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Summary

This supplementary file includes includes technical proofs and figures for the kidney

transplant rejection and tissue injury data.

1 Technical proofs

Proof of Theorem 1. The proof is summarized in the following three steps. First, we
prove Qn(w*, i1, ) > Qn(w, pu*, ) for Jlway — wiyll3 = Op(n~1). In Step 2, we show that
Qn(w, 1, Q%) > Qulw, u*, Q) for || — Q*|%4 = Op{(pn + an)logp,/n}. In Step 3, we prove
that Q,(w,p*, Q) > Qu(w,pn, Q) for || — p*|3 = O,(pnlogp,/n). The following are the

details.



Step 1. Let Ay, = wa) — wiyy, and h(w)) = >0, SO Tk logwy, where wi = 1 —
Zf:_ll wr. We denote by J, = (dy,...,0x)" the Jacobian matrix, where d(1 < k < K) is
a (K — 1)-dimensional unit vector with the kth component being 1, and dx is a (K — 1)-

dimensional vector of ones. An application of Taylor expansion yields

Qn(w’ M*’ Q*) - Qn(W*a :u*7 Q*)
(1
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Note that n=! Z?Zl{nkw;’l — Tigwie '} = 0,(1) because ETy = wj for k=1,..., K. Con-

sequently, we have

A < 020,11 A, I

< (K =120, ) Au gl

Further, since n™* Y"1 mpwi 2 N wit for k=1,..., K, we have
1 62h(”&)) P
JIS ————22 0 J, — JTHJ, > 0,
@ { n Owow’ @

where H is a K x K diagonal matrix with the kth element w; '. Hence,

AQ > Op(l)HAw(l) ||§7

N —

implying that A, dominates both A; and A uniformly in [jw)—wy), |2 = O,(n~'). Therefore,

Qn(w*7u*7Q*) > Qn(wnu*’Q*) for Hw(l) - wa)”% = Op(n_l)'
Step 2. Let Ag = Q —Q* and S = S(u*). Consider the difference

Qn(waﬂ*a Q) - Qn(wnu*a Q*> = Bl - B2 - B37



where

By = 27'(log|Q| — log [2*]) — 27 'tr(SAg),

By = Xon 3. (1] 2)).
(4,1)eAc,j#

By = o 3 (9] — 1)).
(4,HeA

An application of Taylor expansion with the integral remainder yields that
— 1 —
log |Q2] — log |Q*| = tr(X*Aq) — Ag {/ (1-— v)Q;l ® Q;ldv} Aq,
0

where Q, = Q*+vAq with 0 < v <1, &Q is the vectorization of Aq, and ® is the Kronecker

product. Therefore, B; can be written as By = —271(I; + L), where

I = tr((S—9Aq),

1
L, = AL {/ (1-0)'® Q;ldv} Aq.
0

First consider I;. Let sj;, 07}, and Agj; be respectively the (7, D)th element of S, ¥* and Ag.
Denote by C ={(j,7) : 7 =1,...,pn}. Then, it is clear that |I;| < I; + I}, where

i = | ) (su—0p)Dal,

(1) eAUC
Ly = | Y, (su—0p)lal
(gD EeAj#
Let z; = Zszl (i — ;) for i = 1,...,n. By the assumption, z; = (21,...,2;)" s are

i.i.d. p-variate normal random variables with mean 0 and covariance matrix X*. Note that

sjp=n"'>" zjzy. Using Lemma 3 in Bickel & Levina (2008), we have

I, < (pn+an)1/2(j7%1€a<uc|8jl—U;z|‘HAQHF

< Op({(pn + an) 1ngn/n}1/2) ’ HAQHF

= Op((pn + an) logpn/n).

Consider By — I12 for penalties. Note that Agj = Q for all (4,1) € A%, j # [. Invoking
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Lemma 3 in Bickel & Levina (2008) again, we have

By =TIy > Ay Z |le|—1{lﬁ})x|3jl—0;l| Z | Agj|
J

(G EAC j#l ’ (G EAC j#
> Y [Pan— Oy({log pa/n} )|
(Gl)EAe j#l
> 0

for A2, = O(log p,,/n). For the term Bj, we have

By = X Y (1] = [2))

(J,hHeA

< Ao Z | Aqjil
(J,hHeA

< Aona?|| Al

= Op((pn + a,)logp,/n).

Finally, we bound I5. Recall that A, (M) = minjg) = 2T Mz for any symmetric matrix M.

Then, under condition (A), we have

L > /0 e i Ain(2,1 @ O 1)dv - || Aal3
= [Ball3/2- min A2 ()
> [[Bal3/2 (51 +0(1)"?
= Ci(pn + ay)logp,/n,

for a large constant ;. To derive the above inequality, we have used ||Aq| < ||Aqllr =
O((log p,)*=™/2) = o(1) by our assumption. Therefore, I, dominates both I;; and Bs with

a large constant C;. With By — I15 > 0, this completes the proof of the Step 2.

Step 3. Let A, = (A Ay V= —pp, for k=1,... K, and A, = pp — p*.

1t Pk,
Then, for each 1 < k < K, A, = (I,, ® ef)A,, where I, is a p, X p, identity matrix
and ey is a K-dimensional unit vector with kth component 1. For the sake of simplicity, let

zi = Z,i(:l Tir(x; — i) and E; = Zszl Tik(Ip, @€} ), for i = 1,...,n. Consider the difference

QTL(wuu? Q) - Qn(&),,u*, Q) = ]i - Ié + Ii/’)

4



where

I = o'y ZQEA,

i=1

I = (20)7' ) ATEIQEA],

=1

Pn
o= =y > [y — sl = ey — i) -
j=1 1<k<k' <K
Let A,(f) be the sth component of A,, and §, be a (Kp,)-dimensional unit vector with sth

Kpn T]sA(S)

component 1, for s =1,..., Kp,. Then, it can be seen that |I{| = > 7 ., where

ne=mn"" Z I QE;0.,
i=1

for s =1,..., Kp,. Now, consider the event F = (227 {|n,| < A, }. Since ||Q —Q*|| = 0,(1),
we have |Q¥*— 1, || = 0,(1) by condition (A). Thus, ||QX*Q—Q*| = ||(QX—1,,)(Q—Q%)|| =
0p(1). Consequently,

n Y STEIQYTQES, = oty §TEIQ E 4 0,(1)
i=1 =1

M+ 0,(1).

(1>

Therefore, using the probability bound on the tail of the standard Gaussian distribution, we

know that

Kpn
P(F) < Y P0'?ns| > n'),)

s=1
Kpn 2
n
< 0,(1) - Zexp (—J)
g 2M,

ni?.
< Ol e =g s (01

which tends to 0 when A\, = (2max,{M,}logp,/n)"/?. Consequently, by considering the

event F, we have
Kpn

1< Ins[AR] < Al Al
s=1
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with a probability tending to one. Note that [I3] < Aip D 20% D 0o [Bpy — Dpyy| <

(K — 1)A1n]|ALll1- Thus, with a probability tending to one, we have

L1+ 1G] < Kl Aulh

< KPp A Al

= Op(pnlogpn/n).
The proof can be concluded from proving that I, > Csp, log p,,/n for some constant Cs.
Since || — Q|| = 0,(1), we have

I = (2n)7' Y ATETQ EA] + 0,(1)

i=1
> () {znkn%u g
> ! —
> (2)7" min X A3
= C2pn log pn/n
with a probability tending to one. This finishes the proof. ([l

Before proving Theorem 2, we first prove the following lemma.

LEMMA 1.1. Let || - |[pp : R — R be the fused penalty ||z|lpp = 32 cpeper |26 — 2wl
Then, || - ||rp is convex and, for any x € R, the subdifferential O||x||Fp is the set of all

vectors s € RE such that
S = ngn(mi —xj),

fori=1,... K.

Proof. Foreach j =1,...,K — 1, let HY be a (K — j) x K matrix with HZ-(Z-j) = —1,
o)

1,047

with jth row block matrix HY. Then, for any # € RX, ||z||pp = ||Hz|;. Note that the [

=1fori=1,...,K —j and 0 otherwise. Denote by H the K (K — 1)/2 x K matrix

norm || - ||; is convex and || - ||p is the composition of a linear functional by the l; norm.
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Hence, || - ||rp is convex. Further, by the definition of the subdifferential of the {; norm, for
any y € RE,
|Hyl < |Hz|1+ < H(y — x),v > (1.1)

holds if and only if v € W, € REE=D/2 swhere W, is the set of all vectors v = sgn(Hw).

Note that
<H(y—=z)sen(Hz) > = > [(yw — 2) — (e — on)lsgn(ww — )
= 27 [(yw — xw) — (y — i) )sgn (i — )
k' £k
= Z(yk - fli'k) {Z sgn(mk - %’)} .
k=1 k' Ak

Thus, equation (1.1) is equivalent to
[yllrp < lzllept+ <y —2,5 >,

where s is a K-dimensional vector with ith component s; = . sgn(z; — ;). The set of

all such vectors s is, therefore, 0||x|| pp. O

Proof of Theorem 2. First, we prove the sparsistency of the precision matrix estimator
Q. The derivative of Q,(w, u, Q) w.r.t. Qj for (j,1) € A% j #1 at (&, 2, Q) is

n Aa A? Q - g
D@1 _ 5 o),

0
where sj; is the (j,1)th element of S = S(j1) and sgn(a) denotes the sign of a. Note that
1 n K
§ = SW)-~ SO el (wi— )"

i=1 k=1

1 n K 1 n K

=D D )AL 0 Y A
i=1 k=1 i=1 k=1

2 L —L—IL+1,.
Then, we decompose 7j; — sj; = Ay + Ay + A3, where
Ay =05 — O-;lu Ay = (7;[ — Ly, Az = Lo+ I3 — Ly,
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where Bj; denotes the (j,1)th element of matrix B. Now, consider the order of A;. Under
condition (A), we have ||Z*|| = O(1) and [|Z]| < Amin(2 — Q%) 4+ A (27)) ! = O,(1). Thus,
FAEE DEDY
S DS /R (R v [ D o]

= 0, (Prlz/;) .

By Lemma 3 in Bickel & Levina (2008), we have |Ay| = O, ({log p,/n}'/?). Now, we estimate

the order of As. Since max;<j<y, [l — 1 ;)13 = Op(pn1) for a sequence p,1 — 0, we have
n K
i=1 k=1
i 1/2
§<%ay<§:mA%ﬁ0
k=1

i 1/2
< o (Yan) -0
k=1
1/2

Similarly, we have |I3;| < Op(pi/lz) and |15 < Op(pn1). Thus, |As| < O,(p,;"). Combining

Loyl =

above results yields that

. 1/2 1/2
II;E}X |1 — sji| = Op({logpn/”}l/Q + Pn/l + pn/Q )-

Hence, we need to have 10g p, /n+pn1+pn2 = O(A2,,) in order to have the sign of dQ,, (&, i, Q)/0Q;,
that depends on sgn(le) with a probability tending to one. This completes the proof of The-

orem 2(i).
Next, we prove the second result of Theorem 2. The main idea of the proof is inspired by
Rinaldo (2009). Let 7, =n~'>" 7, k =1,..., K. Then, by Lemma 1.1, we know that
1 < )
ly, = — wTi — Aip Ty, 128
ok nk;mil? InTy 248k

where 8 = (8k1,. .., 8kp,)T with jth element §;; = > ien Se0 (i — fieg). Hence, for k, k' =

1,...,Kand k< ¥,

n
~ ~ 2 : Tik! Tik T/ =—1 A ——1 A
- K k
=1
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where ey, is a p,-dimensional unit vector with the kth component 1. Since Apay(X) = ||| <

Amin QO—QF F i (V)N < kg and |7, 8 — T Vo] < 2(K—1) forl=1,...,p,, we have
k k

1775 8 — 7 8 ls < Amax ()70 80 — 7 342

< 2 %ky(K —1). (1.2)

As a result, the event {B = B} occurs in probability if both

& Tik! Tik 1/2
g — — ) x| < 2M1n K -1 1.3
mgx i=1 (”k’ nk) Lij 1Py Fa( ) (1.3)
and
min 5” T Tik Tij — Mnel N (70 s — 7 M8)| > 0 (1.4)
Be Ny Nk J J K b

=1

hold with a probability tending to 1 and n — oo.

We first consider (1.3). For the sake of simplicity, let M = 2ry(K — 1) and app; =

Tik /T — Ti/Nk, © = 1,...,n. Then, by condition (C)(i), we know that

n
Z Tik'  Tik
N ng

=1

n

E Ak i €5

i=1

max + op()\lnp}lm),

B

< max
B

where €;; = x;; — Zszl Tik ks which follows normal distribution with mean 0 and variance
o;;. Let 5;?'“' = 3" appicij, kK =1,...,K, k <k and j = 1,...,p,. It is easy to show
that Effk/ =0, Var(fgkk,) =2 aik/ﬂ}}' < 207;, and COV(ffk,: 1) = Qpkriuto sy for

each (k, k', j) # (I,I',t). For (k, k., j) € B, let ¢** ~ N(0,3°7 , a?,.0*;) such that
7 i=1 "kk’i™ jj

E((™)? = E(E™)?  forall (kK j) € B,

B > BEE), forall (kK j),(1,1,t) € Band j #t.

V

Then, by Slepian’s inequality (Ledoux & Talagrand, 1991) and Chernoff’s bound for standard



Gaussian variables, we have

P(max|§kk | > A npl/zM) < P(max|§kk | > A npl/zM)
DCUEPWERY
A2 p, M?
< Z2exp{ Zﬁ }
A o, M
= 2exp {—% + log |B|} :

which vanishes under condition (C)(i).

In order to verify (1.4), it is sufficient to show that
n
Z Ak i€if — /\1nef2(ﬂ;1.§k/ — 7. %)

i=1

< amin

Iax s

with probability tending to one as n — oo. Using the triangle inequality, we only need to
show that

max ‘Alne;‘rf}(?{,léy - fk_lék)‘ < amn/2 (1.5)
and

Qe /2, (1.6)

max
Bec

n
E Qpkri€ij| <
i=1

Because of (1.2), it is easy to see that the inequality (1.5) holds under condition (C)(ii).

Then, we turn to (1.6). For (k, k', j) € B¢, let Cj’?k' ~ N(0,20b%,.) so that

E(GY) = BgY)’,  forall (kK.j) € B

E(GNG) = BgRE), forall (kK. j),(1,1,t) € B and j # t.

Then, again, by Slepian’s inequality and Chernoft’s bound for standard Gaussian variables,

we have

kk | > m1n/2)

kk' min
Pmax |G| > a™/2) < P(max|(;

Z 2 exp { (16::1)2 }

max

min )2
= 2exp{ (an™)” +10g|l§’c\}

IN

16b;,

max
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which vanishes under condition (C)(ii). Hence, the proof of Theorem 2(ii) is completed. [

Proof of Theorem 3. Given the estimates w, i and (), a new observation z* is assigned

to the kth class if
2O (fu, — fu) > log(@n/or) + { (i + fu) /23 Qe — i) (1.7)

fori=1,...,K and | # k, where i, => " I(yi =s)x;/ > o I(yi=s),s=1,..., K.

Given data (y;,x;) for ¢ = 1,...,n, the conditional misclassification rate of CEDA is

given by

~ A~

2 _NESTO(F — 1) — STOR
anlz(p (Z1)0Tuf — ) —07020/2))
2 5TO*Q0

where 5 = ﬂl —/lg and S = ,[//1 —ﬂQ.
(i) Since [ — Q*||> = O, (pn2) for a sequence pns — 0, we have
1= -2 = I=(Q- )%

< B =@l 1=

< 18I Oplrapy).
Note that || < Amin (2 — Q%) 4+ Amin (%)) = O,(1). Hence,

1 = S)1% = Op(pnz).
Consequently,
TN 08 = 6TQ0[1 + Oy(pys")] = 07 Q6[1 + Op(p,)].

Without loss of generality, we assume that 6 = (5?, 01T where oy is the b,-dimensional vec-
tor containing nonzero components of 4. Let oy = (6;7,07)T, where 67 is the b,-dimensional

vector containing nonzero components of 7. Then, from Theorem 2, we have b, = b, and

consequently,

16 = 6715 = 1161 = 6113 = Op(bupn)
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with a probability tending to one. It together with condition (A) implies that (5 — 5;)TQ*((§ -
07) = Op(bppn1). Thus, (6 — ;)" Q) < ApnOp(b,llﬂpi/lQ) and
TS N \T O[5 * N $\T (yx o* 2
00 = (6—0,)Q(6—9,)+2(0—4,) Q6, + A,
= AL+ 0,000/ )
Let iy — pf = (v1,73)T, where 7; is a b,-dimensional vector. Partition Q* into
Qo
S I
0 Q3
where )}, is a b, X b, matrix, and partition ¥*, Q) and 3 in the same way. Then,
o Qi — py) = 5?911% + SlTQlQ’YQ,
with a probability tending to one. Further, by Cauchy-Schwarz inequality and the fact
Qi < By, we have (67 Qum)? < (6709) Oy (ba/n) and (3] Q1972)* < (67Q0) {13 AT T4 Qa7
1+ Op(pi/;)]}. Note that all eigenvalues of sub-matrices of Q* and ¥* are bounded under

condition (A). Then, we have that

E(7; Q3 21 Qp7)

IN

ko B (73 Q3 Qiy2)

K

224 Q* Q*T
n r( 125)

IN

IN

K3y /1.

Therefore,
5700 — 1) _ Ou(y/Bafn) + Oy /au)
Varas0b O,
which also holds when fi; — pj is replaced by fio — pub or 6 — 0;. Furthermore, 6700 =
0700 + 0TQ(0 — 6%) + 6TQ(8% — 8) and [07Q(S: — 0)]> < (67Q*6)Op(bnpn1). Therefore,
(18T — i) = 5705/2 _ Oy(3/bufn) + Oul/au/1) + Op(Vbupi)

~ A~

oTOE- L+ 0,(p})

A1 0,00 D)

2 \V 1+ Op(ﬂ:l/;)

= —[1+ Op(cn)]Apn/27
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which implies the result in (i).

(i) Let ¢ be the density of ®. Then, by the result in (i),
R, — Ropt = ¢(Vn)0p(cn>7

where v, is between —A,, /2 and —[1+0,(c,)|A,, /2. Since A, is bounded, ¢(v,) is bounded
by a constant and Ropr is bounded away from 0. Hence, the CEDA is asymptotically optimal
and R,/Ropr — 1 = O,(c,).

(iii) When A, — 0o, Ropr — 0 and by the result in (i),R,, N 0, we have R,,— Ropt BN

(iv) If A,, — oo and ¢,A2 — 0, then, by Lemma 1 in Shao et al. (2011), we have

Rn/ROPT i} 1. ]

2 Figures for the kidney transplant rejection and tissue

injury

Figure 1 summarizes the classification accuracy using boxplots for the proposed covariance-
enhanced discriminant analysis, fusion-regularized linear discriminant analysis (Guo, 2010),
doubly [;-penalized linear discriminant analysis, sparse discriminant analysis (Clemmensen et
al., 2011) and l;-penalized linear discriminant analysis (Witten & Tibshirani, 2011). Figure
2 presents the heatmap of the estimated centroids for the 19 most informative genes selected

in the kidney transplant rejection and tissue injury data set.
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Figure 1: Classification accuracies of the five methods on the kidney transplant rejection and
tissue injury data set. The procedures from A to E are the proposed covariance-enhanced
discriminant analysis, fusion-regularized linear discriminant analysis (Guo, 2010), doubly
l1-penalized linear discriminant analysis, the sparse discriminant (Clemmensen et al., 2011)

and [;-penalized linear discriminant analysis (Witten & Tibshirani, 2011).
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