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Appendix A: Comparisons with Ad Hoc Approaches

We perform additional simulations to compare our method with various ad hoc approaches under the same
settings as in Example 2. The ad hoc approaches include: the “OneSplit” approach which conducts variable
selection and CQR estimation based on a single data split; the “NoSplit” approach which conducts both
variable selection and CQR estimation on the full data; the “Half” approach which conducts Fused-HDCQR
but performs selection and estimation on the same half of data. The results, as reported in WebTable 1,
show that our proposed “Fused” method has the smallest biases and standard errors (SEs); “OneSplit” has
smaller biases than “NoSplit” but with larger SEs; “NoSplit” has larger biases than “Fused” and “OneS-
plit,” but smaller biases than ‘Half”; and the “Half” approach produces the largest biases under all of the
configurations.

Appendix B: Proofs of the Main Results

We prove our main results. All of the lemmas mentioned in the proofs are to be formally stated and proved
in Appendix C.

Under Condition (A1), we have E [ [° 1 {log X; > ZT3"(u)} dH(u)] = 7o (Zheng et al., 2018). Therefore,
following the discussions underneath Assumption 3.1 in Zheng et al. (2018),

z:; Z; <§ /” 1 {1og X; > z?ﬁ(n)} dH (u) + /OTO 1 {logXi > z}g’(o)} dH(u)> 7

the grid approximation of >, Z; fOT 1 {log X, >ZIp* (u)} dH (u), can be shown to be asymptotically equiv-

alent to
n k—1
(%)

Let ¢, (h) :=2%"" | Aipr,(log X; — hTZ;) + 270 > (1 — A;)(log X; — hTZ;). Denote by

o 1 {logXi > Z;FB(T,)} dH (u) + To) .

T

n n
Lk(h) = Z Al |10gXi — hTZi’ + hT Z AiZi
i=1 =1
n k=1 1.y ,
—2n"Y "z, (Z/ l{logXi > ZiT,B(T,.)}dH(u) +7’0>. (1)
i=1 r=0"7Tr



In particular, Ly(h) = S A |10g X; — hTZZ-| +hT Y AZ 20T Y Zm.

Given 0 € R?, let S(8) = {j : §; # 0}. Given S C {1,...,p} such that S* C S and |S| < K1n®, we
denote by Qg}k(a, b), k=0,...,m the event that for all 0 <r <k,
L.(B* () + 8) — L.(B"(r,)) > 0,

inf
I(E[Z:ZT])1/28||=vAminavr »(b),S(8)CS
where {vg,(b),k = 0,...,m} is a sequence satisfying vy ,(b) = vp, = VEin~llogn and vgyq1,(b) =
Ve (14bey,) for some constant b > 0; vy, ,, increases with k and vy, ,, = v, (14+be,)™ < l/Own(l—i—chn*l)”/CO <
e?(Kyn“~"logn)'/2. Event Qg x(a,b) and the convexity of L,(h) together ensure the uniform consistency
of ,8(7) forallv <7 < 7.
With Propositions 1 and 2 below, we show that Qs, & (a, b) holds with probability going to 1. In Proposition
1, we prove that there exists a constant {7, such that P(Q&O((jl, 0)) > 1-16K;n“~*. Thus, B(7) is consistent
with rate (Kin®~!log n)l/ ® which establishes the baseline result for induction. Then in Proposition 2, we
show that there exists a constant (o, such that given that event (’257k_1(C1, ¢2) holds, event QS,k(Cla ¢2) holds
with probability at least 1 — 4(5k + 8) Kin® —4.

Propositions 1 and 2 will lead to the estimation consistency of B(r) over [y, 7y/]. Specifically, Vm,n(C2) <
exp(Ca) (K1n ~Hogn) /2 and P(Qsn(C1,C2)) > 1— 07, 4(5k +8) Kyn®—* > 1 —20cy 2K n® ~2 imply the
estimation consistency of ﬁ(’]’k) at k = 1,...,m, and consequently the uniform consistency of Bj (1), j =
1,..,p over [rg, 7], as shown in Theorem 1. Then utilizing some empirical process techniques, we can
establish the weak convergence of Ej for any j € S in Theorem 2.

Proposition 1. Under Conditions (A1) — (A7), one can find a sufficiently large constant {y such that
event Q05.0(C1,0) holds with probability at least 1 — 16K1n“~*, where S C {1,...,p} such that S* C S and
|S| S Klncl .

Proof of Proposition 1. Consider 1., (8" (19) + 8) — 1+, (8" (70)). It can be written as
E ¢, (B"(70) + 8) — ¥7, (8" (70))] + 7, (B (70) + 6)

— ¥ (B7°(7)) = E[Yr, (B"(70) + 8) — 7, (8" (70))] -
By Lemma 2, uniformly for & that satisfies [|8]|o < Kin, 8" E [Z,Z]] 8 = 12,t < K/ A,

1 E [1hry (B (10) + )] — 7 E [1hr, (B (10))] > gt* — 2At%/(3ca). (2)
It follows that
sup Ury (B (10) +6) — ¥y (B"(70)) — E [th7, (B™(70) + 6) — 17, (B™(70))]
0T E[2;ZT]6=t2,5(8)CS
< 2v/nA(t),
where
Ao(t) == sup Gy, [Pro,i(B"(10) + 8) — pryi(B (70))]] +

8T E|Z,2T)6<12,5(8)CS
and pr,.;(h) := A;p,, (log X; — ZTh) + 79(1 — A;)(log X; — ZTh). According to Lemma 3,
P (Ao(t) > 24v2 (ALL Kyn® logn) '/ t) < 16K, (3)
By (2) and (3), we obtain that
inf n~! [, (8" (10) + 8) — ¥ry (B"(70))]

E[Z,2T]|6=12,5(8)CS

2
> t{gt — g AP =48V (A Kin®  log n)'/? }
- 2



with probability at least 1 — 16K n° ~%. Therefore, there exists a sufficiently large constant (i, such that
inf Vo (B*(70) 4 0) = ¥, (8" (70)) > 0,

8T E[Z:ZT|6=Amin(Z K1n1~ ! logn,S(8)C
with probability at least 1 — 16K nc ~4.
Since 9., (h) is convex with respect to h, we have with probability at least 1 — 16 K;n°1~*

|z 2 (Bir0) = B(70)) | < VAnG (B~ logm)'/?.

‘B(To) - ﬁ*(To)H < (K ! logn)1/2. O

3

By Condition (A6),

Proposition 2. Suppose Conditions (Al)f(,A 7) hold and ¢y is a constant from Proposition 1, there exists a
universal constant (o such that under event Qg ,—1(¢1,¢2), 1 <k < m, event Qi (1, 2) holds with probability
at least 1 — 4(5k + 8) K1n“ =%, where S C {1,...,p} such that S* C S and |S| < Kin.
Proof of Proposition 2. We note that
Li(B" (k) + &) — Li(B" (7h))
= B |Lu(B"(ny) + 8) — Ln(8" ()]

+n'2G,, | A, (|logXi —ZT (B* () + 6)’ — |logXi — Z?,@'*(Tk)D + Z AZTS
i=1
n k—1 Trt1 )
—m'G, |67z, (Z/ 1 {1og X, > z;f,e(n)} dH (u) + TO>
i=1 =0 7Tr

We choose some constant (5 such that

&> 22 At 1282 2Lent/re
2 )
g)\rln/ii(]' —TU) gAmin(1 = 70)C g)\rln/ii(l —1y)K1logn

where g is defined in Condition (A3) and A, are defined in Condition (A6). It can be seen that the choice
Qf (5 does not deper}d on n as the last three terms go to zero as n increases. Then we show under event
Qi—1(¢1,C), event Q (¢, ¢2) holds with large probability.

We follow the similar arguments used in Proposition 1. By Lemmas 5, 6 and 7, we have under ng,l ((1,¢0),
inf nt [Lk(ﬁ*(m) +4) — ﬁk(ﬁ*(Tk))}
0T B[2;ZT]6=t2,]|] o <K1n°1

k—1
€n

2 _
> A a2 Z 1/2
= t{gt 302 At 2 1— v (f<1)‘maxyr,n(c2) + Len)

k—1
— (40 + 647)V2 (A i Kin® ! logn)l/2 - 128\/52 tn (A K11 logn)1/2
r=0

min 1— TU min

k—1
n Froy1/2
B 201 —TU TZ::O fCl)‘maer,n(C?)}



with probability at least 1 — 4(5k + 8) Kyn~%. Thus, under Qs,k,l(gl,@). we have

0 < gC1V AminVk—1,n(C2) — lAAmin(Clyk—l,n(CQ))Q

k-2

(2276 v Nt (G2) + 2Len) )

rO

—(40 + 6470)V2 (AL Kyn® ~tlogn) '/ er~1logn)'/?

min

Let vk n(C2) = (14 (2€)vk—1,n((2). Simple algebra yields that

961V AminVe—1,n(C2) — iA)\min(Q(l + Caen)Vk—1.1(C2))?

3C2
€n k—2
/2
B 1— TU g (22f<1)\maxl/r n(§2) + 2L6n>

— (40 + 6479)V2 (At K1n® ! log n)1/2 minEK1n " logn) 1z

min

+ 9C1Gv )\minGndq,n(Cz) —1= (QQfCI)\}n/fokfl,n(Cé) + 2L6n)

()\ L Kin®~ 1logn) 1/2 >0,

min

by our choice of (5. Again, since (1) is convex with respect to h, under Qk,l(Ch (2), we have with probability
at least 1 — 8(2k + 3)Kin®1—4,

AR | R

By condition (A6), we have Hﬁ(rk) - ﬁ*(Tk)H < Civ,n(C2). O

Proof of Theorem 1. By Propositions 1 and 2, we have

-1y-1

m (con
P(Qom(C1,C2)) > 1= 4Bk +8)Kin™ 4 >1— Y 4(5k+8)Kn®~
k=0 k=0

)

>1—10cy ?Kin® =2 — 42y ' Kyn® =3 — 32K 1n“ =4 > 1 — 20cy 2K 1n 2
when n is sufficiently large. Thus, we have with probability at least 1 — 20c, 2Kine 2,

sup [|B(7) - B7(7)]

To<7<TU

< max 1{ sup IB(T)B*(T)ILIIB(%)B*(Tm)ll}

T <T<Tk41

< IIﬁ'(Tk) B ()l +  sup  [B7(7) = B (), C1vm, m(C2) (5)

—07 M T <T<Th41

< max {komax . C1Vin(G2) + Legn™ (Kn® )2, Cl’/mn,n(CQ)}

< (Vi n(G2) < Ge? (K1~ ogn)'/2.

Thus B() is uniformly consistent to 8* () with the convergence rate (n“~*logn)'/2 across 7 € [0, 7y]. O



Proof of Theorem 2. For a set S C {1,...,p} satisfying S* C S and |S| < K1n®,0<¢; <1/3 and K; <1,
let Bg(7) be the estimator from fitting CQR Qy (7]Zs) = ZEB4(7), and Vj € S, the j-th entry 3;(7) is the
coefficient for variable Z;. Further denote 0;5(7) = Z]3B84(7) and 0;4(1) = Z1B%(7) for subject i. Then
B 5(7) is the solution to the following estimating equation as in Peng and Huang (2008),

nl/QUn(;BS7 T) = Oa

where

W(BsiT) =n 1ZZ15< ( ))—/OTI[logXiZﬁis(u)]dH(u)>.

Let u(Bg,7) = E[U,(Bg,7)]. By the Martingale property, u(8s,7) = 0, 7 € (0,1). For a vector
b = (by,bs,...b5))" of length |S|, we define pg(b) = E[ZsN(Z3b)] = E[ZsG(Zb|Zs)], Bs(b) =
El[ZsZ%g (ZLb|Zs)], and Jg(b) = —E[ZsZY f (ZLb|Zs)]. For d > 0, define

B(d) = {b € RI¥! tinf e (0,71 [ s (b) — ps[B5 (7]l < d}, and A(d) = {ps(b) : b € B(d)}.

By the restricted eigenvalue condition (A6), together with |S| < Kin°', pg is a one-to-one map from
B(do) to A(dp) for some dg > 0. By Conditions (A3) and (A6), the inverse of Bg(8%5(7)) exists and we use
Bgl(ﬂg(T)) to denote the inverse. Furthermore, let e; = (1{i = j})i=1,..,|5|, be the unit vector of which

the jth element is 1. Then f;(r) = eTBg(r) and €T = [B;4(8%(7))|"Bs(B%(r)), where B ¢ (85(r)) is
the jth column of B (8%(7)). By the Taylor Expansion, ug{Bs(T)} — ps{B5(1)} = Bs(ﬁg(T))(BS(T) -

* 4 * T 4 * * 4
,BS(T)) + (ﬂS(T) — BS(T)) Vzus(br)(ﬁs(r) — ,BS(T))/Z for some b, € B(dy) between B5(7) and B4(7),
where V2pug(b) is the second derivative of pg. The jth element of Viug(b) is E [¢'(ZEb|Zs)Zs,;ZsZE],
where Zg; is the jth element of Zg.

Bi(7) = B; (r) = B33 (B5(n)]"Bs(85(r) (Bs(r) - B5(r))
= B (85" (ns{Bs(1)} - ns{Bs(1)})
B3 (B30 (Bs(7) = B5(7)) V2hs(b,) (Bs(7) — B5(7)) /2. (6)
We first consider [Bj2 (85(r))]" (Bs(r) - B5(r)) " Vs (br) (Bs(7) - B5(7)) /2.

B js ﬁs )] (53 7) = B5( T)) VQHS( )( s(1) = Bs(r ))|
|eTB B5()(Bs(r) — B5(7))  V2ug(br) (Bs(r) — B5(1))]
< IB5(85(1) (Bs(7) zm)TVQ s(b,) (Bs(7) = B5(M) |12

<g—1>\ 1

min

(Bs(7) = B5(1) ' V2us(br) (Bs(r) - B5(7)]|.

g™ A (i)' e B [g/(23b]25) Zs, (s () - B5(r)) 2525 (Bs(r) - B5(7) |

< g A (Kin™)2 B (Bs(r) - By(n) " ZsZE (Bs(7) - B5()]
_1)\mlln)‘maXAK3/20 ( Se1/2-1 lOg n) = Op(ngcl/Q_l 10g n)a

where the first inequality follows from ||ej|l2 = 1, the second inequality follows from the definition of
Bs(85(7)) and Conditions (A3) and (A6), the third inequality is trivial, the fourth inequality follows from
Conditions (A2) and (A3), and the last equality follows from Condition (A6) and Theorem 1. Then

2B (B5(M)]" (Bs(r) = BE()) V2ps(br) (Bs(r) — Bs(7) /2
= 0,(n>/27Y21ogn) = 0,(1), (7)
by Condition (A4).



We next consider [B;S1 (Bs(r)* (uS{BS(T)} - us{ﬁ*S(T)}). We modify the decomposition in Appendix
C of Peng and Huang (2008) by multiplying both sides by [B;S1 (BE(TN]T,

2B (B ()] U (85, 7) =0 2B (B5(r)] [ Bs(r)} — sl (r))
— [ B BT 35 (85) B (B3 + 00

x ' (s {Bs(r)} — ps{B5()}| dH (W) + 000, (1).

View the equation as a stochastic differential equation for nl/z[B;Sl(,Bg(T))]T[us{,és(r)} — ps{Bs(m)}].
We use the production integration theory (Andersen et al. (2012) I1.6) and obtain

n'?[B5 (Bs(M)]" [ns{Bs(7)} — ns{B5(n)}]

= ¢, [—nl/Q[B;;wg(T))] (85, >] + 000,70 (1), (8)
where ¢; is a map from G to G such that for g € G, ¢;(g fo (s,7)dg(s), with
L= I [Brasm)] s+ Js{ﬂz<u>}Bs{ﬁz<u>}—1dH<u>] and

uE[s,t]
G ={g:[0,7v] = R, g is left-continuous with right limit, g(0) = 0},
where I; is a [ x [ identity matrix.

Next we show the convergence of —’rLl/Q[B;; (Bs(T))TU,.(B%, 7). Since U, is of dimension |S|, which
increases with n, we apply the results in Section 2.11.3 of Van Der Vaart and Wellner (2000). We write the
class

Fo = {fnr = (B (B5(r)]"Zus (N: (035(7) - /0 1 {log X; > 0}5(w)} dH(w)) : 7 € [, 70]}.

Since N; (0;4(7))— [y 1{log X; > 0;¢(u)} dH (u) is uniformly bounded by some K3 over T € [v, 7], we choose
Fy =sup.cpy ) K397 A1 |Zs||. One can check that
P*F? = O(1),
P*F2{F, > nvn} =0, V¥n>0, and
sup  P(far — fuz)’ =0, V3,10,

|7 —F|<8n

where P* is the outer probability. By Conditions (A3) and (A6), f, - is Lipschitz. By Lemma 2.7.11 of Van
Der Vaart and Wellner (2000), Npj(el|Fy | p2, Fn, L2(P)) < N(€/2,[0,1], L1) < 2/e. We refer to Page 83 in
Van Der Vaart and Wellner (2000) for the definitions of the bracketing number Npj() and covering number
N(). Let uw =log(2/€). Then as §, — 0,

on 0o
/ (log(2/€))/?de = / 2ut/2e"du — 0.
0 log(2/8n)

By Theorem 2.11.23 of Van Der Vaart and Wellner (2000), —n'/2[B;¢ (85())|"Un(8%,7) is tight in 7 €
[v, v], and converges in distribution to a tight Gaussian process Gg(7) with mean zero and covariance

3(s,t), where X(s,t) = B{[B}5 (85(s))] "uis (s)us(t) "B}3 (B5(t))}, and

ts(r) = s (N 035(r) - [ 1108 X2 0i5(r)} ).

Last, because ¢; is a linear operator, ¢;{Ggs(7)},7 € [v,7y] is Gaussian as well (Rémisch, 2014). This
coupled with (6) and (7), yields that /n (ﬂJ(T) - B3 (7)) ,T € [v,7y] converges weakly to a mean zero
Gaussian process denoted as ¢;{Gs(7)}.



Now we are equipped to prove Theorem 3.

Proof of Theorem 3. We first introduce the oracle estimators of 37(7)’s assuming the true active set S* is

known. For each j € {1,...,p}, once again S7; = {j} US™, and note that S, = S* if j € S*. Let BS:(T)
J

be the oracle estimator by fitting the following CQR on the full data,

Qv (7lZsy;) = ZTijﬁS«*u (7).
Then the oracle estimator for 87 (7) is Bi(1) = (BS:(T)) , the entry corresponding to the coefficient for
J J

variable Z;. Analogically, let B?(T) denote the oracle estimator fitted on the b-th sub-sample D} in the
Fused-HDCQR procedure.

The objective can be decomposed as below,
Vi (Bi(r) - B (7))
=V (B;(7) = B;(7) + v/ (B(r) = B; (7))

=v/n (B;(r) = B (1)) + Vn < ! HGE 63(7))

B B
= Vi (35(r) = 8(r)) + v (;Z 3(7) Bm) v (;Z{E;?m B?(T)}) .
b=1

II II1

We will study the asymptotic behavior of the three terms separately. As the first two terms do not involve
the selections S’s, they deal with the oracle estimators and the true active set S*.

o I=n(B(r) - B; (7)) converges weakly to a mean zero Gaussian process;
o ll=yn (% >P L Br) - Bj(T)) = 0,(1), uniformly in 7 € [v, 7];

— 1B 2b b _ . .
e III=/n (B D obet {53' (1) — 55 (T)}) = 0p(1), uniformly in 7 € [v, 7p/].

By Slutsky’s theorem for random processes (Theorem 18.10 in Van der Vaart (2000)), if the above statements
all hold, we would conclude that \/n (B\j (1) = B; (7')) ,T € [v, 7y] converges weakly to a mean zero Gaussian
process.

a) Let S = 57, for each j € {1,...,p}, and by Theorem 2, I = Vn (BJ(T) - B3 (7)) , T € [v, Ty] converges
weakly to a mean zero Gaussian process ¢;{Gs(7)}, where ¢,(-), Gs(:) are defined in the proof of Theorem
2. Denote its covariance as o (s,t), which is uniformly bounded for s,t € [v, 7¢/].

b) To show II = o0,(1), we first denote &, (1) = ﬁ(Bf(T) — B;(7)), then II = (Z{il fb’n(T)) /B.
Since D}’s are random sub-samples, &, ,,(7)’s are i.i.d. conditional on data. Using a similar argument as in
Appendix C of Peng and Huang (2008), the conditional distribution of \/n (6;-’(7') — B;(7)) given the observed

data is asymptotically the same as the unconditional distribution of I = /n (Bj (1) — 5;(7')), which is mean



zero Gaussian from part a). Thus E(& ., (7)|D™) — E(I) — 0 and Var (&, ,(7)|D™) — ox(r,7) = o3 (1),
as n — oo. Denote 07 = sup, c(, | 0']2-(7') < 00, then E(IT|D™) — 0 uniform in 7 € [v, 7], and

202 (r 202
J( ) < relymnl.

Var (I1| D) = QZVar Ep.n(T)| D) < B 5

Now for any 6, ¢ > 0, there exist Ng, Bo > 0 such that, for any 7 € [v, 7y], whenn > Ny, B > By,

P(|II| > 6) < / P (\H| > 6 ‘ D(")) dP(D™)
D(MmeQ,
g/ P (|H — E(I)| > 6/2 ‘ D(”)) dP(D™)
Qn,

Var (IL| D) 202
_/Qn /1 dP(D )_3052/4 QndP(D )< ¢

Thus, II = 0, (1) uniformly in 7 € [v, 7y].

¢) Each subsample D} can be regarded as a random sample of [n/2] i.i.d. observations from the popula-
tion distribution for which assumption (A4) holds, that is |§b| < Kin‘ and P (S* - §b) >1—Ko(pvn)t
Notice that whenever §* C § b the estimators based on the respective selections both converge to the truth
by Theorem 2, ie. v/n (E;?(T) - B;?(T)) — 0,7 € [v, 7v). Define my(r) = 1 {s* ¢ §b} NG {E;?(T) - B;?(T)},
while omitting subscripts 7 in 5 for simplicity, then 11T = (211;3:1 771,(7')) /B.

By Lemma 1, there exists My > 0 such that sup, ¢ ﬂ?(T) - 65(7)‘ < 2M, for any S with |S?| <

Kinc. Therefore, by (A4),
Blp(r) <P (s° ¢ 8) v sup

be[Bl,T€lv,Tu]

~ ~ - 2
Var (m(r) <P (57 ¢ 5°) " selBlrelvn (Bh(r) = BU7))” < AMEnE(p V) ™17 0.
\T v, Tu

v,7u])

B - 55‘)(7)’ < 2Mo/nKs(pV n) 12 = 0;

Although 7,(7)’s are dependent, we further have

E(III) { (Zﬁb ) } < 2Mov/nKa(pV n) "1 = 0;

B B
1 —_]1—
Var (III) = -5 COV (mo(7), 0 (7)) < AMFnKa(pV n) 172 = 0.
b=11b'=
Thus III = 0, (1) uniformly in 7 € [v, ] by definition, as V4, ¢ > 0, 3Ny > 0 such that V7 € [v, 7y],n > Ny,
Var (IIT) < 16 M3 K>
82/4 — 82

P(|III| > &) < P (Il — E(IIT)| > §/2) < (pVn)~ < (.

Appendix C: Lemmas and Proofs

We present the lemmas used in the proofs of the theorems and propositions and their proofs.

Lemma 1. (Bounds of coefficients) Under assumptions (A1) — (A3), (A5) — (A7), for any S C
{1,...,p} with |S] < Kin®, 0 < ¢ < 1/3 and Ky < 1, there exists a constant My > 0, such that
SUDjes refy,n] 185 (T)] < Mo almost surely.



Proof of Lemma 1. From Peng and Huang (2008), BS(T) is sequentially estimated for 7, € I',,, k =
0,1,...,m by solving the following minimization problem of an L;-type convex objective function for h
at k,

n ' Le(h) =n~" Y " A |log X; — hZ;| + n7'hT > (—AZy)

=1 i=1

n k—1 Trt1
—o2n 'hT Z Z; (Z / Iflog X; > Z7 3;(7,)]dH (u) + To) ,
i=1 r=0"7r

and n='Lo(h) = n~! S A }log X; — hTZi| +n thT YT AZ —2n WY YT Zim.

Since B¢(7) is defined as a right-continuous function on the grid I'y,, to show the boundedness of Bj (1)’s,
we only need to show it at the grid points 73’s. We first prove n~! L (h) is a coercive function in h, that is
n~1Li(h) — oo whenever ||h|| — oc.

Since 1Ly (h) > n~t PIRWAY |log X; — hTZi}, where the right hand of the inequality does not depend
on 7 or k, it is sufficient to show L(h) =n~' 37" | A, [log X; — h"Z;| is coercive. By Proposition 12.3.1 in
Lange (2004), a sufficient and necessary condition is that L(h) is coercive along all nontrivial rays {h: h =
tv,t > 0}. The condition is met because Vv € RIS, L(tv) = n~! S A |10g X — tVTZi| is an absolute
value function in ¢, and thus goes to infinity as t — co. Now let Ly = Lk(Q), which does not depend on
k and is bounded almost surely by Condition (A2), then the set {h : n=*L;(h) < Lo} is compact and
contains the minimizer B¢(7;). Thus there exists a uniform bound My > 0 depending on Ly, such that
SuijS,TE[V,TU] |6J (T)‘ < MO' O
Lemma 2. Under Conditions (A1), (A3), and (A6), given 0 <t < K/v/Amin, we have

0" B [ihr, (87 (10) + 8)] = 07 B [, (8" (10))] > gt* — 24t%/(3c2),
uniformly for & that satisfies |8l < Kin® and 8" E (Z,ZT] 6 = t*.

Proof of Lemma 2. By Condition (A1), we have
=19— E[1{logT; < Z{B*(10)}] + E [L{T; > C;} 1 {log T; < Z} 8" (10)}] = 0. (9)

Given any 6 € A,, satisfying §TE [Zl-ZIT] § = t2, by the identity from Knight (1998) that for any u # 0,
|u—v|—\u|:—v[1—2«1{u<0}]+2/ [{u <t} — 1{u < 0}] dt,
0

we have
nTHE [y (B7(70) + 8)] = n” E [105, (87 (10))]
= —2B[AZ]6 (10 — 1{log X; < Z] B"(70)}) + mo(1 — Ai)Z] 8]

zTs
+2F Ai/ 1 {log X; — ZT3* (1) < u} —1{log X; — ZT3* (1) < 0} du]
0

VAR
=2F / A; (1{log X; — Z7 8" (10) < u} — 1 {log X; — Z] B* (7o) < 0}) du]
0

27|
> 2F / (9 (2B (10)|Zi) u — Au®] du| > gt* — 2At%/(3c2),
0

where the second equation follows from (9), the first inequality follows from the law of iterated expectations,
mean value expansion, and Condition (A3), and the second inequality follows from Condition (A6). The
above inequality holds uniformly for & that satisfies [|6]o < Kin® and 8" F [Z,Z]] 6 = ¢2. O



Lemma 3. Let p,, ;(h) := A;p,,(log X; — ZTh) + 70(1 — A;)(log X; — Z1h) and
Ao(t) = sup |G [pro,i(B7(70) + ) = pro i (B (70))]1

8T E[2Z,ZT]6<12,||8] o< Kinct

under Conditions (A1)-(A7), we have for any Cy > t,

02
P > 12 < 16Kyn“ - ).
(.Ao(t) = Cl) ~ 6 1n— exp ( 2K1n01t2/)\min>
Proof of Lemma 3. For any & such that |||l < K;n° and 6T E (2,ZT] 6 < 12,

Var (G, [pry.i(B%(70) + 8) — pry.i(B"(10))]) < E[(ZT6)?] < 2. Applying Lemma 2.3.7 from Van Der Vaart
and Wellner (2000) yields that, for each M > 2t,
2Pr (A§(t) > M/4)

1—4t2/M? ’

Pr(Ao(t) > M) <

where

AQ(t) = sup (G [Vi{ry,i(B7(70) + 8) = pre,1(B™ (70)) ]

0T E[Z;ZT]6<t2,[|8]lo < K1ne1

is a symmetrized version of Ay(t), and V;’s are Rademacher random variables. Since pr, (8" (10) + 8) —

ﬁ707i(,6*(T0)) = —Toz;r(s + Di(To,(S), where Di(To,(S) = Ai(logXi — Z;F,B*(To) — Z;F(S)_ — Ai(IOgXi —

ZTB* (1)) and u_ denotes ul{u < 0}, we have A3(¢) < BY(t) + CJ(t), where

BY(t) := sup |G, [ViZ8]|  and  CQ(t) := sup |Gy, [ViD;(70,9)]|.
0T E[Z,ZT)6<12,||8]o<Kint 0T E[Z,ZT]6<12,||8] o< Kinct

First, we consider B3(t). Recall that Z;; denotes the jth element of the vector Z;. Since §* E (2,Z2T]6 < t?
and ||6]0 < K1n°, then ||6]] < t/v/Amin, and ||8]]1 < \/Klncl/Qt/\/)\min,

E [exp(0B5(1))] < E [exp <\/Encl/2t/\/>\min9jrer1§a(>§) |G [vl-zj,i]ﬂ

< X 8o (VER 1y Al (G V2] (10)
JES(9)

< 23 Flew (VE 2t/ AainbCa [ViZ;1]) | < 26107 exp[(\/fm“’l”t/mt?f/?},
JES(8)

where the first two inequalities are elementary, the third inequality follows from the fact that E[exp(|]WW])] <
Elexp(W) +exp(—W)] < 2E[exp(W)] for any symmetric random variable W, and the last inequality follows
from E [exp(uV;)] < exp(u?/2). Then for any C; > 0,

Pr(B(t) > Cy) < %1218 exp(—0C1 E [exp(6B(t))]
: c e1/2 —\2 o] _ o %
< {onzl(r)lexp(—GC’lﬂKm L exp [(\/Eﬂ 1 t/\/)\mmG) /2} = 2K1n exp (— 2K1nc1t2/)\nlin> )
where the first inequality follows from the Markov inequality, the second inequality follows from (10), and
the minimum is achieved at 6 = C4 (Klncth/)\min)_l. Next, we consider CJ(t). We have

E [exp(0CJ(t))] < E

exp (9 sup lGn [V;Dl (7—07 6)} |>‘|
”5H1§\/K71"61/2t/\/ Aminv“‘sHOSKlnCl

<E

exp (29 sup }Gn [Amz%] |)
\|5||1SmTLC1/2t/v AmixnH‘sHOSI(Y’lCl

< 2K1n° exp {(%/Klnclpt/\/mef/% )

10



where the second inequality follows from Theorem 4.12 in Ledoux and Talagrand (1991), and the contractive
property that | D;(70,81) — Di(70,82)| < |A;ZF (81 —d2)], and the rest inequalities follow exactly as for BY(t).
By Markov inequality again,

02
0 c 1
Pr (Co(t) > 201) < 2K1n" exp <—W%) .
If we choose C; > t, we obtain
2Pr (AJ(t) > 3C C?
Pr(Ap(t) > 12Cy) < T( olt) 2 1) < 16K1n exp <—1> .

i 2K 2 N

O

Lemma 4. Given 0 <k <m—1and S C {1,...,p} such that |S| < K1n°, under conditions (A1) — (A7),
if |8 —B"(mk)|| < Given((2) and S(B) C S, then for sufficiently large n,

Pr sup E, {ZM (1 {logXi — Z;FB(TT) > O}
1B=B* (i) I<C1vk,n (C2),S(B)CS

—1{ log X; — Z; B"(r;) > 0})} ‘ > 8f)‘$n/a?x<1yk,n(<2)> < dexp(—4Kn logn).

Proof of Lemma 4. We cover the ball [[§]| < (1vk,(¢2) and S(8) C S with cubes C' = {C(d,)}, where C(4;)
is a cube containing §; with sides of length ¢;vk ,(¢2)n™2 so that N := |C| = (4n2)5K1"" | 16;]] < vk (Co)
and for & € C(8,), |6 — 81| < Cvi () (Kine =Y 2 =: ¢ .

Let T, () :=E, [Zj,il {logle —ZT (B (1) + 8) > 0}]

T T < T, -7, T 1 (8) — Tpy 1 (8
| T0,1(6) — T x(0)] _llgnfgvl x(01) ,k(0)|+1fgnla§>§\,5€sg&)| x(9) k(01)]

< 1211?5\7 \ka(él) - Tn,k(0)|

4+ max
1<IKN

Y1 Zal1 {log X = BT (B (mi) + 60) + (Kan™) /%G1, > 0
i=1
~ B (1231 {log Xi = ZT (8" (m) + 8) + (Kin®) /3G > 0}

—n 1Y 125401 {log X; — ZF (8" () + 81) > 0}
i=1

+ FE [|Zj,i| 1 {IOgX, — Z;F (B*(Tk) + (Sl) > 0}] ‘

+ max B (12,1 {log X, — ZF (8"(ri) + &) + (Kin)/%G, . > 0}
—1Z;i|1{log X; — Z[ (B*(3,) + &) > 0}]
= Il -|— I2 + .[3.
We consider I3 first. Noting that |Z] ;| < (K1n°‘1)1/2§1uk,n(<2), we obtain

Iy < [f+AE )Y (G (Ce) + CGon) (K1n) Y2 G
< 2f(Kin)Y2C 0 = 2f Qv () Kin® 2, (11)

where the first inequality follows from the conditional expectation and from Conditions (A2) and (A3), and
the last two inequalities are trivial for sufficiently large n.

11



We next consider I.
Tk (81) = T (0)] = 02| [Z3.:{1 {10g X = ZF (8"(m) + 81) > 0} — 1 {log X; — Z1 B"(m) > 0} }]
+ ’E (2;.:{1 {10g X; = 27 (8" () + 61) > 0} = 1 {log X; — ZI8"(m) > 0} }] ‘
=: D11+ 1.
Conditional on Z;,

La<E [|Zj,z‘| {f+ A(Klncl)l/QCWk,n(Cz)} |5}rzi\} <2fE [|5sz2‘|}

<2f (E [5zTZiZiT51D1 < 2fAY2 G (Go).- (12)

where the first inequality follows from Condition (A3), the second inequality follows from Condition (A2),
the third inequality is trivial, and the last one follows from Condition (A6).

Similarly, we can show that
2 _
E {(Zj,,;{l {log X; — Z7 (8"(m) + 81) > 0} — 1 {log X; — ZI 8" () > 0} }) ] < 2N v (G2):

As Zj,i{l {log X; — ZF (8" (1) + &;) > 0} —1 {log X; — ZFB" () > 0} } is bounded under Condition (A2),

by Bernstein’s inequality, we have

Pr(n712(Gu [2;:{1 {108 X; — 2T (8" (n) + 61) > 0} = 1 {log X; = 273" (7) > 0} }]| > ¢)

1 (nt)? 1 nt?
< 2exp —5 = 2exp TS .
2f)\ma»x<1l/k n CZ)” + nt/?’ 2f)\maX<1Vk,n(C2) + t/3

t)
(
)1/2 3(01 1) 3/4

Choose t = 8 (f)\max 1e<2K3/2 n. It follows that t = o(nclz_1 1/2 n). Thus, t =

0(C1Vk,n(¢2)). Then

Pr (Supn 1/2‘@, [ ]Z{l{logX —Z} (B (1) + 6) > 0} — 1 {log X; — Z] B*(73,) >0}}” >t)

17X 64 (f)\m/fxcle@[(fﬂ) n3(01271) log?’/2 n
2 4f/\r1r1/a?x<.1yk,n(§2)

Co 3/2 3(L1 1) 3/2
§2exp< 8n x (152 K7 log™“n

< 2(4n?)Kin™ exp

C1 _ c
G (Kyno—Tlogn)1/2 — Kin“(2logn + 10g4)> < 2exp(—4K1n logn). (13)

Combining (12), (13), and n > log®/4n = o(ncliz;1 log!/? n) together yields that

Pr (11 > 4f)\11n/§XCIVk,n(C2)> < 2exp(—4K1n° logn). (14)
Now we consider I>. By the same arguments used for I; 1, we can show that
Pr (I, > 8n 1) < 2exp(—4Kn logn). (15)
cp—1

By (11), (14), (15), and n“~! = o(n" 2 ) = 0((1¥k.n((2)), We obtain that

Pr sup T 1 (8) = T (0)] > 8FAY2 Cvgen (C2) | < dexp(—4K 1 logn).
[1611<¢1vi,n(C2),S(6)CS

12



Lemma 5. Given 1 < k <m and a S C {1,...,p} such that S* C S and |S| < Kin°', under event
Qs k-1(C1,C2), if t < K/vVAmin
LB [Ly(8' () +8)] 0B [ﬁkw*m»}
k 1
St = 2Ap g
- 302 1-— TU

/—\

maer n(CQ) + Len)
r=0

uniformly for & satisfying 6 E (Z,Z] 6 =1* and S(§) C S.

Proof of Lemma 5. By the identity used in Lemma 2, we have

B [Lu(B7 () + 8)] — 0B [La(8" (m)]

=2F |AZ]61{log X; < Z] B* (i)} — 2] 6 (Z /Tm 1ogX > ZTﬂ(n)}dH(T)Jrro)

zTs
+2F Ai/ (1 {1og X, — Z;F,E)’*(Tk) < t} -1 {logXi < Z;F,[)'*(Tk)}) dt]
0

=1 + Is.
We consider I first. By the Martingale equality, I; can be written as

k—1 Tr41
28 zT(sZ/ 1{log X > 273" (u)} — 1 {1ogX > ziTﬁf(Tr)} dH(u)] .
r=0"Tr

Under stk_l(Cl, ¢2), we obtain

zTaz/nH [1{log X > 273" (u)} -

L] < 2 sup
8T E[Z,ZT|6=12,||8]l o< Kinc1

1 {logX > ZTﬁ(Tr)} \Z} dH(U)] |

k-1 /

23" (276 Amactn (@) + Len ) (H 1) — H(m) (B [5Tzz-z;faD1 ’

r=0

IN

k—1

inTU Z <2f<1 \/m’/r,n(<2) + L€n> t, (16)

r=0

< 2

- 1

where the first inequality follows the proof of (11).
We now evaluate I. By Condition (A6),

VAR
2E / A; (1{log X; — Z7 8" (1) <t} — 1 {log X; < Z] B*(7%) }) dt}
0

> 2F

zTs
/ g (exp {Z] B" (1) } |Zi) u — AvPdu| > gt* — 24t%/(3cy). (17)
0

Inequalities (16) and (17) together imply that
B [Lk(ﬂ*(m) - 5)] —n B | Li(8" ()]

k—1
2 A3 Feia/
> gt 302 At 2 1 - ; (2f<1 )‘maxynn (<2) + L6n> t

13



uniformly for & satisfying 6" E [Z;,Z]] 6 =t* and 8o < Kin“.

Lemma 6. Given 1 < k <m, let
Ag(t) = sup |Gn [Ai (|10g X; — Z1(B* (1) + 6)|
8T E[2;ZT)6=t2,||8] o <K1n°1
—[log Xi — 2T 8*()|) + AiZT o] |,
under conditions (C1)-(C6), we have for Cy > t,

o %
Pr(Ag(t) > 2001) < 16 K1n* exp <_2K1ncltz/x\mln) .

Proof of Lemma 6. Since A; [[log X; — ZF (8% (7) + 8)| — [log Xi — ZT B*(7)|] = —AiZT6+2A;D;(7, ), where
D; is defined in Lemma 3, The proof follows the exactly same arguments used in Lemma 3. Therefore, we
omit the details here. O

Lemma 7. Given 1 <k <m and S C {1,...,p} such that S* C S and |S| < K1n°, under conditions (A1)
— (A7), for sufficiently large n, let C(t) :=

sup
¢TE|z,2T)e<e?,5(8)CS,
18(r) =B (r:) | <¢1vr,m ($2),8(B(7)) S8 Vr<k—1

we have for C; > t,

€T Z; (Z /ml 1{log X; > z;fﬁ(Tr)}dH(u)JrTO)

k—1
< > - Cl + 10 f)‘maxglyr n(CQ)ft] + 16TOC1>
7=0 -
Ct

Proof of Lemma 7. We first consider

Crr(t) := sup
¢TE[Z:2]6<t?,5(8)CS,
1B(r) =B () <C1vrn (¢2),5(B(7,))CS

"

G, lgTzi / " {og X, > Z78(n)) dH(u)] |
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for 0 <r <k —1. We can verify

Cr.r(t) < sup vn
¢TE[Z:Z]]6<t?,S(£)CS,
1B(Tr)=B* (T <C1vrn (¢2),S(B(7+))ES

E,

aTzi/ T g X, > Z78(r))

"

—1{log X; > ZFB*(1.)}] dH(u)] ‘

+ sup Vn|E
¢ E[Z,27]€<t?,S(£)CS,

I1B(r)=B" (rr)[I<C1vr n(C2),S(B())CS

', /TT+1 [1 {log X; > Z;fﬂ(Tr)}

-1 {log X; > ZiT,@*(Tr)}] dH(U)] |

+ sup Gy

¢'B(Z:2]]e<t®,5(¢)CS
= 'Dkﬂ-,l(t) + Dk,r,z(t) + Dk,’r',?) (t)

Now we consider Dy, ,o(t) first. Following the same arguments used for the term I; in the proof of Lemma
5, we obtain that

77, /TM 1 {log X; > Z7 8" (,)} dH(u)] |

[d

2€,

Dk,r,2(t) S fCI V )‘maxyr,n(CQ)\/ﬁt- (18)

lfTU

Next, we consider Dy, ,3(t). Applying the same arguments used in Lemma 3 yields, for any C; > t,

2
Cl) S 8K1ncl exp (—21(1,”(‘?7%) . (19)

€n

Pr | Dy ,rs(t) > 16
P (Dralt) 2 1612

Next, we evaluate Dy, 1(t). Let T, -(8,€) :=E, [é’Tzil {log X; — ZF (8% (%) + 6) > 0}]

|Tn,r(£,5) - Tn,r(’ﬁvo)' < 1?&’5\] |Tn,r(£a 0;) — Tn,r(& 0)] + 122’5\[ éesg(%l) |Tn7r(£a 0) — Tmr(ga 1)

< max |T,.(& 6;) — T, (& 0)]

T 1I<IKN
+ max n! Zl ‘5Tzi 1 {logXi —ZX (B (1) + 8)) + (K1n®)Y2¢ > o}

e[

1 {1ogXi —ZT (B (1) + 8) + (K1n™) 2 > o}]
_ ! i ‘ﬁTZi
=1

1{log X; — Z} (B" (%) + &;) > 0}} ‘

1{log X; — ZF (B"(ry) + &) > 0}

+E HETZz‘

EH Ty,
+12“f§§v £ Z;

1{log X; — Z (8" (71) + &) + (Kan®) 2G> 0

- ‘STZi

1 {log X; — ZT (8" () + 8)) > 0}] ,
where d;’s are defined in Lemma 4.

Following the arguments used for Dy, 2(t), D, 3(t) and Lemma 4, we obtain

8. C3
nPY2 e, t) <12Kn® Boy7erer-yrued REC
1_ . f maxcly ) (C2)\/ﬁ - 1 eXp 2K17’Lcl t2/)\min ( 0)

Pr (Dk,m(t) > 16— +
1-— TU
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Combining (18), (19) and (20) yields

€ 10e, = ct
P (t) > 32—" " A2 G t) <20Kn" ST rwed B 21
r(a,ﬁ (1) > 327 TU01+1_TUf maxC1Vr, (Cz)ﬂ) < 20Kn exp( 2K A (21)

. From the proof of Lemma 3, we have

We now consider Cy, -, (t) := 7o SUDgT (7,27 |e<12,5(¢)CS ‘Gn [(STZl}

¢ %
Pr (Ckﬂ-g(t) > 167_001) S 16K1n B exp <_2[(17’)f1t12/AH]H1) . (22)

By (21) and (22), we obtain

k—1
Pr <Ck(t) >3 {321 )+ 10— fxﬁ{fxglur,n(@)\/ﬁt] + 167’0C1>

_ 1—
—o TU TU

C2
S 4(5k + 4)K1ncl exp <2I(1nclt12/)\> .

References

Andersen, P. K., O. Borgan, R. D. Gill, and N. Keiding (2012). Statistical models based on counting processes.
Springer Science & Business Media.

Knight, K. (1998). Limiting distributions for [ regression estimators under general conditions. The Annals
of Statistics 26, 755-770.

Lange, K. (2004). Optimization (2 ed.). Springer.

Ledoux, M. and M. Talagrand (1991). Probability in Banach Space: Isoperimetry and Processes., Volume 23.
Springer Science & Business Media.

Peng, L. and Y. Huang (2008). Survival analysis with quantile regression models. Journal of the American
Statistical Association 103(482), 637—649.

Romisch, W. (2014). Delta method, infinite dimensional. Wiley StatsRef: Statistics Reference Online.

Van Der Vaart, A. and J. Wellner (2000). Weak Convergence and Empirical Processes: With Applications
to Statistics. Springer, New York.

Van der Vaart, A. W. (2000). Asymptotic Statistics, Volume 3. Cambridge University Press.

Zheng, Q., L. Peng, and X. He (2018). High dimensional censored quantile regression. The Annals of
Statistics 46(1), 308-343.

16



00T 00T 00T 00T 1170 €10 LT°0 010 GT'0-  L0°0- 10°0- 000- Mg

00T 00T 00°T 00T 600 O0T0 LT°0 600 1T°0- S00- 100 100 g
660 00T 86°0 660  0T0 010 ¢T°0 600  200- T00- 200 100 &g
060 660 760 680 €20 €GZ0 1€°0 €0 ¥¢0- L0°0- 600~ €00- g
0001 = d‘00L = u
00T 00T 00'T 00T  ¥I1'0 LI°0 920 61’0 630- SI'0- G0°0- 100- 9%
660 00T 66°0 660 FT0 910 920 ¥T°0 020~ 80°0- 00°0- oo g
790  S6°0 €9°0 690 130 GT0 920 ¢T0  TF0- 90°0- 200 000- 'eg
10 €80 cL0 €L0  2€0 8¢ 19°0 ¥e0  $S0- 910" 8T1°0- v10- g

000T = d*00¢ = ¥
JreH  dgoN  ydgeuQ  pestyg jieH MIASON dseuQ  pesng  JreH  M{ASON  HdSeuQ  posng
Aouenbeiy uoryosyeg aS serg

(1) 10J G)'() = L Yo POZLIRWIWINS IR SIMNSOI 9], ‘SI9Se)ep Poje[nuls ()T U0 paseq saypeoidde d01-pe 901} Yim suostredwio)) T o[qRT oM

17



