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SUMMARY. We propose a new class of semiparametric frailty models for spatially correlated survival data. 
Specifically, we extend the ordinary frailty models by allowing random effects accommodating spatial corre- 
lations to  enter into the baseline hazard function multiplicatively. We prove identifiability of the models and 
give sufficient regularity conditions. We propose drawing inference based on a marginal rank likelihood. No 
parametric forms of the baseline hazard need to  be assumed in this semiparametric approach. Monte Carlo 
simulations and the Laplace approach are used to tackle the intractable integral in the likelihood function. 
Different spatial covariance structures are explored in simulations and the proposed methods are applied to 
the East Boston Asthma Study to detect prognostic factors leading to  childhood asthma. 
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1. Introduction 
Spatially correlated survival data are frequently observed in 
epidemiological and social behavioral studies. For example, 
in a study of regional workers’ smoking patterns in Mas- 
sachusetts (Sorensen, Harnmond, and Hebert, 1996) , interest 
lies in ascertaining the effects of smoking cessation programs 
across regions, with the main outcome variable being the time 
for a smoker to quit smoking; and in a gerontology study 
conducted by Yale University (Coroni-Huntley, Osterfeld, and 
Taylor, 1993), the focus is on the relationship between early 
exposure to violence and the occurrence of disability among 
the elderly residing in different neighborhoods of New Haven, 
Connecticut. In these studies, as adjacent neighborhoods usu- 
ally share similar environmental and social factors, the poten- 
tial for spatial dependence exists. Hence, correct inference on 
the association of the main covariates with the event-specific 
survival times relies on careful consideration of underlying 
spatial correlations. For other examples of spatial survival 
problems, see Goldstein (1995). 

The project that motivates this article is the East Boston 
Asthma Study (EBAS), conducted by the Channing Labo- 
ratory of Harvard Medical School t o  understand etiologies 
of rising prevalence and morbidity of childhood asthma and 
of the disproportionate burden among urban minority chil- 
dren. Subjects were enrolled at community health clinics in 
the east Boston area and questionnaire data, documenting 
asthma status and other environmental factors, were collected 
during regularly scheduled visits. In addition to basic demo- 
graphic data, residential addresses were geocoded for each 
study subject. Geocoding the dataset allowed linkage with 
various community-level covariates to individuals in the East 

Boston data set from U.S. census data at the census block 
level. Because children residing in nearby census blocks were 
often exposed to  unmeasured similar physical and social envi- 
ronments, the investigator suspected there might exist spatial 
correlations across different communities. Hence, a major goal 
of this study was to  identify significant risk factors associated 
with childhood asthma while taking the possible spatial cor- 
relations into account. 

For clustered survival data commonly observed in biomed- 
ical studies (e.g., multicenter clinical trials and familial stud- 
ies), frailty models (Clayton and Cuzick, 1985) have become 
increasingly popular. Essentially, these models extend the Cox 
proportional hazards model (Cox, 1972) by adding random 
effects into the baseline hazard to model the intracluster cor- 
relation. Much work has been done in this area. Nielsen et 
al. (1992) discussed the use of the EM algorithm for estima- 
tion in frailty models, McGilchrist( 1993) and Therneau and 
Grambsch (2000) proposed a penalized partial likelihood ap- 
proach, and Murphy (1994, 1995) and Parner (1998) studied 
the theoretical properties of the models; see Oakes and Jeong 
(1998) for a recent review on frailty models. 

There has been, however, virtually no literature dealing 
with models for spatially correlated survival data. A key as- 
sumption on frailties in the clustered survival models is in- 
tercluster independence, which may not be adequate enough 
to model the complicated dependencies in spatial settings. In 
this article, we propose a new class of spatial survival mod- 
els by extending the ordinary frailty models to accommodate 
spatial correlations. To draw inference, we propose a rank 
likelihood-based inferential procedure that is robust to the 
misspecification of the baseline hazard. 
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The rest of this article is structured as follows. We state the 
model in Section 2 and study the identifiability of the model in 
Section 3. In Section 4, we derive the marginal rank likelihood 
on which the inference will be based. In Section 5 ,  we propose 
using Monte Carlo simulation and the Laplace approximation 
approach for estimation of unknown parameters. For model 
assessment and illustration, simulations and an application 
to  the EBAS are performed in Sections 5 and 6. We conclude 
with a general discussion in Section 7 .  

2. Spatial Frailty Model 
A spatial frailty model is formulated as follows. In each of M 
geographic regions (e.g., census blocks), a number of subjects, 
say, ni(i = 1,. . . , M ) ,  are followed until failure or censoring, 
whichever comes first. For each individual, along with the ob- 
served censored time Xij  = min(Tij, Cij) and noncensoring 
indicator Sij = I(Tij 5 Cij), where Tij and Cij are under- 
lying true survival time and censoring time, respectively, a 
length-q covariate vector Zij are also observed. Here I ( . )  is 
an indicator function. We assume that the censoring times 
Cij are independently distributed and are independent of the 
Tij, given the observed covariates, and that the distributions 
of Cij do not involve in the parameters of interest. In the 
following exposition, the covariate Zij is assumed to be time 
independent, although, it should be straightforward to extend 
the results to accommodate time-dependent covariates. In ad- 
dition, a position marker pi (e.g., geographic coordinate) is 
measured for each region. For instance, in the EBAS, M = 25, 
Xij  is the observed asthma onset time, Zij represents the co- 
variates of interest such as maternal asthma status, age, and 
race, and p i  measures the location of each census block. 

Our model specifies that, conditional on the covariates and 
a region-specific random effect ~ ( p , ) ,  the survival time Tij is 
independent and has the following intensity function: 

where p is the fixed effects vector and r( . )  is a mean-zero sta- 
tionary Gaussian process with some basic properties, such as, 
for a given region indexed by a marker z ,  T ( Z )  - N(0, a’) and 
the covariance between two different regions, indexed by z and 
20, depends on their geographic distance, i.e., COV{T(W), ~ ( z ) }  
= a2p(llu, - zI l ,Q),  where 1 1 . 1 1  is an ordinary Euclidean norm. 
Here p ( . )  is the correlation function with range [0, 1). We write 

as an abbreviation for r ( p i )  and denote all the variance 
components by 0 = (n2 ,  Q). 

There are many forms for the correlation function p(d, Q) 
that are often used in spatial settings. For example, the equi- 
correlated model specifies that 

1 i f d = 0 ,  
Q i f d > 0 ,  

the so-called Gaussian correlation function is 

and the spherical correlation in two dimensions is 

( 0  if d > 8 .  

Figure 1. Correlation functions. 

Ripley (1981, p. 10) showed that these are valid correlation 
functions, meaning that the resulting variance-covariance ma- 
trices are positive definite in some open parameter sets. One 
may note that, in models (3) and (4), the interregional cor- 
relation decays as the geographic distance increases and that 
Q = 0 corresponds to interregional independence (see Figure 
1). Also note that, in the equicorrelated model, negative cor- 
relations among different regions are allowed for negative 8 .  
For a detailed discussion of other correlation functions, see 
Venables and Ripley (1999, p. 441). 

3. Identifiability of the Model 
Prior to drawing inference based on model (1), we investigate 
identifiability of the model, wherein the functional form of the 
baseline hazard is left unspecified. 

The outcomes (X23rS23) can be written in terms of the 
counting process Nz3(t)  = I ( X z 3  5 t ,  6,, = 1) and the at- 
risk process K 3 ( t )  = I (X t3  > t ) .  Introducing the cumu- 
lative baseline hazard function Ro(t)  = 1; Xo(s)ds,  letting 
R = {p ,  0, Ro(t)} be the vector of unknown parameters and 
Ro be the true parameters, and denoting by pro the probabil- 
ity measure with respect to 0, we show that the unknown 0 is 
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identifiable in the spatial model (1). To proceed, we postulate 
the following sufficient regularity conditions: 

(a) p r n , { C ~ ~ l  xj(u) 2 I for all u E [O,m)} > 0; 

(c) prn, [{c& K~(O)}{C;~~ K / ~ ( O ) }  > 0 ,  i # 2'1 > 0; 
(d) if c'Zij = C, where C is any constant independent of 

(e) if p(d, 01) = p(d, 02) for a d > 0, then 01 = 02; 
(f) pi # p i /  for i # 2'. 

(b) prn,{qk,  Kj(0) L 2) > 0; 

Zi j ,  then c = 0; 

Condition (a) is a standard assumption in the conventional 
proportional hazards model to ensure that we can observe 
failures in the entire interval [O,m]  and therefore can esti- 
mate Ao(t) in the entire interval. Condition (b) excludes the 
case where there is only one subject per region and ensures 
the identifiability of the variance components n2 (Nielsen et 
al., 1992), while condition (c) excludes that observations are 
made in only one region to guarantee the identifiability of the 
measure of the interregion correlation, 0. Condition (d) ex- 
cludes the trivial situation where the observed covariate Zij 
is a constant. Condition (e) ensures the identifiability of the 
correlation function p(d, 0), and condition (f) indicates that a 
region is uniquely identified by its position marker. The result 
is summarized in the following theorem, the proof of which is 
deferred to the Appendix. 

THEOREM 1: IfAo(t) is a nonnegative nondecreasing con- 
tinuous function over [0, m) with Ao(0) = 0, then, under the 
regularity conditions given above, the Kullback-Leibler infor- 
mation is strictly positive for R # Ro, which implies identifi- 
ability. 

4. Marginal Rank Likelihood 
Oftentimes, the main objective of an epidemiological study is 
to investigate significant predictors for a time event, an ex- 
ample being the EBAS study, for which the primary goal was 
to explore the prognostic factors leading to childhood asthma. 
In such cases, instead of estimating the baseline hazard simul- 
taneously, we treat it as a nuisance parameter and eliminate 
it as shown in the ensuing computation. We will report the 
results of simultaneously estimating the baseline hazard, re- 
gression coefficients, and variance components in a subsequent 
article. 

It can be shown that, under model (l), only the relative 
rankings among all the survival times carry the information 
about the coefficient /3, the random effect r (p i ) ,  and, hence 
8. In fact, for any strictly increasing differentiable transfor- 
mation of [O,m) onto [ O , c o ) ,  say, g( . ) ,  TG = g ( T i j ) ,  where 
the distribution of Tij follows model (l), has a conditional 
intensity 

Hence, (Tij, Zij ,  p i )  and ( g ( T i j ) ,  Zij ,  pi) should carry the same 
amount of information on /3 and variance component 0. In 
other words, the rank statistics of the survival times, com- 
bined with the observed covariates and the regional positions, 
contain all such information. However, due to censoring, one 

may not be able to observe the complete ranking among all 
the exact survival times. We hence work on all the possible 
rankings consistent with the observed survival times. 

Let T(l,o) < . . . < T(L,o) denote L distinct failure times and 
T ( l , k ) ,  k = 1,. . . , ci, be the cl survival times censored immedi- 
ately preceding T(l,,) but prior to T(l+l,o). It should be noted 
that, with the assumption of the continuous distribution for 
the survival time, the probability for ties in the survival times 
is zero. As indicated by Fleming and Harrington (1991), the 
probability of all the consistent rankings is equivalent to 

q q 1 , O )  < ". < T(L,O)>T(l,k) > T(L,O)? 
k = 1 ,..., cl,l = 1 , .  . . , L } .  ( 5 )  

In this formulation, only the relative rankings among the cen- 
sored survival times are left out. 

Before proceeding further, we establish a one-to-one map- 
ping from the rearranged index (1, k )  ( k  = 0, .  . . , el, 2 = 1,. . . , 
L )  to the original index i , j  ( j  = 1 , .  . . , ni, i = 1,. . . , M ) ,  
namely, (1, k )  ++ i ( l , k ) , j ( l , k ) .  Note the probability that the 
T ( l , k ) ,  k = 1,. . . , cl, are longer than T ( ~ , o ) ,  conditional on the 
observed covariates, the unobserved random effects, and that 
T(l,O) = t ,  is 

h l ( t ) = P { T ( l , k ) > T ( l , o ) , k = l  , . . . , c  l I 

= e  -Ao(t) c'I,1=, exp{ q L , k ) o + v y L , k ) }  

f { t  I -ql,o),ri(L,o)} = Ao(t)exp{/3'Z(l,o) + r i ( l , o ) }  

x e  - -Ao( t )  exP{P'Z( l ,O)+G(L,o)  } 

T(Z,O) = t ,  Z ( l , k ) ,  r i (L ,k )  1 k = 1,. . . ? C l }  

and the conditional density for T(L,,)  at t is 

Hence, some calculation shows that the rank probability 
(5) can be rewritten as 

x hl(tl)dtL ' ' ' dt]  
x dF(r1,.  . . , r M )  

where Ri is the risk set at T(l,o), i.e., Rl = { ( j ,  k )  : j = 
1 , .  . . , L,  k = 0, .  . . , c j ) ,  and F(r1, .  . . , r ~ )  is the joint distri- 
bution of the random effects. Interestingly, it turns out that 
the marginal rank probability is the average partial likeli- 
hood over all random effects. Indeed, Fleming and Harrington 
(1991) have shown that, for untied independent survival data, 
the partial likelihood can be derived from the rank probabil- 
ity. In a different context, Satten (1996) discussed the use of 
rank statistics to draw inference for interval-censored survival 
data. 

In terms of risk processes, we can express the likelihood 
above using the original index as 
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x dF(r1, .  . . , r M ) .  (6) 

If ties of the survival times are observed, we may show 
that (6) still holds. For example, in a series of survival times, 
T(l,o) < . . . < T(,,o) = T(,+l,O) < . . . T(L ,o ) ,  two individuals 
fail at the same time, T(,,o) = T(,+l,~). We then add a small 
perturbation 6 > 0 to T(,+l,o) to form T(l,o) < . . . < T(z,o) < 
T(z+l,o) + E < . . . T ( L , ~ )  and repeat the previous procedure. 
In the end, let E + O+, and we may conclude that (6) is valid 
even in this scenario. Cox (1972) and Fleming and Harring- 
ton (1991) relaxed the assumption on the underlying survival 
distributions to be continuous and drew the same conclusion 
for independent survival data. 

5.  Estimation 
The estimates of (p, O), i.e., (p, 6), are obtained by maximiz- 
ing (6). Explicitly, they solve 

a 
- log L ( p ,  0)  = 0 ,  
ap 
a 
a0 - log q p ,  0 )  = 0. 

The variance estimators for can be conveniently cal- 
culated by inverting the observed information evaluated at 

However, due to the intractability of the integrals, the above 
equations are difficult to solve using standard numerical meth- 
ods. We describe below a Monte Carlo simulation method and 
a Laplace approximation approach to draw inference. 

5.1 Monte Curlo Szmulatzon 
Our first choice is to use the Monte Carlo method to approx- 
imate L(p ,  0). Since T I , ,  . . , rm are not independent, directly 
applying a Monte Carlo simulation will be difficult. In what 
follows, we propose a linear transformation of random vectors 
to bypass this difficulty. 

Write r = (rl , . . .  , rm) and denote by Q ( 0 )  = cov(r), 
with each entry Qz,(0) = C O V ( T , , T ~ ) .  Since Q is nonnegative 
positive and symmetric, we may perform a Cholesky decom- 
position of Q, i.e., we find a lower triangular matrix A such 
that AA’ = Q (Rao and Mitra, 1971). Then we write v = (q, 
. . . ,  W M )  as a linear combination of independent random 
normal variables, i.e., v = Au, where u = ( ~ 1 , .  . . , u ~ )  N 

N(O,IM). Here I M  is an A4 x M identity matrix. Since A is 
lower triangular, immediately v, = 

It is obvious that v and r have the same distribution and 
(6) is equivalent to 

(a, 6). 

Ac,uJ. 

where 

(7) 

and (a(.) is the cumulative distribution function for a standard 
normal random variable. 

This integral still does not have a closed form. However, 
it can be easily approximated using a Monte Carlo method. 
Specifically, we independently simulate H length-M standard 
random normal vectors, say u@) = {uy),.. . , u c } ,  b = 1, 
. . . , H ,  and approximate (6) by 

H M n, 

where 
r 

The log likelihood is hence approximated by the log of 
( 8 ) ,  denoted by logL(p, 0), with its derivatives analytically 
available; refer to the Appendix for the formulas of (a/ap) x 
l og i (p ,  0 )  and (a /a0)  l o g i ( p ,  0). One may use conven- 
tional numerical methods, such as the Newton-Raphson 
algorithm, to maximize this log likelihood to obtain 6,  the 
estimate of 0. The variance and covariance matrix of 6 can 
be estimated by the inverse of the observed information, which 
is the Hessian matrix evaluated at the final estimates. Notice 
that the Hessian matrix is a by-product when using Newton’s 
met hod. 

Theoretically, the total sampling variance of the estimator 
h consists of two parts: one due to the use of the Monte Carlo 
approximation and one due to the data sampling variance 
(Robert and Casella, 1999). With the number of Monte Carlo 
simulations, H ,  sufficiently large, the variation due to the 
importance sampling can be made arbitrarily small. We will 
examine this in our simulations. 

5.2 Laplace Approxzmatzon 
As an alternative to Monte Carlo simulations, we also try the 
analytic likelihood approximation. Given the integral form of 
( 6 ) ,  a natural choice would be a Laplace approximation. 

For notational convenience, we denote by B,, i = 1,. . . , M, 
a length-M directional vector with the ith coordinate being 
one. We also introduce 

for 1 = 0,1,2.  Here, for a vector a,  a@L = uu’ if 1 = 2, u@’ = u 
if 1 = 1, and u@’ = 1 if 1 = 0. It follows that (6) can be 
rewritten, up to a multiplicative constant, as 

~ ( p ,  0 )  1 ~ ( 0 ) ( - 1 / 2  / ,f(P,.)-4r’&-’(o)rdr, (9) 
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where 

Now, given P and 0, we need to find the maximizer, +(PI  e), 
for the integrand. Explicitly, we may obtain +(/3,0) by solving 

where 

Expanding the exponential part of the integrand in (9) 
around ?(P,Q) up to the quadratic term and evaluating a 
normal density-type integral, we then have the first-order 
Laplace approximation to  the log of integral (6), i.e., 

Hence, maximization of (11) with respect to P and 0 
yields the Laplace estimates. In practice, this maximization 
procedure consists of two iterative steps: (i) starting with 
some initial values of P and 0, we solve (10) for an estimate 
of T ,  and (ii) we maximize (11) with T being held constant. 
The iteration continues until convergence. 

Following Breslow and Clayton (1993), for step (2), we 
made further simplifications by ignoring the first term in (11) 
and chose P to maximize the second because numerically we 
observed that the absolute value of the first term is negligible 
compared with that of the second. Hence, the corresponding 
estimating equations for P and 8, respectively, have a simpler 
form, 

where S, ( 1 )  ( t ,  P, T )  = C z l  C:G1 Z:l exp(ZjO + Bir )Xj ( t )  

for 1 = 0 , l  and 0 = (01,@2) = (a2,@). Notice that the 
first equation is indeed the ordinary partial likelihood score 
equation for the fixed effects with the regional frailties being 
regarded as a constant offset. 

Moreover, the variance estimators for the Laplace estimates 

are conveniently obtained by inverting the negative second 
derivative of (1 l ) ,  though underestimation is expected 
because we do not take the variability of i: on p and 0 into 
account. We will examine the degree of underestimation in 
later simulations. 

An advantage of using the Laplace approximation approach 
is that we actually obtain the estimates of the random effects 
as a side product. Given the estimates of the random and fixed 
effects, we may also estimate, for the purpose of prediction, 
the cumulative baseline hazard using the Breslow estimator 
(Breslow, 1974), i.e., 

and hence the predicted survivor function for a given region, 

As correctly pointed out by the referee, these two equalities 
are essentially the first-order Laplace approximation to the 
integrals over the distribution of the frailties, conditional on 
the observed ranks of survival times (Martin, 1993, p. 14). We 
shall explore making predictions based on model (1) in more 
detail in a subsequent article. 

6. Simulation 
Three sets of simulations have been performed to achieve 
three goals: (I) evaluation of the finite sample performance 
of the proposed methods with correctly specified frailty 
covariance structure, (11) study of model robustness with 
respect to the misspecification of the covariance functions, 
and (111) choice of reasonable numbers for the Monte Carlo 
replicates. 

I. To evaluate the finite sample performance of the proposed 
methods, we considered the regions to be 5 x 5 equally divided 
square lattices of a unit square [0,1]’ on a two-dimensional 
plane. The center of each lattice was used to identify each 
region. We varied the number of subjects in each region, 
n2, uniformly from 2 to 100, Conditional on the regional 
frailties, the survival times v,, were generated within each 
region under the hazard A,, ( t )  = A O ( t )  exp{pZ,, + ~ ( p , ) }  for 
j = 1 , .  . . , n, and a = 1 , .  . . , M ,  where the Zz, were generated 
as independent N(0 , l )  and the distribution of the regional 
frailties follows models (2), (3), or (4). Censoring times c,, 
were generated as independent uniform random variables on 

We chose true parameter values as follows: the baseline 
hazard was Ao( t )  = t ;  in the frailty covariance function, 
u2 = 0.5,@ = 0.3; we took = 1; the values of c were chosen 
to  yield four different censoring proportions, 20, 40, 60, and 
80%. We generated 500 datasets under each combination of 
parameter configurations. 

For each simulated dataset, we calculated the maximum 
(rank) likelihood estimates by the Monte Carlo method and 
the Laplace approach using SAS/IML. When using the Monte 
Carlo method, we chose the number of replications, H ,  to be 
1000. 

The averages of the estimates and the empirical standard 
errors are displayed in Table 1. It appears that both Monte 
Carlo simulation and the Laplace methods gave consistent 
estimates of unknown parameters. We also examined the 

[O, 4. 
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Table 1 
Comparisons of Monte Garlo estimates and Laplace estimates. The frailty 

variance function is  correctly specified in the calculation. The true regresszon 
coeficzents are 0 = 1, u2 = 0.50, and 0 = 0.30. SEe is the empirical standard 
error, SE, is the standard error calculated by inverting the Fzsher information. 

Monte Carlo Laplace 

- Censoring (%) Estimate SEe SEa Estimate SEe 

20 P 
U2 

40 P 
ls2 

60 P 
g2 

80 P 
U2 

e 

0 

e 

0 

20 P 
2 

40 P 
U2 

0 
60 P 

o2 

80 P 
U2 

0 

8 

0 

20 P 
U2 

e 
40 P 

IT2 

60 P 
ls2 

80 P 
U2 

e 

0 

0 

SEa 

Equicorrelated (Model  (1)) 
0.994 0.093 0.091 
0.567 0.315 0.305 
0.357 0.307 0.302 
1.002 0.101 0.097 
0.537 0.317 0.311 
0.282 0.359 0.351 
1.014 0.103 0.099 
0.509 0.429 0.418 
0.367 0.418 0.413 
1.019 0.175 0.164 
0.560 0.453 0.437 
0.342 0.433 0.417 

Gauss ian  (Model  (2)) 
0.993 0.098 0.092 
0.515 0.343 0.327 
0.306 0.317 0.308 
1.016 0.117 0.102 
0.462 0.362 0.347 
0.317 0.334 0.320 
1.013 0.159 0.147 
0.522 0.382 0.368 
0.354 0.356 0.339 
1.003 0.208 0.190 
0.557 0.409 0.389 
0.313 0.422 0.394 

Spherical (Model (3)) 
1.007 0.093 0.082 
0.514 0.317 0.299 
0.318 0.314 0.298 
1.004 0.102 0.093 
0.556 0.352 0.332 
0.305 0.345 0.332 
0.998 0.103 0.099 
0.481 0.372 0.363 
0.312 0.355 0.343 
0.998 0.171 0.165 
0.476 0.422 0.401 
0.321 0.423 0.411 

0.999 
0.601 
0.371 
1.006 
0.557 
0.269 
1.024 
0.489 
0.350 
1.002 
0.560 
0.342 

0.990 
0.521 
0.308 
1.012 
0.473 
0.324 
1.023 
0.528 
0.361 
1.018 
0.577 
0.320 

1.017 
0.532 
0.312 
1.024 
0.561 
0.292 
0.988 
0.469 
0.309 
0.982 
0.462 
0.314 

0.097 
0.305 
0.317 
0.098 
0.327 
0.369 
0.108 
0.419 
0.423 
0.181 
0.453 
0.423 

0.098 
0.337 
0.324 
0.114 
0.362 
0.334 
0.156 
0.392 
0.346 
0.202 
0.413 
0.402 

0.090 
0.307 
0.309 
0.101 
0.357 
0.335 
0.113 
0.366 
0.365 
0.174 
0.417 
0.426 

0.087 
0.238 
0.242 
0.090 
0.254 
0.269 
0.102 
0.347 
0.358 
0.167 
0.377 
0.369 

0.091 
0.246 
0.248 
0.102 
0.267 
0.259 
0.137 
0.301 
0.278 
0.189 
0.324 
0.316 

0.082 
0.239 
0.248 
0.092 
0.278 
0.288 
0.099 
0.301 
0.312 
0.164 
0.342 
0.367 

performance of the standard error estimators calculated by 
inverting the observed Fisher information. As shown in Table 
1, only slight underestimation was observed in the estimated 
standard errors for the Monte Carlo estimates compared with 
the empirical standard errors. However, the estimated stan- 
dard error for the Laplace estimates, especially for the vari- 
ance components, had somewhat substantial underestimation, 
which was consistent with Ripatti and Palmgren’s (2000) sim- 
ulation results in the shared and hierarchical frailty models. 

11. To assess the robustness of the model with respect to the 
variance structure, we intentionally misspecified the covari- 
ance structure in our calculation. Specifically, with the same 
parameter configurations as in I, we generated the survival 
data with the true frailty covariance function following model 
(4). But in our computation, we specified the covariance func- 
tion to be of (2). We again calculated the estimates using both 
the Monte Carlo method and the Laplace approach. The re- 
sults displayed in Table 2 show that the estimates of the fixed 



Spatial Frailty Model 293 

Table 2 
Comparisons of Monte Carlo estimates and Laplace estimates. The frailty 
variance function is incorrectly specified as model (1) in the calculation, 

with the true covariance function following model (2). The true regression 
coeficients are ,B = 1, u2 = 0.5, and 8 = 0.30. SEe is the empirical standard 

error, SE, is the standard error calculated b y  inverting the Fisher information. 

Monte Carlo Laplace 

Censoring (%) Estimate SEe SEa Estimate SEe SEa 

20 P 
cT2 

8 
40 P 

U2 

60 P 
U2 

8 
80 P 

n2 
8 

6 

1.001 
0.742 
0.355 
1.001 
0.757 
0.352 
1.012 
0.751 
0.367 
1.002 
0.680 
0.407 

0.098 0.083 
0.342 0.302 
0.257 0.234 
0.095 0.089 
0.382 0.342 
0.312 0.288 
0.104 0.101 
0.389 0.362 
0.383 0.346 
0.168 0.157 
0.423 0.388 
0.411 0.378 

1.003 
0.731 
0.348 
1.004 
0.752 
0.342 
1.022 
0.758 
0.374 
1.012 
0.674 
0.412 

0.099 0.083 
0.358 0.278 
0.252 0.198 
0.099 0.089 
0.372 0.303 
0.302 0.226 
0.106 0.102 
0.392 0.323 
0.360 0.287 
0.164 0.156 
0.421 0.378 
0.421 0.323 

effects were quite robust to the misspecification of the covari- 
ance structure. 

111. For practical purposes, we also tried to give a desir- 
able range for the number of Monte Carlo replicates in the 
computation. In this set of simulations, the only change in 
the parameter settings compared with those in I was that we 
varied H from 30 to 3000. Results were summarized in Ta- 
ble 3. In practice, it appears that any H ranging from 500 to 
1000 would be adequate. With such a choice, the inverse of 
the Fisher information, even without taking the Monte Carlo 
sampling error into account, gave good approximation to the 
variances of the estimates. 

7. Data Analysis 
We applied the proposed methods to analyze the East Boston 
Asthma Study introduced in Section 1. For our analysis, we 
focus on the assessment of how the familial history of asthma 
may have attributed to disparities in disease burden. In par- 
ticular, the investigator was interested in the relationship be- 
tween the maternal asthma status (with a variable name 
mevast, coded as 1 = ever had asthma and 0 = never had 
asthma) and children’s asthma status, controlled for children’s 
gender (0 = male and 1 = female) and race (0 = white and 1 
= nonwhite). 

A total of 753 subjects were enrolled at community health 
clinics throughout the east Boston area and questionnaire 
data was collected during regularly scheduled well-baby vis- 
its so that the asthma onset time could be identified. During 
the entire study period, 95 events were observed. Residential 
addresses were recorded and geocoded for each study subject, 
which yielded 25 neighborhoods (at census block level). 

We fitted a spatial frailty model to the data, 

A,, ( t  I b,) = X o ( t )  exp{PM x mevast,, -t PG x gender,, 
+ PR x racet3 + ~ ( P J ) ,  (12) 

where the subscripts z and j indicate the region (census block) 
level and the individual level, respectively, and p ,  measures 

the location of the i th region. For illustration purposes, we 
varied the covariance function of r ( . )  and calculated the es- 
timates using both Monte Carlo and Laplace methods under 
models ( l ) ,  (2), and (3). In addition, the naive estimates, 
ignoring the spatial correlations, were also computed using 
SAS PHREG. The results are displayed in Table 4. It ap- 
pears that the two proposed methods, the Monte Carlo and 
the Laplace approaches, yielded similar estimates except that 
the Laplace approach gave moderately smaller variance esti- 
mates. Compared with those in the naive model, the estimates 
of the regression coefficients in model (1) were magnified with 
slightly larger standard errors and confirmed the significance 
of the positive effect of maternal asthma on childhood asthma, 
i.e., maternal asthma implies higher risk of childhood asthma 
while adjusting for the effects of gender and race. We also 
noted that the estimates of the regression coefficients were 
similar across the three covariance models, which coincides 
with our simulation results (see I1 in Section 7). Further re- 
search is needed to test for the variance components. 

8. Discussion 
Both marginal survival models (Wei, Lin, and Weissfeld, 1989) 
and frailty models are important approaches for multivariate 
survival data. An advantage of a frailty model over a marginal 
survival model is that it is often easier to make predictions 
based on the former model because the correlations or the 
unobserved latent variables are explicitly modeled through 
frailties. On the other hand, making predictions or kriging 
has always been an important component in spatial statistics. 
For example, in the data example presented, the investigators 
were also interested in the 1- or 2-year asthma-free rates (sur- 
vival rates) in a given region or a new region. Hence, in this 
article, we are motivated to propose a semiparametric frailty 
model to fit spatially correlated survival data. Specifically, 
random effects accommodating general correlation structures 
were allowed to enter into the baseline hazard multiplica- 
tively to account for the potential spatial dependence. We 
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Table 3 
Comparisons of Monte carlo estimates with different niimbers of simulation replicates. 
The frailty variance function is correctly specified i n  the calculation. The true regression 

coefficients are p = 1, u2 = 0.50, and 8 = 0.30. SE, is  the empirical standard 
error, SEa is the standard error calculated by inverting the Fisher information. 

B = 30 B = 1000 B = 3000 

Censoring (%) Estimate SE, SEa Estimate SEe SEa Estimate SEe SEa 

20 P 
U2 

e 
40 P 

U2 

e 
60 P 

U2 
e 

80 P 
U2 

e 

20 P 
U2 

e 
40 P 

u2 
8 

60 P 
U2 

80 P 
u2 

e 

0 

20 P 
U2 

e 
40 P 

U2 

8 
60 P 

U2 

80 P 
U2 

e 

e 

1.034 
0.617 
0.407 
1.022 
0.567 
0.252 
1.041 
0.549 
0.398 
1.029 
0.578 
0.367 

1.032 
0.555 
0.336 
1.047 
0.422 
0.336 
1.031 
0.542 
0.369 
1.043 
0.577 
0.343 

1.027 
0.544 
0.338 
1.043 
0.578 
0.337 
0.978 
0.451 
0.342 
1.038 
0.446 
0.351 

Equicorrelated (Model (1)) 
0.123 0.103 0.994 0.093 
0.435 0.345 0.567 0.315 
0.357 0.332 0.357 0.307 
0.131 0.112 1.002 0.101 
0.377 0.331 0.537 0.317 
0.405 0.381 0.282 0.359 
0.143 0.119 1.014 0.103 
0.487 0.447 0.509 0.429 
0.448 0.423 0.367 0.418 
0.189 0.170 1.019 0.175 
0.495 0.457 0.560 0.453 
0.483 0.449 0.342 0.433 

Gaussian (Model (2)) 
0.123 0.1072 0.993 0.098 
0.383 0.357 0.515 0.343 
0.362 0.338 0.306 0.317 
0.137 0.112 1.016 0.117 
0.412 0.387 0.462 0.362 
0.374 0.339 0.317 0.334 
0.179 0.157 1.013 0.159 
0.443 0.408 0.522 0.382 
0.396 0.369 0.354 0.356 
0.248 0.217 1.003 0.208 
0.459 0.418 0.557 0.409 
0.442 0.407 0.313 0.422 

Spherical (Model (3)) 
0.113 0.092 1.007 0.093 
0.357 0.319 0.514 0.317 
0.346 0.318 0.318 0.314 
0.122 0.099 1.004 0.102 
0.393 0.362 0.556 0.352 
0.385 0.342 0.305 0.345 
0.134 0.109 0.998 0.103 
0.412 0.383 0.481 0.372 
0.425 0.364 0.312 0.355 
0.189 0.169 0.998 0.171 
0.452 0.423 0.476 0.422 
0.443 0.421 0.321 0.423 

0.091 
0.305 
0.302 
0.097 
0.311 
0.351 
0.099 
0.418 
0.413 
0.164 
0.437 
0.417 

0.092 
0.327 
0.308 
0.102 
0.347 
0.320 
0.147 
0.368 
0.339 
0.190 
0.389 
0.394 

0.082 
0.299 
0.298 
0.093 
0.332 
0.332 
0.099 
0.363 
0.343 
0.165 
0.401 
0.411 

0.995 
0.567 
0.353 
1.001 
0.525 
0.285 
1.012 
0.506 
0.367 
1.016 
0.552 
0.337 

0.995 
0.514 
0.303 
1.008 
0.469 
0.317 
1.012 
0.518 
0.355 
1.002 
0.546 
0.312 

1.005 
0.514 
0.314 
1.003 
0.546 
0.304 
0.997 
0.486 
0.310 
0.999 
0.482 
0.317 

0.092 0.091 
0.315 0.305 
0.306 0.302 
0.100 0.097 
0.314 0.310 
0.357 0.352 
0.102 0.099 
0.428 0.417 
0.418 0.413 
0.174 0.163 
0.451 0.436 
0.430 0.418 

0.097 0.091 
0.340 0.328 
0.315 0.307 
0.115 0.101 
0.360 0.348 
0.334 0.320 
0.157 0.148 
0.380 0.369 
0.353 0.341 
0.206 0.193 
0.406 0.391 
0.419 0.397 

0.092 0.083 
0.317 0.299 
0.312 0.297 
0.101 0.094 
0.349 0.330 
0.342 0.335 
0.101 0.095 
0.367 0.358 
0.351 0.346 
0.170 0.164 
0.419 0.403 
0.419 0.409 

have proven identifiability of the model and have proposed a 
semiparametric method to draw inference on regression coef- 
ficients and variance components. We have derived a marginal 
rank likelihood based on all the possible rankings of the sur- 
vival times, which are consistent with what were observed. 
This may also serve, from the likelihood perspective, as a 
justification for the use of the penalized partial likelihood ap- 
proach (McGilchrist, 1993; Therneau and Grambsch, 2000) 
for the ordinary frailty models. 

We have utilized the Monte Carlo simulation method and 

the Laplace approach for estimation of the unknown param- 
eters. Our simulation study showed that the Monte Carlo al- 
gorithm and Laplace method perform well. In general, the 
estimated standard errors using the inverse of the observed 
information agreed well with the empirical standard errors, 
though underestimation in the variance estimates of the vari- 
ance components was observed for the Laplace estimates. 

The proof of consistency and asymptotic normality of the 
estimator based on the marginal rank likelihood is an open 
problem, but our simulation results seem to point to the 
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Table 4 
Analysis results of the Boston Asthma Study data. Estimates were calculated 

by the naive (ignoring spatial correlations), the Monte Carlo simulation, 
and the Laplace methods. Numbers inside parentheses are estimated SEs. 

Parameter Naive Model (1) Model (2) Model (3) 

P M  0.706 (0.283) 
PG 0.173 (0.206) 
PR -0.135 (0.205) 
U2 - 

- 8 

P M  
PG 
PR 
U2 

8 

Monte Carlo 
0.845 (0.321) 
0.231 (0.256) 

0.122 (0.243) 
0.321 (0.452) 

Laplace 
0.814 (0.301) 
0.211 (0.246) 

0.102 (0.213) 
0.301 (0.422) 

-0.178 (0.243) 

-0.158 (0.212) 

0.837 (0.342) 
0.261 (0.242) 

0.136 (0.276) 
0.521 (0.342) 

-0.164 (0.226) 

0.817 (0.321) 
0.241 (0.221) 

0.113 (0.236) 
0.481 (0.321) 

-0.144 (0.216) 

0.798 (0.352) 
0.257 (0.278) 
0.157 (0.275) 
0.178 (0.213) 
0.221 (0.413) 

0.768 (0.331) 
0.237 (0.248) 
0.148 (0.235) 
0.148 (0.183) 
0.210 (0.391) 

asymptotic validity of the proposed method. Another limita- 
tion of this study is that the model diagnostics for the pro- 
portionality of conditional hazards and the form of frailty 
covariance functions is not addressed. A further study is thus 
necessary, though our simulations suggested that the inference 
about the fixed effects are fairly robust to the misspecification 
of frailty covariance structures. 

Though we only considered scalar regional frailties in the 
development of our methodology, it would be easy to  extend to 
multidimensional cases. Additionally, with a careful definition 
of the covariance structure of the random effects, our proposed 
methods shall find immediate applications in the analysis of 
hierarchical or multilevel data. 
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RBSUME 
Nous proposons une nouvelle classe de modkles de fragilitb 
semi-parambtriques pour des d o n n h  de survie spatiales cor- 
rklkes. Plus prbciskment , nous dkveloppons une extension des 
modkles de fragilite habituels en incorporant des effets alba- 
toires multiplicatifs dans la fonction de risque de base, afin de 
tenir compte des corr6lations spatiales. Nous demontrons que 
ces modhles sont identifiables et donnons des conditions suff- 
isantes de r6gularitb. Nous proposons de faire de l’infbrence 
B partir d’une vraisemblance marginale de rang. I1 n’est pas 
nbcessaire de supposer une forme parametrique pour le risque 
de base dans cette approche semi-paramktrique. Des simula- 
tions de Monte-Carlo et la technique de Laplace sont utilisees 
pour rksoudre l’intbgrale insoluble dans la fonction de vraisem- 
blance. Diffkrentes structures de correlations spatiales sont 
examinees par simulations. Ces methodes sont appliqukes B 
1’6tude sur l’asthme de Boston Est pour identifier les facteurs 
pronostiques de la survenue d’asthme dans l’enfance. 
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APPENDIX 

Proof of Identifiability 
Suppose that the true parameters are RO = {PO, a;,&, Rg( t )} .  Let pra denote the probability measure with respect to R. 
It is well known that the Kullback-Leibler information is nonnegative (Bickel et al., 1993) and is equal to zero only when 
Pro = pro,. 

Let N i ( t )  = {Ni l ( t ) ,  . . . ,Nin,(t)}' and K ( t )  = {&l( t ) ,  . . . , Yi,,(t)}'. Denote (N1,. . . , NM)'  by N and define Y similarly. 
The identifiability can thus be proven by showing that the joint distribution of ( N ,  Y )  is uniquely determined by the parameter 
00, i.e., we need to show that, if the joint distributions of ( N , Y )  are equal under two sets of parameters, 00 and 01 = 

For an i E {1,2, .  . . , M } ,  we consider the marginal intensities Nij( . )  with respect to the filtration a{Ni j ( s ) ,  Y , j ( s )  I 
0 5 s 5 u }  before u reaches a failure, i.e., u 5 inf{s I Nij(s)  > O}. Under the two sets of parameters Ro and 01, we have that 
X(u I Zij;  Ro) = X(u I Zij;  nl), i.e., 

{ h & e l , A A ( t ) } ,  then oo = n1. 

where Tij is the true survival time for the j t h  observation. 
Under regularity condition (b), we can consider the joint counting process for two individuals within the same region. The 

joint intensity of Nil(.) and Ni2(.) with respect to the filtration a{Nij(sj),&j(sj),Zij,j = 1,2 10 5 s j  5 uj} for u1 and u2 
such that max(u1,ua) 5 inf{s I N l ( s )  + N2(s) > 0) is defined as 

E[Nii(ui + A u i ) N i z ( ~  + A w )  I a{Nij(s j ) ,Kj(s j ) ,Zi j ,O I s j  I u j , j  = 1,2}] lim 
Au1-O,Au,+O AulAu;! 

Then, under i20 and 01, we have that 

ERo { X ~ ( u 1 ) X ~ ( u ~ )  eah(zi1+ziz)+2r'IT& > u j , Z j , j  = 1,2 = Enl X A ( U ~ ) X A ( U ~ )  eDi(zil+zzz)+zr'lTij 2 uj,,Zij,j = 1,2 . 

Besides, under regularity condition (c), we can consider the joint counting process for two individuals in two different regions, 
say il and i2 ,  where 2 1  # 22. The joint intensity of Nil,l(.) and N i z , l ( . )  with respect to the filtration u{Nil,~(sl) ,Y,l , l(sl) ,  
Niz,l(sz),yZ,,l(s2),I 0 5 s j  5 u j , j  = l ,2} for u1 and u2 such that max(ul,u2) I inf{s I Ni,,l(s) +Ni, , l (s)  > 0} is de- 
fined as 

1 
(14) 

> {  

EINil,l(ul + Au1)Niz,i(u2 + a u 2 )  I a { N i k , 1 ( s k ) ,  Kk,1j(sk), Zik,i, 0 5 Sk 5 Uk, lc = 1,2}] lim 
Aui+O,Auz-tO A u ~ A u ~  

Then, under 00 and 01, we have that 

Let u,u1,u2 -+ 0 in (13), (14), and (15). We have that 
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{ (o)}2eP;,  (Z%l +Z%z)Eno ( e 2 T i )  = (0) }2eP:  (Zil+ZiZ) En, (e2.i) 7 (17) 

{ $(0)}2ePb (zil +zt, , I )  E n o  ( e  + T t z  ) = { (o ) }2eP ;  ( z t l  , I )  Enl ( e T t ,  +T%z > .  (18) 
Comparing the coefficients of Zij in (16), we have that = p1. In addition, we have that, for k = 0, 1, 

l + P ( / l P % ,  -P*z II ,@k)). 
> =  E ~ ,  (eTt> = eci /2,  E~~ (e2T‘) = e202, E ~ ,  (evil +Ti, 

If we substitute these two identities into (16), (17), and (18) and use conditions (e) and ( f ) ,  simple calculations give that 
a; = 02 and 81 = 82.  

We now have finished proving the identifiability of part of finite dimensional parameters in the unknown parameter vector 
0. We next show that A:(.) = A:(.). Consider the survival function under f l k  ( k  = 0 ,  l), 

S( t  I zij; R k )  = Eno { e - A k ( t ) e x p ( P : Z i J + T t )  I Z i j }  = LP { A h ) }  > 

where LP( . )  is the Laplace transformation of the random variable exp(P’2ij +ri) conditional on Zij. Then, by the invertibility 
of the Laplace transformation, A:(t) = A,$(t) .  This completes the proof of identifiability. 

Derivative Formulas 
Write i ( p , 0 )  = IIzl ny;, L$),  where 

Some calculation gives 

and 

and 




