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Summary

This supplementary file includes includes technical proofs and figures for the kidney

transplant rejection and tissue injury data.

1 Technical proofs

Proof of Theorem 1. The proof is summarized in the following three steps. First, we

prove Qn(ω
∗, µ∗,Ω∗) ≥ Qn(ω, µ

∗,Ω∗) for ∥ω(1) − ω∗
(1)∥22 = Op(n

−1). In Step 2, we show that

Qn(ω, µ
∗,Ω∗) ≥ Qn(ω, µ

∗,Ω) for ∥Ω − Ω∗∥2F = Op{(pn + an) log pn/n}. In Step 3, we prove

that Qn(ω, µ
∗,Ω) ≥ Qn(ω, µ,Ω) for ∥µ − µ∗∥22 = Op(pn log pn/n). The following are the

details.
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Step 1. Let ∆ω(1)
= ω(1) − ω∗

(1), and h(ω(1)) =
∑n

i=1

∑K
k=1 τik logωk, where ωK = 1 −∑K−1

k=1 ωk. We denote by Jω = (δ1, . . . , δK)
T the Jacobian matrix, where δk(1 ≤ k < K) is

a (K − 1)-dimensional unit vector with the kth component being 1, and δK is a (K − 1)-

dimensional vector of ones. An application of Taylor expansion yields

Qn(ω, µ
∗,Ω∗)−Qn(ω

∗, µ∗,Ω∗)

=
1

n
JT
ω

∂h(ω∗
(1))

∂ω
∆ω(1)

− 1

2
∆T

ω(1)
JT
ω

{
− 1

n

∂2h(ω∗
(1))

∂ω∂ωT

}
Jω∆ω(1)

+op

(
∆T

ω(1)
JT
ω

{
− 1

n

∂2h(ω∗
(1))

∂ω∂ωT

}
Jω∆ω(1)

)
, A1 − A2 + A3.

Note that n−1
∑n

i=1{τikω
∗−1
k − τiKω

∗−1
K } = op(1) because Eτik = ω∗

k for k = 1, . . . , K. Con-

sequently, we have

A1 ≤ n−1/2Op(1)∥∆ω(1)
∥1

≤ (K − 1)1/2Op(n
−1/2)∥∆ω(1)

∥2.

Further, since n−1
∑n

i=1 τikω
∗−2
k

P−→ ω∗−1
k for k = 1, . . . , K, we have

JT
ω

{
− 1

n

∂2h(ω∗
(1))

∂ω∂ωT

}
Jω

P−→ JT
ωHJω > 0,

where H is a K ×K diagonal matrix with the kth element ω∗−1
k . Hence,

A2 ≥
1

2
Op(1)∥∆ω(1)

∥22,

implying that A2 dominates both A1 and A3 uniformly in ∥ω(1)−ω∗
(1)∥22 = Op(n

−1). Therefore,

Qn(ω
∗, µ∗,Ω∗) ≥ Qn(ω, µ

∗,Ω∗) for ∥ω(1) − ω∗
(1)∥22 = Op(n

−1).

Step 2. Let ∆Ω = Ω− Ω∗ and S = S(µ∗). Consider the difference

Qn(ω, µ
∗,Ω)−Qn(ω, µ

∗,Ω∗) = B1 −B2 −B3,
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where

B1 = 2−1 (log |Ω| − log |Ω∗|)− 2−1tr(S∆Ω),

B2 = λ2n

∑
(j,l)∈Ac,j ̸=l

(|Ωjl| − |Ω∗
jl|),

B3 = λ2n

∑
(j,l)∈A

(|Ωjl| − |Ω∗
jl|).

An application of Taylor expansion with the integral remainder yields that

log |Ω| − log |Ω∗| = tr(Σ∗∆Ω)− ∆⃗T
Ω

{∫ 1

0

(1− v)Ω−1
v ⊗ Ω−1

v dv

}
∆⃗Ω,

where Ωv = Ω∗+v∆Ω with 0 ≤ v ≤ 1, ∆⃗Ω is the vectorization of ∆Ω, and ⊗ is the Kronecker

product. Therefore, B1 can be written as B1 = −2−1(I1 + I2), where

I1 = tr ((S − Σ∗)∆Ω) ,

I2 = ∆⃗T
Ω

{∫ 1

0

(1− v)Ω−1
v ⊗ Ω−1

v dv

}
∆⃗Ω.

First consider I1. Let sjl, σ
∗
jl, and ∆Ωjl be respectively the (j, l)th element of S, Σ∗ and ∆Ω.

Denote by C = {(j, j) : j = 1, . . . , pn}. Then, it is clear that |I1| ≤ I11 + I12, where

I11 = |
∑

(j,l)∈A∪C

(sjl − σ∗
jl)∆Ωjl|,

I12 = |
∑

(j,l)∈Ac,j ̸=l

(sjl − σ∗
jl)∆Ωjl|.

Let zi =
∑K

k=1 τik(xi − µ∗
k) for i = 1, . . . , n. By the assumption, zi = (zi1, . . . , zip)

T ’s are

i.i.d. p-variate normal random variables with mean 0 and covariance matrix Σ∗. Note that

sjl = n−1
∑n

i=1 zijzil. Using Lemma 3 in Bickel & Levina (2008), we have

I11 ≤ (pn + an)
1/2 max

(j,l)∈A∪C
|sjl − σ∗

jl| · ∥∆Ω∥F

≤ Op({(pn + an) log pn/n}1/2) · ∥∆Ω∥F

= Op((pn + an) log pn/n).

Consider B2 − I12 for penalties. Note that ∆Ωjl = Ωjl for all (j, l) ∈ Ac, j ̸= l. Invoking
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Lemma 3 in Bickel & Levina (2008) again, we have

B2 − I12 ≥ λ2n

∑
(j,l)∈Ac,j ̸=l

|Ωjl| −max
(j,l)

|sjl − σ∗
jl|

∑
(j,l)∈Ac,j ̸=l

|∆Ωjl|

≥
∑

(j,l)∈Ac,j ̸=l

[λ2n −Op({log pn/n}1/2)]|Ωjl|

≥ 0

for λ2
2n = O(log pn/n). For the term B3, we have

B3 = λ2n

∑
(j,l)∈A

(|Ωjl| − |Ω∗
jl|)

≤ λ2n

∑
(j,l)∈A

|∆Ωjl|

≤ λ2na
1/2
n ∥∆Ω∥F

= Op((pn + an) log pn/n).

Finally, we bound I2. Recall that λmin(M) = min∥x∥=1 x
TMx for any symmetric matrix M .

Then, under condition (A), we have

I2 ≥
∫ 1

0

(1− v) min
0≤v≤1

λmin(Ω
−1
v ⊗ Ω−1

v )dv · ∥∆⃗Ω∥22

= ∥∆⃗Ω∥22/2 · min
0≤v≤1

λ−2
max(Ωv)

≥ ∥∆⃗Ω∥22/2 · (κ1 + o(1))−2

= C1(pn + an) log pn/n,

for a large constant C1. To derive the above inequality, we have used ∥∆Ω∥ ≤ ∥∆Ω∥F =

O((log pn)
(1−m)/2) = o(1) by our assumption. Therefore, I2 dominates both I11 and B3 with

a large constant C1. With B2 − I12 ≥ 0, this completes the proof of the Step 2.

Step 3. Let ∆µk
= (∆µk1

, . . . ,∆µkpn
)T = µk − µ∗

k, for k = 1, . . . , K, and ∆µ = µ − µ∗.

Then, for each 1 ≤ k ≤ K, ∆µk
= (Ipn ⊗ eTk )∆µ, where Ipn is a pn × pn identity matrix

and ek is a K-dimensional unit vector with kth component 1. For the sake of simplicity, let

zi =
∑K

k=1 τik(xi−µ∗
k) and Ei =

∑K
k=1 τik(Ipn ⊗ eTk ), for i = 1, . . . , n. Consider the difference

Qn(ω, µ,Ω)−Qn(ω, µ
∗,Ω) = I ′1 − I ′2 + I ′3
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where

I ′1 = n−1

n∑
i=1

zTi ΩEi∆µ,

I ′2 = (2n)−1

n∑
i=1

∆T
µE

T
i ΩEi∆

T
µ ,

I ′3 = −λ1n

pn∑
j=1

∑
1≤k<k′≤K

[
|µkj − µk′j| − |µ∗

kj − µ∗
k′j|
]
.

Let ∆
(s)
µ be the sth component of ∆µ, and δ′s be a (Kpn)-dimensional unit vector with sth

component 1, for s = 1, . . . , Kpn. Then, it can be seen that |I ′1| =
∑Kpn

s=1 ηs∆
(s)
µ , where

ηs = n−1

n∑
i=1

zTi ΩEiδ
′
s,

for s = 1, . . . , Kpn. Now, consider the event F =
∩Kpn

s=1 {|ηs| ≤ λ1n}. Since ∥Ω−Ω∗∥ = op(1),

we have ∥ΩΣ∗−Ipn∥ = op(1) by condition (A). Thus, ∥ΩΣ∗Ω−Ω∗∥ = ∥(ΩΣ−Ipn)(Ω−Ω∗)∥ =

op(1). Consequently,

n−1

n∑
i=1

δ′Ts ET
i ΩΣ

∗ΩEiδ
′
s = n−1

n∑
i=1

δ′Ts ET
i Ω

∗Eiδ
′
s + op(1)

, Ms + op(1).

Therefore, using the probability bound on the tail of the standard Gaussian distribution, we

know that

P (F c) ≤
Kpn∑
s=1

P (n1/2|ηs| > n1/2λ1n)

≤ Op(1) ·
Kpn∑
s=1

exp

(
−nλ2

1n

2Ms

)
≤ Op(Kpn) exp

(
− nλ2

1n

2maxs{Ms}

)
which tends to 0 when λ1n = (2maxs{Ms} log pn/n)1/2. Consequently, by considering the

event F , we have

|I ′1| ≤
Kpn∑
s=1

|ηs||∆(s)
µ | ≤ λ1n∥∆µ∥1
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with a probability tending to one. Note that |I ′3| ≤ λ1n

∑pn
j=1

∑
1≤k<k′≤K |∆µkj

− ∆µk′j | ≤

(K − 1)λ1n∥∆µ∥1. Thus, with a probability tending to one, we have

|I ′1|+ |I ′3| ≤ Kλ1n∥∆µ∥1

≤ K3/2p1/2n λ1n∥∆µ∥2

= Op(pn log pn/n).

The proof can be concluded from proving that I ′2 ≥ C2pn log pn/n for some constant C2.

Since ∥Ω− Ω∗∥ = op(1), we have

I ′2 = (2n)−1

n∑
i=1

∆T
µE

T
i Ω

∗Ei∆
T
µ + op(1)

≥ (2κ2)
−1

{
K∑
k=1

nk∥∆µk
∥22/n

}
≥ (2κ2)

−1 min
1≤k≤K

nk

n
· ∥∆µ∥22

= C2pn log pn/n

with a probability tending to one. This finishes the proof. �

Before proving Theorem 2, we first prove the following lemma.

Lemma 1.1. Let ∥ · ∥FP : RK → R be the fused penalty ∥x∥FP =
∑

1≤k<k′≤K |xk − .xk′|.

Then, ∥ · ∥FP is convex and, for any x ∈ RK, the subdifferential ∂∥x∥FP is the set of all

vectors s ∈ RK such that

si =
∑
j ̸=i

sgn(xi − xj),

for i = 1, . . . , K.

Proof. For each j = 1, . . . , K − 1, let H(j) be a (K − j) × K matrix with H
(j)
ii = −1,

H
(j)
i,i+j = 1 for i = 1, . . . , K − j and 0 otherwise. Denote by H the K(K − 1)/2×K matrix

with jth row block matrix H(j). Then, for any x ∈ RK , ∥x∥FP = ∥Hx∥1. Note that the l1

norm ∥ · ∥1 is convex and ∥ · ∥FP is the composition of a linear functional by the l1 norm.
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Hence, ∥ · ∥FP is convex. Further, by the definition of the subdifferential of the l1 norm, for

any y ∈ RK ,

∥Hy∥1 ≤ ∥Hx∥1+ < H(y − x), υ > (1.1)

holds if and only if υ ∈ Wυ ⊂ RK(K−1)/2, where Wυ is the set of all vectors υ = sgn(Hx).

Note that

< H(y − x), sgn(Hx) > =
∑

1≤k<k′≤K

[(yk′ − xk′)− (yk − xk)]sgn(xk′ − xk)

= 2−1
∑
k′ ̸=k

[(yk′ − xk′)− (yk − xk)]sgn(xk′ − xk)

=
K∑
k=1

(yk − xk)

{∑
k′ ̸=k

sgn(xk − xk′)

}
.

Thus, equation (1.1) is equivalent to

∥y∥FP ≤ ∥x∥FP+ < y − x, s >,

where s is a K-dimensional vector with ith component si =
∑

j ̸=i sgn(xi − xj). The set of

all such vectors s is, therefore, ∂∥x∥FP . �

Proof of Theorem 2. First, we prove the sparsistency of the precision matrix estimator

Ω̂. The derivative of Qn(ω, µ,Ω) w.r.t. Ωjl for (j, l) ∈ Ac, j ̸= l at (ω̂, µ̂, Ω̂) is

∂Qn(ω̂, µ̂, Ω̂)

∂Ωjl

= σ̂jl − sjl − 2λ2nsgn(Ω̂jl),

where sjl is the (j, l)th element of S = S(µ̂) and sgn(a) denotes the sign of a. Note that

S = S(µ∗)− 1

n

n∑
i=1

K∑
k=1

τik∆µk
(xi − µ∗

k)
T

− 1

n

n∑
i=1

K∑
k=1

τik(xi − µ∗
k)∆

T
µk

+
1

n

n∑
i=1

K∑
k=1

τik∆µk
∆T

µk

, I1 − I2 − I3 + I4.

Then, we decompose σ̂jl − sjl = A1 + A2 + A3, where

A1 = σ̂jl − σ∗
jl, A2 = σ∗

jl − I1jl, A3 = I2jl + I3jl − I4jl,
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where Bjl denotes the (j, l)th element of matrix B. Now, consider the order of A1. Under

condition (A), we have ∥Σ∗∥ = O(1) and ∥Σ̂∥ ≤ (λmin(Ω̂−Ω∗)+λmin(Ω
∗))−1 = Op(1). Thus,

|A1| ≤ ∥Σ̂− Σ∗∥

≤ ∥Σ̂∥ · ∥Ω̂− Ω∗∥ · ∥Σ∗∥

= Op(ρ
1/2
n2 ).

By Lemma 3 in Bickel & Levina (2008), we have |A2| = Op({log pn/n}1/2). Now, we estimate

the order of A3. Since max1≤j≤pn ∥µ̂(j) − µ∗
(j)∥22 = Op(ρn1) for a sequence ρn1 → 0, we have

|I2jl| =

∣∣∣∣∣n−1

n∑
i=1

zil

(
K∑
k=1

τik∆µkj

)∣∣∣∣∣
≤ Op(1) ·

(
K∑
k=1

nk∆
2
µkj

/n

)1/2

≤ Op(1) ·

(
K∑
k=1

∆2
µkj

)1/2

= Op(ρ
1/2
n1 ).

Similarly, we have |I3jl| ≤ Op(ρ
1/2
n1 ) and |I4jl| ≤ Op(ρn1). Thus, |A3| ≤ Op(ρ

1/2
n1 ). Combining

above results yields that

max
j,l

|σ̂jl − sjl| = Op({log pn/n}1/2 + ρ
1/2
n1 + ρ

1/2
n2 ).

Hence, we need to have log pn/n+ρn1+ρn2 = O(λ2
2n) in order to have the sign of ∂Qn(ω̂, µ̂, Ω̂)/∂Ωjl

that depends on sgn(Ω̂jl) with a probability tending to one. This completes the proof of The-

orem 2(i).

Next, we prove the second result of Theorem 2. The main idea of the proof is inspired by

Rinaldo (2009). Let τ̄k = n−1
∑n

i=1 τik, k = 1, . . . , K. Then, by Lemma 1.1, we know that

µ̂k =
1

nk

n∑
i=1

τikxi − λ1nτ̄
−1
k Σ̂ŝk

where ŝk = (ŝk1, . . . , ŝkpn)
T with jth element ŝkj =

∑
t ̸=k sgn(µ̂kj − µ̂tj). Hence, for k, k′ =

1, . . . , K and k < k′,

µ̂k′j − µ̂kj =
n∑

i=1

(
τik′

nk′
− τik

nk

)
xij − λ1ne

T
j Σ̂(τ̄

−1
k′ ŝk′ − τ̄−1

k , ŝk)
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where ek is a pn-dimensional unit vector with the kth component 1. Since λmax(Σ̂) = ∥Σ̂∥ ≤

(λmin(Ω̂−Ω∗)+λmin(Ω
∗))−1 ≤ κ2 and |τ̄−1

k′ ŝk′l− τ̄−1
k ŝkl| ≤ 2(K−1) for l = 1, . . . , pn, we have

∥eTj Σ̂(τ̄−1
k′ ŝk′ − τ̄−1

k ŝk)∥2 ≤ λmax(Σ̂)∥τ̄−1
k′ ŝk′ − τ̄−1

k ŝk∥2

≤ 2p1/2n κ2(K − 1). (1.2)

As a result, the event {B̂ = B} occurs in probability if both

max
B

∣∣∣∣∣
n∑

i=1

(
τik′

nk′
− τik

nk

)
xij

∣∣∣∣∣ < 2λ1np
1/2
n κ2(K − 1) (1.3)

and

min
Bc

∣∣∣∣∣
n∑

i=1

(
τik′

nk′
− τik

nk

)
xij − λ1ne

T
j Σ̂(τ̄

−1
k′ ŝk′ − τ̄−1

k ŝk)

∣∣∣∣∣ > 0 (1.4)

hold with a probability tending to 1 and n → ∞.

We first consider (1.3). For the sake of simplicity, let M = 2κ2(K − 1) and akk′i =

τik′/nk′ − τik/nk, i = 1, . . . , n. Then, by condition (C)(i), we know that

max
B

∣∣∣∣∣
n∑

i=1

(
τik′

nk′
− τik

nk

)
xij

∣∣∣∣∣ ≤ max
B

∣∣∣∣∣
n∑

i=1

akk′iϵij

∣∣∣∣∣+ op(λ1np
1/2
n ),

where ϵij = xij −
∑K

k=1 τikµ
∗
kj, which follows normal distribution with mean 0 and variance

σ∗
jj. Let ξkk

′
j =

∑n
i=1 akk′iϵij, k, k

′ = 1, . . . , K, k < k′ and j = 1, . . . , pn. It is easy to show

that Eξkk
′

j = 0, Var(ξkk
′

j ) =
∑n

i=1 a
2
kk′iσ

∗
jj ≤ 2σ∗

jj, and Cov(ξkk
′

j , ξll
′

t ) =
∑n

i=1 akk′iall′tσ
∗
jt for

each (k, k′, j) ̸= (l, l′, t). For (k, k′, j) ∈ B, let ζkk′j ∼ N(0,
∑n

i=1 a
2
kk′iσ

∗
jj) such that

E(ζkk
′

j )2 = E(ξkk
′

j )2, for all (k, k′, j) ∈ B,

E(ζkk
′

j ζ ll
′

t ) ≥ E(ξkk
′

j ξll
′

t ), for all (k, k′, j), (l, l′, t) ∈ B and j ̸= t.

Then, by Slepian’s inequality (Ledoux & Talagrand, 1991) and Chernoff’s bound for standard
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Gaussian variables, we have

P (max
B

|ξkk′j | ≥ λ1np
1/2
n M) ≤ P (max

B
|ζkk′j | ≥ λ1np

1/2
n M)

≤
∑
B

P (|ζkk′j | ≥ λ1np
1/2
n M)

≤
∑
B

2 exp

{
−λ2

1npnM
2

4b∗max

}
= 2 exp

{
−λ2

1npnM
2

4b∗max

+ log |B|
}
,

which vanishes under condition (C)(i).

In order to verify (1.4), it is sufficient to show that

max
Bc

∣∣∣∣∣
n∑

i=1

akk′iϵij − λ1ne
T
j Σ̂(τ̄

−1
k′ ŝk′ − τ̄−1

k ŝk)

∣∣∣∣∣ ≤ αmin
n ,

with probability tending to one as n → ∞. Using the triangle inequality, we only need to

show that

max
Bc

∣∣∣λ1ne
T
j Σ̂(τ̄

−1
k′ ŝk′ − τ̄−1

k ŝk)
∣∣∣ ≤ αmin

n /2 (1.5)

and

max
Bc

∣∣∣∣∣
n∑

i=1

akk′iϵij

∣∣∣∣∣ ≤ αmin
n /2. (1.6)

Because of (1.2), it is easy to see that the inequality (1.5) holds under condition (C)(ii).

Then, we turn to (1.6). For (k, k′, j) ∈ Bc, let ζkk
′

j ∼ N(0, 2b∗max) so that

E(ζkk
′

j )2 = E(ξkk
′

j )2, for all (k, k′, j) ∈ Bc,

E(ζkk
′

j ζ ll
′

t ) ≥ E(ξkk
′

j ξll
′

t ), for all (k, k′, j), (l, l′, t) ∈ Bc and j ̸= t.

Then, again, by Slepian’s inequality and Chernoff’s bound for standard Gaussian variables,

we have

P (max
Bc

|ξkk′j | ≥ αmin
n /2) ≤ P (max

Bc
|ζkk′j | ≥ αmin

n /2)

≤
∑
Bc

2 exp

{
−(αmin

n )2

16b∗max

}
= 2 exp

{
−(αmin

n )2

16b∗max

+ log |Bc|
}
,
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which vanishes under condition (C)(ii). Hence, the proof of Theorem 2(ii) is completed. �

Proof of Theorem 3. Given the estimates ω̂, µ̂ and Ω̂, a new observation x∗ is assigned

to the kth class if

x∗T Ω̂(µ̂k − µ̂l) > log(ω̂l/ω̂k) + {(µ̃k + µ̃l)/2}T Ω̂(µ̂k − µ̂l) (1.7)

for l = 1, . . . , K and l ̸= k, where µ̃s =
∑n

i=1 I(yi = s)xi/
∑n

i=1 I(yi = s), s = 1, . . . , K.

Given data (yi, xi) for i = 1, . . . , n, the conditional misclassification rate of CEDA is

given by

Rn =
1

2

2∑
k=1

Φ

(
(−1)kδ̂T Ω̂(µ∗

k − µ̃k)− δ̂T Ω̂δ̃/2√
δ̂T Ω̂Σ∗Ω̂δ̂

)
,

where δ̂ = µ̂1 − µ̂2 and δ̃ = µ̃1 − µ̃2.

(i) Since ∥Ω̂− Ω∗∥2 = Op(ρn2) for a sequence ρn2 → 0, we have

∥Σ̂− Σ∗∥ = ∥Σ̂(Ω̂− Ω∗)Σ∗∥

≤ ∥Σ̂∥ · ∥Ω̂− Ω∗∥ · ∥Σ∗∥

≤ ∥Σ̂∥ ·Op(κ2ρ
1/2
n2 ).

Note that ∥Σ̂∥ ≤ (λmin(Ω̂− Ω∗) + λmin(Ω
∗))−1 = Op(1). Hence,

∥Σ̂− Σ∗∥2 = Op(ρn2).

Consequently,

δ̂T Ω̂Σ∗Ω̂δ̂ = δ̂T Ω̂δ̂[1 +Op(ρ
1/2
n2 )] = δ̂TΩ∗δ̂[1 +Op(ρ

1/2
n2 )].

Without loss of generality, we assume that δ̂ = (δ̂T1 , 0
T )T , where δ̂1 is the b̂n-dimensional vec-

tor containing nonzero components of δ̂. Let δ∗µ = (δ∗T1 , 0T )T , where δ∗1 is the bn-dimensional

vector containing nonzero components of δ∗µ. Then, from Theorem 2, we have b̂n = bn and

consequently,

∥δ̂ − δ∗µ∥22 = ∥δ̂1 − δ∗1∥22 = Op(bnρn1)

11



with a probability tending to one. It together with condition (A) implies that (δ̂−δ∗µ)
TΩ∗(δ̂−

δ∗µ) = Op(bnρn1). Thus, (δ̂ − δ∗µ)
TΩ∗δ∗µ ≤ ∆pnOp(b

1/2
n ρ

1/2
n1 ) and

δ̂TΩ∗δ̂ = (δ̂ − δ∗µ)
TΩ∗(δ̂ − δ∗µ) + 2(δ̂ − δ∗µ)

TΩ∗δ∗µ +∆2
pn

= ∆2
pn [1 +Op(b

1/2
n ρ

1/2
n1 /∆pn)].

Let µ̃1 − µ∗
1 = (γT

1 , γ
T
2 )

T , where γ1 is a bn-dimensional vector. Partition Ω∗ into

Ω∗ =

Ω∗
11 Ω∗

12

Ω∗T
12 Ω∗

22

 ,

where Ω∗
11 is a bn × bn matrix, and partition Σ∗, Ω̂ and Σ̂ in the same way. Then,

δ̂T Ω̂(µ̃1 − µ∗
1) = δ̂T1 Ω̂11γ1 + δ̂T1 Ω̂12γ2,

with a probability tending to one. Further, by Cauchy-Schwarz inequality and the fact

Ω∗−1
11 ≤ Σ∗

11, we have (δ̂
T
1 Ω̂11γ1)

2 ≤ (δ̂T Ω̂δ̂)Op(bn/n) and (δ̂T1 Ω̂12γ2)
2 ≤ (δ̂T Ω̂δ̂){γT

2 Ω
∗T
12Σ

∗
11Ω

∗
12γ2

[1 + Op(ρ
1/2
n2 )]}. Note that all eigenvalues of sub-matrices of Ω∗ and Σ∗ are bounded under

condition (A). Then, we have that

E(γT
2 Ω

∗T
12Σ

∗
11Ω

∗
12γ2) ≤ κ2E(γT

2 Ω
∗T
12Ω

∗
12γ2)

≤ κ2
2

n
tr(Ω∗

12Ω
∗T
12 )

≤ κ2
2an/n.

Therefore,

δ̂T Ω̂(µ̃1 − µ∗
1)√

δ̂T Ω̂Σ∗Ω̂δ̂
=

Op(
√
bn/n) +Op(

√
an/n)√

1 +Op(ρ
1/2
n2 )

,

which also holds when µ̃1 − µ∗
1 is replaced by µ̃2 − µ∗

2 or δ̃ − δ∗µ. Furthermore, δ̂T Ω̂δ̃ =

δ̂T Ω̂δ̂ + δ̂T Ω̂(δ̃ − δ∗µ) + δ̂T Ω̂(δ∗µ − δ̂) and [δ̂T Ω̂(δ∗µ − δ̂)]2 ≤ (δ̂TΩ∗δ̂)Op(bnρn1). Therefore,

(−1)kδ̂T Ω̂(µ∗
k − µ̃k)− δ̂T Ω̂δ̃/2√
δ̂T Ω̂Σ∗Ω̂δ̂

=
Op(
√

bn/n) +Op(
√

an/n) +OP (
√
bnρn1)√

1 +Op(ρ
1/2
n2 )

−
∆pn

√
1 +Op(b

1/2
n ρ

1/2
n1 /∆pn)

2

√
1 +Op(ρ

1/2
n2 )

= −[1 +Op(cn)]∆pn/2,

12



which implies the result in (i).

(ii) Let ϕ be the density of Φ. Then, by the result in (i),

Rn −ROPT = ϕ(νn)Op(cn),

where νn is between−∆pn/2 and−[1+Op(cn)]∆pn/2. Since ∆pn is bounded, ϕ(νn) is bounded

by a constant and ROPT is bounded away from 0. Hence, the CEDA is asymptotically optimal

and Rn/ROPT − 1 = Op(cn).

(iii) When ∆pn → ∞, ROPT → 0 and by the result in (i),Rn
P−→ 0, we have Rn−ROPT

P−→

0.

(iv) If ∆pn → ∞ and cn∆
2
pn → 0, then, by Lemma 1 in Shao et al. (2011), we have

Rn/ROPT
P−→ 1. �

2 Figures for the kidney transplant rejection and tissue

injury

Figure 1 summarizes the classification accuracy using boxplots for the proposed covariance-

enhanced discriminant analysis, fusion-regularized linear discriminant analysis (Guo, 2010),

doubly l1-penalized linear discriminant analysis, sparse discriminant analysis (Clemmensen et

al., 2011) and l1-penalized linear discriminant analysis (Witten & Tibshirani, 2011). Figure

2 presents the heatmap of the estimated centroids for the 19 most informative genes selected

in the kidney transplant rejection and tissue injury data set.
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Figure 1: Classification accuracies of the five methods on the kidney transplant rejection and

tissue injury data set. The procedures from A to E are the proposed covariance-enhanced

discriminant analysis, fusion-regularized linear discriminant analysis (Guo, 2010), doubly

l1-penalized linear discriminant analysis, the sparse discriminant (Clemmensen et al., 2011)

and l1-penalized linear discriminant analysis (Witten & Tibshirani, 2011).
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Figure 2: The heatmap of the estimated centroids for the 19 most informative genes selected

in the kidney transplant rejection and tissue injury data set. Rows correspond to genes and

columns to classes. The right is the color key.
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