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Abstract

This article presents semiparametric joint models to analyze longitudinal measure-
ments and survival data with a cure fraction. We consider a broad class of transfor-
mations for the cure-survival model, which includes the popular proportional hazards
structure and the proportional odds structure as special cases. We propose to estimate
all the parameters using the nonparametric maximum likelihood estimators (NPMLE).
We provide the simple and efficient EM algorithms to implement the proposed in-
ference procedure. Asymptotic properties of the estimators are shown to be asymp-
totically normal and semiparametrically efficient. Finally, we demonstrate the good
performance of the method through extensive simulation studies and a real-data appli-
cation.
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1 Introduction

In cancer research, along with repeatedly measured biomarkers, it is often observed
that a certain proportion of patients are cured, immune, or unsusceptible to the event
of interest. For example, cancer can be considered cured if all metastasis-competent
tumor cells are successfully removed by treatment, and hence no recurrence will be
observed. In these situations since the survival curve will never reach to zero due
to these cured patients, the standard survival analyses based on non-cure models are
inconvenient for inference on cure rates. The existence of this possible cure fraction
can be evident from a stable plateau at the right tail of survival curve as in Figure 1 (a).

To analyze such cure-survival data, two classes of cure rate models are commonly
used: mixture cure model and promotion time cure model. The former mixture cure
model is on the basic concept that the underlying population is a mixture of two sub-
populations of the cured and uncured with the respective probabilities p.(Z;) and
1 —pe(Z;), that is Spop(t|Z;) = pe(Z;) + {1 — pe(Zi) }Suc(t| Z;), where Z; is the
vector of covariates, Sy.(t|Z;) is the conditional survival function of the uncured pop-
ulation (Berkson and Gage, 1952; Laska and Meisner, 1992; Maller and Zhou, 1996;
Kuk and Chen, 1992; Sy and Taylor, 2000; Lu and Ying, 2004). It is assumed that
all patients in the uncured subpopulation will eventually experience the event while
those in the cured subpopulation will never. Lu and Ying (2004) considered a class
of transformation models for the event time where generalized estimating equations
were used for parameter estimation, and the asymptotic properties were established by
the usual counting process and its associated martingale theory. However, their linear
transformation approach was limited to time-independent covariates only. Therefore,
as alternative to the mixture cure models, we focus on the promotion time cure model
that can handle transformation with time-dependent covariates when there is a need for
transformations, for example, in cases where the violated proportional hazards assump-
tion is of concern. The promotion time cure model has been proposed under biologi-
cal assumptions that a patient has N metastatic tumor cells remaining after treatment
(Yakovlev et al., 1996; Tsodikov, 1998; Chen et al., 1999; Tsodikov et al., 2003) in
cancer clinical trials. Let N; be the number of metastatic cancerous cells of the ith
patient, which is an unobservable latent variable, following a Poisson distribution with
mean 7(Z;). We denote the time for the kth metastatic cancer cell to produce a de-
tectable tumor (promotion time) by Ty, (k =1,...,N;) and assume that, conditional
on IV;, Tk’s are independent and identically distributed (iid) with a common distribu-
tion function F'(t). Viewing F(t) = 1 — Sy.(¢), it can be interpreted similarly to the
distribution function of the uncured patients in the mixture cure model. Then, the time
to relapse of cancer for the ith patient, defined by T; = min{Ty, ..., Ty, }, has a form
of the survival function

S(t|Z;) = P[N;=0]+> P[Ty>t,...,Tn, >t|N; = k]P[N; = k]
E>1

exp{-m(Z)} + 3" (1 - F(o)pt T2 ’GXZ!{—W(Zi)}

E>1
= exp{-m(Z;)F(t)}, M




where 7(Z;) is a known link function. In the promotion time cure model (1), the sur-
vival function is integrated into one formulation regardless of cured or uncured, and we
can see that (1) retains the proportional hazards structure when w(Z;) = exp(37 Z;).
Moreover, if the regression coefficients 3 include an intercept term, say Sy, the baseline
cumulative hazard function is equal to exp(/3p)F'(t), which implies that the model (1)
becomes the Cox proportional hazards model with a bounded baseline cumulative haz-
ard. If the cured patients exist in the population, the survival rate at ¢ = oo can naturally
be interpreted as the cure rate, i.e., the cure rate is S(o0|Z;) = exp{—7(Z;)} # 0,
leading to an improper survival function.

Some of these curable diseases are associated with longitudinal biomarkers, and
it is often of interest to model these two different types of data as outcomes simulta-
neously. We will therefore propose a joint model to analyze longitudinal and survival
data with a cure fraction. While there has been a great deal of work done on joint mod-
eling of longitudinal and cure-survival data based on the mixture cure models (Law
et al., 2002; Yu et al., 2004, 2008), there has been scant literature about joint model-
ing based on the promotion time cure models. For a more detailed review on the joint
mixture cure models see Yu et al. (2004). Instead, we will provide a brief review of
the alternative approach, joint promotion time cure models that we adopt here. Brown
and Ibrahim (2003) and Chen et al. (2004) proposed joint promotion time cure model
with emphasis on two different types of longitudinal models. To model immune re-
sponse, Brown and Ibrahim (2003) proposed a longitudinal model with a point mass
at zero that changed over time and subjects in probability. On the other hand, Chen
et al. (2004) considered a true immune response was unobservable, and adopted the
longitudinal model in the context of measurement errors. In common, they considered
a piecewise constant function to estimate the baseline distribution F'(¢). For inference,
they used Bayesian approaches via Gibbs sampler and Markov chain Monte Carlo sam-
pling, which may be straightforward ways to proceed, but computationally intensive,
compared to frequentist analyses. Therefore, we propose a joint cure model based on a
frequentist approach to balance out complication brought by relaxing a functional form
of the baseline distribution F'(t) as well as the proportionality assumption.

The objective of the article is to present a flexible joint promotiontime cure model
based on a frequentist inference that is a new approach to the existing joint promo-
tiontime cure models. To account for the long-term plateau at the tail of survival
distribution resulting from the existence of cured patients, we propose a broad class
of transformed promotion time cure models, which integrate the popular proportional
hazards and odds cure models in to one general form. Inference procedures using the
nonparametric maximum likelihood estimation (NPMLE) are developed, a simple and
efficient algorithm is provided for its implementation, and the new joint cure model
is illustrated with the colorectal cancer data from the Health Professionals Follow-up
Study (HPFS). The proposed work here advances to existing joint cure models in: 1)
flexibility throughout nonparametric baseline distribution function and transformation
models; 2) extended ability to handle time-varying covariates; and 3) well-established
asymptotic properties of the NPMLE:s.



2 Joint Transformation Models

2.1 Joint Models

Let Y'(¢) be the longitudinal measurement at time ¢, T be the time to the survival
event, and Z = {Z(t); t > 0} be the covariate process, where Z(t) is the vector of
external covariates at time ¢, possibly time-varying. We introduce latent random effects
to account for the correlation between longitudinal and survival components on the
same subject. Particularly, let b denote the subject-specific random effects following a
multivariate normal distribution with mean zeros and covariance matrix ;. We further
assume that Y (¢) and T are independent, conditional on Z and b. Then, the proposed
joint model for the longitudinal data Y (-) and the population survival function of T’
with a cure fraction are given by

Y(t) = oTZi(t) + b Zi(t) + e(t),
t -
S(t|Z,b) = exp {—H (/ BT Z2(w)+(3pob) T Za (u) dF(u)) } , (2)

0

where « and [ are vectors of unknown regression parameters in the longitudinal and
survival components, respectively, Zj(t) and Z,(t) (k = 1,2) are subsets of Z(t)
plus the unit component, and F'(¢) is an unspecified distribution function of the event
times. In addition, €(¢) is a white noise process with mean zero and variance o2,
1) is a set of unknown constants with the same number of elements as b, and i o b
denotes the component-wise product of i) and b. Note in (2) that the correlation among
the longitudinal outcomes is formulated through the latent random effects b, and that
the association between longitudinal outcomes and the event time is characterized by
1 with the shared latent variables b. Thus, for a fixed covariate Z, ¢ > 0 implies
the larger longitudinal measures are, the higher hazard rate of the event is. On the
other hand, ¢y = 0 implies that the association can be fully explained by the common
covariates in both longitudinal and survival components. The transformation function
H(-) is assumed to be continuously differentiable and strictly increasing, and we will
discuss about H (-) in more detail in Section 2.2.

We notice that the survival model for the entire population in (2) encompasses more
general regression models, extending to a cure rate defined as an asymptotic value of
the population survival function when ¢ — oo. This definition does not imply that
the observed survival time should be infinite since the censoring time (by death from
other causes or the end of study, for example) is finite with probability 1. In practice,
a sufficiently long follow-up period from a clinician’s perspective can be interpreted as
t = oco. That is, the cure rate model can be expressed as

thm S(t | Z’b) = exp {_H (/ eﬂTZQ(u)-‘r(’Lbob)TZNz(u) dF(u)> } .
—00 0

Thus, our joint cure-survival model (2) allows us to explore a link between the longitu-
dinal measures and the probability of being cured through the shared random effects as
well as covariates. Especially, when Z(t) and Z»(t) are time-independent covariates,
zo and Zs, respectively, the cure rate can be simplified to

Eylexp{—H (exp{B" 22 + (¥ 0 b)" 22})}],



where Ej, is taking expectation with respect to b. In fact, it is always true that the con-
ditional cure rate is lim;_, o Ep[S(t| Z,b)] > 0 (improper survival function), because
H(-) is assumed to be finite.

Let C be the non-informative censoring time which is independent of (Y'(+), T, b)
given Z, and let X = min(7, C) denote the observed event time. The observed data
for the ith subject with m; repeated measurements are defined as O;= {Y; (tix), X, Ay,
Z(t), tin < Xt < Xi,i=1,...,n, k= 1,...,mi}, where A; = I(TZ < Cz) with
I(-) being the indicator function. Under the model (2), the log-likelihood function for
the observed data is given by

i o 1 —(Yi(tir) — a7 Zyi(tir) — b7 Zui(tix))?
;log/b ];E[l [\/@ exp{ 207 }]

A
X; . i
% [f(Xz) e,@TZzi(Xi)-kwob)TZzi(Xi) H (/ eBTZQi(u)-i-(wob)TZm(u) dF(u))
0
Xi T T %
X exp{ —H / e Zai()F(Wob) " Zai(w) qp(y) | % x f(b; ) db, (3)
0

where f(b; X) is the density function of b with the parameters 3, and f(t) = dF'(t)/dt
and H'(z) = dH (z)/dz are the first derivatives of F'(¢) and H (z), respectively.

2.2 Transformation of Promotion Time Cure Models

In the model (2), H () represents a transformation function of the conditional cumula-
tive hazard function, which is required to be pre-specified in the analysis. For example,
H(x) can take a form of the logarithmic transformation,

log(1 + nz) /1, >0
H(I){xg( na)/n Z=0~

The choices of = 0 and = 1 lead to the proportional hazards structure and the
proportional odds structure, respectively.

In fact, the transformation H (-) has been derived from a biological explanation. Re-
mind that the promotion time cure model without transformation in (1) is based on the
conditional independence assumption of {T} | Ni; k = 1,..., N;}. However, this as-
sumption may not be satisfied in practice since there are common features shared by the
same patient, such as the patient’s underlying health condition or dietary habits. As a
solution to adjust the correlated cancer progression times, Zeng et al. (2006) have intro-
duced a subject-specific frailty (;, and have assumed that {Tk |Ni, Gy k=1,...,N;}
are mutually independent with the distribution function F'(¢). Note that {; can reflect
the underlying heterogeneity for the rate of metastatic cancer cells through N; follow-
ing the Poisson distribution with mean (;7(Z;), conditional on (Z;, {;). Following the
similar derivation to (1), the resulting survival function for the time to relapse 7" takes
a form

5(t1Z:) = E¢, [exp{—¢im(Z:) F(1)}], ©)



where E¢, denotes the expectation with respect to ¢;. Explicitly specifying the distribu-
tion for (; as a gamma distribution with unit mean and variance 7, for instance, we can
now see a desirable connection between (4) and the transformation H (-), as follows:

St Z;) = [L+nu(Z;)F(t)] " = exp{—H(n(Z,)F(t))}.

3 Inference Procedure

3.1 NPMLE:s for Joint Transformation Models

We propose to use the nonparametric maximum likelihood estimation (NPMLE) for
estimating parameters 6 = (a, 3, v, ag, Vec(Xp)) and infinite-dimensional parameter
F(t), where Vec(3,) denotes the vector consisting of the upper triangular elements of
Y. To obtain the NPMLE:s, in the log-likelihood function (3), we treat F' as a step
function with jumps only at the observed failure times and replace f(¢) by the jump
size of F at ¢, which is denoted by F'{t}.

For commonly used transformation functions such as a logarithmic transformation,
exp{—H (x)} can be expressed as the Laplace transformation of some function ¢(t),
t > 0, such that

exp{—H(x)} = /OOO exp(—axt) ¢(t) dt.

For example, if we choose ¢(t) = t1/"1~Yexp(—t/n)/{T'(1/n)n*/"}, then it is true
that H(z) = log(1 + nz)/n. Applying the Laplace transformation with a subject-
specific frailty (; and using the fact that

H'(@)expl~H(@)} = [ Cexp(-20)6(0)de,
0
the observed log-likelihood function (3) can be rewritten as

- T L\l _aT 1i\lYik) — TNli i 2
_ Zbg/bnl ! eXp{ itie) = o Zroln) =" Futin) H
i=1 k=1 e

\/2mo?

) / 6 P )™ e {— / g em dF(u)} $(Gi) dG;
; 0

i

x f(b; Xp) db, ®

where go;(t) = BT Zai(t) + (1 0 b)T Za;(t), and we assume that ¢; and b are indepen-
dent. The most attractive feature about taking transformation in this way is that the
modified log-likelihood (5) can be seen as the proportional hazards frailty model with
the conditional hazard function

A Z(t), G bi) = G f(t) exp{ BT Zai(t) + (1 0 b)T Za;(t)}.

This makes the algorithm more stable and computationally efficient.

Now, the computation of the NPMLEs is identical to maximizing the modified log-
likelihood function with respect to 6 and all jump sizes of F at the observed failure
times. This maximization can be carried out through the following EM algorithm.



3.2 EM Algorithm

We describe the EM algorithm, treating (; and b as missing data to compute the NPM-
LEs of (4, F{-}). In the E-step, we calculate the conditional expectation of the log-
likelihood function for the complete data, given the observed data O; and the current
parameter estimates. Particularly, we need to evaluate the integration of certain func-
tions of (;, b), say E[(; gi(b) | O;]. Hereafter, we drop the conditional part on the
observed data and the current parameter estimates, and abbreviate such expectation
E[¢i g:(b) | O4] as E[¢; gi(b)]. Computation of this expectation can become doable by
first obtaining the nested conditional expectation of (;, given b and the observed data.
That is, E[¢; gi(b)] can be calculated as Ej[ E, [Ci | b] gi(b)]. With the fact that the
conditional distribution of (; given b is proportional to

X _
h(Ci,b) = (& exp { / Gy e Zasludt(wob)” Zaulu) dFW} ,
0

and the useful relationships by the Laplace transformation, the conditional expectation
of (; given b has the form of

Cu ¢(<Z) (5 l/
Ee[Gi|b] = /g TG, b) 6(C) dG dG; = H'(2:(b)) — {H,(:C(b))

where 7;(b) = fOXi e Z2i(w)+(¥ob)" Zai(w) g P (v). Once By, [¢; | b] is calculated, which
is a function of b, the conditional expectation £ [¢i 9i(b)] can be computed using nu-
merical approximation methods such as the Gaussian quadrature with Hermite orthog-
onal polynomial. Since the conditional distribution of b given O; is proportional to
T'(O;| b) f(b; 3p), the conditional expectation is calculated by

P(O, D) F(b: 5)
B0 = [ Belilt ot ) IO 0 [ sy db ™

where

™my

T(0;]b) = eXp{ { (0" Zvi(tir)* = 2(Ya(tax) — f Zui(tin) bTZM(tik)} /(203)}

k=1

X op T 5
X exp {Ai [(w o b)TZ%(Xi) +log H' (/ &P Z2i(u)+(Pob)” Z2i(u) dF(u)>
0

Xi ~
X exp {—H </ eBTZQ,;(u)-;-(q;)ob)TZ%(u) dF(u)) } )
0

In the M-step, we maximize the following objective function of the expected log-

}



likelihood for the complete data:

Xn: i {_ log o2 /2 — E [(Yz(tzk) — ol Zy(ti) — bTZli(tik))Q/(Qag)} }

i=1 k=1

+ZA{ flog 1] + log F{X.} + 67 Zai(X;) + Bl 0 07 Z0i(Xi)}

5

under the restriction of Y1 | A;F{X;} = 1. Maximizing the above objective function
over (a, 02, ¥p) is simple; whereas the rest of parameters (3, v, F'/{.}) do not yield
the closed- form of maximizers, and hence it is required to involve a reliable numerical
approach. By introducing the Lagrange multiplier , we solve the following equation
for 3:

_B / G P 2o WA WoD) Zaiw) 4o ()
0

+ E [log ¢(¢;) + log f(b; Eb)]} :

ZA Zo; Z?:1R.7(Xi)z2j(Xi)E[Cjeq”(Xi)] 0 ©)
) T S R KB [ e O] + |

the following equation for 1):

U i BB |G et X (bo 2oy (X))
> AL E bo Zu(Xi)] - t —0, ()
i=1 Z] 1 R ( ) [Cﬂ eq2] ] + 1%
and the following equation for p:
Z AF{X;} =1, (®)
i=1

where R;(t) = I(X; > t) and q2;(t) = BT Zoj(t) + (1 0 )T Zo;(t). The restricted
NPMLE along with a random effect induced transformation EM was presented by
Tsodikov (2002), and the approach has been used in different models as reviewed in
Tsodikov et al. (2003). Hence F' is estimated as a step function with the following
jump size at X; :

AV
2?21 Rj(Xi)E [C ed25 (Xi )] +u

To solve these equations at each M-step, we consider a two-step optimization. In the
first step, we estimate y using the bisection method based on the equation (8) and the
fact F{X;} > 0 (¢ = 1,...,n). Since the left side of (8) is a monotone decreasing
function of p by considering F'{X;} as a function of y in (9), the solution always
exists. In the second step, to update 5 and ), we plug the estimates /i into equations
(6) and (7), treat them as the functions of ji, and solve the equations using one-step

F{Xi} =

€))



Newton-Raphson algorithm. Updating the jump sizes of F' can be easily done by the
equation (9) with /.

To obtain the NPMLEs, we iterate the E-step and M-step until the parameter esti-
mates converge. The variances of the NPMLEs can be estimated from the inverse of
the observed information matrix for all parameters of (6, F'{-}), under the restriction
of Y. | A;F{X;} = 1. The observation information matrix can be computed from
the complete data log-likelihood function denoted by £ for the 7th subject using the
following Louis formula (Louis, 1982) of

n

S ENRE® 0] - Y {EVE®? 0] - EVE®)| 057}
1=1

i=1

where u®? = yuT, V and V2 denote the first and the second derivatives with respect
to parameters, and E denotes the conditional expectation of a function of b given the
observed data and is evaluated at the NPMLEs.

4 Asymptotic Properties

Let (é, F) denote the NPMLEs and (6, Fj) denote the true parameter values of (6,
F). Under the regularity conditions, we will establish the asymptotic properties of the
NPMLESs under the following conditions:

(A1) The true parameter value 6y belongs to the interior of a compact set © within
the domain of 6.

(A2) With probability 1, Z(t) is left-continuous with uniformly bounded left and right
derivatives in [0, o).

(A3) For some constant dy, P(C = oo| Z) > dp > 0 with probability 1.

(A4) For some positive constant M, ]\/[0_1 < U%e < My and MO_1 < TSy c < My
for any constant vector ||c|| = 1.

(AS5) The transformation functions H () are four-times differentiable with H(0) = 0
and H'(0) > 0. In addition, there exist positive constants o and g such that

(1+2) H' () exp{—H(2)} < po(1 + )",
Furthermore, there exists a constant py > 0 such that

{IH”($)|+IH(3)(:E)I+H(4)(w)}<Oo’

" H(2) (1 + )

x

where H®) and H*) are the third and fourth derivatives.

(A6) For any deterministic function ¢(¢) and a constant v such that ¢(t) # 0 or v # 0,
P{c(t) +vTZ(t) = 0; t € [0,00]} = 0.

(A7) With some positive probability, Z 1TZ 1 has full rank, where Z, denotes a matrix
with each row equal to the observed covariate Z; ()7 at the time of each measurement.
(A8) Let K be the number of repeated measures and let d;, be the dimension of b. With
probability one, P(K > dy| Z,X) > 0.



Conditions (A1) - (A3) are the standard assumptions in survival analysis. Condition
(A4) is necessary to prove the existence of the NPMLE:s. It can be easily verified that
Condition (A5) holds for all transformations commonly used, including the logarithmic
transformations described in Section 2. Conditions (A6) - (A7) entail the linear inde-
pendence of design matrices of covariates for the fixed and random effects. Condition
(AR8) prescribes that some subjects have at least d;, repeated measures.

Under the above conditions, the following theorem shows the consistency of the
NPMLEs (4, F).

Theorem 1 Under Conditions (Al) - (AS8),

0 — 6] =0, sup |E(t)—Fo(t)| =0, a.s.
te[0,00]

Theorem 1 then leads to the following results on the asymptotic normality of (é, F)
and the asymptotic efficiency of 6.

Theorem 2 Under Conditions (Al) - (A8), v/ (0—0¢, F(t)—Fy(t)) weakly converges
to a zero-mean Gaussian process in R% x BV[0, oc], where dg is the dimension of 0
and BV [0, 00| denotes the space of all functions with bounded variations in [0, co].
Furthermore, the asymptotic covariance matrix of \/n (é — 0y) achieves the semipara-
metric efficiency bound for 6.

Furthermore, in Appendix, we show that the inverse of the observed information
matrix is a consistent estimator of the asymptotic covariance matrix of the NPMLEs.
This result allows us to make inference for any functional of (8, F'(¢)). To prove Theo-
rems 1-2, we apply the general asymptotic theory of Zeng and Lin (2007). The desired
asymptotic properties of the NPMLEs are established followed by the arguments in Ap-
pendix B of Zeng and Lin (2007) if we can verify that their regularity conditions hold
for our joint cure-survival model setting. Checking the regularity conditions, however,
is challenging in our cases. The detailed proofs are provided in Appendix.

5 Simulation Studies

In this section, we demonstrate the finite sample performance of the proposed method
through extensive simulation studies. The longitudinal data are generated from

Y(t) =074+ 2 — 0.5z + b+ €(t),
and the survival data with a cure proportion are generated from transformation models
S(t|z1,22,b) = exp {—H (™5 =T P(¢))},

where z; is a dichotomous covariate taking the value of O or 1 with the equal probability
of 0.5, 29 is a continuous covariate generated from a uniform distribution on [-1, 1],
and €(t) ~ N(0,02) is assumed with o2 = 1. The true failure distribution function in
the uncured subpopulation is set to be F'(t) = 1 — exp(—t).

10



For each subject, the correlation within repeated measures is reflected by the subject-
specific random intercept b ~ N (0, 02) with o7 = 0.5, and the negative, no, and posi-
tive dependences between the longitudinal measures and the cure-survival rate are sim-
ulated through different v values of -0.3, 0, and 0.3, respectively. For the cure-survival
model, we consider three types of transformations H (-) representing the proportional
hazards structure () = 0), the proportional odds structure (1 = 1), and a transformation
in the middle of them with n = 0.5.

The non-informative censoring time C; is generated from a uniform distribution
with varying rates, depending on the chosen transformation, to design a 30~45%
chance of being right-censored and a 20% chance of being cured. We set longitudi-
nal measures to be observed every 0.2 unit of time so that each individual can have
about 3 repeated measures, on average.

The results based on 1000 replications are presented in Tables 1-3 for n=200 and
n=400. Tables 1-3 include the average of the differences between the true parameter
and the estimates (Bias), the sample standard deviation of the parameter estimators
(SE), and the average of the standard error estimators (SEE), and the coverage prob-
ability of 95% confidence intervals (CP). The confidence intervals for o2 and Jf are
constructed based on the the Satterthwaite approximation.

Table 1 shows that the NPMLEs under the proportional hazards structure H (z) = x
are noticeably unbiased, the standard error estimators calculated via the Louis formula
well reflect the true variations of the proposed estimators, and the coverage proba-
bilities are in a reasonable range, even with a moderate sample size of 200. As the
sample size increases to 400, the biases slightly increase for some estimates; however,
they are still very small comparing to the sizes of true parameter values and the varia-
tions of the parameter estimators become smaller, and hence the coverage probabilities
still lie in a reasonable range. The simulation results shown in Tables 2-3 are simi-
lar to those for Table 1, indicating that the proposed method seems to work well for
H(z) = 2log(1 + z/2) and H(z) = log(1 + z).

6 Data Application

The proposed method was applied to the data from the Health Professionals Follow-up
Study (HPFS), a large observational study of male health professionals living in the
United States. The main interest of this analysis was to jointly model the relationship
between longitudinal vitamin D intake and the survival-cure rate of colorectal cancer
(CRC) as endpoints. Since the focus was on the cure of CRC, we restricted our study
population to 810 patients who were diagnosed with colorectal cancer between January
1986 and January 2006, without missing at any of the covariates included in the model.

For each subject, vitamin D intakes were assessed via food frequency question-
naires at approximately every four-year intervals between 1986 and 2002. To identify
the cure of CRC, we set colorectal cancer-specific death as the event of interest (Ng
et al., 2008), while treating deaths from other than CRC or alive until January 2006
as being censored. Then, the cured patients can be defined as a subpopulation among
the censored one who have been followed-up sufficiently long enough to be considered
cured. In the HPFS during 20 years of follow-up, 250 (31%) colorectal cancer-specific

11



Table 1: Simulation results for H (x) = x. t,, represents the pth percentile.

N =200 N =400
True Bias SE SEE CP Bias SE SEE CP
P =-0.3

« 0.7 -0.009 0.101 0.099 0.944 -0.012 0.073 0.074 0.952
1.0 0.002 0.143 0.142 0.952 -0.004 0.104 0.103 0.947

-0.5 0.002 0.125 0.129 0.954 -0.000 0.093 0.096 0.951

ag 1.0 -0.001 0.064 0.064 0.956 -0.000 0.042 0.041 0.946
I} 0.5 0.009 0.133 0.136 0.951 0.009 0.096 0.094 0.946
-1.0 -0.020 0.165 0.168 0.946 -0.016 0.120 0.118 0.945

P -0.3 -0.010 0.192 0.204 0.968 -0.026 0.148 0.144 0.952
F(tes) 0.25 -0.005 0.033 0.035 0.949 -0.003 0.025 0.025 0.946
F(tso) 0.50 -0.004 0.048 0.051 0.954 -0.005 0.035 0.035 0.951
F(t7s) 0.75 -0.003 0.053 0.054 0.942 -0.002 0.036 0.036 0.952
Jg 0.5 -0.008 0.088 0.090 0.963 0.006 0.066 0.064 0.942

1 =0.0

« 0.7 -0.008 0.102 0.098 0.936 -0.010 0.070 0.070 0.941
1.0 -0.002 0.147 0.141 0.943 -0.001 0.099 0.099 0.959

-0.5 0.002 0.129 0.127 0.942 0.008 0.089 0.090 0.953

ag 1.0 0.001 0.062 0.064 0.963 -0.002 0.046 0.045 0.947
15} 0.5 0.007 0.130 0.129 0.955 0.004 0.089 0.090 0.956
-1.0 -0.013 0.166 0.160 0.941 -0.009 0.116 0.112 0.935

P 0.0 -0.017 0.186 0.190 0.967 -0.018 0.128 0.130 0.952
F(tes) 0.25 -0.003 0.034 0.034 0.941 -0.002 0.023 0.024 0.945
F(tso) 0.50 -0.004 0.050 0.049 0.936 -0.002 0.035 0.034 0.944
F(tz5) 0.75 -0.002 0.054 0.052 0.937 -0.001 0.037 0.037 0.948
0? 0.5 -0.009 0.084 0.088 0.965 -0.003 0.062 0.062 0.961

P =0.3

le’ 0.7 -0.011 0.098 0.099 0.955 -0.011 0.071 0.070 0.943
1.0 0.002 0.141 0.141 0944 -0.001 0.100 0.099 0.944

-0.5 0.001 0.122 0.129 0.959 0.006 0.094 0.090 0944

Jg 1.0 0.001 0.062 0.065 0.960 -0.001 0.046 0.046 0.946
I} 0.5 -0.003 0.133 0.135 0.948 -0.003 0.093 0.093 0.953
-1.0 -0.015 0.166 0.168 0.954 -0.002 0.112 0.115 0.958

P 0.3 -0.003 0.200 0.202 0.953 -0.023  0.137 0.136 0.955
F(tes) 0.25 -0.002 0.033 0.035 0.961 -0.000 0.023 0.025 0.953
F(tso) 0.50 -0.001 0.050 0.051 0.950 -0.000 0.034 0.035 0.955
F(tz5) 0.75 -0.000 0.053 0.053 0.937 0.000 0.037 0.037 0.950
0? 0.5 -0.011 0.085 0.089 0.966 -0.007 0.060 0.062 0.958
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Table 2: Simulation results for H (z) = 2log(1+4x/2). t, represents the pth percentile.

N =200 N =400
True Bias SE SEE CP Bias SE SEE CP
P =-0.3
« 0.7 -0.001 0.096 0.099 0.953 -0.008 0.070 0.070 0.944
1.0 -0.004 0.137 0.138 0.954 -0.002 0.097 0.098 0.942
-0.5 0.003 0.126 0.125 0.952 0.002 0.087 0.088 0.956
ag 1.0 0.004 0.063 0.063 0.943 -0.000 0.045 0.044 0.938
I} 0.5 0.009 0.174 0.174 0.944 0.010 0.121 0.121 0.955
-1.0 -0.021  0.209 0.209 0.950 -0.014 0.149 0.146 0.945
P -0.3 -0.034 0.286 0.278 0.955 -0.034 0.199 0.192 0.944
F(tes) 0.25 -0.005 0.036 0.038 0.949 -0.003 0.027 0.026 0.944
F(tso) 0.50 -0.005 0.054 0.054 0.948 -0.004 0.038 0.038 0.950
F(t7s) 0.75 -0.004 0.059 0.057 0.932 -0.002 0.040 0.040 0.948
Jg 0.5 -0.008 0.091 0.087 0.949 -0.002 0.064 0.061 0.950
1 =0.0
« 0.7 -0.008 0.104 0.099 0.930 -0.005 0.070 0.070 0.952
1.0 -0.005 0.144 0.138 0.950 -0.002 0.099 0.098 0.943
-0.5 0.011 0.121 0.124 0.954 0.006 0.084 0.088 0.954
ag 1.0 -0.001 0.064 0.062 0.945 -0.001 0.044 0.044 0.946
15} 0.5 0.005 0.171 0.170 0.945 0.003 0.120 0.118 0.949
-1.0 -0.012 0.211 0.204 0.951 -0.007 0.152 0.143 0.939
P 0.0 -0.031 0.286 0.270 0.936 -0.027 0.191 0.188 0.943
F(tes) 0.25 -0.005 0.035 0.037 0.945 -0.003 0.027 0.026 0.942
F(tso) 0.50 -0.007 0.051 0.053 0.953 -0.003 0.038 0.038 0.952
F(tz5) 0.75 -0.004 0.056 0.056 0.939 -0.001 0.040 0.040 0.948
0? 0.5 -0.009 0.082 0.085 0.966 -0.007 0.059 0.060 0.958
P =0.3
le’ 0.7 -0.005 0.102 0.098 0.943 -0.006 0.067 0.070 0.961
1.0 -0.005 0.141 0.138 0.936 -0.004 0.095 0.098 0.951
-0.5 0.006 0.123 0.124 0.951 0.003 0.086 0.088 0.961
Jg 1.0 -0.002 0.062 0.062 0.952 0.000 0.043 0.044 0.952
I} 0.5 0.000 0.169 0.173 0.954 -0.007 0.121 0.120 0.947
-1.0 -0.018 0.212 0.208 0.949 0.001 0.144 0.145 0.958
P 0.3 -0.011 0.287 0.275 0.950 -0.028 0.191 0.190 0.946
F(tes) 0.25 -0.004 0.035 0.037 0.949 0.000 0.027 0.026 0.939
F(tso) 0.50 -0.002 0.053 0.054 0.950 0.000 0.038 0.038 0.953
F(tz5) 0.75 -0.001 0.057 0.057 0.949 0.001 0.041 0.040 0951
0? 0.5 -0.010 0.083 0.086 0.964 -0.004 0.061 0.061 0.957
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Table 3:

Simulation results for H (z) = log(1 + ). t,, represents the pth percentile.

N =200 N =400
True Bias SE SEE CP Bias SE SEE CP
P =-0.3
« 0.7 -0.002 0.099 0.098 0.945 -0.002 0.071 0.070 0.942
1.0 -0.008 0.137 0.136 0.949 -0.005 0.095 0.096 0.958
-0.5 0.007 0.125 0.122 0.944 0.000 0.088 0.086 0.947
ag 1.0 -0.003 0.062 0.061 0.952 -0.001 0.043 0.043 0.953
I} 0.5 0.009 0.213 0.207 0.948 0.003 0.139 0.144 0.960
-1.0 -0.030 0.255 0.245 0.938 -0.008 0.175 0.170 0.950
P -0.3 -0.048 0.359 0.348 0.943 -0.028 0.254 0.243 0944
F(tes) 0.25 -0.006 0.040 0.040 0.939 -0.003 0.028 0.028 0.951
F(tso) 0.50 -0.006 0.059 0.058 0.941 -0.000 0.041 0.041 0.950
F(t7s) 0.75 -0.003 0.063 0.061 0.940 -0.000 0.044 0.043 0.942
Jg 0.5 -0.008 0.083 0.085 0.965 -0.004 0.063 0.060 0.940
1 =0.0
« 0.7 -0.008 0.102 0.099 0.933 -0.004 0.072 0.070 0.952
1.0 0.000 0.142 0.136 0.947 0.000 0.097 0.097 0.956
-0.5 0.004 0.122 0.122 0.957 -0.001 0.087 0.086 0.944
ag 1.0 0.003 0.060 0.061 0.955 -0.001 0.043 0.043 0.946
15} 0.5 0.005 0.205 0.203 0.954 -0.001 0.144 0.142 0.953
-1.0 -0.016 0.239 0.241 0.948 -0.009 0.166 0.168 0.947
P 0.0 -0.031 0.359 0.349 0.942 -0.025 0.244 0.240 0.945
F(tes) 0.25 -0.005 0.041 0.040 0.940 -0.002 0.027 0.028 0.953
F(tso) 0.50 -0.003 0.057 0.058 0.944 -0.000 0.041 0.041 0.952
F(tz5) 0.75 -0.001 0.061 0.060 0.934 -0.000 0.043 0.043 0.933
0? 0.5 -0.015 0.085 0.083 0.957 -0.003 0.061 0.060 0.949
P =0.3
le’ 0.7 -0.001 0.097 0.099 0.947 -0.008 0.069 0.070 0.949
1.0 -0.008 0.138 0.136 0.939 0.005 0.096 0.096 00951
-0.5 -0.001 0.121 0.122 0.958 0.007 0.085 0.086 0.949
Jg 1.0 0.002 0.062 0.061 0.946 -0.001 0.042 0.043 0.959
I} 0.5 -0.007 0.205 0.205 0.956 -0.004 0.146 0.143 0.943
-1.0 -0.019 0.253 0.243 0.941 0.002 0.173 0.170 0.942
P 0.3 -0.035 0.352 0.350 0.956 -0.031 0.246 0.243 0.951
F(tes) 0.25 -0.004 0.039 0.040 0.943 -0.000 0.029 0.028 0.936
F(tso) 0.50 -0.004 0.058 0.058 0.951 0.000 0.042 0.041 0.949
F(tz5) 0.75 -0.003 0.062 0.061 0.931 -0.000 0.043 0.043 0.942
o? 0.5 -0.012 0.083 0.084 0.960 -0.007 0.059 0.060 0.950
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Figure 1: In the HPFS data (N=810) (a) Kaplan-Meier survival curve of the entire
study population; (b) Estimated baseline survival function (i.e. F (t)) of the uncured
subpopulation under H(x) = x. The solid curves are point estimates, and the dotted
curves are 95% confidence intervals.
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Table 4: Analysis results for the HPFS study. The 50:50 mixture of x2 distributions is
used for testing variances.

Joint Proportional Hazards Joint Proportional Odds
(n = 0, AIC= 18008.54) (n =1, AIC= 18029.07)
Effect Estimate SE  p-value Estimate SE  p-value

Longitudinal measures of vitamin D intake

Intercept -0.699 0.105 < .001 -0.698 0.105 < .001
Age 0.263 0.088 0.003 0.263 0.088 0.003
BMI -0.017 0.023 0.453 -0.017 0.023 0.453
Differential grade 0.225 0.175 0.198 0.224 0.176 0.203
Distant metastases -0.431 0.191 0.024 -0418 0.192 0.030
o? 6.115 0.179 < .001 6.116 0.179 < .001
Uf 3.631 0.263 < .001 3.629 0.263 < .001
CRC death
Age 0.275 0.072 < .001 0.343 0.092 < .001
BMI -0.010 0.017 0.548 -0.010 0.022 0.652
Differential grade 0.363 0.130 0.005 0.428 0.169 0.012
Distant metastases 2.574 0.130 < .001 3.251 0.172 < .001
P -0.095 0.042 0.026 -0.096 0.055 0.080
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deaths were observed. Based on the Kaplan-Meier survival curve in Figure 1 (a), we
found that the estimated survival rate at the end of study was very high (64%) even after
a sufficient follow-up period (i.e. 20 years), and the earliest point in time that the curve
goes flat, 12.5 year of follow-up, was the point at which all remaining disease-free
survivors were declared to be cured. There were 116 patients who has been consid-
ered cured in the HPFS. We note that some of patients who were right-censored before
12.5 years might indeed have been cured to CRC, but it was inconclusive due to the
right-censoring.

We fitted the proposed joint cure model for the longitudinal vitamin D trend and
CRC death with the patient’s medical information at diagnosis; age, body mass in-
dex (BMI), and indicators for tumor differentiation grade (i.e. 1=poor or unspecified,
O=well or moderate) and distant metastases (i.e. 1=yes, 0=no) were included as co-
variates. Among them, age variable was centered at mean 68 and divided by 10 to
represent a decade, and BMI was centered at mean 25kg/m?. In addition, a subject-
specific random intercept was included in both longitudinal and cure-survival models
to account for the correlation between these two outcomes. To explore the possibility
of the proportional hazards and the proportional odds structures in cure-survival data,
we also applied transformation models H(x) = log(1l 4+ n)/n to cure-survival data
by varying 7 values in [0, 1] at every 0.1 increment. We used the Akaike information
criterion (AIC) to determine the best form of transformation (i.e. 1), and the smallest
AIC value was achieved at 7 = 0, implying the joint proportional hazards cure (PHC)
model was the best fit to the data. Although in the HPFS example the final transfor-
mation turned out to be the joint PHC model, in the lack of model-diagnostic tools for
the joint modeling, it is valuable to consider transformations to confirm the fit is the
best among the class of transformations we consider. To show the impact of transfor-
mation on the parameter estimates, Table 4 summarizes the analysis results under the
joint PHC model (n = 0) and the joint proporitional odds cure model (n = 1).

Under the selected best transformation model, Figure 1 (b) displays the estimated
baseline survival distribution for the uncured patients (X; < oco) along with their point-
wise 95% confidence intervals. In Figure 1 (b) we note that the tail probability of the
estimated baseline survival curve reached zero. The results in Table 4 show that 1)
older patients tended to take more vitamin D, and were more likely to be uncured to
CRC; and 2) patients with distant metastases appeared to take vitamin D less, and were
more likely to be uncured to CRC. The significant negative 1/; suggested that there was
a protective effect of vitamin D intake in relation to the risk of CRC death, which was
not explained by the common covariates in both longitudinal and survival components
(p = 0.026). As an example of quantitative interpretation, the marginal survival rates
(<£12.5 years) and cure rates (>12.5 years) for the whole population are given in Figure
2. For instance, when comparing the curves to reference (age of 68, BMI = 25kg/m?,
well or moderate differentiation, no distant metastases), we can see that the cure rate
at age of 78 decreased to 68% from 80% at age of 68, while one for CRC patients
with distance metastases decreased to 6% from 80% with no distance metastases. The
curves have been obtained by Ej[S(t|22,b)] = Eplexp{—H(e? 2 +V0F(1))}] eval-
vated at the NPMLEs for a given covariate z», and their 95% pointwise confidence
intervals can also be obtained by applying the functional delta method and evaluating
at the NPMLEs.
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Figure 2: Predicted marginal survival rates of the entire population using the results in
Table 4. The rates beyond the cure threshold are interpreted as cure rates (CR). Refer-
ence rate is taken for age of 68, BMI = 25kg/ m2, well or moderate differentiation, and
no distant metastasis.
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7 Concluding Remarks

We have proposed the joint transformation model for longitudinal and survival data
which takes the possibility of patients being cured or immune to disease into account.
The proposed approach has the advantages of handling time-varying covariates and
providing an easier way to explore a large class of cure models in a unified way. We
have used the NPMLE:s for estimating the model parameters, and the resulting NPM-
LEs have been shown to be asymptotically normal and efficient. Simulation studies
have showed that the proposed estimation procedures produced consistent estimators,
and the new EM algorithm enabled to compute the NPMLEs in a simpler and more
stable way.

As an example of H(-), we considered a class of logarithmatic transformations,
which can be misspecified in practice because of limited knowledge or complex rela-
tionships between covariates. As an alternative choice, we also explored the perfor-
mance of a class of Box-Cox transformations,

_ [ {@+2) =1}/, >0
H(z) = { log(1 + x), ! 3: 0,

and the selected transformation function was robust to the class of transformations
considered. Based on our experiences, it appears that the form of transformations
is less important than the problem of selecting the transformation parameter 7. We
used the AIC to determine the best transformation parameter, but there exist other
criteria for model selection such as the Bayes information criterion and cross-validation
(‘leave-one-subject-out’). The differentiability conditions on H, as in the first part
of the Condition (AS5), are satisfied with any class of transformations induced by a
random effect. Indeed, the validity of our asymptotic properties proven here is not
restricted to these frailty class transformations. Other transformations which are not
generated by a frailty, for instance, the Box-Cox transformations with v > 1, can also
satisfy the Condition (A.5). We further note that in this article the frailty representation
relating to the Laplace transformation has been introduced to facilitate easy use of EM
computation.

In this paper, we assumed that the number of observations of repeated measures are
independent of cure-survival data. To account for the informative observation times,
our joint cure model can be extended by jointly modeling another recurrent event pro-
cess. Another promising extension of our joint cure model would be to the context of
generalized linear mixed models (GLM) to analyze discrete longitudinal outcomes. It
is rather obvious that the general approach presented here is still applicable to GLMs,
but some specific parts related to estimation procedures of longitudinal components
need to be modified accordingly.
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Appendix: Proofs of Asymptotic Properties

This section proves Theorems 1-2 stated in Section 4 by applying the general asymp-
totic theory of Zeng and Lin (2007). Specifically, it is easy to see that our conditions
(A1) - (A8) imply (C1) - (C4), (C6), (C8) of Zeng and Lin (2007), and it remains to
prove the two identifiability conditions (C5) and (C7) of Zeng and Lin (2007). The first
identifiability is the key step to prove the consistency of the NPMLEs, and the second
is to entail the invertibility of the observed information matrix at the true parameters
for the proof of the asymptotic normality.

Proof 1 First, we verify the first identifiability condition (C5) in Appendix B of Zeng
and Lin (2007). Suppose that the likelihood function for (c, 3, v, 02, Vec(3y)) is the
same as that for the true parameter values (g, Bo, Vo, 036, Vec(Xop)). That is, for
arbitrary K > 0,

_ Y — Zia— Z0)T(Y — Zya — Z1b)
2 2 K/2 _( 1 1
/b( oy exp{ 207

T T 5 7 A
x [ ) e 220 ) B (g()) | e H ) f(1;3,) db

_ /(27(0_2 )_K/2exp _(Y—Zlao—Zlb)T(Y—Zlao —Zlb)
b o 20-(%6

_ , A
% [fo(UC) B0 Z2(x)+(bopo) " Z2(z) py (C]o(iﬁ))} e~ H(qo(x)) £(b; Lop) db, (10)
where bold'Y denotes the vector of the observed longitudinal measures at time s+, . . ., Sk,

and Z1 and Z1 in bold type denote matrices with each row equal to the observed co-
variate Zy(sy)T and Zy(sp)T at k = 1,..., K, respectively. In addition, q(t) =
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fot A" Za(w)+(boy) " Za(w) dF (u), and qo(t) is q(t) evaluated at the true parameter val-
ues, and f(b; Xy) is the density function of the (multivariate) normal distribution with
mean zeros and covariance matrix ¥y,. From now, we take the following actions on
both sides of (10).

Step 1:  For the proof of the identifiability of the longitudinal component, we consider
acase A=0and X ~ Q.

Using the fact that [ b f(b;Xy) db = [ b f(b; op) db = 0 and considering E[Y (si))
conditional on b, we have o Zy(s1,) = ol Z1(sy), for k = 1,..., K. By Condition
(A6), we prove oo = «. Similarly, we consider E[Y (s)Y (si)] and Var(Y (si)),
given b, and obtain for k # k'

/b{agzl(sk) 6 Zi(s) } {0f Za(sw) + 87 Zu(s) } S0 0) b

- /b {ad Zu(s1) + 07 Za (1) } { o Z1 (k) + 67 Z (s00) } £ (8 So0)

followed by the proof of Xy, = X from (A6), and

/{az + szl(sk)Zl(sk)Tb} F(b; ) db

b
- /b {08 + 6" Z1(31) Z1(54) b} (55 Z0n) b,

fork =1,..., K. Accordingly, we have that 0> = o3,.

Step 2:  For the survival component, suppose A = 0 and X = t. Then, (10) implies
Ey [exp{—H(q(t))}] = Ep [exp{—H(qo())}],

where b follows a normal distribution with mean i, = \/E)ZlT(Y — Z1p)/od, and

~T ~ ~
covariance matrix Vyy = [S3,} + Z| Z1/03.)7\. Forfixed Y, Z1, and Z1, since b is
the complete statistic for u,, we can have that

t _
exp { ([ " 210020210 g |
0

t _
_ exp{_H(/ eﬁoTZQ(u)-&-(bOwo)TZz(u)dFO(u))}.
0

Furthermore, it is followed from the one-to-one mapping of H and exponential function
that

log(f(t)) + BT Za(t) + b7 (1 0 Za(t)) = log(fo(t)) + By Za(t) + b (v 0 Za(t)),

with probability 1. By taking the expectation with respect to b for fixed Y, Z 1, and Z,,
we conclude that = By, f(t) = fo(t) and b = g from the Condition (A6).
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Proof 2 Next, we verify the second identifiability condition (C7) in Appendix B of Zeng
and Lin (2007). It starts from the score equation along with the path (cg+E&vq, Bo+Evs,
Vo + v, 08, + Eva, Vec(Sop) + Evp, Fo + & [ hdFy). We define Dy, as the symmetric
matrix such that Vec(Dy) = vp.

Step 1:  To make the score equation simple for the proofs of v1 = 0, v4 = 0 and
Dy = 0, we consider the same case A = 0 and X = 0 as used in Step 1 of the first
identifiability proof. We define

_ _ ~T ~ ~ T
V' =30 + 2, 2103, and py, =V Z1 (Y — Ziag)/0t,

then, the score equation is given by

1 _ 1 _ _ 1 _ _ v, =T =~
0 = *iTr(Eoleb) + §MbTEoleb Son ko + §Tr(20leb S0 Vo) + ‘2;1 Tr(Z, Z1Vy)
Oe
_V4K + VlTZ,{(Y — Zloéo — Zl//(‘b)
203, 7.
1% ~ ~T ~
“rﬁ {(Y - ZlOé())T(Y - Zlao) — 2(Y — Zlao)Zlub + ubTZl Zlﬂb} . (11)
Oe

By comparing coefficients for the constant, linear and quadratic terms of (Y — Z1«v),
we have that

~T ~
v, Tr(Z, Z1V, 1 _ 1 _ _
0 20‘% (K — ( ;3 - b)]+§Tr(EOb1Db)— 5 T30 Dy 3, Va), - (12)
IZT  ZiZ,
0 = —HI-=574, (13)
Oe Oe
~ 5T & 5T =T 5 _ 1, 5T
0 = M- 22Vo2, | Z\VZ, Zlvble Z,\Vy Sy, Dy zmjvbzlfm)
20(, O Tbe 207, '

Since [I — Zﬂ/},ZlT/Jge] is positive definite, we can see that v = 0 in (13). To
simplify (14), we multiply Z? from the left, Z+ from the right, and then [Z?Z )7t

from the right on both sides of (14). Using the fact that Z&}Db =1- 2?21%/086,
the equation (14) becomes

=T =~ ~T ~ _
vy Z,Z\Vy|  Z,Z1Vy, 5, Dy
9.2 |17 2 2 =0, (15)
2006 T0e 2006
and the equation (12) becomes
~T ~
vy Tr(Zl Zl‘/b) 1 =T ~ 1
— | K — Tr(Z, Z:V, X5, Dy) = 0. 16
23, [ A AT 1

After taking the trace of (15) and subtracting from the equation (16), we obtain that

V4

K—dy)=0
2(7%6( b) ’
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where dy, stands for the dimension of b. Based on Condition (A8), we conclude that
vy = 0, and hence Dy, = 0 in (15) by Condition (A7).

Step 2:  For the second identifiability of the survival component, we set A = 0 and
X =t. Then, the score equation can be written as

Ep [exp{—H (q0())} H(go(t)) 4o(t)] = 0, 17

where q'o (t) = fot{h(u) + VgZQ (’LL) + (VS o b)TZQ (’LL)} eﬁgZz(u)+(bo¢0)T22(u) dFO (u)’
and b is normally distributed with mean p, and covariance matrix Vy,. By the complete-
ness of the exponential family of b, we can have

exp{—H (qo(t))} H(qo(t)) do(t) =0,

for any fixed Y, Z and Z1 with probability 1. Since H(qo(t)) > 0 for Yt > 0 from
(A5), we can obtain {o(t) = 0, and hence

h(t) 4+ v Zo(t) 4 (v3 0 b)T Zy(t) = 0.
Clearly, we attain v, = 0, v3 = 0 and h = 0 by (A6).

Finally, we complete the proofs of Theorems 1 - 2 by Theorems 1 - 2 in Zeng and
Lin (2007). Let I,, denote the negative Hessian matrix of the observed log-likelihood
function with respect to (0, F'{-}). As a remark, by following Theorem 3 in Zeng and
Lin (2007), we can show that I,, is invertible for large n, and (v7, UT) nI [t (vT,UT)T
is the consistent estimator of the asymptotic variance of

\/E{I/T(é —6y) + /u(t) d(F — Fo)} :

where U is the vector of u(-) at the observed failure times.
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