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A.0 Veri�cation of Conditions (c.1) and (c.2) for the Exponential,

Guassian and CAR models

To show (c.1) hold, we use the matrix norm property that the spectral radius of any matrix G

is no larger than its row sum norm, denoted by jjGjj1 (Theorem 5.6.7 of Graybill, 1969). Let

�n be the largest eigenvalue of � = V(�) + �2
� I = �R+ �2

� I, where R is the spatial correlation

matrix de�ned in Section 2. Thus

�n � �jjRjj1 + �2
� :

We now study jjRjj1 under the the exponential model, the Gaussian model and the CAR

model, respectively. First, consider the exponential model on a regular grid [0;
p
n]2,

jjRjj1 � maxi;j

p
n�1X

k1=0

p
n�1X

k2=0

e�
p

(k1�i)2+(k2�j)2

� maxi;j

p
n�1X

k1=0

p
n�1X

k2=0

e�(jk1�ij+jk2�jj)=
p
2

�
p
n�1X

k1=0

2e�k1=
p
2

p
n�1X

k2=0

2e�k2=
p
2

= 4(
1� e�

p
n=2

1� e�1=
p
2
)2

<
4

(1� e�1=
p
2)2

: (A. 1)

Thus jjRjj1 is bounded by the constant 4

(1�e�1=
p
2)2

for any n. Secondly, with the \Gaussian"

spatial correlation, noting

jjRjj1 � maxi;j

p
n�1X

k1=0

p
n�1X

k2=0

e�((k1�i)
2+(k2�j)2) (A. 2)
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and

e�(k1�i)
2+(k2�j)2) � e�

p
(k1�i)2+(k2�j)2 (A. 3)

will lead to the same bound as in (A. 1). Finally, consider the CAR model. Under adjacent

neighborhood and regular grid, one site has at most 4 neighbors. Therefore row sum ofM�1�
Q can not exceed 4(1 + ). Hence,

jjRjj1 � ( row sum norm of M�1 � Q)
def
= max

i
(
X
j

j(M�1 � Q)(i; j)j)

= 4(1 + ) < 8: (A. 4)

In view of (A. 1), (A. 2), (A. 3) and (A. 4), �n is bounded (in a compact parameter

space) when n is suÆciently large, leading to lim sup�n < 1. Now consider the spectrum

of @�=@�, denoted by j�1nj As �1 = @�=@� = R, it follows immediately lim sup j�1nj < 1.

Also, �2 = @�=@�� = 2��I, whose spectrum is 2��, a �nite constant. In addition, @2�=@�2 =

@2�=@�@�� = 0 and @2�=@�2
� = 2I, whose spectra trivially satisfy (c.1).

We now verify (c.2). For any matrix G = (gij)n�n,

jjGjj2 =
X
ij

g2ij <
X
i

(
X
j

jgijj)2 < n�max
i
(
X
j

jgij j)2 = njjGjj21: (A. 5)

Hence, jj�1jj = jjRjj � p
njjRjj1, where jjRjj1 < 1 as shown when verifying (c.1). As the

diagonal elements of R are 1's, jj�1jj = jjRjj � p
n. Hence, we have that jj�1jj = O(

p
n). In

addition, jj�2jj = 2��
p
n. Hence, (c.2) is satis�ed with Æ = 1=2.

A.1 Proof of Asymptotic Bias of the Naive Regression CoeÆcients

When Measurement Error is Ignored (Theorem 1)

(i) Under conditions (c.1)-(c.4), Lemma 4 of Sweeting (1980) implies that a maximizer to (10)

or a solution to (11) exists. Furthermore, Theorem 2 of Sweeting (1980) implies such a solution

converges in probability to the asymptotic solution to (12). Now let the probability limits of

the naive estimators for �0, �x, ��, and � (as in V(�)) be �0;naive, �x;naive, ��;naive, and �naive

respectively.

Then they should satisfy the following probability limit of score equations for regression

2



coeÆcients.

lim
1

n
E((1W)T (V(�naive) + �2

�;naiveI)
�1(Y � (1W)(�0;naive; �x;naive)

T )) = 0 (A. 6)

Using the equality

E( TB ) = tr(Bcov( )) + E( )TBE( )

for any random vector  (which can be X or W in this case), we have

�0 + �x�0 = �0;naive + �x;naive�0 (A. 7)

�x limf
1

n
(tr((V(�naive) + �2

� I)
�1(�(�) + �2

eI)) + �2
01

T (V(�naive) + �2
� I)

�11)g =

�0;naive�0 lim
1

n
1T (V(�naive) + �2

� I)
�11+ �x;naive lim f1

n
(tr((V(�naive) + �2

� I)
�1

(�(�) + (�2
e + �2

U)I)) + �2
01

T (V(�naive) + �2
� I)

�11)g: (A. 8)

Solving the above equations for �0;naive, �x;naive, we have the results.

(ii) Use the de�nition of �� and the fact that all the matrices involved in �� can be diago-

nalized by the same orthogonal matrix.

(iii) Under adjacent neighborhood and regular (square) grid, one site has at most 4 neigh-

bors. Therefore row sum of M�1 � Q can not exceed 4(1 + ). In view of (A. 4), 0 < Æl <

4(1 + ). Hence, the result follows.

For the exponential decaying case, denote the eigenvalues of the correlation matrix by

Æl; l = 1; : : : ; n. Then Æl can not exceed the row sum norm (Theorem 5.6.7 of Graybill, 1969).

Using (A. 1), Æl < 4(1�e
�
p
n=2

1�e�1=
p
2
)2 < 4

(1�e�1=
p
2)2

: Using this inequality in (16) leads to the result.

Similarly, with the \Gaussian" spatial correlation, noting (A. 2) and (A. 3) leads to the same

bound. 2

A.2 Proof of the Asymptotic Bias of the Naive Variance Components

when Measurement Error is ignored (Theorem 2)

Let the probability limits of the naive estimators be �0;naive, �x;naive, and #naive = (�naive; �
2
�;naive)

def
=

(#1; #2). Then they are solutions of (A. 7) and (A. 8), and

lim
1

2n
fE((Y � �0;naive1� �x;naiveW)TS�1

@S

#j

S�1
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(Y � �0;naive1� �x;naiveW))� tr(S�1
@S

#j

)g = 0; (A. 9)

where S = �naiveR+ �2
�;naiveI and j = 1; 2.

Let T = Y � �0;naive1� �x;naiveW. Using (A. 6) yields E(T) = 0. In addition, using (A. 9)

and the fact that @S
@�naive

= R, @S
@�2

�;naive

= I, we obtain that

lim
1

n
tr(S�1RS�1cov(T)) = lim

1

n
tr(S�1R); lim

1

n
tr(S�2cov(T)) = lim

1

n
tr(S): (A. 10)

However cov(T) is of the same form as S, i.e., a linear combination of R and I, since

cov(T) = cov(Y � �x;naiveW)

= cov(Y) + �2
x;naivecov(W)� 2�x;naivecov(Y;W)

= (�2
�(�x � �x;naive)

2 + �)R+ (�2
e(�x � �x;naive)

2 + �2
� + �2

x;naive�
2
U )I:

Therefore for (A. 10) to hold, cov(T) = S. Compare the coeÆcients ofR and I, (17) follows.

2

A.3 Proof of the Consistency and Asymptotic Normality of the MLEs

(Theorem 3)

The proof centers on verifying the suÆcient conditions, along the line of Mardia and Marshall

(1984), that allow the use of Sweeting (1980) concerning consistency and asymptotic normality

of MLEs for Gaussian models, as Y and W jointly follow a multivariate normal distribution

(7). However, the variance-covariance matrix of the observed (Y;W), denoted by �, involves

regression coeÆcients. Hence, the regression coeÆcients and the variance components are not

orthogonal. It is thus diÆcult to directly apply Mardia and Marshall's (1984) results, which

required such orthogonality to ensure that the information matrix is block diagonal. To cir-

cumvent this problem, we carry out the following reparameterization.

��0 = �0; ��z = �z; ��0 = �0 + �x�0;

��z = �x�z + �z; ��1 = �x; �� = �;

�� = �; ��e = �e; ��� = ��: (A. 11)
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In the ensuing development, we use 
 = (�0;�z; �0; �x;�z;�; �; �e; ��) to denote the collection

of original parameters, and
� = (��0;�
�
z; �

�
0 ; �

�
z ; �

�
1;�

�; ��; ��e ; �
�
� ) to denote the collection of new

parameters. Under such a reparameterization, the joint distribution of (Y;WjZ) is speci�ed
by 
�, with likelihood

`(Y;WjZ) = �(2n)

2
ln(2�)� 1

2
ln j�j � 1

2

0BBB@ Y � �y

W � �w

1CCCA
T

��1

0BBB@ Y � �y

W � �w

1CCCA (A. 12)

where �y = ��01+ Z��z, �w = ��01+ Z��z and

� = cov(Y;WjZ)

=

0BBB@ (��1)
2�(��) +V(��) + f(��1)2(��e)2 + (��� )

2gI ��1f�(��) + (��e)
2Ig

��1f�(��) + (��e)
2Ig �(��) + f(��e)2 + �2

UgI

1CCCA :

Denote by �� = (��0;�
�
z; �

�
0 ;�

�
z) the vector of (new) regression coeÆcients and

�� = (��1;�
�; ��; ��e ; �

�
� ) the vector of (new) variance components. Direct computation yields

E(�@2`=@��@�T� ) = 0: Hence, the reparameterization leads to orthogonality of the regression

coeÆcients �� and the variance components ��, which �ts the analytical framework of Mardia

and Marshall (1984). Hence, in order to show consistency and asymptotic normality of the

maximum likelihood estimator, it suÆces to show that the following modi�ed regularity condi-

tions of Mardia and Marshall (1984) hold [ which are similar to conditions (c.1)-(c.4) considered

for the naive estimator in Section 3].

For notational ease, we denote �� as �� = (#�1; : : : ; #
�
q) � (��1;�

�; ��; ��e ; �
�
� ). Denote by

��
i = @=@#�i�(��) and �

�
ij = @2=@#�i@#

�
j�(��), where the di�erentiation is element-wise. Now

let �1 � : : : � �n be the eigen-values of � and let those of ��
i and ��ij be �i

k and �
ij
k for

k = 1; : : : ; n respectively, with j�i
1j � : : : � j�i

nj and j�ij
1 j � : : : � j�ij

n j for i; j = 1; : : : ; q. The

suÆcient conditions are as follows.

(h.1) lim sup�n <1; lim sup j�i
nj <1; lim sup j�ij

n j <1; for all i; j = 1; : : : q.

(h.2) jj��
i jj�2 = O(n�

1
2
�Æ) for some Æ > 0 for i = 1; : : : q.

(h.3) A = (aij) is invertible, where for all ij, aij = ftij=(tiitjj)1=2g exists and tij = tr(��1��
i�

�1��j).

(h.4) lim(~Z
T ~Z)�1 = 0 in probability.
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To show (h.1) hold, we again use the matrix norm property that the spectral radius of any

matrix is bounded by its row sum norm. Therefore,

�n � (��1)
2jj�(��)jj1 + jjV(��)jj1 + f(��1)2(��e)2 + (��� )

2g

+��1fjj�(��)jj1 + (��e)
2g+ jj�(��)jj1 + (��e)

2 + �2
U :

As the row sum norms of �(��) and V(��) are �nite under the CAR model, the exponential

model, the Gaussian model as shown in (A. 4), (A. 1),(A. 2) and (A. 3), along with the

assumption of (d.1), �n is bounded (when n is suÆciently large), leading to lim sup�n < 1.

Now consider the spectrum of @�=@��1, denoted by j�1nj. Indeed,

j�1nj � 2��1j�(��)jj1 + 2��1(�
�
e)

2 + jj�(��)jj1 + (��e)
2;

leading to lim sup j�1nj <1. Similarly, we can show lim sup j�i
nj <1; lim sup j�ij

n j <1; for all

i; j = 1; : : : q. Hence condition (h.1) is veri�ed.

We now verify (h.2). First consider

��
1 =

@

@��1
� =

0BBB@ 2��1�(�
�) + 2��1(�

�
e)

2I �(��) + (��e)
2I

�(��) + (��e)
2I 0

1CCCA

=

0BBB@ 2��1�(�
�) �(��)

�(��) 0

1CCCA+

0BBB@ 2��1(�
�
e)

2I (��e)
2I

(��e)
2I 0

1CCCA : (A. 13)

We denote the �rst matrix in (A. 13) by ��
1;1 and the second by ��1;2. Some algebra yields that

jj��
1;2jj2 = f4(��1)2(��e)4+2(��e)

4gn. Using the de�nition of the matrix norm jj � jj, we have that

jj��
1jj2 = jj2��1�(��) + 2��1(�

�
e)

2Ijj2 + 2jj�(��) + (��e)
2Ijj2:

Since the diagonal elements of �(��) and I are all nonnegative (and hence the diagonal elements

of ��1�(�
�) and ��1(�

�
e)

2I have the same sign), and the o�-diagonal elements of I are zero, it

follows that jj2��1�(��) + 2��1(�
�
e)

2Ijj2 � jj2��1(��e)2Ijj2 and jj�(��) + (��e)
2Ijj2 � jj(��e)2Ijj2.

Hence,

jj��
1jj2 � jj2��1(��e)2Ijj2 + 2jj(��e)2Ijj2 = jj��

1;2jj2:

That is, we have obtained that jj��
1jj2 � f4(��1)2(��e)4 + 2(��e)

4gn, or jj��
1jj�2 � C � n�1, where

C is a positive constant (not depending on n). Then it follows that jj��
1jj�2 = O(n�1). Taking
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derivatives of � with respect to the other variance components, and using the same arguments

[i.e. the similar matrix decomposition as in (A. 13)], we will have that jj��
i jj�2 = O(n�1) for

i = 1; : : : ; q. Hence, condition (h.2) holds with Æ = 1=2.

We are in a position to verify (h.3). First, de�ne T = �E(@2`=@��@�T� ), where the derivative
and the expectation are performed under the true parameters. By the de�nition of tij, it follows

that T = (tij)q�q, where q is the dimension of the variance components ��. Moreover,

T = E

8<:
 

@`

@��

! 
@`

@��

!T
9=; = var

 
@`

@��

!
:

As the variance components of �� are not linearly dependent, T is positive de�nite. Hence

tii > 0 and hence aij = tij=(tiitjj)
1=2 is well de�ned. Furthermore, A

def
= (aij)q�q = D1=2TD1=2,

where D = diag(t11; : : : ; tqq). Hence, A = (aij) is invertible, which veri�es (h.3).

Finally, (h.4) follows immediately as lim(~Z
T ~Z)�1 = limZ�1

0 =n = 0, based on the regularity

condition (d.2) for the observed covariates.

With the suÆcient conditions (h.1)-(h.4) checked, the MLE (denoted by d
�) for the trans-

formed parameter 
� = (��;��) are consistent and asymptotically normal. That is,d
��
�
0 �

N(0;��1� ), where � corresponds to asymptotic equivalence in distribution,

�� = E

�
0
f�@2`=@
�@(
�)Tg and 
�

0 is the truth under reparameterization (Mardia and Mar-

shall, 1984). Here, ` is as de�ned in (A. 12) or, equally, in (7). Obviously, the reparameterization

from the original parameter 
 to 
� in (A. 11) is continuously invertible and di�erentiable.

That is, 
 = F(
�) for a one-one and di�erentiable function F(�). Indeed, the components of

F(�) is as follows.

�0 = ��0; �z = �
�
z; �0 = ��0 � ��1�

�
0;

�z = �
�
z � ��1�

�
z; �x = ��1; � = ��;

� = ��; �e = ��e ; �� = ��� :

By the reparameterization-invariance principle of the maximum likelihood estimator (e.g. Lehman

and Casella, 1998), b
 def
= F(d
�) is the MLE of the original parameter 
. Further, as F(�) is

smooth, b
 is consistent and asymptotically normal. Using the delta method, the variance of

F(d
�) is approximately equal to f @F
@


�gT��1� f @F
@


�g = fE
0
(�@2`=@
@
T )g�1; where the last

equality is due to the chain rule (see Schervish, 1995). Indeed, �
def
= E
0

f�@2`=@
@
Tg is the
information under the original parameter 
. Therefore, b
 � 
0 � N(0;��1) or equivalently
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�1=2( b
 � 
0) ! N(0; Ip) in distribution, where �1=2 is the Cholesky decomposition of � and

Ip is the identity matrix of dimension of p, the dimension of 
0. 2

A.4 Implementation of the EM algorithm

The E step detailed in Section 4 needs the following the expectations of quantities conditional

on the observed data (Y, W, Z) and current values of the parameter estimates.

E(1TXjY;W;Z; �̂
(t)
) = 1TE(XjY;W;Z; �̂

(t)
)

E(XTXjY;W;Z; �̂
(t)
) = E(XjY;W;Z; �̂

(t)
)TE(XjY;W;Z; �̂

(t)
) + tr(cov(XjY;W;Z; �̂

(t)
))

E(ZTXjY;W;Z; �̂
(t)
) = ZTE(XjY;W;Z; �̂

(t)
)

E(XT (Y � b)jY;W;Z; �̂
(t)
) = E(XjY;W;Z; �̂

(t)
)TY � E(XTbjY;W;Z; �̂

(t)
)

E(bTV�1bjY;W;Z; �̂
(t)
) = E(bjY;W;Z; �̂

(t)
)TV�1E(bjY;W;Z; �̂

(t)
) +

tr(cov(bjY;W;Z; �̂
(t)
)V�1)

E(kY � �̂(t+1)
x X� Z�(t+1)

z � bk2 jY;W; �̂
(t)
) = (Y � Z�̂(t+1)

z )T (Y � Z�̂(t+1)

z )

�2(Y � Z�̂(t+1)

z )T (E(bjY;W;Z; �̂
(t)
) + �̂(t+1)

x E(XjY;W;Z; �̂
(t)
)) + E(bTbjY;W;Z; �̂

(t)
)

+(�̂(t+1)
x )2E(XTXjY;W;Z; �̂

(t)
) + 2�̂(t+1)

x E(bTXjY;W;Z; �̂
(t)
)

E((X� a)T (X� a)jY;W;Z; �̂
(t)
) = E(XTXjY;W;Z; �̂

(t)
) + E(aTajY;W;Z; �̂

(t)
)

�2E(aTXjY;W;Z; �̂
(t)
)

E(aTV�1ajY;W;Z; �̂
(t)
) = E(ajY;W;Z; �̂

(t)
)TV�1E(ajY;W;Z; �̂

(t)
) +

tr(cov(ajY;W;Z; �̂
(t)
)V�1)

E(kX� �̂
(t+1)
0 1� Z�(t+1)

z � ak2jY;W;Z; �̂
(t)
) = E((X� a)T (X� a)jY;W;Z; �̂

(t)
) + n�̂

(t+1)
0

�2�̂(t+1)
0 (E(XjY;W;Z; �̂

(t)
)� E(ajY;W;Z; �̂

(t)
)) + (�(t+1)

z )TZTZ�(t+1)
z

+2�̂
(t+1)
0 1TZ�(t+1)

z � 2(�̂(t+1)
z )TZT (E(XjY;W;Z; �̂

(t)
)� E(ajY;W;Z; �̂

(t)
));

where E(ajY;W;Z; �̂
(t)
),E(bjY;W;Z; �̂

(t)
), E(XjY;W;Z; �̂

(t)
), cov(ajY;W;Z; �̂

(t)
),

cov(bjY;W;Z; �̂
(t)
), cov(XjY;W;Z; �̂

(t)
) can be obtained from

cov

0BBB@ X

a

���������Y;W;Z; �̂
(t)

1CCCA =

0BBB@ (�(t)
x )2(�(t)R+ �2(t)

� I)�1 + ( 1
�2
U

+ 1

�
2(t)
e

)I � 1

�
2(t)
e

I

� 1

�
2(t)
e

I (�
2(t)
� V)�1 + 1

�
2(t)
e

I

1CCCA
�1
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E

0BBB@ X

a

���������Y;W;Z; �̂
(t)

1CCCA = cov

0BBB@ X

a

���������Y;W;Z; �̂
(t)

1CCCA

�

0BBB@ �(t)
x (�(t)V + �2(t)

� I)�1(Y � Z�(t)
z ) + W

�2
U

+
�
(t)
0

�
2(t)
e

1

� 1

�
2(t)
e

(�
(t)
0 1+ Z�(t)

z )

1CCCA

cov

0BBB@ X

b

���������Y;W;Z; �̂
(t)

1CCCA =

0BBB@ (�
2(t)
� V + �2(t)

e I)�1 + ( 1
�2
U

+ (�
(t)
x )2

�
2(t)
�

)I �x

�
2(t)
e

I

�x

�
2(t)
e

I (�(t)V)�1 + 1

�
2(t)
�

I

1CCCA
�1

E

0BBB@ X

b

���������Y;W;Z; �̂
(t)

1CCCA = cov

0BBB@ X

b

���������Y;W;Z; �̂
(t)

1CCCA

�

0BBB@
�x

�
2(t)
�

(Y � Z�z) +
W
�2
U

+ (�
2(t)
� V + �2(t)

e I)�1(�(t)
0 1+ Z�(t)

z )

1
��
(Y � Z�z)

1CCCA :

Hence, the E steps can be easily implemented since all the quantities involved have closed-

form and no numerical integrations are needed.
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