣∣S(j)(β, t) − s(j)(β, t)
∣∣ p→ 0.

Assume that s(j)(β, t), j = 0,1, are bounded on B×[0, To],
and that s(0)(β, t) is bounded away from 0 on B × [0, To].

(R.2) The negative second-order derivative of h(β),

A(β) =
∫ To

0

[
s(2)(β, t)

s(0)(β, t)
−

{
s(1)(β, t)

s(0)(β, t)

}⊗2]
s(0)(t) dt

is positive definite at β∗.

Using the techniques of lemma 3.1 of Andersen and Gill (1982),
�(β) in (7) can be shown to be asymptotically equivalent to H(β) =
∫ To

0 β′s(1)(t) dt −∫ To

0 log{s(0)(β, t)}s(0)(t) dt . Hence, by theorem 2.1
of Struthers and Kalbfleisch (1986), we immediately have this consis-
tency result.

A.2 Asymptotic Normality of Naive Estimates

Theorem A.1.

m1/2(β̂naive − β∗)
d→ N

{
0,A−1(β∗)B(β∗)A−1(β∗)

}
,

where

B(β∗) = E

[∫ To

0

{
Wi∗ − s(1)(β∗, t)

s(0)(β∗, t)

}
dNi(t)

−
∫ To

0

Yi(t) exp(β∗′Wi∗)

s(0)(β∗, t)

{
Wi∗ − s(1)(β∗, t)

s(0)(β∗, t)

}
s(0)(t) dt

]2
.

Moreover, A(β∗) and B(β∗) can be consistently estimated by
V̂(β̂naive) and B̂(β̂naive). Here

V̂(β) = 1

m

m∑

i=1

∫ To

0

[
S(2)(β, t)

S(0)(β, t)
−

{
S(1)(β, t)

S(0)(β, t)

}⊗2]
dNi(t),

Gi (β) =
∫ To

0

{
Wi∗ − S(1)(β, t)

S(0)(β, t)

}
dNi(t)

−
m∑

j=1

∫ To

0

Yi(t) exp(β ′Wi∗)

mS(0)(β, t)

{
Wi∗ − S(1)(β, t)

S(0)(β, t)

}
dNj (t),

and

B̂(β) = m−1
m∑

i=1

Gi (β)⊗2.

Thus a consistent variance estimator of β̂naive is

v̂ar(β̂naive) = 1

m
V̂−1(β̂naive)B̂(β̂naive)V̂

−1(β̂naive). (A.1)

Algebraically, this type of variance estimator is equivalent to the ap-
proximate robust jackknife variance, and related statistical software is
available (see Therneau and Grambsch 2000). Under the null hypoth-
esis H0 :β = 0, it follows from (8) that β∗ = 0. Hence this theorem
suggests that even in the presence of covariate measurement errors, it
is possible to perform hypothesis testing based on the naive estimates
using asymptotic normality and estimation of the asymptotic variance.
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A.3 Additional Regularity Conditions for Bias Analysis (Thm. 3)
and Lemmas

We postulate similar regularity conditions as given by in Bretagnolle
and Huber-Carol (1988) for Theorem 3 [except for (C.0)]:

(C.0) Assume that the measurement error variance–covariance ma-
trix D is a diagonal matrix and that the scale measurement er-
ror variance τ has a moment-generating function Mτ (v,σ 2)

such that ∂2

∂v ∂σ 2 logMτ (v,σ 2) > 0 when v,σ 2 ≥ 0.

(C.1) The additional covariate vector Z = (Z1, . . . ,Zl2) is “perti-
nent” in model (9), in that the true effect of each component,

say, β
(0)
jz , j = 1, . . . , l2, is nonzero.

(C.2) The true covariate vector (X,Z) has time-independent com-
ponents with a finite moment-generating function, and there
is no proper linear subspace including X and Z almost surely.

(C.3) The joint density function of true covariates and measure-
ment error, (X,Z,u), has a decomposition

fX,Z,u
(
x1, . . . , xl1 , z1, . . . , zl2 , v1, . . . , vl1

)

=
l1∏

i=1

fXi
(xi)

l2∏

j=1

fZj
(zj )

l1∏

k=1

fuk (vk),

where f(·)(·) are density functions.

(C.4) P(C̃ ∧ To < T̃ |X,Z) < 1 almost surely, to guarantee observ-
ability of covariates.

(C.5) The survival function of the censoring does not depend on
X and Z.

As indicated by the following lemma, (C.0) is not restrictive and
is satisfied by the nonnegative random variables whose distribu-
tions are in the exponential distribution family, including the fol-
lowing examples: Bernoulli, Mτ (v,σ 2) = (1 − σ 2) + σ 2ev ; Poisson,

eσ 2{exp(v)−1}; chi-squared, (1 − 2v)−1/σ 2/2, v < 1/2; and exponen-
tial, (1 − σ 2v)−1, v < 1/σ 2. The assumptions is also satisfied for the
uniform, for example, τ ∼ U[0,2σ 2], whose moment-generating func-

tion is Mτ (v,σ 2) = (e2vσ 2 − 1)/2vσ 2.

Lemma A.1. Let τ be any arbitrary nonnegative random variable
whose distribution is in the exponential family and let Mτ (v,µ) =
E(evτ ) be its moment-generating function, where µ = E(τ). Then

∂2

∂v ∂µ
logMτ(v,µ) > 0.

Proof. The probability density function (if τ is continuous) or the
probability mass function (if τ is discrete) in the exponential family
can be parameterized by f (τ ; θ,φ) = exp{ τθ−b(θ)

a(φ)
+ c(τ,φ)}, where

µ = E(τ) = b′(θ) and var(τ) = a(φ)b′′(θ) (McCullagh and Nelder
1989).

Direct calculations yield

∂2

∂v ∂µ
Mτ (v,µ) = E(τevτ Sµ)E(evτ ) − E(τevτ )E(evτ Sµ)

{E(evτ )}2
, (A.2)

where Sµ = ∂
∂µ

logf (τ ; θ,φ) and the integrals involved in the expec-
tations are taken with respect to the Lebesque measure if τ is con-
tinuous or with respect to the counting measure if τ is discrete. By
the chain rule, Sµ = ∂

∂θ
logf (τ ; θ,φ) dθ

dµ
= τ−µ

var(τ )
. Hence substituting

in Sµ yields

E(τ ievτ Sµ)

E(τ ievτ )
=

{
E(τ i+1evτ )

E(τ ievτ )
− µ

}
1

var(τ)
(A.3)

for i = 0,1. In addition, an application of the Schwarz inequality yields

E(evτ )E(τ2evτ ) > {E(τevτ )}2. (A.4)

Combining (A.3) and (A.4), we have that
E(τevτ Sµ)

E(τevτ )
>

E(evτ Sµ)

E(evτ )
,

which implies that the numerator in (A.2) is positive and finishes the
proof.

Next state a technical lemma that is useful in the proof of Theo-
rem 3. The proof was given by Bretagnolle and Huber-Carol (1988).

Lemma A.2. A symmetric square matrix M is called DP+ type if it
is positive definite and its off-diagonal elements are all negative. Then
each element of the inverse of a DP+ type matrix is positive.

A.4 Proof of Theorem 3

If β
(0)
x = 0, then the naive model (4) correctly specifies the hazard

function. Hence for any σ 2 ≥ 0, the limits of the naive estimates are

β∗
x(σ 2) = 0 and β∗

jz
(σ 2) = β

(0)
jz

for 1 ≤ j ≤ l2.

Without loss of generality, we consider the situation when β
(0)
1x

�= 0.
We may assume that the other components of β0 are nonnegative. Oth-

erwise, if there exists, for instance, a j such that β
(0)
jz < 0, then one can

always reverse the sign of the corresponding covariate Zj .
Denote the right side of (10) by S(β), where β = (β′

x ,β ′
z)

′ =
(β1x, . . . , βl1x,β1z, . . . , βl2z)

′. Denote X−1 = (X2, . . . ,Xl1)
′ and

β−1,x = (β2x, . . . , βl1x)′ and consider S1x(0,β−1,x ,βz), the first
component of S(β) when β1x = 0,

Sx(0,β−1,x,βz)

=
∫ To

0
E

[{
X1 − E(X1 exp{β′−1,x

X−1 + β′
zZ}CG)

E(exp{β′−1,x
X−1 + β ′

zZ}CG)

}
gC

]
dt.

(A.5)

We adopt a symmetrization technique (see, e.g., Bretagnolle and
Huber-Carol 1988) to show that Sx(0,β−1,x ,βz) > 0. We first show
for each t ,

E(X exp{β ′−1,xX−1 + β ′
zZ}CG)

− E(exp{β′−1,xX−1 + β ′
zZ}CG)E(X) ≤ 0.

Let X′′
1 ,X′′−1,Z′′ be independent copy of X1,X−1 and Z, and let C′′

and G′′ be the same functions as C and G but taken at X′′ and Z′′.
By condition (C.5), C does not depend on X and Z, which implies
C = C′′ . Hence

E(X1 exp{β′−1,xX−1 + β ′
zZ}CG)

− E(exp{β′−1,xX−1 + β ′
zZ}CG)E(X1)

= 1

2
E

{
(X1 − X′′

1 )

× (
exp{β ′−1,xX−1 + β ′

zZ}G

− exp{β′−1,xX′′−1 + β ′
zZ′′}G′′)C

}
. (A.6)

We only prove the situation when β
(0)
1x

> 0. The proof will apply ex-

actly for the situation when β
(0)
1x

< 0.

When β
(0)
1x

> 0, exp{β′−1,x
X−1 +β′

zZ}G is decreasing in X1, so is
its expectation conditional on X1. Hence the conditional integrand on
the right side of (A.6) is nonpositive, and therefore, (A.6) is nonposi-
tive.

Now we want to prove

ψ =
∫ To

0
E

[{X1 − E(X1)}gC
]
dt

= −
∫ To

0
E

[{X1 − E(X1)}C dG(t)
]
> 0. (A.7)
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In fact, integrating by parts and noting that C(0)G(0) ≡ 1, we have

ψ = ∫ To

0 E[{X1 − E(X1)}GdC(t)]. Again using the symmetrization
technique, for each t we have

2E
[{X1 − E(X1)}GdC(t)

] = E
[
(X1 − X′′

1 )(G′′ − G)dC(t)
] ≥ 0,

which follows because G is decreasing in X1 and so is its conditional
expectation on X1. Moreover, C(t) is decreasing in t . Hence the inte-
grand in (A.7) is nonnegative. By continuity, we need only show that
the integrand in (A.7) is strictly positive at some point t . In fact, using
the same symmetrization technique and conditions (C.3) and (C.4), we
can show the integrand in (A.7) is strictly positive at t = 0. Hence we
have that Sx(0,β−1,x,βz) > 0 for any β−1,x and βz.

Now write

Q(a, t) = E[X1 exp{aX1 + β′−1,x
X−1 + β′

zZ}CG]
E[exp{aX1 + β ′−1,x

X−1 + β ′
zZ}CG] .

For each t ≥ 0, we can show, using the Cauchy–Schwarz inequality,
that ∂

∂a
Q(a, t) > 0.

A direct calculation yields

∂S1x(β1x,β−1,x,βz)/∂β1x

= −
∫ To

0
E(gC)

{
∂

∂β1x
Q(β1x, t) + q(β1x , σ 2)

}
dt,

where q(β1x , σ 2) = p1(
1
2 β′

xDβx, σ 2)D2
11β

2
1x

+ p( 1
2β ′

xDβx , σ 2)

and p1(v, σ 2) = ∂
∂v

p(v,σ 2) = ∂2

∂v2 logMτ(v,σ 2). Because τ is a

nonnegative random variable, p(v,σ 2) ≥ 0, and by the convex-
ity of logMτ (v,σ 2) with respect to v, p1(v, σ 2) ≥ 0. Therefore,
q(β1x , σ 2) > 0. Hence ∂S1x(β1x,β−1,x,βz)/∂β1x < 0, indicating
that S1x(β1x,β−1,x,βz) is a decreasing function of β1x for any
fixed β−1,x,βz. Because S(0,β−1,x,βz) > 0, the solution to Sx(β,

β−1,x,βz) = 0 for a fixed βz will be strictly positive. In particu-

lar, β∗
1x

(σ 2) > 0. With exactly the same argument, we can show that

β∗
jz

(σ 2) > 0 for all 1 ≤ j ≤ l2.

We now prove the monotonicity with respect to σ 2. Differentiat-
ing (10) with respect to σ 2 on both sides and collecting terms yields

∂

∂σ 2
β∗(σ 2) = −

[
p2

{
1

2
(β∗′

x Dβ∗
x, σ 2)

}

×
∫ To

0
E(gC)dt

]
V−1(β∗, σ 2)FDβ∗

x , (A.8)

where we abbreviate β∗(σ 2) by β∗ = (β∗′
x ,β∗′

z )′ and

p2

{
1

2
β∗′

x Dβ∗
x , σ 2

}
def= ∂

∂σ 2
p

{
1

2
β∗′

x Dβ∗
x , σ 2

}

= ∂2

∂v ∂σ 2
logMτ

(
1

2
β∗′

x Dβ∗
x , σ 2

)

> 0,

by the assumption, and V(β∗, σ 2) is defined in (15). Note that only
conditions (R.1) and (R.2) are needed for (A.8) to hold; the other con-
ditions (C.0)–(C.5) are not necessary.

Hence, for any x = (x1, . . . , xl1+l2)
′ ∈ Rl1+l2 such that x �= 0,

x′V(β∗, σ 2)x > E
(
GCeβ∗′X∗(x′X∗)2)

E
(
GCeβ∗′X∗)

− {
E

(
GCeβ∗′X∗x′X∗

)}2 ≥ 0,

where the last inequality is by the Cauchy–Schwarz inequality. Here
for a column vector a, ‖a‖2

2 = a′a. Hence, V(β∗, σ 2) is positive. Note

that the off-diagonal element of V(β∗, σ 2) is

Vs1,s2 = E
(
GCeβ∗′X∗X∗

s1
X∗

s2

)
E

(
GCeβ∗′X∗)

− E
(
GCeβ∗′X∗X∗

s1

)
E

(
GCeβ∗′X∗X∗

s2

)
,

where 1 ≤ s1 �= s2 ≤ l1 + l2 and X∗
s1

and X∗
s2

are the s1th and s2th
elements of X∗. Again, using the symmetrization technique and the

assumption that β
(0)
1x

> 0 and β
(0)
jz

> 0,1 ≤ j ≤ l2, one can show that

Vs1,s2 < 0 for 1 ≤ s1 �= s2 ≤ l1 + l2. Hence, V(β∗, σ 2) is of DP+ type.
By Lemma A.2, V−1(β∗, σ 2) is a matrix with all of its elements pos-
itive, and the theorem follows immediately.

A.5 Bias-Correcting Estimator

When σ 2 = 0 is small, expanding β∗(σ 2) around σ 2 = 0 yields (13),
where ∂

∂σ 2 β∗(σ 2)|σ 2=0 is given by (A.8) evaluated at σ = 0. Direct
calculation gives p2(v,0) ≡ 1 for v ≥ 0. Hence (14), and also (16),
hold.

Using the fact that p1(v,0) ≡ 0 and p(v,0) ≡ 0 for v ≥ 0, and

hence q{ 1
2 {β(0)

x }′Dβ
(0)
x ,0} = 0, we can rewrite V(β0,0), defined

by (15), as

V0 =
∫ To

0

[
E(GCeβ ′

0X∗
X∗(X∗)′)

E(GCeβ ′
0X∗)

−
{

E(GCX∗eβ ′
0X∗)

E(GCeβ ′
0X∗)

}⊗2]
E(gC)dt.

Additionally, denote by

S(j)(β, t) = m−1
∑

i

W⊗j
i∗ Yi(t) exp(β ′Wi∗), j = 0,1,2,

and

Mτ = Mτ

{
1

2
{β(0)

x }′Dβ
(0)
x , σ 2

}
,

M
(1)
τ = ∂

∂βx

Mτ

(
1

2
β ′

xDβx , σ 2
)∣

∣
∣
∣
βx=β

(0)
x

,

and

M
(2)
τ = ∂2

∂βx ∂β ′
x

Mτ

(
1

2
β ′

xDβx , σ 2
)∣∣

∣
∣
βx=β

(0)
x

.

With regularity condition (R.1), we can obtain that on a finite inter-
val [0, T0],

S̃(0)(β0, t)
def= M−1

τ S(0)(β0, t)

→ M−1
τ s(0)(β0, t)

= E
(
GCeβ ′

0X∗),

S̃(1)(β0, t)
def= M−1

τ S(1)(β0, t) − M−2
τ S(0)(β0, t)FM

(1)
τ

→ M−1
τ s(1)(β0, t) − M−2

τ s(0)(β0, t)FM
(1)
τ

= E
(
GCX∗eβ ′

0X∗),

and

S̃(2)(β0, t)
def= M−1

τ S(2)(β0, t) − M−2
τ M

(1)
τ

{
S(1)(β0, t)

}′ ⊗ F

+ S(0)(β0, t)F
[
2M−3

τ M
(1)
τ

{
M

(1)
τ

}′ − M−2
τ M

(2)
τ

]
F′

→ M−1
τ s(2)(β0, t) − M−2

τ M
(1)
τ

(
s(1)(β0, t)

)′ ⊗ F

+ s(0)(β0, t)F
[
2M−3

τ M
(1)
τ

{
M

(1)
τ

}′ − M−2
τ M

(2)
τ

]
F′

= E
{
GCeβ ′

0X∗X∗X′∗
}
,
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in probability uniformly in a finite interval [0, T0], where for two
square matrices A and B, A ⊗ B = A′B′ + BA. Hence, with similar
arguments as in the proof of lemma 3.1 of Andersen and Gill (1982),
we can show that

V̂(β0)
def=

∫ To

0

[
S̃(2)(β0, t)

S̃(0)(β0, t)
−

{
S̃(2)(β0, t)

S̃(0)(β0, t)

}⊗2]
1

m

m∑

i=1

dNi(t)

→ V0

in probability. Because V̂(β) is continuous in β , when σ 2 is rela-
tively small, V̂(β0) can be well approximated by V̂(β̂naive), where
β̂naive is the naive partial likelihood estimate. Also, by martin-

gale theory and the strong law of large numbers, we have N̄
def=

1
m

∑m
i=1

∫ To

0 dNi(t) → ∫ To

0 E(gC)dt almost surely. Thus, a first-
order approximation to (13) is

β̃ = {
I − σ 2N̄V̂−1(β̂naive)FDF′}−1

β̂naive,

where I is an (l1 + l2) × (l1 + l2) identity matrix. Note that this for-
mula is indeed applicable in much more general situations, because the
derivation of (A.8) holds without conditions (C.0)–(C.5) required for
the theoretical bias analyses.

When σ 2 is small, Mτ = 1 + O(σ 2),M
(1)
τ = O(σ 2), and M

(2)
τ =

O(σ 2). Therefore, V̂(β̂naive) can be further approximated by

V̂ =
∫ To

0

[
S(2)(β̂naive, t)

S(0)(β̂naive, t)
−

{
S(1)(β̂naive, t)

S(0)(β̂naive, t)

}⊗2]
1

m

m∑

i=1

dNi(t),

which results in (16).

A.6 Proof to Theorem 4

Define

A(t) =
∑m

i=1 Yi(t)Wi∑m
i=1 Yi(t)

and

Ã(t) =
∑m

i=1 Yi(t)Wie
φ(β,Wi,τi ,t )

∑m
i=1 Yi(t)e

φ(β,Wi,τi ,t )
.

Then

m−1/2U = m−1/2
∑

i

∫ To

0
{Wi − Ã(t)}dNi(t)

+ m−1/2
∑

i

∫ To

0
{Ã(t) − A(t)}dNi(t). (A.9)

Following Schoenfeld (1983), we can show that the first term on
the right side of (A.9) is equal to m−1/2 ∑

i

∫ To

0 {Wi − Ã(t)}dM̃i(t),

where M̃i(t) = Ni(t) − ∫ t
0 Yi(u)λ0(u) exp{φ(β,Wi, τi , u)}du is the

martingale with respect to the filtration Ft = σ {Ni(u),Yi (u+),Wi, τi ,

i = 1, . . . ,m,0 ≤ u < t}. Hence, by theorem 4.2 of Andersen and Gill
(1982), under the local alternative βm = m−1/2η → 0, it converges
weakly to a normal distribution with mean 0 and variance

∫ To

0

[
s(2)(t)

s(0)(t)
−

{
s(1)(t)

s(0)(t)

}2]
s(0)(t) dt,

where the expectations involved are taken under β = 0.
Similarly, by a Taylor expansion about β = 0 and applying empir-

ical processes theory (e.g., van de Geer 2000, chap. 3), we may show
that

m1/2{Ã(t) − A(t)} → η
s(1)(t)s

(0)
β (t) − s(0)(t)s

(1)
β (t)

{s(0)(t)}2

in probability uniformly on [0, To], where the expectations involved
are taken under β = 0 and the derivatives are evaluated at β = 0. Hence

it follows with the argument of lemma 3.1 of Andersen and Gill (1982),
the second term on the right side of (A.9) converges in probability to

∫ To

0
η

s(1)(t)s
(0)
β (t) − s(0)(t)s

(1)
β (t)

s(0)(t)
dt.

Then, applying Slutsky’s theorem yields the desired result immedi-
ately.

A.7 Proof to Theorem 5

Similar to the proof of Theorem 4, under the local alternative βm =
m−1/2η → 0, the general test statistic m−1/2Ũm converges weakly to
a normal distribution with mean

∫ To

0
ηr(t)

s(1)(t)s
(0)
β (t) − s(0)(t)s

(1)
β (t)

s(0)(t)
dt

and variance
∫ To

0
r2(t)

[
s(2)(t)

s(0)(t)
−

{
s(1)(t)

s(0)(t)

}2]
s(0)(t) dt,

where the expectations involved are taken under β = 0 and the deriv-
atives involved are evaluated at β = 0. Evaluating s(1)(t), s(2)(t),

s
(0)
β (t), and s

(1)
β (t) under β = 0 and under the assumption that the

censoring time C̃ is independent of W , we can derive the efficacy of
test (29),

η2σ 4
x

(σ 2
x + σ 2)2

{∫ To

0 r(t)s(0)(t) dt}2

∫ To

0 r2(t)s(0)(t) dt
. (A.10)

For fixed η �= 0, σ 2
x > 0 and σ 2, by the Schwarz inequality, effi-

cacy (A.10) achieves maximum when r(t) is a nonzero constant func-
tion. That is, test (19) achieves maximal efficacy within the class
of (29).

[Received January 2003. Revised January 2004.]
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