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ABSTRACT. Latent variable models have been widely used for model-

ing the dependence structure of multiple outcomes data. However, the

formulation of a latent variable model is often unknown a priori, the

misspecification will distort the dependence structure and lead to unre-

liable model inference. Moreover, multiple outcomes with varying types

present enormous analytical challenges. In this paper, we present a class

of general latent variable models that can accommodate mixed types of

outcomes. We propose a novel selection approach that simultaneously

selects latent variables and estimates parameters. We show that the pro-

posed estimator is consistent, asymptotically normal and has the oracle

property. The practical utility of the methods is confirmed via simula-

tions as well as an application to the analysis of the World Values Survey,

a global research project that explores peoples’ values and beliefs and the

social and personal characteristics that might influence them.

Key words: dependence structure, latent variables model, oracle property, SCAD

penalty, selection of latent variables
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1 Introduction

Multiple outcomes that include both continuous and ordinal variables are often col-

lected in applications where the responses of interest cannot be measured directly,

or are difficult or expensive to measure. Latent variable models (LVMs) are com-

monly adopted, which state that different outcomes are conditionally independent

measures of the latent variables, possibly capturing various aspects of them. Thus,

unlike conventional random effects, which are mainly used to address the heterogene-

ity or dependence among observed outcomes, latent variables represent theoretical

concepts or constructs that cannot be directly assessed by a single observed variable,

but instead are measured through multiple observed variables. In practice, the for-

mulation of an LVM (e.g., what and how many latent variables should be included) is

often unknown a priori. Misspecification of the model would distort the dependence

structure and lead to unreliable model inference (Leek & Storey, 2008). In particular,

overspecified LVMs may result in highly correlated latent variables of which the co-

variance matrix becomes singular or nearly singular, leading to both theoretical and

computational difficulties. Hence, a fundamental problem in the analysis of LVMs

is model selection, especially the selection of latent variables that are relevant to

substantive study.

The existing work on LVMs focuses on the estimation of model parameters; limited

work has been devoted to the selection of latent variables, predominantly within the

framework of factor analysis models—the most basic version of LVMs. For example,

the Akaike information criterion (AIC; Akaike, 1987), Bayesian information criterion

(BIC; Schwarz, 1978) and Bayesian approaches have been proposed to select the

factors in factor analysis models (Press & Shigemasu, 1989 and 1997; Lee & Song,

2002; Carvalho et al., 2005; Bhattacharya & Dunson, 2011). However, these methods

incur a heavy computational burden and quickly become infeasible when the number

of possible factors becomes even moderately large. In addition, the large sample

model selection results (e.g., model selection consistency and oracle property) are

elusive, making it difficult to evaluate the procedure’s statistical properties.

We propose a new penalized pseudo-likelihood method that selects latent variables

and estimates regression parameters simultaneously for a general LVM. Because the

factor analysis model is a special case of the general LVM, our method can be used

to select the factors in factor analysis models. However, different from existing work

on factor selection in factor analysis models, our method reduces the computational
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burden in that it does not require a priori specification of all possible latent variables.

Furthermore, our estimator is shown to have desirable theoretical properties, including

n1/2-consistency, asymptotic normality and the oracle property—that is, it works as

well as if the latent variables were known.

Though related, our context is different from that of random effect selection in

random effect models. Indeed, random effects are mainly introduced to describe

the unobserved heterogeneity and are covariate-independent, whereas latent variables

represent specific traits associated with covariates and hence are covariate-dependent.

As a result, the methods for selecting random effects cannot be applied to the selection

of latent factors (Chen & Dunson, 2003). However, as described in Section 3, the

proposed method can also be used to select random effects.

Analysis of multiple outcomes is further complicated by the fact that the outcomes

can typically be of mixed types (i.e., binary, continuous or ordinal), which presents

statistical challenges, as a natural multivariate distribution for mixed data does not

exist. Yang et al. (2007) and Wagner & Tüchler (2010) considered joint models for

Poisson and continuous data. Muthén (1984) proposed to define ordinal variables

using unknown threshold parameters applied to underlying normal continuous vari-

ables. However, the literature on underlying normal models has focused primarily on

joint models for low-dimensional ordinal outcomes and continuous outcomes (Cata-

lano & Ryan, 1992; Cox & Wermuth, 1992; Fitzmaurice & Laird, 1995; Sammel et

al., 1997; Regan & Catalano, 1999; Dunson, 2000; Roy & Lin, 2000; Gueorguieva &

Agresti, 2001). This paper proposes a two-step approach for jointly modeling con-

tinuous, binary and ordinal outcomes data under the underlying normal framework.

Our estimation and selection procedure utilizes a closed-form penalized maximum

likelihood estimator, which greatly facilitates computation.

The remainder of the paper is organized as follows. We introduce the proposed

general LVM in Section 2. We propose a new penalized pseudo-likelihood method

that allows us to select latent variables and estimate regression and threshold param-

eters simultaneously in Section 3. To implement the proposal, we provide a series of

estimating equation-based approaches to draw inference and further propose a BIC-

type procedure to select tuning parameters. In Section 4, we state our estimators’

theoretical properties, including n1/2-consistency, asymptotic normality and the ora-

cle property. We report in Section 5 simulation results and an analysis of the World

Values Survey (WVS), a global research project that explores the social and personal

characteristics that influence people’s values and beliefs. We provide concluding re-
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marks in Section 6. We defer all proofs to the Supplementary Material.

2 General latent variable model

Suppose there are n randomly selected subjects, each with p distinct outcomes. Specif-

ically, for the ith subject, we observe vectors of covariates Xi and Zi, and a vector

of outcomes Yi = (Yi1, · · · , Yip)
′, where the first element of Xi is 1. Without loss of

generality, we assume that the first p1 elements of Yi are continuous and that the

remaining p2 = p− p1 elements are ordinal and are linked to some underlying contin-

uous variables as in Muthén (1984). That is, Yij = gj(Uij; cj) for j = 1, · · · , p, where

Uij is a continuous underlying variable of Yij. For the continuous outcomes, we have

Yij = Uij, for j = 1, · · · , p1; for an ordinal outcome Yij ∈ {1, · · · , dj}, where dj ≥ 2 is a

positive integer, we have Yij =
∑dj

l=1 lI(cj,l−1 < Uij ≤ cj,l) for j = p1 +1, · · · , p, where

cj = (cj,0, · · · , cj,dj
)′ are thresholds satisfying −∞ = cj,0 < cj,1 < · · · < cj,dj

= ∞. In

summary, gj(·) is the identity link for continuous outcomes and is otherwise a thresh-

old link mapping from R→ {1, · · · , dj} for the jth outcome. Let ξi = (ξi1, · · · , ξiq)
′, a

q-dimensional random vector of latent variables that represents an individual’s specific

traits, q ≤ p. We then relate the underlying continuous variables Ui = (Ui1, · · · , Uip)
′

to ξi via

Ui = βXi + αξi + εi, (2.1)

where β = (β1, · · · , βp)
′ is a regression coefficient matrix, α = (α1, · · · , αp)

′ is a

loading matrix with vector αj = (αj1, · · · , αjq)
′, and εi = (εi1, · · · , εip)

′ is a vector

of random errors distributed as N(0,Σε) with Σε = diag(σ2
ε1, · · · , σ2

εp). Model (2.1)

assumes that multiple outcomes are independent given latent variables, implying that

the correlation among Yij, j = 1, · · · , p is due entirely to the shared latent variables

in ξi, explaining all the dependence among responses.

We stress that, unlike random effects, the latent variables ξi are introduced to

reflect an individual’s unobservable traits, such as ‘life satisfaction’ and ‘job attitude’,

which, as in Roy & Lin (2000) and Skrondal & Rabe-Hesketh (2007), are linked to

observed covariates via

ξi = γZi + ei, (2.2)

where ei = (ei1, · · · , eiq)
′ ∼ N(0,Σe) is a vector of random errors independent of

Zi, and Σe = diag(σ2
e1, · · · , σ2

eq). Here, γ = (γ1, · · · , γq)
′ is a matrix of unknown

regression coefficients with vector γj = (γj1, · · · , γjm)′ and is used to describe effects
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of observed predictors on latent variables and then on outcomes. We term model

(2.2), coupled with model (2.1), a general LVM as it extends the common LVM by

accommodating both continuous and ordinal outcomes. The covariates in Xi and Zi

play different roles in the proposed model; Zi records the covariates of interest and is

used to characterize the latent variables, whereas Xi exclusive of Zi is used to adjust

for subjects’ characteristics that may affect the outcomes. In model (2.2), the latent

variable ξij = γ ′jZi + eij is zero if σej = 0 and ‖γj‖ = 0; ξij is an observed covariate

for σej = 0 if only one γjk 6= 0 among {γjk, k = 1, · · · ,m} and is a linear combination

of observed covariates otherwise; ξij is a random intercept if σej 6= 0 and ‖γj‖ = 0;

ξij is a latent variable if σej 6= 0 and ‖γj‖ 6= 0 (particularly when σej 6= 0, γjk 6= 0

(k ∈ A) and γjk = 0 (k 6∈ A)); and ξij is a latent variable characterized by the pre-

dictors {Zik, k ∈ A}. However, the latent variables or random effects to be included

in models (2.1) and (2.2) are often unknown a priori, which presents a dilemma: too

few latent variables would lead to a large modeling bias, whereas too many would

result in overfitting. This inevitably leads to the task of selecting important latent

variables. On the other hand, as model (2.2) stipulates, certain predictors influence

the responses only through intermediate latent variables, meaning that latent vari-

ables are characterized by subsets of predictors Zi. In practice, identification of such

subsets of latent variables is important in that it facilitates interpretation. Therefore,

it is essential to develop a procedure that automatically selects latent variables and

the corresponding underlying subsets of predictors.

To proceed, we first discuss the identifiability issue of models (2.1) and (2.2),

which can be rewritten as

Ui = βXi + αγZi + αei + εi. (2.3)

Hence Ui ∼ N(βXi + αγZi,Σ), where Σ = αΣeα
′ + Σε. Given that only αγ and

αΣeα
′ are identifiable, we follow the common practice in factor analysis (Anderson

& Rubin, 1956; Lee, 2007; Lee & Song, 2002) to introduce the constraints αjk = 0

for all j < k, where j = 1, · · · , p, k = 1, · · · , q ≤ p, to eliminate the indeterminacy of

rotation in a model with q factors, and introduce constraints αkk = 1, k = 1, · · · , q

to fix the sign of each column of α. To identify the ordinal variables, we further set

σεj = 1 for j > p1 (Dunson, 2000; Shi & Lee, 2000; Lee & Song, 2004) and exclude

the intercept term from Xi. This way, all α,Σe and γ are identifiable.

Although related, the proposed model (2.3) with regressors (X;Z) and the par-

ticular covariance error structure differs from an ordinary mixed effect model. The

random effects in the latter address the heterogeneity or dependence of the data
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but have no specific meaning, whereas the latent variables in model (2.3) represent

certain unobservable traits that are characterized by some covariates. Thus, model

(2.3) not only addresses the heterogeneity, but also provides insights into the causes

and effects of such heterogeneity, consequently increasing its capability in terms of

interpretation.

3 Selection and estimation

3.1. Penalized likelihood function

Let Ui = (U′
i1,U

′
i2)

′, where Ui1 corresponds to the first p1 continuous components—

which are completely observed—and Ui2 is a collection of Uij corresponding to the

last p − p1 discrete components. For example, Yij = k implies that Uij falls into

[cj,k−1, cj,k), where {cj,k} are threshold parameters and need to be estimated. Let

Ai =
∏p

j=p1+1[cj,Yij−1, cj,Yij
). Then the likelihood for the observed data {Y1, · · · ,Yn}

can be expressed as

Ln(Θ) ∝
n∏

i=1

|Σ|−1/2

∫

Ui2∈Ai

exp

[
−1

2

{(
Ui1

Ui2

)
− βXi −αγZi

}′

×Σ−1

((
Ui1

Ui2

)
− βXi −αγZi

)]
dUi2,

(3.1)

where Θ = {α, β,Σε,Σe, γ} includes all unknown structural parameters. We assume

{cj,k} to be known for now, and we estimate them in Section 3.3.

As explained in Section 2, ξij may be a latent variable, random effect, mani-

fest variable (that is, observable variable) or zero, depending on whether σej and

‖γj‖ are zero. If ξij is a latent variable, it is of interest to know the corresponding

subset of predictors. The selection of the subset corresponds to some elements of

{γjk, k = 1, . . . , m, j = 1, . . . , q} being zero, which leads to the following likelihood

with penalties on (σej, γjk, k = 1, . . . , m, j = 1, . . . , q)′,

Q(Θ) = log Ln(Θ)− n

q∑
j=1

pρ1n(σej)− n

q∑
j=1

m∑

k=1

pρ2n(|γjk|). (3.2)

Here, pλ(·) is a penalty function, the common choices of which include Lq penalty,

pλ(|β|) = λ|β|q, (q > 0), yielding the well-known ridge regression with q = 2. The

smoothly clipped absolute deviation (SCAD) penalty function (Fan & Li, 2001) takes
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the form

ṗλ(β) = λ

{
I(β 6 λ) +

(aλ− β)+

(a− 1)λ
I(β > λ)

}
for some a > 2 and β > 0, (3.3)

with ṗλ(0) = 0, where ḟ(t) = df(t)/dt for any smooth function f . The tuning

parameter a is often taken to be 3.7 as suggested by Fan & Li (2001). As the SCAD

penalty has been shown to render oracle properties in many penalized likelihood

settings (Fan et al., 2006), we adopt it in our ensuing development. However, our

method does accommodate more general penalty functions.

Indeed, by maximizing the penalized likelihood Q(Θ), we can show that there is

a positive probability of some estimated values of σej and γjk equaling zero and thus

of automatically selecting latent variables and corresponding predictors. Thus, the

procedure combines the selection of latent variables and corresponding subsets of pre-

dictors, with the estimation of parameters into one step, reducing the computational

burden substantially.

3.2. Penalized expectation maximization algorithm

With the likelihood function Ln(Θ) involving a p − p1 dimensional intractable

integral, a direct application of the maximum likelihood (ML) estimation procedure

is nearly impossible. We propose below a penalized expectation maximization (EM)

algorithm. Given the complexity of the proposed algorithm, we describe the basic

steps and computation of the conditional means required for the maximization in two

subsections.

3.2.1. The basic steps of the penalized EM algorithm

The random variable eij ∼ N(0, σ2
ej) if σej 6= 0; otherwise, eij ≡ 0. Hence, ei

is a mixture of zero and normal components. For ease of presentation, we rewrite

ei = Σ1/2
e wi, where wi = (wi1, · · · , wiq)

′ ∼ N(0, I). Then, model (2.3) can be

rewritten as

Ui = βXi + αγZi + αΣ1/2
e wi + εi. (3.4)

To set up a penalized EM algorithm, consider the random variables Ui2 and wi to

be the missing data. The complete data for individual i is Di = {Xi,Zi,Ui,wi}. The

penalized complete-data log-likelihood function is

Qc(Θ) = log L(Θ)− n

q∑
j=1

pρ1n(σej)− n

q∑
j=1

m∑

k=1

pρ2n(|γjk|), (3.5)
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where

log L(Θ) ∝ −1

2

n∑
i=1

[
p∑

j=1

{
log σ2

εj +
(Uij −X′

iβj −α′
jγZi −α′

jΣ
1/2
e wi)

2

σ2
εj

}]
. (3.6)

In the maximization step, we maximize the conditional expectation of Qc(Θ) given

the observed data. The maximization step depends on the conditional expectation

of some function of Ui2 and wi, which is evaluated in the expectation step. The two

steps are iterated until convergence.

3.2.2. Implementation of the penalized EM algorithm

Let δij(Θ) = Uij −X′
iβj −α′

jγZi−α′
jΣ

1/2
e wi. For any given threshold parameter

cj,k, we estimate Θ by maximizing E{Qc(Θ)|Yi,Xi,Zi, i = 1, · · · , n} with respect to

Θ. Differentiating E{Qc(Θ)|Yi,Xi,Zi, i = 1, · · · , n} with respect to Θ and setting

the derivatives to zero leads to the following estimation equations:

σ2
εj =

1

n

n∑
i=1

E
{
δij(Θ)2|Yi,Xi,Zi

}
for j = 1, · · · , p, (3.7)

βj =

(
n∑

i=1

XiX
′
i

σ2
εj

)−1 n∑
i=1

XiE(Uij −α′
jγZi −α′

jΣ
1/2
e wi|Yi,Xi,Zi)

σ2
εj

for j = 1, · · · , p,(3.8)

αjk =

[
n∑

i=1

E {(Z′iγk + σekwik)
2|Yi,Xi,Zi}

σ2
εj

]−1

×



n∑
i=1

E
{(

Uij −X′
iβj −

∑
m6=k αjm(γ ′mZi + σemwim)

)
(Z′iγk + σekwik) |Yi,Xi,Zi

}

σ2
εj


 ,

for j = 1, · · · , p and k < j, (3.9)
n∑

i=1

p∑

k=1

αkjZirE {δik(Θ)|Yi,Xi,Zi}
σ2

εk

− nṗρ2n(|γjr|)sgn(γjr) = 0,

for j = 1, · · · , q, r = 1, · · · ,m, (3.10)
n∑

i=1

p∑

k=1

αkjE(wijδik(Θ)|Yi,Xi,Zi)

σ2
εk

− nṗρ1n(σej) = 0 for j = 1, · · · , q. (3.11)

We estimate γ and Σe by rewriting equations (3.10) and (3.11) as

γjr =

(
n∑

i=1

p∑

k=1

α2
kjZ

2
ir

σ2
εk

+ nṗρ2n(|γjr|)/|γjr|
)−1

×
n∑

i=1

p∑

k=1

αkjZir

σ2
εk

E

(
Uik −X′

iβk −
∑

m6=j

αkmγ ′mZi −
∑

l 6=r

αkjZilγjl −α′
kΣ

1/2
e wi|Yi,Xi,Zi

)
,

for j = 1, · · · , q, r = 1, · · · ,m, (3.12)

8



and

σej =

{
n∑

i=1

p∑

k=1

α2
kjE(w2

ij|Yi,Xi,Zi)

σ2
εk

+ nṗρ1n(σej)/σej

}−1

×




n∑
i=1

p∑

k=1

αkjE
[
wij

(
Uik −X′

iβk −α′
kγZi −

∑
m6=j αkmσemwim

)
|Yi,Xi,Zi

]

σ2
εk



 ,

for j = 1, · · · , q. (3.13)

Then, we estimate Θ by repeatedly using equations (3.7), (3.8), (3.9), (3.12) and

(3.13) until Θ converges. For each step, Θ in the left side of the equations is replaced

by the value from the last step.

To obtain the estimate of Θ using the above equations, we need to compute the

conditional mean and conditional variance matrices of (Ui2,wi) given (Yi,Xi,Zi),

which has the form of E
(
U⊗r1

i2 ⊗w⊗r2
i |Yi, Xi,Zi

)
for r1+r2 ≤ 2, r1 = 0, 1, 2, and r2 =

0, 1, 2, where a⊗2 = aa′, a⊗1 = a and a⊗b = ab′. Because E
(
U⊗r1

i2 ⊗w⊗r2
i |Yi,Xi,Zi

)
=

E
{
U⊗r1

i2 ⊗ E
(
w⊗r2

i |Ui,Xi,Zi

) |Yi,Xi,Zi

}
, and given Ui,Xi and Zi, wi is a normal

random variable with mean Σ1/2
e α′ (αΣeα

′ + Σε)
−1 (Ui − βXi −αγZi) and covari-

ance matrix I−Σ1/2
e α′ (αΣeα

′ + Σε)
−1 αΣ1/2

e . To calculate E
(
U⊗r1

i2 ⊗ e⊗r2
i |Yi,Xi,Zi

)
,

it is sufficient to compute E
(
U⊗r

i2 |Yi,Xi,Zi

)
, for r = 1, 2, which is

E
(
U⊗r

i2 |Yi,Xi,Zi

)
= E

{
U⊗r

i2 I (Ui2 ∈ Ai) |Ui1,Xi,Zi

}
/P (Ui2 ∈ Ai|Ui1,Xi,Zi) ,

where both the numerator and denominator can be approximated with Monte Carlo

simulations.

3.3. Estimation of the threshold parameters

We are now in a position to estimate {cj,k} with the iterative series of estimat-

ing equations proposed below. The parameters Θ are then updated by maximizing

the pseudo-likelihood E{Qc|Yi,Xi,Zi, i = 1, · · · , n}, with {cj,k} replaced by their

estimated values. The procedure is repeated until convergence.

Because Uij = X′
iβj + α′

jγZi + α′
jei + εij, for any given j > p1, k ∈ {1, · · · , dj},

Xi, and Zi, we have

Pr(Yij = k|Xi,Zi) = Φ

{
cj,k −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}
− Φ

{
cj,k−1 −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}
,

where Φ(·) is the cumulative distribution function of the standard normal random

9



variable. With cj,0 = −∞, we estimate cj,1, · · · , cj,dj−1, one-at-a-time, using

n∑
i=1

[
I (Yij = k)− Φ

{
cj,k −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}

+Φ

{
cj,k−1 −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}]
= 0, (3.14)

for k = 1, · · · , dj − 1.

3.4. Selection of tuning parameters

We select the tuning parameters ρ1n and ρ2n using a BIC-based procedure. As

shown by Wang et al. (2007), such a procedure typically yields model selection

consistency for linear regression models. Specifically, we choose ρ1n and ρ2n separately

as they control the complexity of two separate components of models. First, noting

that ρ2n controls the number of non-zero elements in γ, we rewrite model (2.3) as

Ui = βXi + αγZi + ε̃i, (3.15)

where ε̃i = αei + εi ∼ N(0,Σ). The parameters γ are regression coefficients. We

then select the optimal ρ2n by maximizing

BIC2 = log Ln(Θ)− 1

2
DFρ2nlog(np), (3.16)

where Ln(Θ) is the observed-data likelihood function defined by model (3.1) and

DFρ2n is the generalized degree of freedom, which can be consistently estimated by∑q
j=1

∑m
k=1 I(|γ̂jk| 6= 0) +

∑p
j=1

∑q
k=1 I(α̂jk 6= 0) +

∑q
j=1 I(σ̂ej 6= 0), the number

of nonzero coefficients; see Zhang et al. (2010) for models with generalized linear

structure.

We now discuss choice of ρ1n, which controls the dimension of the random effect

ei—that is, the number of non-zero elements in Σe = diag(σ2
e1, · · · , σ2

eq). Model (3.4)

shows that Σ1/2
e is the regression effect of wi. To select Σe, we thus consider the

random variable wi and the covariates Xi and Zi as input variables in model (2.3)

and only εi as random noise. We then select the optimal ρ1n by maximizing

BIC1 = E{log L(Θ)|Yi,Xi,Zi, i = 1, · · · , n} − 1

2
DFρ1nlog(np), (3.17)

where L(Θ) is the complete-data likelihood function defined by equation (3.6), DFρ1n

is the weighted generalized degree of freedom DFρ1n =
∑q

i=1 wiI(σ̂ei 6= 0)+
∑q

j=1

∑m
k=1 I(|γ̂jk| 6=

0) +
∑p

j=1

∑q
k=1 I(α̂jk 6= 0) with wi = 1/σ̂ini

ei , and σ̂ini
ei is the estimate of σei without
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penalty. Here, we replace the complete data likelihood with the conditional expecta-

tion of the complete data likelihood, because the complete data likelihood depends

on the missing data wi and is useless in the estimation of ρ1n. However, the condi-

tional expectation of the complete data likelihood is a reasonable estimator for the

complete data likelihood. We test the performance of our tuning procedure via sim-

ulation studies in Section 5. In simulation studies and in the analysis of actual data,

we perform the selection of both ρ1n and ρ2n on grids of the tuning parameters.

4 Large sample properties

We now establish the consistency and asymptotic normality of the proposed estimator.

For ease of presentation, we rewrite Θ = (Θ′
1, σe

′, ~γ ′)′ as the vectorial form of the

collection of all unknown parameters. Here Θ1 = (~α′, ~β
′
, σε

′)′. Throughout, we

use the subscript “0” to represent the true value. Without loss of generality, let

σe0 = (σ′
e(1)0, σ

′
e(2)0)

′, ~γ0 = (γ ′(1)0, γ
′
(2)0)

′ and σe(2)0 = 0 and γ(2)0 = 0. Define

σe = (σ′
e(1), σ

′
e(2))

′, ~γ = (γ ′(1), γ
′
(2))

′ to have the corresponding decompositions.

Considering a more generalized nonconcave penalty function, we set an1 = maxj{ṗρ1n(σej0) :

σej0 6= 0}, an2 = maxj,k{ṗρ2n(|γjk0|) : |γjk0| 6= 0} and an = max {an1, an2} . Let

g̈(t) = d2g(t)/dt2. The following theorems summarize the large sample properties of

the proposed estimator; their proofs are deferred to the Supplementary Material, and

the related regularity conditions are given in Appendix A.2.

Theorem 1 Under conditions 1−3 stated in Appendix A.2, if maxj{|p̈ρ1n(σej0)| :

σej0 6= 0} → 0 and maxj,k{|p̈ρ2n(|γjk0|)| : |γjk0| 6= 0} → 0, then, as n →∞,

(1) for any j = p1 + 1, · · · , p, k ∈ {1, · · · , dj}, we have

ĉj,k →P cj,k0 and ‖ĉj,k − cj,k0‖ = Op(n
−1/2 + an). (4.1)

(2) there is a maximizer Θ̂ = (Θ̂
′
1, σ̂

′
e, ~̂γ

′
)′ of Q (Θ) such that

‖σ̂e − σe0‖ = Op(n
−1/2 + an1), ‖γ̂ − γ0‖ = Op(n

−1/2 + an2),

and ‖Θ̂1 −Θ10‖ = Op(n
−1/2). (4.2)

Clearly, using the SCAD penalty defined in equation (3.3) with λ → 0 and β > 0,

we have ṗλ(β) = λ
{

(aλ−β)+
(a−1)λ

}
= (aλ−β)+

(a−1)
= 0. Hence, with λ = ρ1n → 0 and λ =
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ρ2n → 0, we obtain an1 = 0 and an2 = 0, respectively. Therefore, there exists a root-n

consistent penalized estimator for the parameters Θ and the threshold parameters c.

Next, we show that the penalized estimator demonstrates the oracle property.

Theorem 2 Assume that the penalty function, pρ1n(θ) and pρ2n(θ), satisfies

lim inf
n→∞

lim inf
θ→0+

ṗρ1n(θ)/ρ1n > 0, and lim inf
n→∞

lim inf
θ→0+

ṗρ2n(θ)/ρ2n > 0.

Under conditions 1−3 in Appendix A.2, if as n → ∞, ρ1n → 0,
√

nρ1n → ∞,

ρ2n → 0 and
√

nρ2n → ∞, the root-n consistent local maximizers σ̂e = (σ̂′
e(1), σ̂

′
e(2))

′

and ~̂γ = (~̂γ(1), ~̂γ(2))
′ in Theorem 1 must satisfy the following properties:

(a) Sparsity: σ̂e(2) = 0 and ~̂γ(2) = 0.

(b) Asymptotic normality:

√
n (Λ2 + U1)

{
σ̂e(1) − σe(1)0 + (Λ2 + U1)

−1 (C21b1 + C22b2)
} → N (0, A2) and

√
n (Λ3 + U2)

{
~̂γ(1) − ~γ(1)0 + (Λ3 + U2)

−1 (C31b1 + C32b2)
}
→ N (0, A3) ,

where Λ2,Λ3,U1,U2,b1,b2, C21, C22, C31, C32, A2 and A3 are defined in Appendix

A.1.

Theorem 3 When n →∞, if all conditions of Theorem 2 are satisfied, we have

√
nΛ1

{
Θ̂1 −Θ10 + Λ−1

1 (C11b1 + C12b2)
}
→ N (0, A1) ,

where Λ1, C11, C12 and A1 are defined in Appendix A.1.

Theorem 4 When n →∞, if satisfying all the conditions of Theorem 2, we have

√
n {ĉj,k − cj,k0 + C4j1(k)b1 + C4j2(k)b2} → N {0, A4j(k)} ,

where C4j1(k), C4j2(k), and A4j(k) are defined in Appendix A.1.

For the SCAD penalty function, if ρ1n → 0 and ρ2n → 0, then an1 = an2 = 0,

b1 = 0, b2 = 0, U1 = 0 and U2 = 0. Theorems 2−4 imply that the SCAD-based

penalized likelihood estimators for σe, γ, Θ1 and cj,k have the oracle property—that

is, when the true parameters contain zero components, they are estimated as 0, with
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the probability approaching 1, and the nonzero components are estimated as well as

in the case where zero components are known.

In practice, to approximate the distribution and construct the confidence inter-

val for Θ̂(1) = (Θ̂
′
1, σ̂

′
e(1), ~̂γ

′
(1))

′, the estimators of non-zero parameters, we need to

estimate the variances of Θ̂(1). However, the complex form of the limiting covariance

matrix of Θ̂(1) in Theorems 2 and 3 prohibits direct use. Instead, we propose using the

resampling method of Jin et al. (2001) to estimate the variance. First, we generate

n exponential random variables Vi, i = 1, · · · , n with mean 1 and variance 1. Then,

we solve the following Vi-weighted estimation equations and denote the solutions as

Θ∗
(1) and c∗:

n∑
i=1

Vi
∂ log{Li(Θ; c)}

∂Θ(1)

|σe(2)=0,~γ(2)=0 = 0 and

n∑
i=1

Vi

[
I (Yij = k)− Φ

{
cj,k −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}

+Φ

{
cj,k−1 −

(
X′

iβj + α′
jγZi

)
√

α′
jΣeαj + 1

}]
|σe(2)=0,~γ(2)=0 = 0, for

k = 1, · · · , dj − 1

j = p1 + 1, · · · , p
,

with cj,0 = −∞, where Li(Θ; c) is the observed-data likelihood function (3.1) for

subject i. The estimates Θ∗
(1) and c∗ can be obtained using the same algorithm

proposed in Sections 3.1−3.3. Using Theorems 2−4, the validity of the proposed

resampling method is established as the following theorem. We omit its proof, as the

arguments follow Jin et al. (2001).

Theorem 5 Under the conditions of Theorem 2, the conditional distribution of n1/2(Θ∗
(1)−

Θ̂(1)) given the observed data converges almost exactly to the asymptotic distribution

of n1/2(Θ̂(1) −Θ(10)), where Θ(10) is the true value of Θ(1) = (Θ′
1, σ

′
e(1), ~γ

′
(1))

′.

By repeatedly generating V1, · · · , Vn, we obtain a large number of realizations of

Θ∗
(1). The variance estimate of Θ̂(1) can be approximated by the empirical variance

of Θ∗
(1).

5 Simulation study

We have conducted extensive simulations to investigate the effect of misspecifying

latent variables on the mean and the variance structure. Specifically, we consider the
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model with two latent variables, denoted as LV2. In practice, the model selection

procedure might reduce a latent variable to a manifest variable or a random effect.

We hence compare the estimates from the proposed method with those from the

following misspecified models: (1) the LV1MV1, where the variance of one latent

variable is misspecified to 0–that is, one of latent variables is misspecified as a manifest

variable; (2) the LV1RV1, where the regression coefficients of one latent variable are

misspecified to 0–that is, one of the latent variables is misspecified as random effect.

We simulated 1000 data sets, each with n = 200 observations. For each sub-

ject, the latent variable is generated by the model ξij = Z′iγj + eij, j = 1, 2, where

Zi = (Zi1, Zi2, Zi3)
′, Zij, j = 1, 2, 3 are independently drawn from a standard normal

random variable, γ1 = (2, 0, 0)′, γ2 = (0, 2, 0)′, ei = (ei1, ei2)
′ is a normal random

vector with mean zero, and the covariance Σe = diag(σ2
e1, σ

2
e2) = diag(1, 1). ei and Zi

are independent. The outcomes Yi = (Yi1, Yi2, Yi3, Yi4)
′ are generated from the mod-

els Yij = X ′
ijβj + αj1ξi1 + αj2ξi2 + εij, j = 1, 2, 3, 4, where β1 = (β11, β12)

′ = (1, 2)′,

β2 = (β21, β22)
′ = (2, 2)′, β3 = (β31, β32)

′ = (1, 1)′, β4 = (β41, β42)
′ = (1.5, 2)′,

Xij = (1, Xij2)
′, and Xij2 is independently generated from a standard normal variable.

Note that εi = (εi1, εi2, εi3, εi4)
′ are normal random vectors with mean zero and covari-

ance Σε ≡ diag(σ2
ε1, σ

2
ε2, σ

2
ε3, σ

2
ε4) = diag(1, 1, 1, 1). α′ ≡

(
α11 α21 α31 α41

α12 α22 α32 α42

)
=

(
1 0.8 0.8 0.8

0 1 0.8 0.8

)
. For each simulated data set, we fit data with the LV2, LV1MV1

and LV1RV1 models and estimate the related unknown parameters using the ML

method. The bias and empirical SDs of the estimators are reported in Table 1, where

#CF is the number of convergence failures from 1000 simulation runs.

Using the data presented in Table 1, we make the following conclusions. (1) The

estimate of the fixed effect in the measurement models are reported in the first part

of Table 1. All estimators are unbiased, and LV2 has the smallest variance. The first

part of Table 1 shows that misspecification of latent variables will lead to a slight loss

of efficiency for β. Misspecification of latent variables has a relatively minor effect on

the parameters in the mean part. (2) The second part of Table 1 displays estimators

of α and γ. A useful rule to keep in mind when checking bias, as suggested by Olsen

& Schafer (2001), is that biases do not have a substantial negative effect on inference

unless standardized bias (bias over SD) exceeds 0.4. By this rule, LV2 is unbiased, and

LV1MV1 and LV1RV1 are seriously biased. Table 2 in the supplementary material

shows that misspecification of latent variables leads to biased estimators of α and γ,
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the regression coefficients of the latent variable. (3) The third part of Table 1 shows

the estimators of variances in the measurement and latent variable models. As shown,

LV2 is unbiased and has the smallest variance; LV1RV1 and LV1MV1 are biased for

the variance parameters in both the measurement and latent variable models.

Table 1: Estimation results for Simulation 1.

LV 2(true) LV 1MV 1 LV 1RV 1

#CF 0 2 33

Bias(SD) Bias(SD) Bias(SD)

β11 -0.003(0.097) -0.003(0.097) -0.006(0.133)

β12 -0.002(0.102) -0.002(0.102) 0.001(0.139)

β21 0.001(0.112) 0.002(0.113) 0.005(0.119)

β22 -0.003(0.116) -0.003(0.117) -0.004(0.123)

β31 0.000(0.106) 0.000(0.107) 0.002(0.109)

β32 -0.002(0.106) -0.002(0.107) -0.003(0.109)

β41 0.001(0.104) 0.001(0.105) 0.003(0.107)

β42 0.000(0.107) 0.000(0.108) -0.001(0.110)

α21 -0.000(0.054) 0.940(0.248) 0.758(0.278)

α31 0.000(0.050) 0.758(0.200) 0.618(0.229)

α41 -0.000(0.049) 0.754(0.202) 0.613(0.226)

α32 0.000(0.045) 0.003(0.046) -0.085(0.291)

α42 -0.003(0.043) -0.000(0.044) -0.076(0.300)

γ11 -0.000(0.094) -0.010(0.098) -0.719(0.262)

γ12 0.006(0.099) 0.004(0.101) 0.950(0.102)

γ13 0(0) 0.002(0.101) 0.003(0.066)

γ21 0(0) -1.868(0.509) *

γ22 -0.001(0.111) -0.009(0.172) *

γ23 0.002(0.097) -0.003(0.168) *

σ2
ε1 -0.030(0.173) 0.471(0.157) 2.119(0.472)

σ2
ε2 -0.028(0.153) 0.035(0.152) -0.007(0.225)

σ2
ε3 -0.021(0.127) -0.031(0.127) -0.029(0.147)

σ2
ε4 -0.023(0.131) -0.033(0.131) -0.033(0.157)

σ2
e1 -0.017(0.180) -0.466(0.138) -0.760(0.149)

σ2
e2 -0.022(0.207) * 0.472(0.809)

∗ not applicable.

In summary, misspecification of latent variables has a minor effect on the estima-
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tors of the parameters in the mean structure but may lead to biased estimators of

the components of the covariance structure, including α, γ and the variances of the

error and the latent variables.

As reported in the supplementary material, we have conducted further simulation

studies (denoted as Simulation 2) to assess the finite-sample performance of the pro-

posed method in terms of bias and empirical SD. We also examine the performance

of criteria (3.16) and (3.17) in selecting ρ1n and ρ2n. We have also conducted simula-

tions (denoted as Simulation 3) to check the performance of the proposed procedure

when the signal is not sufficient and to investigate the validity of treating an ordinal

response as a continuous variable, which is the approach taken when we apply the

analysis to real data. All the results point to the good performance of the proposed

method and hint at the appropriateness of data analysis reported in the next section.

6 Application of the latent variable model

The World Values Survey (WVS) gathers information from participants around

the world on contemporary societal issues such as individuals’ attitudes about their

work and religious beliefs. The goal of the survey is to enable a cross-national, cross-

cultural comparison and surveillance of respondents’ core values. Namely, partici-

pants’ responses help identify what or how social and personal factors affect individ-

uals’ core values. For this application, we use data from the India cohort (n = 759);

our specific aim is to investigate whether respondents’ financial situation and atti-

tudes about their job (adjusted for demographic factors) influence their core values,

as gauged by the following nine questions:

Y1: How important is God in your life? (1=not at all, 10=very)

Y2: Overall, how satisfied or dissatisfied are you with your home life? (1=dissatis-

fied, 10=very satisfied)

Y3: All things considered, how satisfied are you with your life as a whole in these

days? (1=dissatisfied, 10=very satisfied)

Y4: How satisfied are you with the financial situation of your household? (1=dis-

satisfied, 10=very satisfied)

Y5: Overall, how satisfied or dissatisfied are you with your job? (1= dissatisfied,

10=very satisfied);

Y6: Individuals should take more responsibility for providing for themselves. (1=agree

completely, 10=disagree completely)
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Y7: Competition is good. It simulates people to work hard and develop new ideas.

(1=agree completely, 10=disagree completely)

Y8: In the long run, hard work usually brings about a better life. (1=agree com-

pletely, 10=disagree completely)

Y9: How much pride, if any, do you take in the work that you do? (1=a great deal,

2=some, 3=little, 4=none)

Because the outcomes Y1, · · · , Y8 are measured on a scale from 1 to 10 and Y9 takes

values of 1 to 4, we treat the first eight outcomes as continuous variables and the last

outcome as ordinal. With nine outcomes, it is reasonable to consider at most nine

latent variables ξ1, · · · , ξ9 in the proposed model:

Yk = bk +
9∑

j=1

αkjξj + εk, k = 1, . . . , 8,

U9 = b9 +
9∑

j=1

α9jξj + ε9,

ξk = Z′γk + ek, k = 1, . . . , 9,

where Y9 = I(U9 ≤ c1) + 2I(c1 < U9 ≤ c2) + 3I(c2 < U9 ≤ c3) + 4I(c3 < U9) and

Z = (Z1, . . . , Z6)
′, in which (Z1, Z2) = marriage ((1, 0), more than once; (0, 0), only

once; (0, 1), never), Z3 = age, Z4 = gender (1, male; 0, female); Z5 = income (1:

<12,000 rupees per year; 2: 12,001−18,000; 3: 18,001−24,000; 4: 24,001−30,000; 5:

30,001−36,000; 6: 36,001−48,000; 7: 48,001−60,000; 8: 60,001−90,000; 9: 90,001−
120,000; and 10: >120,000); and Z6 = freedom of decision-making on the job (1,

none at all; 10, a great deal). To unify scales of covariates, we standardize the el-

ements in Z before analysis. For identifiability, the matrix α is assumed to be a

lower triangular matrix, with 1’s as diagonal entries, b9 = 0 and σε9 = 1. The tuning

parameter ρ1n = 0.2 and ρ2n = 0.1 are chosen by maximizing equations (3.16) and

(3.17). We also consider the method without selection of the latent variables and the

predictor variables (Non-p); Tables 4−6 display point estimates and the estimated

SDs (in parenthesis). We used 1000 Monte Carlo replications to approximate condi-

tional means. We calculated the SDs via the resampling method described in Section

4, with 1000 replications. We decided on a sample size of 1000 by monitoring the

stability of the SDs; we found that when the bootstrap sample size was between 500

and 1000, the resulting SDs stabilized and the difference was only marginal. For the

proposed method, the algorithm failed to converge in 76 of the 1000 replications; the

results from the proposed method are based on 924 replications. The Non-p method
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did not fit the data properly, resulting in about 665 of 1000 runs failing to converge;

the results from the Non-p method are based on 335 replications. Hence, given the

low number of replications, the SDs of the Non-p estimator displayed in Tables 4−6

are likely not representative of the SDs that would result from 1000 runs.

Table 4: Estimates of γ1, . . . , γ9 for WVS data

γ1 γ2 γ3

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 -0.130(0.121) 0 -0.136(0.090) 0 0.143(0.087)

Z2 0 0.060(0.090) 0 -0.032(0.079) 0 0.018(0.065)

Z3 0 0.143(0.086) 0 0.041(0.076) 0 0.010(0.078)

Z4 0 -0.104(0.093) 0 0.096(0.081) 0 -0.121(0.076)

Z5 0 -0.207(0.101) 0.546(0.070) 0.567(0.078) 0 -0.073(0.138)

Z6 0 0.390(0.096) 0 0.220(0.097) 0 0.066(0.097)

γ4 γ5 γ6

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 0.094(0.092) 0 0.022(0.096) 0 -0.109(0.124)

Z2 0 -0.039(0.073) 0 -0.061(0.063) 0 -0.119(0.119)

Z3 0 -0.014(0.063) 0 0.079(0.075) 0 0.129(0.106)

Z4 0 -0.090(0.064) 0 0.046(0.086) 0 -0.137(0.114)

Z5 0 0.257(0.107) 0 -0.009(0.111) 0 0.176(0.177)

Z6 0 0.023(0.080) 0.511(0.082) 0.485(0.096) 0 0.113(0.149)

γ7 γ8 γ9

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 -0.233(0.112) 0 -0.080(0.173) 0 0.032(0.138)

Z2 0 -0.085(0.092) 0 -0.087(0.133) 0 0.146(0.099)

Z3 0 -0.051(0.106) 0 0.110(0.116) 0 0.021(0.115)

Z4 0 -0.093(0.128) 0 -0.076(0.125) 0 0.060(0.104)

Z5 0 -0.240(0.162) 0 0.007(0.178) 0 -0.345(0.150)

Z6 0 -0.167(0.140) 0 -0.039(0.145) 0 0.046(0.170)

Our penalized method enables the estimates of ‖γj‖, j = 1, 3, 4, 6, 7, 8, 9 (see

Table 4), σe4, and σe9 (see Table 5) to be exactly zero. As discussed in Section 2,

{σe4 = 0, ‖γ4‖ = 0} and {σe9 = 0, ‖γ9‖ = 0} imply that ξ4 and ξ9 are zero and can be

ignored completely; {σej 6= 0, ‖γj‖ = 0, j = 1, 3, 6, 7, 8} imply that ξj, j = 1, 3, 6, 7, 8

are simply random effects; {σe2 6= 0, ‖γ2‖ 6= 0} and {σe5 6= 0, ‖γ5‖ 6= 0} imply

that ξ2 and ξ5 are indeed latent variables, characterized by income and job freedom
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separately.

Although model (3.4) reveals that the dependence among the nine outcomes is

explained jointly by random effects and latent variables {ξ2, ξ5}, the two latent con-

structs add more new insights. First, the significantly positive estimates of factor

loadings α̂32 = 0.896 (0.148), α̂42 = 1.015 (0.144) and α̂52 = 0.609 (0.129) (see Table

6) imply that respondents’ income level has positive effects on outcomes Y3, Y4 and

Y5 (life, finance and job satisfaction). Second, the significantly negative estimates of

factor loadings α̂92 = −0.253 (0.093) and α̂95 = −0.486 (0.125) (see Table 6) reveal

that both income and job freedom have positive effects on respondents’ feelings of

pride in their job, given a reversed coding of Y9. Third, insignificant factor loadings

{α62, α72, α82} and {α65, α75, α85} (see Table 6) indicate negligible effects of income

and job freedom on outcomes Y6, Y7 and Y8 (sense of responsibility, competitiveness

and work intensity). Finally, the two latent constructs help in the interpretation of

the heterogeneities among subjects. For example, people with similar levels of income

and perceived job freedom tend to give similar answers to questions Y3, Y4, Y5 and

Y9 (life, finance, job satisfaction and pride in work). In summary, our results ren-

der statistical evidence for some well-known but hard-to-measure social psychology

phenomena.

Table 5: Estimates of c and variance for WVS data

Proposed(SD) Non-p(SD) Proposed(SD) Non-p(SD)

c1 0.140(0.053) 0.299(0.107) c2 1.506(0.082) 3.209(0.662)

c3 2.624(0.156) 5.590(1.133)

σ2
ε1 4.487(0.951) 3.875(0.548) σ2

e1 2.025(0.860) 2.368(0.523)

σ2
ε2 1.515(0.468) 0.902(0.539) σ2

e2 1.368(0.462) 2.150(0.668)

σ2
ε3 1.979(0.323) 1.307(0.614) σ2

e3 0.705(0.345) 1.598(0.905)

σ2
ε4 2.135(0.432) 1.731(0.694) σ2

e4 0 0.780(0.848)

σ2
ε5 1.907(0.863) 1.360(0.775) σ2

e5 1.052(0.904) 1.652(0.888)

σ2
ε6 3.760(2.330) 3.815(1.880) σ2

e6 3.120(2.336) 2.995(1.998)

σ2
ε7 1.981(1.188) 2.224(0.899) σ2

e7 2.054(1.534) 2.004(1.313)

σ2
ε8 3.221(1.732) 3.478(1.223) σ2

e8 0.603(1.966) 0.617(1.644)

σ2
ε9 1 1 σ2

e9 0 3.587(1.591)

Unlike ordinary multiple regression models, which account for the effects of covari-

ates on outcomes separately, the general LVM proposed in this study groups multiple

outcomes into two latent constructs, which reduces the model dimension, simultane-
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ously accommodates dependence between outcomes and heterogeneity between sub-

jects and provides simpler interpretation of the associations among multidimensional

outcomes.

Table 6: Estimates of α for WVS data

Proposed(SD) Non-p(SD) Proposed(SD) Non-p(SD)

α21 0.742(0.316) 0.540(0.114) α42 1.015(0.144) 0.627(0.192)

α31 0.581(0.278) 0.351(0.123) α52 0.609(0.129) 0.430(0.136)

α41 0.369(0.217) 0.312(0.098) α62 0.205(0.170) -0.030(0.108)

α51 0.385(0.163) 0.310(0.103) α72 -0.187(0.128) -0.137(0.099)

α61 0.039(0.141) 0.126(0.108) α82 0.128(0.146) 0.013(0.108)

α71 -0.218(0.123) -0.178(0.100) α92 -0.253(0.093) -0.320(0.091)

α81 -0.447(0.148) -0.358(0.112) α43 0.739(0.350) 0.531(0.149)

α91 -0.237(0.079) -0.463(0.098) α53 0.598(0.353) 0.362(0.190)

α32 0.896(0.148) 0.750(0.208) α63 -0.369(0.367) -0.108(0.196)

α73 0.447(0.331) 0.094(0.175) α75 -0.228(0.149) -0.082(0.193)

α83 -0.504(0.367) -0.295(0.258) α85 -0.227(0.186) -0.091(0.210)

α93 -0.272(0.179) -0.412(0.155) α95 -0.486(0.125) -0.770(0.222)

α54 0 0.386(0.292) α76 0.500(0.299) 0.456(0.330)

α64 0 0.227(0.456) α86 0.299(0.284) 0.337(0.295)

α74 0 0.244(0.442) α96 0.030(0.052) 0.060(0.113)

α84 0 0.271(0.417) α87 0.853(0.269) 0.762(0.281)

α94 0 -0.047(0.249) α97 0.063(0.067) 0.154(0.142)

α65 0.048(0.153) -0.101(0.190) α98 -0.123(0.140) 0.003(0.290)

7 Discussion

We have proposed a penalized ML estimator to develop a general framework of latent

variable selection. The proposed method is able to select latent variables and estimate

parameters simultaneously. Under mild conditions, the estimator is n1/2-consistent

and asymptotically normal. Given an appropriate choice of regularization parameters,

the proposed estimator demonstrates the oracle property. We suggest using a BIC-

type tuning parameter selection method to select the regular parameters.

We have focused on mixed outcomes with ordinal and continuous variables under

the linear regression framework. Because the assumption of normality may not always
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be practical, our future work will extend our methods to other regression frameworks

(e.g., generalized linear regression) for non-normal responses. Moreover, we have

focused on selecting important latent variables, but one can easily extend the proposed

method to simultaneously select manifest variables and latent variables.
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Appendix

A.1 Notation

Let the parameter Θ = (Θ′
1,Θ

′
2,Θ

′
3)
′, where Θ1 = (~α′, ~β

′
, σε

′)′, Θ2 = (Θ21, · · · , Θ2q)
′ =

σe and Θ3 = (Θ31, · · · , Θ3,q×m)′ = ~γ, m is the length of Zi. Let threshold cj(y) = cj,y,

cj0(y) = cj,y0,

dkj(y) =
Eφ

(
cj0(y)−Wij(Θ)

νj

){
∂Wij(Θ)

∂Θk
+ [cj0(y)−Wij(Θ)]

∂ log(νj)

∂Θk

}

Eφ
(

cj0(y)−Wij(Θ)

νj

) |Θ=Θ0 ,

where dkj(y) is the derivative of ĉj(Θ; y) with respect to Θk at Θ = Θ0, ĉj(Θ; y) is

the estimator of cj(y) given Θ, νj =
√

α′
jΣeαj + 1, and Wij (Θ) = X′

iβj + α′
jγZi.

Similar to σe = (σ′
e(1), σ

′
e(2))

′ or ~γ = (~γ ′(1),~γ
′
(2))

′, let Θ2 = (Θ′
2(1), Θ

′
2(2))

′, Θ3 =

(Θ′
3(1), Θ

′
3(2))

′, d2j(y) = (d2j(1)(y)′, d2j(2)(y)′)′ and d3j(y) = (d3j(1)(y)′, d3j(2)(y)′)′. Let

B(rs) = E

(
∂2logLi(Θ0; c0)

∂Θr(1)∂Θ′
s(1)

+

p∑
j=p1+1

(
∂2logLi(Θ0; c0)

∂Θr(1)∂cj(Yij)
d′sj(1)(Yij) +

∂2logLi(Θ0; c0)

∂Θr(1)∂cj(Yij − 1)
d′sj(1)(Yij − 1)

))
and

Brs = E

(
∂2logLi(Θ0; c0)

∂Θr∂Θ′
s

+

p∑
j=p1+1

(
∂2logLi(Θ0; c0)

∂Θr∂cj(Yij)
d′sj(Yij) +

∂2logLi(Θ0; c0)

∂Θr∂cj(Yij − 1)
d′sj(Yij − 1)

))
, (A.1)

where Li(Θ; c) is the observed-data likelihood function for subject i. The matrix

B = (Brs) is the mean of the Hessian matrix of log Ln(Θ; ĉ(Θ)) respect to Θ and the

matrix (B(rs)) is B corresponding to non-zero components of Θ.

Let

U1 = diag{p̈ρ1n(σe10), . . . , p̈ρ1n(σes0)}; b1 = (ṗρ1n(σe10), . . . , ṗρ1n(σes0))
′ ,

U2 = diag
{
p̈ρ2n(|γ110|), · · · , p̈ρ2n(|γ1,h1,0|), · · · , p̈ρ2n(|γq,1,0|), · · · , p̈ρ2n(|γq,hq ,0|)

}
,

b2 = (ṗρ2n(|γ110|)sgn(γ110), . . . , ṗρ2n(|γ1,h1,0|)sgn(γ1,h1,0),

· · · , ṗρ2n(|γq10|)sgn(γq10), . . . ṗρ2n(|γq,hq ,0|)sgn(γq,hq ,0)
)′

.

U1 and U2 are used to express the uncertainty due to adding the penalties on Σe and

γ, respectively, while b1 and b2 are corresponding biases.
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Denote

B(rs.k) = B(rs) −B(rk)B
−1
(kk)B(ks), B∗

(rs.k) = B(rs) −B(rk)

(
B(kk) − U1

)−1
B(ks),

Λ1 = −B∗
(11.2) + B∗

(13.2)

(
B∗

(33.2) − U2

)−1
B∗

(31.2),

Λ2 = −B(22.1) + B(23.1)

(
B(33.1) − U2

)−1
B(32.1),

Λ3 = −B(33.1) + B(32.1)

(
B(22.1) − U1

)−1
B(23.1).

Ak, k = 1, 2, 3 and A4j(y) are defined as:

Ak = E
[(

mk1Υi(1) + mk2Υi(2) + mk3Υi(3)

)⊗2
]
,

A4j(y) = E

[(
νj0

ψj(y)
$ij(y)− (m4j1(y)Υi(1) + m4j2(y)Υi(2) + m4j3(y)Υi(3))

)⊗2
]

,(A.2)

where Λ−1
1 A1(Λ

′
1)
−1, Λ−1

2 A2(Λ
′
2)
−1, Λ−1

3 A3(Λ
′
3)
−1 and A4j(y) are asymptotic stan-

dard errors of
√

n(Θ̂1−Θ10),
√

n(σ̂e(1)−σe(1)0),
√

n(~̂γ(1)−~γ(1)0) and
√

n(ĉj,y−cj,y0),

respectively, when zero components are known, and

m11 = m22 = m33 = −1, m13 = B∗
(13.2)

(
B(22) − U1

)−1
,

m12 = −
(
B(13.2)

∗ (
B∗

(33.2) − U2

)−1
B(32) −B(12)

) (
B(22) − U1

)−1
,

m21 = (B(21)B(11)
−1 −B(23.1)

(
B(33.1) − U2

)−1
B(31)B(11)

−1),

m23 = B(23.1)

(
B(33.1) − U2

)−1
, m32 = B(32.1)

(
B(22.1) − U1

)−1
,

m31 = (B(31) −B(32.1)

(
B(22.1) − U1

)−1
B(21))B(11)

−1,

m4jk(y) = d1j(y)′Λ−1
1 m1k + d2j(1)(y)′(Λ2 + U1)

−1m2k + d3j(1)(y)′(Λ3 + U2)
−1m3k,

Υi(k) =
∂logLi (Θ0; c0)

∂Θk(1)

+

p∑
j=p1+1

(
ϕij1,(k) + ϕij2,(k)

)
,

ϕrj1,k = E

{
∂2logLi(Θ0; c0)

∂Θk∂cj(Yij)

νj0

ψj(Yij)
$rj(Yij)|Yr,Xr,Zr

}
,

ϕrj2,k = E

{
∂2logLi(Θ0; c0)

∂Θk∂cj(Yij − 1)

νj0

ψj(Yij − 1)
$rj(Yij − 1)|Yr,Xr,Zr

}
,

ψj(y) = Eφ

(
cj0(y)−Wij(Θ0)

νj0

)
, $ij(y) = I(Yij ≤ y)− Φ

(
cj0(y)−Wij(Θ0)

νj0

)
,

where νj0 is the true value of νj, ϕrj1,(k) and ϕrj2,(k) are the corresponding parts of

ϕrj1,k and ϕrj2,k to non-zero parameters, respectively.
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Finally, let C21 = C32 = 1, C12 = −B∗
(13.2)

(
B∗

(33.2) − U2

)−1

,

C11 = −
(
B(12) −B∗

(13.2)

(
B∗

(33.2) − U2

)−1
B(32)

)
(B(22) − U1)

−1,

C22 = −B(23.1)

(
B(33.1) − U2

)−1
, C31 = −B(32.1)

(
B(22.1) − U1

)−1
and

C4jk(y) = −d1j(y)′Λ−1
1 C1k − d2j(1)(y)′(Λ2 + U1)

−1C2k − d3j(1)(y)′(Λ3 + U2)
−1C3k.

A.2 Conditions

(1) The matrix B = (Brs)r,s=1,2,3 defined by equation (A.1) is negative definite.

(2) A1, A2, A3 and A4j(k) defined by equation (A.2) are positive definite matrices.

(3) Xi and Zi are bounded.

Condition (1) is an identifiability condition for Θ. A1, A2, A3 and A4j(k) are

asymptotic variances of
√

nΛ1(Θ̂1 −Θ10),
√

nΛ2(σ̂e(1) − σe(1)0),
√

nΛ3(~̂γ(1) − ~γ(1)0)

and
√

n(ĉj,k − cj,k0), respectively.
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