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1 Some Set Theory

1.1 Set and Sample Space

Set is a basic concept in mathematics and probability. We define a set, often
denoted by a capital letter in this note, as a collection of some elements. For
example, R and Rn denote the set of real numbers and the n-dimensional Euclidean
space, respectively.

Some commonly used notations involving sets include:

• ϕ: empty set.

• x ∈ A: x is an element of the set A.

• {x} ⊂ A: the set consisting of the singleton x ∈ A is a subset of A.

• {x : a statement}: the set of all elements x for which the statement holds.
For example: the open interval (a, b) can be defined as {x : a < x < b}.

It is necessary to define an ‘abstract space’, often denoted by Ω, as a nonempty set
of all the elements concerned. These elements are called ‘points’ and denoted
usually by ω. A set containing only part of these elements is called a subset (of Ω).
In the probability literature, we often use Ω to denote the sample space, which is
the collection of all possible distinct realizations of a non-deterministic experiment
and an element of Ω, say ω, is called a simple event or a sample point in Ω. We shall
decide in latter sections on what class of (sub)sets probabilities are defined for and
on what class of functions are acceptable for random variables.

The choice of the sample space is the first step in formulating a probabilistic model
for an experiment. Let us consider several examples of sample space.

(1) A patient’s survival status at the end of a clinical trial.
Ω = {dead, alive}, which is a finite sample space.

(2) Number of a patient’s seizures observed in a clinical trial.
Ω = {0, 1, 2, 3, . . . , }, which is a countably infinitive sample space.

(3) A cancer patient’s survival time after treatment.
Ω = {T : T ≥ 0}, which is an uncountably infinitive sample space.

5



Exercise 1.1 Suppose Ω has exactly n sample points. Find the number of all
possible subsets of Ω.

Exercise 1.2 (courtesy of R. Strawderman) Describe the elements of the sample
space for the following experiment: Players A, B, and C take turns at a game
subject to the following restrictions:

• To start the game, A and B play while C sits out.

• The loser of the 1st round sits out and is replaced by C in the 2nd round (i.e.
the 2nd round is played by the winner of the 1st round and player C).

• The game continues in a similar fashion (i.e. the loser is replaced by the one
who is sitting out) until one player wins two successive rounds.

1.2 Revisit of Set Calculations

Roughly speaking, subsets of Ω are called events. If Ω is uncountable, we cannot
(need not) handle all possible subsets. Instead, we restrict to a “well-behaved” class
of subsets, broad enough for our purpose. Only those subsets in such a restricted
class will be called events. For example, we may require the interaction (or union)
of events is also an event. In this section, we review the basic calculations involving
in sets.

Definition: For any two sets in Ω, we define

(1) Union: A ∪B = { w : w ∈ A or w ∈ B}.

(2) Intersection: A ∩B = { w : w ∈ A and w ∈ B}.

(3) Complementation (with respect to Ω): Ac = { w ∈ Ω : w /∈ A}.

(4) Difference: A−B = { w : w ∈ A, w /∈ B} = A ∩Bc.

(5) Symmetric Difference:
A△B = (A−B) ∪ (B − A) = {w : w ∈ exactly one of A and B}.

It is straightforward to show that the operation of union has the following
properties.
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Property 1.1 associative: (A1 ∪ A2) ∪ A3 = A1 ∪ (A2 ∪ A3).

Property 1.2 distributive: (A1 ∪ A2) ∩ A3 = (A1 ∩ A3) ∪ (A1 ∩ A3).

Property 1.3 commutative: A1 ∪ A2 = A2 ∪ A1.

If A and B are disjoint, i.e. A ∩B = ϕ, we sometimes write the disjoint union as

A ∪B = A+B.

Exercise 1.3 Find Ac, with respect to Ω,

(a) Ω = {x : 0 < x < 1}, A = {x : 0.5 < x < 1};

(b) Ω = {(x, y) : |x|+ |y| ≤ 2}, A = {(x, y) : x2 + y2 < 2};

(c) Ω = R1, A = ∩∞
n=1Bn, where Bn = {x : x ∈ (0, 1/n)}.

We say two sets are equal if they contain exactly the same elements. Hence, to show
A = B, one needs to demonstrate in two steps that A ⊂ B and B ⊂ A.

Exercise 1.4 For any three sets, A,B and C, show A△B = C if and only if
A = B △ C.

We define countable infinite unions and intersections as follows.

Definition: Let {An} be an infinite sequence of sets in Ω. We define

sup An
n ≥ 1

=
∞⋃
n=1

An = {w : w ∈ An for some n} and

inf An
n ≥ 1

=
∞⋂
n=1

An = {w : w ∈ An for any n ≥ 1}.

Similarly, we often use
∑∞

n=1An to denote a union of a countable sequence of
pairwise disjoint sets. Furthermore, we may extend the intersection or union over a
set of integers to any arbitrary set. For {At, t ∈ T}, where T is an index set,⋃
t∈T

At = {w : w ∈ At for some t ∈ T} and similarly for the intersection.
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Example 1.1 Let T = [0, 1] and At = {t+ 1}. Then
⋃
t∈T

At = [1, 2].

It may be easy to prove

Theorem 1.1 (De Morgan’s rule) (
⋃
t∈T

At)
c =

⋂
t∈T

Ac
t and (

⋂
t∈T

At)
c =

⋃
t∈T

Ac
t , where

T is any index set, e.g. finite, countably infinite or uncountably infinite.

Proof: homework. 2

One can also easily show, under complementation, ⊂ and ⊃ are interchanged, i.e.
A ⊂ B implies Ac ⊃ Bc.

Exercise 1.5 Show

B
⋂(

∞⋃
n=1

An

)
=

∞⋃
n=1

(B ∩ An) and B
⋂(

∞⋂
n=1

An

)
=

∞⋂
n=1

(B ∩ An).

1.3 Limit Sets

For an infinite sequence of real numbers, we know how to study its convergence and
define its limit (if it exists). In this section, we discuss the convergence of an infinite
series of sets. We begin with the concepts of ”liminf” and ”limsup” for a sequence of
sets.

Definition: Let {An} be a sequence of sets in Ω. Define

A∗ =
∞⋂
n=1

∞⋃
k=n

Ak

and

A∗ =
∞⋃
n=1

∞⋂
k=n

Ak.

A∗ and A∗ are termed upper limit and lower limit of the sequence {An}, usually
denoted by lim supnAn and lim infnAn respectively. If A∗ = A∗, we say {An} is
convergent and write limn→∞An = A∗ = A∗.
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Example 1.2 Let Ω = [0, 1], An = [0, 1
n
] if n is even and An = [1− 1

n
, 1) if n is odd.

Then by definition, A∗ = ϕ and A∗ = {0}. Hence, A∗ ̸= A∗, which implies
limAn doesn’t exist.

However, if An = [0, 1
n
] for all n, then A∗ = A∗ = {0}, which implies limAn = {0}.

Theorem 1.2 (a) ω ∈ lim supnAn if and only if ω is in infinitely many of the An.
(b) ω ∈ lim infnAn if and only if there is an m such that ω ∈ An for all n ≥ m.

Proof: (a) Set Bm =
⋃∞

n=mAn, and note that lim supnAn =
⋂

mBm. Suppose ω
belongs to infinitely many of the An. Then for any m, there is an n > m such that
ω ∈ An ⊂ Bm, so ω ∈

⋂
mBm. On the other hand, suppose that ω ∈ lim supnAn,

and that ω is in only a finite number of the An. Then there is an N such that
ω ̸∈ An for all n > N , which implies ω ̸∈ Bm for m > N , so ω ̸∈

⋂
mBm, which is a

contradiction. Thus ω must be in infinitely many of the An.
(b) Let Cm =

⋂∞
n=mAn, and note that

⋃∞
m=1Cm = lim infnAn. If ω ∈ An for all

n ≥ m, then ω ∈ Cm ⊂ lim infnAn. On the other hand, if ω ̸∈ Cm for any m, then
ω ̸∈

⋃∞
m=1Cm. So if ω ∈ lim infnAn then ω must be in Cm for some m, and thus in

An for all n ≥ m. 2

Because of part (a), the terminology ‘An occurs infinitely often’ is often used to
refer to lim supnAn. For example, suppose Xn(ω) is the number of heads in n flips
of a coin, and An = {ω : Xn(ω) > n/2}, which consists of all outcomes where the
proportion of heads in the first n flips is > 1/2. In this case, ω ∈ lim supnAn if
Xn(ω)/n > 1/2 for infinitely many n, or equivalently, if the proportion of heads is
> 1/2 infinitely often. On the other hand, if ω ∈ lim infnAn, then ω must be in all
but a finite number of the An. In the example, this means that there is an m (which
can be different for different ω), such that Xn(ω)/n > 1/2 for all n ≥ m.
Equivalently, the proportion of heads is > 1/2 for all but a finite number of n.

Exercise 1.6 Show (lim supnAn)
⋂
(lim supnBn) ⊃ lim supn(An

⋂
Bn) and

(lim supnAn)
⋃
(lim supnBn) = lim supn(An

⋃
Bn).

Using the De Morgan’s rule, one may show lim infnAn = (lim supnA
c
n)

c. In fact,

lim inf
n

An =
∞⋃

m=1

∞⋂
n=m

An =

(
∞⋂

m=1

∞⋃
n=m

Ac
n

)c

=

(
lim sup

n
Ac

n

)c

.
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Exercise 1.7 Show lim infnAn ⊂ lim supnAn.

Intuitively, this follows as if w lies in all but a finite number of members of the
sequence, it surely lies in infinitely many members of the sequence.

Exercise 1.8 Let Ω = R2 and An the interior of the circle with center at
((−1)n/n, 0) and radius 1. Find lim infnAn and lim supnAn.

Exercise 1.9 Let an be a sequence of real numbers, and let An = (−∞, an). Find
the connection between lim supn an and lim supnAn, and similarly for lim inf (Recall
that, for a sequence of real numbers {an}, lim infn an = limn→∞ infk≥n{ak} and
lim supn an = limn→∞ supk≥n{ak}.)

Parallel to a series of real numbers, we also introduce the concept of monotonicity
to a sequence of sets.

Definition: A monotone sequence of sets is defined as follows

• {An} is called monotone increasing if and only if An ⊂ An+1 for any n.

• {An} is called monotone decreasing if and only if An ⊃ An+1 for any n.

Then we prove

Theorem 1.3 A monotone sequence of sets is convergent.

Proof: First suppose that An is increasing. Then

lim inf
n

An =
∞⋃
n=1

∞⋂
k=n

Ak =
∞⋃
n=1

An.

On the other hand,

lim supAn =
∞⋂
n=1

∞⋃
k=n

Ak ⊂
∞⋃
k=n

Ak ⊂
∞⋃
n=1

An = B = A∗.

As A∗ ⊂ A∗, we have that A∗ = A∗.
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Now we suppose that An is decreasing. By definition, we have that

A∗ = A∗ =
∞⋂
n=1

An,

which completes the proof. 2

1.4 Zorn’s Lemma and Zermelo Choice Axiom

In this section, we introduce some fundamental set theorems.

Definition: A partial ordering on a set is a relation “≤” that is

• reflexive: a ≤ a.

• antisymmetric: if a ≤ b, b ≤ a, then a = b.

• transitive: if a ≤ b, b ≤ c, then a ≤ c.

Definition: A set equipped with such a relation “≤” is called a partially ordered
set.

Note “a ≤ b” can also be written as “b ≤ a” and “a < b” means “a ≤ b but a ̸= b”.

Example 1.3 Let Ω be a nonempty set and denote by X the class of all the subsets
of Ω. It follows that X is a partially ordered set by the ordinary set inclusion
relationship, That is, for any A,B ∈ X , A ≤ B means A ⊂ B.

Definition: A set C is called totally ordered if and only if for all a, b ∈ C, either
a ≤ b or b ≤ c. A totally ordered subset of a partially ordered set A is called a chain
of A.

Example 1.4 Any subset of R is totally ordered if taking the ordinary ‘≤’
relationship between two real numbers. How about the two-dimensional real space?

Definition: Suppose that X is a partially ordered set and that X0 is a subset of
X. An element b is called the upper bound of X0 if that b ∈ X and any x ∈ X0
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implies x ≤ b. If b is an upper bound of X0 and for any upper bound b′, b ≤ b′, then
b is called the supremum of X0. In other words, the supremum of X0 is the smallest
upper bound of X0 (in the sense of “ ≤ ”).

Remark 1.1 The upper bound and supremum of X0 are not necessarily in X0. The
lower bound and infimum can be defined similarly. The supremum and infimum of
X0 are usually denoted by supX0 and infX0.

Example 1.5 Suppose that X0 is a class of some subsets of X. Then

supX0 =
⋃

A∈X0

A, infX0 =
⋂

A∈X0

A.

We state below without proof a theorem needed in the further development of basic
set theorems.

Theorem 1.4 Let X be a non-empty partially ordered set and assume that every
non-empty chain of X has a supremum. Further, let a mapping f : X → X satisfy
x ≤ f(x) (x ∈ X), then there exists c ∈ X such that f(c) = c.

The proof of this theorem is rather involved. Interested readers should refer to P.J
Cohen’s Set theory and the Continuum Hypothesis (New York, 1966, Amsterdam).

Definition: Let X be a partially ordered set and x ∈ X. If any y ∈ X such that
x ≤ y implies x = y, then x is called the maximum of X. The minimum of X is
defined similarly.

Remark 1.2 The maximum or the minimum of a set may not be unique.

Example 1.6 Let Ω be a nonempty set and denote by X the class of all the subsets
of Ω. It follows that X is a partially ordered set by the ordinary set inclusion
relationship. The maximum of X is Ω and the minimum of X is ϕ, the empty set.
Consider a subset of X , X1 = X − {ϕ}. It is easy to show that every singleton
generated by Ω is the minimum of X1.

Theorem 1.5 Every partially ordered set has a maximum chain.

Proof: Let X be a partially ordered set with the relation “≤”. Let X be the class of
all the chains of X. It follows that X itself is a partially ordered set by the set
inclusion relationship (i.e. ⊂). We prove by contradiction that X has a maximum.
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Assume that X does not have a maximum. Then for any A ∈ X , as A is not a
maximum, there exists an A1 such that A ⊂ A1 and A ̸= A1. Let f be a mapping
for such a realization, i.e. f : X → X satisfying A ⊂ f(A) and f(A) ̸= A. In
addition, every non-empty chain of X has a supremum (think of the union!). Hence,
by Theorem 1.4, there exists an A0 ∈ X such that f(A0) = A0, which contradicts to
the definition of f ! The theorem is thus proved. 2

Now we can easily apply the result to prove Zorn’s lemma, one of the fundamental
theorems in the set theory.

Theorem 1.6 (Zorn’s lemma) Let X be a set with a partial ordering ‘≤’. If every
chain in X has a supremum, then X has a maximum.

Proof: By Theorem 4, there exists a maximal chain X0 of X. Let x0 = supX0. For
any x ∈ X such that x0 ≤ x, we would like to show x0 = x. If x /∈ X0, then
X0 ∪ {x} is a chain containing X0, which contradicts to that X0 is a maximal chain.
Therefore, x ∈ X0. As x0 is the supremum of X0, x ≤ x0. Hence, x = x0, which
implies that x0 is a maximum. 2

Another equivalent form of Zorn’s lemma can be stated as

Theorem 1.7 Let X be a set with a partial ordering ‘≤’. If every chain in X has
an upper bound, then X has a maximum.

We last introduce the Zermelo’s choice axiom.

Theorem 1.8 Let X be a class of non-empty sets. Then there exists a mapping

f : X →
⋃
A∈X

A such that for every A ∈ X , f(A) ∈ A.

This theorem tells that one is able to form a set by choosing a point from each set in
a class of sets, a seemingly trivial but fundamental action in set theory. In history, a
nontrivial application of this theorem was in finding a non-Lebesque measurable set
(due to Vitali). More involved investigations can show that Theorems 1.5-1.8 are in
fact equivalent. These theorems indeed form the axiomatic basis for set theory.
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1.5 Field and σ-field(algebra)

Length, area, volume, as well as probability are examples of measure that we will
discuss. A measure is a set function, which assigns a number µ(A) to each set A in s
certain class. Some structure must imposed on the class of sets on which the set
function µ is define. Probability considerations give a good motivation for the
required structure.

In this section, we concentrate on the underlying class of sets and define the
essential structure. Finally, we shall give a precise definition for events in a well
defined probability space.

Definition: A class of sets X is closed under an operation ∗ (e.g. union,
intersection, etc.) if ∗ performed on any member(s) of X yields a set which also
belongs to the class.

Example 1.7 X = {ϕ,A,B,C,A ∪B,A ∪ C,B ∪ C,A ∪B ∪ C} is closed under
Union.

Definition: A class X of sets in Ω is called a field (Boolean field) if (i) X is
non-empty; and (ii) X is closed under finite union and complementation.

This definition means that (i) there exists A ⊂ Ω such that A ∈ X ; and (ii) if

Ai ∈ X for i = 1 · · ·n, then
n⋃

i=1

Ai ∈ X , and if A ∈ X , then Ac ∈ X .

Some properties of a field are summerized below.

Property 1.4 A field X is also closed under finite intersection.

Proof: For Ai ∈ X , i = 1 · · ·n, as Ac
i ∈ X , hence, ∪Ac

i ∈ X .

Since

(
n⋂
1

Ai

)
= (
⋃
Ac

i)
c, therefore,

⋂
Ai ∈ X . 2

Property 1.5 ϕ ∈ X and Ω ∈ X (homework)

Example 1.8 (1) X1 = {ϕ,Ω} is a field; (2) X2 = all subsets of Ω is a field; (3) Let
Ω = (−∞,∞). X3 = class of all finite interval (a, b) is not a field (why?)

14



Definition of σ-field: A class X of sets is a σ-field if (i) X is non-empty (ii)X is
closed under complementation and countable unions. A σ-field is often called as a
σ-algebra as well.

Example 1.9 X1 is a trivial σ-field, the ‘poorest’ σ-field, whereas X2 is the ‘richest’
σ-field, containing all subsets of the sample space.

Note that, similar to a field, the empty set, ϕ, and the sample space, Ω, must be
contained in a σ-field as well. It is trivial to see that a σ-field is a field, but the
converse is not true.

Exercise 1.10 Find a field which is not a σ-field.

Exercise 1.11 Let Ω = R, showF = {A : A is countable or Ac is countable} is a
σ-field.

Exercise 1.12 Let X be a nonempty class defined by
X = {A : x ∈ A⇒ x± 1, x± 2 · · · are all in A}. Verify that X is a σ-field.

1.6 σ-field Generated by a Class of Sets

Definition: Let X1 and X2 be two σ-fields. We define their intersection as

X1 ∩ X2 = {A : A ∈ X1 and A ∈ X2}.

We can easily show

Theorem 1.9 X1 ∩ X2 itself is a σ-field.

Proof: one may verify that conditions (i) and (ii) hold (homework). 2

Similarly we define countable intersections and arbitrary intersections and can show
that arbitrary intersections of σ-fields are σ-fields. This result is particularly useful
as it allows us to construct a ‘smallest’ σ-field containing a given class of sets.

But it is not the case for unions. For example, given two σ-fields, X1 and X2, their
union

X1 ∪ X2 = {A : A ∈ X1 or A ∈ X2}
is not necessarily a σ-field.
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Example 1.10 Let X1 = {ϕ,A,Ac,Ω} and X2 = {ϕ,B,Bc,Ω}. But
X1 ∪ X2 = {ϕ,A,Ac, B,Bc,Ω} is not a σ-field.

The next theorem establishes the existence of a minimal σ-field containing a given
class of sets.

Theorem 1.10 Given a class of sets, there is a minimum σ-field containing it.

Proof: Let S be a given class of sets in Ω and G = {X : X be a σ-field X ⊃ S}.

G is nonempty as the σ-field of all the subsets of Ω contains S. Hence,
⋂

X∈GX is
the smallest σ-field containing S. 2

Definition: We say that a σ-field is generated by a class S of sets if it is an
intersection of all σ-fields which contain S, denoted by σ(S).

We list some properties of σ(S).

Property 1.6 σ(S) is itself a σ-field.

Property 1.7 S ⊂ σ(S).

Property 1.8 S1 ⊂ S2 implies σ(S1) ⊆ σ(S2).

Property 1.9 If S itself is a σ-field, then σ(S) = S.

Exercise 1.13 Given a series of σ-fields Fj, we know that ∪j=1Fj may not be a
σ-field. We use ∧j=1Fj to denote the smallest σ-field containing each Fj. A σ-field
is said to be countably generated if and only if it is generated by a countable
collection of sets. Prove if each Fj is countably generated, so is ∧j=1Fj.

Let Ω = R = (−∞,∞). Consider the following 4 types of finite intervals.

S1 = {[a, b) : a < b, a, b ∈ R },
S2 = {(a, b) : },
S3 = {(a, b] : },
S4 = {[a, b] : }.
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Let S =
4⋃

i=1

Si. In other words, S is a class of all finite intervals. But S is neither a

field nor a σ-field. An important extension of S to a σ-field is through the following
definition.

Definition: The minimal σ-field over S is called the Borel σ-field on R, denoted by
B = σ(S). Any set in B is called a Borel set.

The following shows that any single type of intervals is actually enough to generate
the Borel σ-field.

Theorem 1.11 B = σ(S1) = σ(S2) = σ(S3) = σ(S4).

Proof: We only prove σ(S1) = B.

As S1 ⊂ S, hence σ(S1) ⊂ σ(S) = B. On the other hand, if we can prove S ⊂ σ(S1),
then σ(S) ⊂ σ(S1).

In fact, we know S1 ⊂ σ(S1). In addition, for any set in S2, one can write

(a, b) =
∞⋃
n=1

[
a+

1

n
, b

)
.

Therefore, S2 ⊂ σ(S1). Similarly, we can show S3 ⊂ σ(S1), S4 ⊂ σ(S4). Thus,

S =
4⋃

i=1

Si ⊂ σ(S1).

2

Exercise 1.14 Show that B is not generated by all the singletons on R.

We return, at the end of this section, to give the formal definition of an event in a
probability space.

Definition of Events: Let Ω be a sample space endowed with a σ-field F of
subsets of Ω. An event is defined to be an element of F , i.e. a set in F .
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2 Measure Theory

We are now in a position to introduce a measure, Lebesgue measure, on the Borel
sets of R. Based on the essential properties of Lebesgue measure, we will introduce
a general measure in any abstract space and, specifically, we will discuss the
probability measure in a probability space.

2.1 Lebesgue Measure

A Lebesgue measure on R is a generalization of “length of interval” in a real line to
more general sets, e.g. Borel sets. For simplicity, we restrict the sample space to
[0, 1].

Definition: Let I be the class of subintervals (a, b] on Ω = [0, 1] and define
λ(I) = |I| = b− a, the ordinary length for I ∈ I. Let B0 be the field of finite unions
of such subintervals. Then for each A ∈ B0, there exists disjoint Ii, i = 1, . . . , n such
that A = ∪Ii. Define

λ(A) =
∑

λ(Ii) =
n∑

i=1

|Ii|.

We call λ Lebesgue measure.

Theorem 2.1 Lebesgue measure λ is countably additive on the field B0.

Proof: Suppose that A = ∪∞
k=1Ak, where A and Ak are B0- sets. Then A = ∪n

i=1Ii
and Ak = ∪mk

j=1Jkj are disjoint unions of I-sets. By definition,

λ(A) =
n∑

i=1

|Ii| =
n∑

i=1

∞∑
k=1

mk∑
j=1

|Ii ∩ Jkj|

=
∞∑
k=1

mk∑
j=1

|Jkj| =
∞∑
k=1

λ(Ak).

2

A natural question is how to measure a set which is not in B0. We thus consider
outer measure, an extension of λ.
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Definition: For each A ∈ Ω, define its outer measure by

λ∗(A) = inf
∑
n

λ(An)

where the infimum extends over all finite and infinite sequences A1, A2, . . . , of B0

satisfying A ⊂ ∪nAn. Here {An} need not be disjoint.

There are four properties associated with the set function λ∗

Property 2.1 λ∗(ϕ) = 0

Property 2.2 nonnegativity: for any A ⊂ Ω λ∗(A) ≥ 0.

Property 2.3 monotonicity: A ⊂ B implies λ∗(A) ≤ λ∗(B).

Property 2.4 countably subadditivity: λ∗(∪nAn) ≤
∑

n λ
∗(An)

Proof: For a given ϵ, choose B0-sets Bnk such that An ⊂ ∪kBnk and∑
k λ(Bnk) < λ∗(An) + ϵ2−n (by the definition of λ∗). Now ∪nAn ⊂ ∪n,kBnk so that

λ∗(∪nAn) ≤
∑

nk λ(Bnk) <
∑

n λ
∗(An) + ϵ. Hence, the statement follows as ϵ is

arbitrary. 2

It is also natural in approximating A from the inside by approximating its
complement Ac from outside. We define the inner measure by

λ∗(A) = 1− λ∗(Ac).

Definition: If λ∗(A) = λ∗(A), we call A is (Lebesgue) measurable.

We have another equivalent definition for a measurable set.

Definition: If for any E ⊂ Ω,

λ∗(A ∩ E) + λ∗(Ac ∩ E) = λ∗(E) (1)

we call A (Lebesgue) measurable.

It will not be difficult to show

Theorem 2.2 Any countable set has Lebesgue measure 0.
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Hence, the Lebesgue measure of the set of all rational numbers is actually zero!

Another natural question might be: does there exist a non-measurable set?
Surprisingly, finding a non-measurable set turns out to be a non-trivial task. Only
one non-measurable set was ever found (due to Vitali) in history, which was
constructed based on the Zermelo’s choice axiom.

Finally, we show that

Theorem 2.3 The class of (Lebesgue) measurable sets in Ω = [0, 1] is a σ−algebra.

Proof: Let M be the class of measurable sets in Ω. It is easy to see that Ω ∈ M.

If A ∈ M, as (1) is symmetric (with regard to complementation), Ac ∈ M.

Our goal now is to show M is closed under countably infinite intersections. Toward
this end, we first show that M is closed under finite intersections.

Suppose that A,B ∈ M and E ⊂ Ω, Then

λ∗(E) = λ∗(B ∩ E) + λ∗(Bc ∩ E)
= λ∗(A ∩B ∩ E) + λ∗(Ac ∩B ∩ E)

+λ∗(A ∩Bc ∩ E) + λ∗(Ac ∩Bc ∩ E)
≥ λ∗(A ∩B ∩ E)

+λ∗((Ac ∩B ∩ E) ∪ (A ∩Bc ∩ E) ∪ (Ac ∩Bc ∩ E))
= λ∗((A ∩B) ∩ E) + λ∗((A ∩B)c ∩ E)

The equality hence follows by subadditivity. hence, A ∩B ∈ M and M is closed
under finite intersections (so M is a field.)

Now suppose A1, A2, . . . are disjoint M sets with union A. Since Fn = ∪n
k=1Ak lies

in M,
λ∗(E) = λ∗(E ∩ Fn) + λ∗(E ∩ F c

n).

Applying to the first term an equality for a finite or infinite sequence of disjoint sets
(exercise)

λ∗(E ∩ (
⋃
k

Ak)) =
∑
k

λ∗(E ∩ Ak), (2)
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and applying the monotonicity to the second term (as (F c
n ⊃ Ac), we have

λ∗(E) ≥
n∑

k=1

λ∗(E ∩ Ak) + λ∗(E ∩ Ac).

Let n→ ∞ and apply (2) again. Then we end up with

λ∗(E) ≥
∞∑
k=1

λ∗(E ∩ Ak) + λ∗(E ∩ Ac) = λ∗(E ∩ A) + λ∗(E ∩ Ac).

Hence A = ∪nAn lies in M. Now we have shown that M is closed under countable
disjoint unions. For any set Bk in M, let A1 = B1 and Ak = Bk ∩Bc

1 . . . ∩Bc
k−1,

then the Ak are disjoint M sets and ∪kBk = ∪kAk hence lies in M, which completes
the proof. 2

This theorem indicated that applying finite or countably infinite operations (e.g.
intersection, union or complementation) on measurable sets would still yield a
measurable set.

Exercise 2.1 Prove (2). (Hint: use induction to prove that (2) holds for a finite
sequence. For the infinite case, use monotonicity,
λ∗(E ∩ (∪∞

k=1Ak)) ≥ λ∗(E ∩ (∪n
k=1Ak)) =

∑n
k=1 λ

∗(E ∩ Ak). Then let n→ ∞.)

In the end, we summarize the development of Lebesgue measure.

• Let I = {[a, b)}, where a, b can be −∞,∞, respectively, and λ is defined on I
by λ((a, b]) = b− a.

• B0 = {I : I is a finite union of intervals in I} is a field. (Why?)

• λ on B0 is monotone, i.e., B1 ⊆ B2 ⇒ λ(B1) ≤ λ(B2).

• λ is countable additive, hence is a measure in B0.

• λ is extended to λ∗, the outer measure to measure sets outside of B0.

• the class of λ∗ measurable sets is a σ-field, denoted by M.

• As M contains I = {(a, b]}, B (Borel-σ-field) is measurable. (why?)
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2.2 Abstract Measure

In the last section, we have talked about Lebesgue measure, which is defined on a
real line. We now discuss a measure for an abstract space.

Definition: A measurable space is a space Ω endowed with a σ-field F of subsets of
Ω, often denoted by a pair (Ω,F).

Definition: A measure µ defined on a measurable space (Ω,F) is set function:

µ : F → R+,

which is non-negative and countably additive. That is, (1) µ(A) ≥ 0 for any A ∈ F ,
and (2) if An is a sequence of disjoint sets in F ,

µ(
∞∑
n=1

An) =
∞∑
n=1

µ(An).

Similarly, we can define µ for any class of σ-field, say S, but
∑∞

n=1An must be in S.

Exercise 2.2 For any countably infinite set Ω, the collection of its finite subsets
and their complements forms a field F . If we define a set function µ(E) on F to be
0 or 1 according as E is finite or not, then show µ is finitely additive but not
countably so.

Example 2.1 Lebesgue measure is a measure by the definition in this section.

Example 2.2 Let Ω = {1, 2, · · · , n, · · · }, a set of all positive integers,
F = all subsets of Ω, let µ(A) = # of integers in A. µ is a measure on (Ω,F), we
call it “counting measure”.

Example 2.3 Let Ω = R,F = {A : A is countable or Ac is countable}

µ(A) =

{
1, if A is countable;

0, if Ac is countable;

Let A1 and A2 be two disjoint countable sets. Then A1 + A2 is countable too¿
Hence µ(A1 + A2) = 1 ̸= µ(A1) + µ(A2) = 2. So µ is NOT a measure!
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Exercise 2.3 We redefine

µ(A) =

{
0, if A is countable;

1, if Ac is countable;

show that µ is indeed a measure.

Definition: A measure µ is finite, if µ(Ω) <∞, otherwise µ is a infinite measure. A
measure µ is called σ − finite, if there exists a countable partition of Ω,

Ω =
∞∑
n=1

An, An ∈ F

such that
µ(An) <∞

for any n = 1, 2, · · · .

By definition, a finite measure is a σ−finite measure, but not vice versa, as a
σ−finite measure can be infinite.

Remark 2.1 Example 2.2 is a σ-finite measure, but not a finite measure.

Theorem 2.4 A measure µ defined on a field F can be extended to a measure on
σ(F ). If µ is σ-finite, the extension is unique.

A detailed proof can be found in Billingsley (1995, p.37-43), wherein the
construction of the extension is similar to the development of the outer measure in
the context of Lebesgue measure. Similarly, this theorem holds for Lebesgue
measure in higher Euclidean spaces, i.e. R2, R3, · · · .

2.3 Probability Measure

Given that an “event” in a probability space (Ω,F) is defined as a member of the
σ-field F , our interest here is to measure the possibility that an event occurs. For
this purpose, we introduce the concept of a probability measure.

Definition: A set function P : F → [0, 1] is a probability measure on (Ω,F) if it
satisfies
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(i) (nonnegativity)for any A ∈ F P (A) ≥ 0.

(ii) (regularity) P (Ω) = 1.

(iii) (countable additivity) If {An} is a countable collection of (pairwise) disjoint

sets in F , then P (
⋃
n

An) =
∑
n

P (An).

In some literature, the conditions above are termed Kolmogorov’s Axioms for
probability.

Exercise 2.4 Let Ω be a sample space for a given experiment, say, E. Suppose
that E is repeated n times. Consider the following set function: for any A ⊂ Ω,
define Pn(A) =

1
n

∑n
i=1 I{the outcome of experiment i is in A}, where I{·} is the

indicator function (i.e. equal to one if the argument is true, and zero otherwise).
Note that Pn(A) is just the proportion of times the event A occurs in n replications
of the experiment. Prove that Pn(·) is a probability measure.

It is easy to prove that the probability measure P (·) has the following properties:

Property 2.5 P (ϕ) = 0

Proof: As Ω = Ω + ϕ+ ϕ+ · · · , hence P (Ω) + P (ϕ) + P (ϕ) + · · · = 1. Therefore,
P (ϕ) = 0. 2

Property 2.6 P (Ac) = 1− P (A)

Property 2.7 A ⊆ B ⇒ P (A) ≤ P (B)

Proof: consider B = A+ Ac ∩B. 2

Property 2.8 P (
⋃k

n=1An) ≤
∑
P (An).

Proof: consider the decomposition⋃
An = A1 + Ac

1A2 + Ac
1A

c
2A3 + · · ·+ Ac

1A
c
2 · · ·Ak,

together with P (Ac
1A2) ≤ P (A2). 2
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Property 2.9 (continuity) (i) If An ↑ and An ∈ F , thenP (limnAn) = limn P (An).
(ii) Similarly, if {An} ↓, then P (limAn) = limP (An).

Proof: (i) As An ↑, limn→∞An =
⋃∞

n=1An. We then write limn→∞ in a disjoint
union, i.e.

lim
n→∞

An = A1 + Ac
1A2 + Ac

1A
c
2A3 + · · · .

So,

P ( lim
n→∞

An) = P (A1) + P (Ac
1A2) + · · ·

= lim
n→∞

P (A1) + · · ·+ P (Ac
1A

c
2 · · ·An)

= lim
n→∞

[P (A1 + · · ·+ Ac
1A

c
2 · · ·An)]

= lim
n→∞

P (An).

(ii) homework. 2

The following indicates that the definition of probability has another equivalent
form.

Exercise 2.5 Show conditions (ii) and (iii) in the definition of probability measure
can be replaced by “If Ω = ∪∞

i=1Ai, where Ai are (pairwise disjoint), then∑∞
i=1 P (Ai) = 1”.

Proof: homework (Hint: write
Ω = (

∑
An)

c + (
∑
An) = (

∑
An)

c + A0 + A1 + A2 + · · · .)

Using the continuity properties we are able to prove a theorem concerning the
probabilities of the lower and upper limits of a sequence of sets.

We recall that, for a series of sets {An}, we defined lim infnAn =
∞⋃
n=1

∞⋂
k=n

Ak and

lim supnAn =
∞⋂
n=1

∞⋃
k=n

Ak.

Theorem 2.5 Suppose An ∈ F for all n. Then

P (lim sup
n

An) = lim
m→∞

P

(
∞⋃

n=m

An

)
, (3)
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P (lim inf
n

An) = lim
m→∞

P

(
∞⋂

n=m

An

)
. (4)

Proof: Letting Bm =
⋃∞

n=mAn and Cm =
⋂∞

n=mAn, then Bm is a decreasing
sequence of sets and Cm is an increasing sequence, with Bm ↓ lim supnAn and
Cm ↑ lim infnAn. (3) and (4) then follow from the continuity properties of
probability measures. 2

We are then able to prove an important theorem in the probability literature. This
theorem indicates what can be expected by interchanging the order of limit and
probability measure.

Theorem 2.6 (Fatou-Lebesgue Theorem) For any sequence {An} ∈ F

P (lim inf
n

An) ≤ lim inf
n

P (An) ≤ lim sup
n

P (An) ≤ P (lim sup
n

An).

In addition, if limAn exists, P (limAn) = limP (An).

Proof: Let Bn =
⋂∞

k=nAk. Then

lim inf
n

An =
∞⋃
n=1

Bn = lim
n→∞

Bn.

As Bn ⊆ An, so P (Bn) ≤ P (An). Therefore,

limP (Bn) = lim inf
n

P (Bn) ≤ lim inf
n

P (An).

Also notice that
P (lim inf

n
An) = P (limBn).

Hence, if limAn exists, P (limAn) = limP (An). 2

Another useful theorem we shall prove is the first Borel-Cantelli lemma.

Theorem 2.7 If
∑

n P (An) converges, then P (lim supnAn) = 0.
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Proof: From lim supnAn ⊂ ∪∞
k=mAk follows

P (lim sup
n

An) ≤ P (∪∞
k=mAk) ≤

∞∑
k=m

P (Ak),

and this sum tends to 0 as
∑

n P (An) converges. 2

The first Borel-Cantelli lemma is useful in establishing the strong law of large
numbers for a sequence of i.i.d random variables with a finite mean; see Bilingsley
(1995, p.85).

2.4 Independence and Conditional Probability

Intuitively, two events A and B are independent if a statement concerning the
occurrence or nonoccurrence of one of the events does not change the odds about
the other event. This leads us to introduce fundamental new concept peculiar to the
theory of probability, that of ‘independence’.

Definition: Two events A and B are independent, if and only if

P (AB) = P (A)P (B)

or
P (A|B) = P (A), P (A|Bc) = P (A).

Naturally we may extend the definition for a (finite) series of events.

Definition: Events A1, · · · , An are completely independent if and only if
P (Ak1 · · ·Aks) = P (Ak1) · · ·P (Aks) for every 1 ≤ k1 < · · · < ks ≤ n.

Exercise 2.6 For events A1, . . . , An, consider the 2n equations

P (B1 ∩ . . . ∩Bn) = P (B1) . . . P (Bn)

with Bi = Ai or A
c
i for each i. Show that A1, . . . , An are independent if all these

equations hold.

But pairwise independence is not equivalent to completely independence as
indicated in the following exercise.
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Exercise 2.7 Toss two fair coins. Denote by A1=H in the first toss, A2=H in the
second toss and A3=HH or TT . Then show P (AiAj) = P (Ai)P (Aj) but
P (A1A2A3) ̸= P (A1)P (A2)P (A3).

Given a series of independent events, we can prove the following second
Borel-Cantelli lemma.

Theorem 2.8 If An is an independent sequence of events and
∑

n P (An) diverges,
then P (lim supnAn) = 1.

Proof: It suffices to show that P (∪∞
n=1 ∩∞

n=1 A
c
n) = 0 can hence is enough to show

P (∩∞
n=1A

c
n) = 0 for every n. Since 1− x ≤ e−x,

P

(
n+j⋂
k=n

Ac
k

)
=

n+j∏
k=n

(1− P (Ak)) ≤ exp

[
−

n+j∑
k=n

P (Ak)

]
.

Since
∑

k P (Ak) diverges, the last expression tends to 0 as j → ∞, and therefore

P (

(
∞⋂
k=n

Ac
k

)
= lim

j
P (

(
n+j⋂
k=n

Ac
k

)
= 0.

2

By Theorem (2.6) (the Fatou-Lebesgue Theorem), lim supn P (An) > 0 implies
P (lim supnAn) > 0, whereas in the theorem above the hypothesis

∑
n P (An) = ∞ is

weaker but the conclusion is stronger because of the additional assumption of
independence.

For arbitrary number (e.g. infinite or uncountable) of events, we define their
independence as follows.

Definition: Events in a class C are independent, if and only if events in all finite
subclass are independent.

Definition: Let C1 and C2 be two class of events. C1 and C2 are independent if
and only if for any A1 ∈ C1 and any A2 ∈ C2, A1 and A2 are independent.

Noting that a σ−field itself is a class of events, we have the following theorem.
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Theorem 2.9 Let C1 and C2 be two class of events such that Ci, i = 1, 2 are closed
under finite intersection and C1 and C2 are independent. Then σ(C1) and σ(C2) are
independent.

Proof: see Billingsley (1995, p.55). 2

We have considered the situation of independence for two events, where the
occurrence or nonoccurrence of one event does not alter the odds about the other.
In the absence of independence, the odds are altered and the concept of conditional
probability measures quantitatively the change.

For example, in a series of independent trials where two events are observed,
suppose that P (A) = 0.4 and P (A ∩B) = 0.1. Given a large number of trials, if we
restrict to the trials on which A has occurred, B will occur roughly 25% of the time.
In general, the ration P (A ∩B)/P (A) is a measure of the probability of B under
the condition that A is known to have occurred. In other words, the concept of
‘conditional probability’ arises when we restrict to only parts of the sample space.

Definition of Conditional Probability: Given a probability space (Ω,F , P ), for
a B ∈ F such that P (B) > 0, and any A ∈ F , the conditional probability of A given
B is defined to be

P (A|B) =
P (A ∩B)

P (B)
. (5)

In the next section, we will also consider the definition of conditional probability
P (A|B) when the event B has probability 0. Of course, the definition of (5) is no
long valid. An indirect approach will be used.

Exercise 2.8 P (·|B) is a probability measure on (Ω,F).

Theorem 2.10 (i) If P (B) > 0, A and B are independent if and only if
P (A|B) = P (A). (ii) (law of multiplication law) If P (A1 · · ·An−1) > 0, then

P (A1 · · ·An) = P (A1)P (A2|A1)P (A3|A1A2) · · ·P (An|A1 · · ·An−1).

Proof: (i) follows by definition. To prove (ii), observe that P (A1 · · ·An−1) > 0
implies that P (A1) > 0, P (A1 ∩ A2) > 0, ·, P (A1 . . . ∩ An−1) > 0. Hence, all the
conditional probabilities involved are well defined. Using

P (A1 · · ·An) = P (An|A1 . . . ∩ An−1)P (A1 . . . ∩ An−1),
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we complete the proof by induction. 2

3 Random Variables

We begin with some basic concepts involving mappings.

Definition: Let X be a mapping from Ω → Ω′. For any ω ∈ Ω, there is a unique
X(ω) ∈ Ω′. Ω is called the domain of X and Ω′ the range of X. If ω ̸= ω′ implies
X(ω) ̸= X(ω′), X is called injective. For any
A ⊂ Ω, X(A) = {y : y ∈ Ω′, y = X(ω) for some w ∈ A} is called the image of A
under X. If X(Ω) = Ω′, X is called surjective or onto and Ω′ is called range or strict
range of X. For B ⊆ Ω′,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B}

Remark 3.1 X(A) = B doesn’t necessarily imply X−1(B) = A.

The next proposition, a standard exercise on inverse mapping, is essential.

Theorem 3.1 X−1 commutable with set operations

• X−1(
⋃∞

1 Bn) =
⋃

nX
−1(Bn).

• X−1(
⋂∞

1 Bn) =
⋂

nX
−1(Bn).

• X−1(Bc) = (X−1(B))c.

• X−1(B1 −B2) = X−1(B1)−X−1(B2).

Proof: Homework. 2

Now, let C be a class of events in Ω′ and define
X−1(C) = {A : A ∈ Ω, A = X−1(B), for some B ∈ C}. Then we have two relevant
theorems.

Theorem 3.2 Let C be a σ-field in Ω′, then X−1(C) is also a σ-field.

Proof: homework. 2
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Theorem 3.3 Let C be any class of sets in Ω′ and σ(C) is the minimal σ-field, then

X−1(σ(C)) = σ(X−1(C))

Proof: homework. 2

3.1 Random Variables

A random variable is a quantity associated with a random experiment. If an
experiment is carried out in a probability space (Ω,F , P ) and the outcome
corresponds to a sample point ω ∈ Ω, a measuring process is performed to obtain a
number X(ω). Thus X is a function mapping Ω to the real space.

We are often interested in measuring the probability of events involving X. For
example, we may want to know the probability of X belongs to B, a Borel set.
Thus we want to compute P (ω : X(ω) ∈ B). To let this make sense, we need to
require {ω : X(ω) ∈ B} is an event. In other words, we need to have
{ω : X(ω) ∈ B} ∈ F . This leads to the following definition of random variable.

Definition 1: Let (Ω,F , P ) be a probability space. A random variable X is a
function Ω → R such that the inverse image of all Borel sets are in F , i.e.,
X−1(B) ∈ F for any B ∈ B.

Definition 2: A random variable X is a function: Ω → R such that
X−1(−∞, b) ∈ F for any real number b.

Theorem 3.4 Definitions 1 and 2 are equivalent.

Proof: homework. (Hint: Consider the collection A of all subsets S of R such that
X−1(S) ∈ F and prove A is a σ-field.) 2

It is customary to omit the argument ω in X(ω) in probability theory. Thus, with
no confusion, X stands for a general value of X(ω) of the function as well as the
function itself and [X < b] is short for {ω : X(ω) < b.} Hence, we write

X−1(−∞, b) = [X < b] = {ω : X(ω) < b}.

Finally, for two random variables, X, Y , we define their sum Z = X + Y if
Z(ω) = X(ω) + Y (ω) for any ω ∈ Ω.
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Definition of Pointwise Convergence of R.V.: Let{Xn} be a sequence of
random variables. Y = limXnis defined as any ω, Y (ω) = limXn(ω). In a similar
way, we define Y = lim supnXn and Y = lim infnXn.

One of the basic reasons why measurable functions are useful is that a pointwise
limit of measurable functions is still measurable.

Theorem 3.5 Let {Xn} be a sequence of random variables defined on (Ω,F , P ),
lim infnXn, lim supnXn, limXn, are random variables provided they are finite
function and are defined pointwise.

Proof: To prove that Y = lim infnXn is a random variable, we need to show

Y −1(−∞, b) ∈ F .

In fact,

[Y < b] = [lim inf
n

Xn < b] =
∞⋂
n=1

∞⋃
k=n

[Xk < b].

Noting that lim supnXn = −(lim infn(−Xn)), one may also show Y = lim supnXn is
a random variable. 2

We have previously discussed independence of events; we now consider independent
for random variables. Intuitively, independence of {Xi, i = 1, . . . , n} means a
statement about one or more Xi does not change the odds concerning the remaining
Xi. A formal definition is as follows.

Definition: The random variables {Xi, i = 1, . . . , n} are said to be independent if
and only if for any Borel sets {Bi, i = 1, . . . , n}, we have

P

{
n⋂

i=1

(Xi ∈ Bi)

}
=

n∏
i=1

P (Xi ∈ Bi).

Let IA be the indicator function of the set A ⊆ F , i.e.

IA(ω) =

{
1 ω ∈ A

0 otherwise.
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Then it is easy to note that, for a series of events, say, {Ai, i = 1, . . . , n}, a
definition of independence equivalent to that in Section 2.4 is that their indicators
are independent.

3.2 Simple Random Variable

The previous section dealt with general random variables, i.e. measurable functions
on Ω with arbitrary range. We here introduce the simplest but extremely important
random variables with only finite range.

Definition: X is a simple random variable if and only if there exists a finite
measurable partition of Ω, i.e. Ω =

∑n
i=1Ai, Ai ∈ F . and X(ω) = xi for any

ω ∈ Ai, i = 1, · · · , n. Here, xi are real numbers (not necessarily distinct).

Example 3.1 Let IA be the indicator function of the set A. Then IA is a simple
random variable.

Exercise 3.1 Check IA is a random variable.

Example 3.2 X =
∑n

i=1 xiIAi
is a simple random variable.

Remark 3.2 A set A is called P -null if P (A) = 0. Empty set is a null set, but the
converse is not true.

3.3 Approximation Theorem

Simple random variables are easy to handle. Further, as shown in the next theorem,
each random variable can actually be approximated by a series of simple random
variables. This result is very useful for the development of expectation in the later
sections.

Theorem 3.6 (Approximation Theorem)

(a) Every random variable is the limit of a sequence of simple random variables.

(b) Every non-negative random variable X can be approximated by a sequence of
non-negative and monotone increasing sequence of simple random variable, i.e,
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if X ≥ 0, we can construct a sequence of {Xn} such that for each n {Xn} is a
simple random variable, Xn ≥ 0 and Xn ↑ X as n→ ∞.

Proof: (a) Let X be a random variable. We construct a sequence of simple random
variable.

For a fixed ω ∈ Ω, define

Xn(ω) = −nI[X<−n](ω) +
n2n∑

k=−n2n+1

k − 1

2n
I(ω)[ k−1

2n
≤X< k

2n
] + nI[X≥n](ω).

This is equal to

Xn(ω) =


−n ifX(ω) < −n
k−1
2n

ifk−1
2n

≤ X(ω) < k
2n

n ifX(ω) ≥ n.

Obviously, for n = 1, 2, . . . , Xn are all simple random variables.

To show limXn = X i.e. for any ω, limXn(ω) = X(ω). Take an arbitrary ω and let
bω = X(ω). Then for any n > |bω|, |Xn(ω)−X(ω)| < 1

2n
. Hence, as

n→ ∞, |Xn(ω)−X(ω)| → 0.

(b) Consider

Xn(ω) =
n2n∑
k=1

k − 1

2n
I(ω)[ k−1

2n
≤X< k

2n
] + nI[X>n](ω).

2

3.4 Distribution Function

Given a probability space (Ω,F , P ), let X be a random variable. For any B ∈ B,
where B is the Borel σ-field in R, the set function PX on (R,B) defined by

PX(B) = P (X−1(B)) = P ([X ∈ B])

is called the distribution function of X.

One may verify that PX is a probability measure on the space (R,B).
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Definition: PX is called the probability measure induced from (Ω,F , P ) by the
random variable X, also the probability distribution of X.

The numbers PX(B), B ∈ F , completely characterize the random variable X in that
they provide the probabilities of all events involving X. It is useful to know such
information can actually be captured by a single real function, namely, cumulative
distribution function. The equivalence of the cumulative distribution function to PX

will be proved in Theorem (3.11).

Definition: Define a point function FX(x) = PX(−∞, x) = P ([X < x]) for any real
number x. we will write F (x) for FX(x), which is called the cumulative distribution
function of X.

A cumulative distribution function has two fundamental properties.

Property 3.1 F (x) is non-decreasing and left continuous.

Proof: For x < x′, we want to show F (x) ≤ F (x′). As (−∞, x) ⊆ (−∞, x′) and PX

is a probability measure, hence PX(−∞, x) ≤ PX(−∞, x′) ⇒ F (x) ≤ F (x′).

As (−∞, x− 1
n
) ↑ (−∞, x) when n→ ∞, F (x− 1

n
) → F (x), n→ ∞, i.e.,

F (x− 0) = F (x). 2

Property 3.2 F (−∞) = 0 and F (∞) = 1

Proof: Consider (−∞, x) ↓ ϕ, x→ −∞, and (−∞, x) ↑ R, x→ ∞. 2

Remark 3.3 As (−∞, x+ 1
n
) ↓ (−∞, x], n→ ∞, then

F (x+ 0) = PX(−∞, x] = PX(−∞, x) + PX({x}), so P ([X = x]) = F (x+ 0)− F (x).
If we define F (x) = P (X ≤ x) then F is right continuous.

Independence of random variables can be characterized in terms of cumulative
distribution function as follows.

Theorem 3.7 Let X1, . . . , Xn be random variables on (Ω,F , P ). Let Fi be the
cumulative distribution function of Xi, i = 1, . . . , n and F the (joint) cumulative
distribution function of X = (X1, . . . , Xn). Then X1, . . . , Xn are independent if and
only

F (x1, . . . , xn) = F1(x1) . . . Fn(xn)
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for all real x1, . . . , xn.

Proof: see Ash (1972, p.214).

The following theorem states that a cumulative distribution function does not have
‘too many’ discontinuities. In fact, the set of these discontinuities is a null set, i.e.
its Lebesgue measure is 0.

Theorem 3.8 Every cumulative distribution function F (x) has at most a countable
numbers of discontinuous points.

Proof: Consider and intervals [−k, k], let −k ≤ x1 < x2 < · · · < xn ≤ k be any n
discontinuous points of F (x) in this interval. F (xi) < F (xi + 0) Let
P (xi) = F (xi + 0)− F (xi) then

∑n
i=1 P (xi) ≤ F (k)− F (−k) ≤ 1. So the number of

jumps by more than 1/n can be at most n, Let Sn,k be set of discontinuous points in
[−k, k] with jump size greater than 1

n
. It is a finite set. D = set of all discontinuous

points=
⋃∞

k=1

⋃∞
n=1 Sn,k=countable union of finite sets=countable. Therefore D can

always be written as D = {xn}. 2

We give a simpler proof as well. For each discontinuous point x, consider the open
interval Ix = (F (x−), F (x+)). If x′ is another point of jump and x < x′, say, then
there is a point x̃ such that x < x̃ < x′. Hence by monotonicity, we have

F (x+) ≤ F (x̃) ≤ F (x′−).

It follows that Ix and Ix′ are disjoint, though they may abut on each other if
F (x+) = F (x′−). Now we can associate with the set of discontinuities a set of
pairwise disjoint open sets. Such a collection of intervals is countable as each
interval can be indexed by a rational number it contains. 2

As the simpler proof only uses the monotonicity of F (x), we in fact have proved a
more general theorem.

Theorem 3.9 Any monotone function has at most countable discontinuities.

We may even further decompose a cumulative distribution function into the sum of
a continuous cumulative distribution function and a piece-wise constant cumulative
distribution function.
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Theorem 3.10 (Decomposition Theorem) Every cumulative distribution function
F (x) can be decomposed (uniquely) as F (x) = pFc(x) + (1− p)Fd(x), where
0 ≤ p ≤ 1 and Fc and Fd are both proper cumulative distribution functions. Fc is
continuous and Fd is a pure step function.

Proof: Let {xn}∞n=1 be the set of discontinuous points of F (x). Write
p(xk) = F (xk + 0)− F (xk) and denote by (1− p) =

∑∞
i=1 p(xi), 0 < p < 1.

Take

Fd(x) =
1

1− p

∑
xn<x

p(xn)

and

Fc(x) =
1

p
[F (x)− (1− p)Fd(x)].

We first consider Fd. Obviously, it is increasing and left continuous i.e.
Fd(x− 0) = Fd(x). Also, Fd(−∞) = 0, since (−∞, x) ↓ ϕ as x→ −∞. In addition,
Fd(∞) = 1. So Fd(x) is a proper cumulative distribution function .

We observe that Fc(x) is left continuous, Fc(−∞) = 0 and Fc(∞) = 1. We next
prove Fc is right continuous and increasing. Let x′ > x, since

p(Fc(x
′)− Fc(x)) = F (x′)− F (x)−

∑
x≤xn<x′

p(xn)

= (F (x′)− F (x+ 0))−
∑

x<xn<x′

p(xn) ≥ 0

and let x′ ↓ x, we then have Fc(x+ 0) = Fc(x).

Now assume there are two decompositions:

F (x) = pFc(x) + (1− p)Fd(x) = p′F ′
c(x) + (1− p′)F ′

d(x).

Hence,
pFc(x)− p′F ′

c(x) = (1− p′)F ′
d(x)− (1− p)Fd(x).

The contradiction occurs as the left side is continuous function and right side is a
step function. 2
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By definition, the probability measure PX of a random variable X uniquely
determines its cumulative distribution function F (x). The following theorem shows
that the other way around is also true. Hence, PX and F (x) are two equivalent
definitions.

Theorem 3.11 (Correspondence Theorem) The cumulative distribution function
F (x) uniquely determines the probability measure PX on (R,B).

Proof: We shall prove this theorem based on the definition of F (x) = PX(−∞, x)
and the fact that PX is a probability measure.

Let S = {(−∞, a), [a, b), [b,∞)}. Given only a cumulative distribution function
F (x), define

PX(−∞, a) = F (a), PX([a, b)) = F (b)− F (a),

and
PX [b,∞) = 1− F (b), PX(a, b) = F (b)− F (a+ 0).

Thus F (x) determines PX for all intervals and in particular for those in S. Let F =
field of finite unions of intervals in S. Let B ∈ F . Thus B has the representation
B =

∑n
j=1Bj. Hence,

PX(B) =
n∑

j=1

PX(Bj).

For any other representation, we get the same PX(B). So PX is uniquely defined on
F . That F is a field and PX is a measure imply PX is uniquely defined on (R,B) by
the Extension Theorem. 2

Theorem 3.12 If F is a non-decreasing and left continuous function with
F (−∞) = 0, F (∞) = 1, then there exists on some probability space a random
variable X for which P (X < x) = F (x).

Proof: By the Correspondence Theorem, F (x) uniquely determines a probability
measure PX on (R,B). For the probability space, take (Ω,F , P ) = (R,B, PX) and
for the random variable, take the identity function, i.e. X(ω) = ω for any
ω ∈ Ω = R. Then P (X < x) = PX(x) = F (x). 2

Definition: If g : R → R such that g−1(B) ∈ B for any B ∈ B, we term g a Borel
function on R → R.
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It can be shown that the Borel function of a random variable is also a random
variable, i.e. Y = g(X)(ω) = g(X(ω)), where g(X) is a function Ω → R, is a
random variable. Note that the distribution function of Y = g(X) can be calculated
by PY (B) = PX(g

−1(B)) = P (X−1g−1(B)).

Example 3.3 Let X be a random variable with a cumulative distribution function
F (x). Suppose Y = −X, then the cumulative distribution function of Y is

P ([Y < y]) = P ([X > −y]) = PX(−y,∞) = 1− F (−y + 0).

Finally we consider a multi-dimensional random variable. A k−dimension random
vector X is a map Ω → Rk such that X−1(Bk) ∈ F for any Bk in the
k−dimensional Borel σ−field on Rk, defined as the σ−field generated by all k−dim
rectangles. This topic will be discussed in detail in Section 9.

4 Expectation of Random Variables

If X is a random variable on (Ω,F , P ), the expectation of X is defined by

E(X) =

∫
Ω

XdP, (6)

provided such an integral exists. Thus E(X) is the integral of the Borel measurable
function with respect to the probability measure.

We shall discuss in the next section how integral (6) is defined and calculated for
different types of random variables. We begin with simple random variables and
extend to nonnegative random variables. Finally, we define (6) for a general random
variable.

4.1 Abstract Lebesgue Integration

Definition for Simple R.V.: Let X be a simple random variable on (Ω,F , P ), i.e.
X =

∑n
i=1 xiIAi

, where Ai ∈ F ,
∑

iAi = Ω. Then we define

E(X) =

∫
Ω

XdP =

∫
Ω

X(ω)dP (ω)
def
=

n∑
i=1

xiP (Ai),
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and for any C ∈ F ∫
C

XdP =

∫
Ω

XICdP =
n∑

i=1

xiP (CAi).

Often we write
∫
XdP for

∫
Ω
XdP .

We summarize below some properties associated with the expectation defined above.

Property 4.1
∫
XdP is uniquely defined. That is, if X =

∑n
j=1 xjIAj

and
X =

∑m
i=1 x

′
iICi

are two representations for the simple random variable X, then∫
XdP has the same value.

Proof: Let
Dij = AjCi,

∑
i

∑
j

AjCi = Ω, X =
∑
i

∑
j

xijIDij
,

where xij = xj = x′i. Now consider∑
i

∑
j

xijP (Dij) =
∑∑

xijP (AjCi) =
∑
j

xjP (Aj) =
∑
i

x′iP (Ci).

2

Property 4.2 X ≥ 0 implies
∫
XdP ≥ 0.

Property 4.3 If X ≥ 0,
∫
XdP = 0 then P (X = 0) = 1.

Property 4.4 Linearity:
∫
(aX + bY )dP = a

∫
XdP + b

∫
Y dP or

E(aX + bY ) = aE(x) + bE(y).

Property 4.5 Monotonicity: If X ≥ Y , then
∫
XdP ≥

∫
Y dP or E(X) ≥ E(Y ).

Definition for Non-negative R.V.: Let X be a non-negative random variable,
i.e. X(ω) ≥ 0 for all w ∈ Ω. By approximation theorem, there exists a sequence
{Xn} of non-negative simple random variable such that Xn ↑ X. So we define∫

XdP = lim
n→∞

∫
XndP.
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Since X1 < X2 · · · ,
∫
X1dP ≤

∫
X2dP · · · . Hence, {

∫
XndP} is a increasing

sequence of real number and, therefore, its limit may be infinite or finite. If the
limit is finite, we say X is integrable, whereas if the limit is ∞, we say the integral
exists but X is not integrable.

The expectation obtained by using the simple random variable approximation is
indeed unique as shown in the following theorem.

Theorem 4.1 (Uniqueness) Let {Xn},{X ′
m} be two approximation sequences, such

that 0 ≤ Xn ↑ X and 0 ≤ X ′
m ↑ X. Then

lim
n→∞

∫
XndP = lim

m→∞

∫
X ′

mdP.

Proof: Take an arbitrary ϵ > 0 and let Anm = [Xn > X ′
m − ϵ]. Fix an m, and

consider Anm ↑ Ω as n→ ∞. Hence,∫
XndP ≥

∫
XnIAnmdP ≥

∫
(X ′

m − ϵ)IAnmdP

=

∫
X ′

mIAnmdP − ϵP (Anm) =

∫
X ′

mdP −
∫
Ac

nm

X ′
mdP − ϵP (Anm)

Let Km be the upper bound of X ′
m. Then∫

XndP ≥
∫
X ′

mdP −KmP (A
C
nm)− ϵP (Anm)

Let n→ ∞. Then for a fixed m,

lim
n→∞

∫
XndP ≥

∫
X ′

mdP − 0− ϵ

Since ϵ is arbitrary, lim
∫
XndP ≥

∫
X ′

mdP. Letting m→ ∞, we have
lim
∫
XndP ≥ lim

∫
X ′

mdP.

Exchange the roles of {Xn} and {X ′
m}, we have that

lim

∫
XndP ≤ lim

∫
X ′

mdP.
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Therefore,

lim

∫
XndP = lim

∫
X ′

mdP.

2

Remark 4.1 All the properties of simple random variables hold for positive
random variables.

Now we may consider the integral for an arbitrary random variable.

Definition for Arbitrary R.V.: Let X be an arbitrary random variable. Write

X+ = XI[X≥0], X
− = −XI[X<0].

Note X = X+ −X−. We then define the expectation of X as∫
XdP =

∫
X+dP −

∫
X−dP.

If each of them on right side is ∞, we say
∫
XdP doesn’t exist; if one of them is

finite, and the other is ∞, then
∫
XdP is either +∞ or −∞, we say the integral

exists but X is not integrable; if both are finite,
∫
XdP is finite, we say X is

integrable. By definition, X is integrable is equivalent to |X| is integrable as
|X| = X+ +X−.

If {Xn} is a sequence of random variables on (Ω,F , P ) and let Xn → X a random
variable. Then does

lim
n→∞

E(Xn) = E( lim
n→∞

Xn)

hold always?

In fact, this does NOT always hold true! Let Ω = [0, 1]. Consider

Xn(ω) =

{
n ω ∈ [0, 1

n
]

0 ω ∈ ( 1
n
, 1]

For each ω ∈ [0, 1], Xn(ω) → X ≡ 0. But E(Xn) = 1 for any n.

A condition is said to hold almost surely (or almost everywhere) with respect to a
measure µ if and only if there is a set B ∈ F such that µ(B) = 0 and the condition
holds outside of B. From the perspective of integration, functions that differ only on
a set of measure 0 are identical as shown in the following theorem.
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Theorem 4.2 Let X and Y be two random variables and X = Y almost surely.
Then if

∫
XdP exists, so does

∫
Y dP and∫
XdP =

∫
Y dP.

Proof: see Ash (1972, p.46). 2

Exercise 4.1 Let X, Y be two random variables in the probability space (Ω,F , P ).
If ∫

C

X(ω)dP (ω) =

∫
C

Y (ω)dP (ω)

holds for any C ∈ F , then X = Y a.e (with respect to P ).

(Hint: If not, then P (X ̸= Y ) > 0. Notice that
[ω : X(ω) ̸= Y (ω)] = ∪∞

n=1[ω : |X(ω)− Y (ω)| ≥ 1/n] and derive contradiction.)

Similar to the expectation of simple random variables, the expectation of arbitrary
random variables has two important properties.

Theorem 4.3 (i) Monotonicity: If X and Y are two random variables and
X ≤ Y almost surely, then ∫

XdP ≤
∫
Y dP.

(ii) Linearity: If X and Y are two random variables and α, β are finite real
numbers, then ∫

(αX + βY )dP = α

∫
XdP + β

∫
Y dP.

Proof: see Billingsley (1995, p.206). 2

Theorem 4.4 (monotone convergence theorem) Suppose 0 ≤ Xn ↑ X, a random
variable. Then

lim
n→∞

∫
XndP =

∫
XdP.
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Proof: see Billingsley (1995, p.201-202).

An equivalent form of the monotone convergence theorem is as follows.

Remark 4.2 0 ≤ Xn, Y =
∑∞

n=1Xn, and Y is a random variable then

E(
∞∑
n=1

Xn) =
∞∑
n=1

E(Xn).

Proof: 0 ≤
∑n

i=1Xi ↑ Y. This form is useful as it allows a term-wise integration for
the limit sum of a series of positive random variables.

An important consequence of the monotone convergence theorem is known as
Fatou’s lemma, which has the virtue of no assumptions on the integrand with a
one-sided conclusion.

Theorem 4.5 (Fatou’s lemma) (i) For nonnegative Xn,∫
(lim inf

n
Xn)dP ≤ lim inf

n

∫
XndP.

(ii) Z ≥ Xn, where Z is a integrable random variable, then∫
(lim sup

n
Xn)dP ≥ lim sup

n

∫
XndP.

Proof: (i) Let Gn = infk≥nXk, then 0 ≤ Gn ↑ G = lim infnXn. Then applying the
monotone convergence theorem and noticing that∫

XndP ≥
∫
GndP →

∫
GdP =

∫
lim inf

n
XndP

gives the result.

(ii) Consider Yn = Z −Xn and apply (i). 2

Exercise 4.2 Show if X1, X2, . . . are random variables, Xn ≥ X for each n and X
is integrable, then ∫

(lim inf
n

Xn)dP ≤ lim inf
n

∫
XndP.
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The inequality in Fatou’s lemma can actually be strict manifested by the following
example.

Example 4.1 On the unit interval, take X(ω) ≡ 0 and Xn(ω) = n2I[0,n−1]. Then
for each ω Xn(ω) converges to X(ω), but

∫
Xn(ω)dP = n ̸→ 0 =

∫
X(ω)dP .

Scrutinizing the phenomenon that
∫
Xn(ω)dP does not converge to

∫
X(ω)dP , one

may conjecture that it may be due to the unboundness of Xn(ω). This is indeed the
case as shown by the following dominated convergence theorem as a direct
application of Fatou’s lemma.

Theorem 4.6 (Dominated Convergence Theorem) If |Xn| ≤ Z, where Z is a
integrable random variable and limXn = X, then

lim
n→∞

∫
XndP =

∫
XdP.

Proof: At the outset only assume that the Xn are dominated by an integrable Z.
Let X∗ = lim infnXn and X∗ = lim supnXn. As X

∗, X∗ are random variables and
dominated by integrable Z, hence they are integrable. Since Z +Xn and Z −Xn are
nonnegative, Fatou’s lemma gives∫
ZdP+

∫
X∗dP =

∫
lim inf

n
(Z+Xn)dP ≤ lim inf

n

∫
(Z+Xn)dP =

∫
ZdP+lim inf

n

∫
XndP

and∫
ZdP−

∫
X∗dP =

∫
lim inf

n
(Z−Xn)dP ≤ lim inf

n

∫
(Z−Xn)dP =

∫
ZdP−lim sup

n

∫
XndP.

Therefore,∫
lim inf

n
XndP ≤ lim inf

n

∫
XndP ≤ lim sup

n

∫
XndP ≤

∫
lim sup

n
XndP.

Now consider Xn → X, hence X is dominated by integrable Z. Therefore, X is also
integrable and

lim

∫
XndP =

∫
Xdp =

∫
limXndP.

2
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An application of the DCT is differentiation under integration, which shall be
discussed in the next section. On the other hand, example 4.1 shows that that this
theorem fails if no dominating Z exists. The next result, the bounded convergence
theorem, is a special case of the DCT when the dominating Z is a constant.

Theorem 4.7 (Bounded Convergence Theorem) If Xn are uniformly bounded and
limXn = X, then

lim
n→∞

∫
XndP =

∫
XdP.

Exercise 4.3 Let X1, X2, . . . be random variables on (Ω,F , P ). If
∞∑
n=1

∫
Ω

|Xn|dP ≤ ∞,

show that
∑∞

n=1Xn converges everywhere a.e with respect to P and

∞∑
n=1

∫
Ω

XndP =

∫
Ω

∞∑
n=1

XndP.

(Hint: first show
∑∞

n=1 |Xn| is integrable. Thus,
∑∞

n=1 |Xn| is finite a.e. Then,∑∞
n=1Xn converges almost everywhere. Now consider Yn =

∑n
k=1Xk and verify the

conditions in the DCT and apply the DCT.)

Now consider the random variable g(X): Ω → R, where g(x) is a Borel function
R → R. We can calculate E(g(X)) =

∫
Ω
g(X)dP using the definition of expectation

of a random variable.

In the following, we also consider another equivalent representation of the integral.
Consider

∫
R
g(x)dPX , and consider (R,B, PX) playing the role of Basic probability

space. If g is a simple function, i.e. g =
∑
cjIBj

. Then∫
Ω

g(x)dPX =
∑

cjPX(Bj).

For g ≥ 0, there exists simple gn ↑ g, we define∫
R

g(x)dPX = lim

∫
R

gndPX .
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For a general g, we consider g = g+ − g− and define∫
R

g(x)dPX =

∫
R

g+(x)dPX −
∫
R

g−(x)dPX .

Now we show

Theorem 4.8 ∫
Ω

g(X)dP =

∫
R

g(x)dPX(x)

Proof: Let I1 =
∫
Ω
g(X)dP and I2 =

∫
R
g(x)dPX . We outline the proof using 3 steps.

Step 1. Suppose that g(x) is a simple function i.e. g(x) =
∑
cjIBj

(x), then

I2 =
∑

cjPX(Bj) =
∑

cjP (X
−1(Bj)),

and
g(X)(ω) = g(X(ω)) =

∑
cjIBj

(X(ω)) =
∑

cjIX−1(Bj)(ω)

since w ∈ X−1(Bj) is equal to X(ω) ∈ Bj.

As g(X) =
∑
cjIX−1(Bj), hence

I1 =
∫
Ω
g(X)dP =

∑
cjP (X

−1(Bj)) = sumcjPX(Bj) = I2.

Step 2. Suppose that g is a non-negative Borel function, there exists a sequence
{gn} of simple Borel functions such that 0 ≤ gn ↑ g, then by Step 1,

I2 = lim
n→∞

∫
R

gn(x)dPX(x) = lim
n→∞

∫
Ω

gn(X)dP

But 0 ≤ gn ↑ g and gn(X) is a simple random variable gn(X)(ω) = gn(X(ω)),

lim
n→∞

∫
Ω

gn(X)dP =

∫
Ω

g(X)dP = I1.

Step 3. Suppose that g is a general Borel function, then g = g+ − g−.

By Step 2,
∫
R
g+dPX(x) =

∫
Ω
g+(X)dP and

∫
R
g−dPX(x) =

∫
Ω
g−(X)dP

Therefore,
∫
R
(g+ − g−)dPX(x) =

∫
R
g+dPX(x)−

∫
R
g−dPX(x) =∫

Ω
g+(X)dP −

∫
Ω
g−(X)dP =

∫
R
(g+ − g−)(X)dP. 2
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Example 4.2 Consider a special case when g(x) = x. Then

E(X) =
∫
Ω
XdP =

∫
R
xdPX

def
=
∫∞
−∞ xdF (x).

Exercise 4.4 If X is a non-negative random variable with finite expectation, then

E(X) =

∫ ∞

0

P (X ≥ x)dx.

(Hint: use integration by parts to show
∫∞
0
xdF (x) =

∫∞
0
[1− F (x)]dx.)

Example 4.3
∫ b−0

a
xdF (x) =

∫
[a,b)

xdPX =
∫∞
−∞ xI[a,b)dF (x). Specially,∫ a+0

a
xdF (x) =

∫
{a} xdPX = aPX({a}) = a[F (a+ 0)− F (a)]. Note that

∫ b

a
and

∫ b

a+0

may be different.

Remark 4.3 When the space is real line, the integral is called Lebesgue-Stieltjes
integral (LS), whereas for a general Ω it is called abstract Lebesgue-integral.

4.2 Riemann-Stieltjes (R-S) Integral

Riemann-Stieltjes integral is a straightforward extension of Riemann integral and is
defined in a similar way.

Definition: For a partition on a finite interval [a, b], say,
a = xn1 ≤ xn2 ≤ · · · ≤ xn,mn+1 = b, denote by gnk = inf{g(x) : xnk ≤ x ≤ xn,k+1}
and gnk = sup{g(x) : xnk ≤ x ≤ xn,k+1}. Let

Sn =
mn∑
k=1

gnk[F (xn,k+1)− F (xn,k)]

and

Sn =
mn∑
k=1

gnk[F (xn,k+1)− F (xn,k)]

Let n→ ∞ such that the max span of subdivision → 0. If

limSn = limSn = S

which is finite, then we call S the Riemann-Stieltjes integral and denote

S = (RS)

∫ b−0

a

g(x)dF (x).
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It is trivial to see that the ordinary Riemann integral is a special case when
F (x) ≡ x.

Remark 4.4 The R-S integral may NOT be equal to the Lebesgue-Stieltjes
integral.

Example 4.4 Let P (X = 0) = 1 and g(x) = I{x>0}. Consider
∫
g(x)dF (x). Since

Sn = 0, Sn = 1, the R-S integral doesn’t exist, but g(0) = 0,
∫
g(x)dF (x) = 0× 1 = 0

We give below a classical example of a function that is Lebesgue integrable but not
R-S integrable.

Example 4.5 F (x) = x, 0 ≤ x ≤ 1, g(x) = IA(x), A = set of rational numbers in
[0, 1]. Sn = 0, Sn = 1 (RS) integral doesn’t exist, but

∫
g(x)dF (x) = 1× P (A) = 0.

Example 4.6 Define a function f(x) = 1
x
sin 1

x
on an open interval (0, 1). Then∫ 1

0
f(x)dx is RS integrable (in the sense of improper integral). But as f(x) is not

absolutely integrable, its Lebesgue integral does not exist.

Under certain conditions, however, these two types of intergals are equivalent.

Theorem 4.9 If g is a continuous function a.e (with respect to the Lebesgue

measure) on a finite interval [a, b], then
∫ b

a
g(x)dF (x)is the same in both RS and LS.

For (−∞,+∞), if g is continuous, the two integrals are same, provided that g is
LS-integrable. In addition, that g is Lebesgue integrable is equivalent to |g| is
Lebesgue integrable.

Proof: see Ash (1972, p.55). 2

Finally, the following exercise shows that the DCT may not always hold for
Riemann integrals.

Exercise 4.5 Give an example of a sequence of functions fn on [0, 1] such that each
fn is Riemman integrable, |fn| ≤ 1 for all n and fn → f everywhere, but f is not
Riemann integrable.
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4.3 Moments

Expectations of certain functions of X are of particular interest.

Definition: Let a be a real number, r positive, then E(|X − a|r) is called the
absolute moment of X of order r about a . It can be ∞; otherwise, if r is an integer,
E((X − a)r) is the corresponding moment about a. (In literature, the moment
about the origin, E(Xr), is often called moment, and the absolute moment about
the origin, E|X|r, the absolute moment). The moments about the mean is called the
central moments. That of order 2 is particularly important and is called the
variance, var(X), and its positive square root the standard deviation. We define
factorial moments by E(X(X − 1) · · · (X − r + 1)) when r is an integer.

We say the r−th moment exists if E(Xr) is finite; otherwise if E(Xr) is either +∞
or −∞, we say that it doesn’t exist.

Some properties of moments are

Property 4.6 E(Xr) is finite if and only if E(|X|r) is finite. Also, finiteness of the
r-th moment implies finiteness of lower moments, i.e. E(Xr) is finite implies E(Xs)
is finite for any 0 < s < r.

Proof: The first assertion is true as that Xr is integrable is equivalent to that |Xr|
is integrable.

Now Let 0 < s < r, E(|X|r) is finite and |X|s ≤ 1 + |X|r. In fact, when
|X| ≤ 1, |X|s ≤ 1 and if |X| > 1, |X|s ≤ |X|r. 2

Property 4.7 That E(Xr) is finite implies P (|X| > n) = o( 1
nr ), as n→ ∞. i.e.

nrP (|X| > n) → 0 as n→ ∞.

Proof: Write vr = E(|X|r). Consider

vr =

∫
[|X|≤n]

|X|rdP +

∫
[|X|>n]

|X|rdP

and

nrP (|X| > n) ≤
∫
[|X|>n]

|X|rdP = vr −
∫
Ω

|X|rI[|X|≤n]dP.

50



Define Yn = |X|rI[|X|≤n]. Hence 0 ≤ Yn ↑ |X|r. By MCT∫
YndP →

∫
|X|rdP = vr, as n→ ∞

or, equivalently,

vr −
∫
Ω

|X|rI[|X|≤n]dP → 0, as n→ ∞

Hence,
nrP (|X| > n) → 0,

as n→ ∞. 2

Remark 4.5 Conversely, nrP (|X| > n) → 0 as n→ ∞ implies that E(|X|r−ϵ) is
finite for any 0 < ϵ < r.

Proof: home work. (Hint: Consider
∫
Ω
|X|r−ϵdP =

∑∞
n=0

∫
n<|X|≤n+1

|X|r−ϵdP. Then

show, ∫
Ω

|X|r−ϵdP ≤
∞∑
n=0

(n+ 1)r−ϵP (n < |X| ≤ n+ 1)

=
∞∑
n=0

(n+ 1)r−ϵ(P (|X| > n)− P (|X| > n+ 1))

=
∞∑
n=0

((n+ 1)r−ϵ − nr−ϵ)P (|X| > n)
def
=

∞∑
n=0

an

Then prove that
∑∞

n=0 an is convergent.) 2

We end this section with two well-known inequality and we leave their proofs as
exercises.

Exercise 4.6 (Holder’s Inequality) For 0 ≤ p <∞, let Lp = Lp(Ω,F , P ) be the
class of random variables X for which E(|X|p) is finite. Define
||X||p = (E(|X|P ))1/p. For 1 < p, q <∞, if 1/p+ 1/q = 1 and X ∈ Lp, Y ∈ Lq, show

||XY ||1 = E|XY | ≤ ||X||p||Y ||q.
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Thus the Schwartz inequality is only a special case with p = q = 2. (Hint: Using the
convexity of − log(x), show that, for any c, d > 0,

− log(
1

p
cp +

1

q
dq) ≤ 1

p
(− log cp) +

1

q
(− log dq).

Hence cd ≤ cp/p+ dq/q. Then notice that |XY |
||X||p||Y ||q ≤ |X|p

p||X||pp
+ |Y |q

q||X||qq
.)

Exercise 4.7 (Minkowski’s Inequality) If X, Y ∈ LP (1 ≤ p <∞), then
X + Y ∈ LP and

||X + Y ||p ≤ ||X||p + ||Y ||p.
(Hint: The claim is obvious when p = 1. When p > 1, find q such that
1/p+ 1/q = 1. Then p/q = p− 1. Consider

||X + Y ||pp =
∫
|X + Y |pdP ≤

∫
|X||X + Y |

p
q dP +

∫
|Y ||X + Y |

p
q dP and apply the

Holder’s inequality.)

5 Two Important Inequalities

5.1 Markov Theorem

Theorem 5.1 (Markov Theorem) Let X : (Ω,F , P ) → (R,B). g(X) is a Borel
function R → R such that g(x) ≥ 0, and for any x in a set B ∈ B, g(x) ≥ K > 0,
then

P (X ∈ B) ≤ E(g(X))

K
.

Proof: As P (X ∈ B) = PX(B), so

E(g(X)) =

∫
B

g(X)dPX +

∫
Bc

g(X)dPX ≥ KPX(B).

2

Using the Markov theorem, one can trivially prove the very famous Chebyshev’s
inequality.

Theorem 5.2 (Chebyshev’s Inequality) If X is a random variable such
thatE(X) <∞ and var(X) <∞, then for each u > 0

P (|X − E(X)| ≥ u) ≤ var(X)

u2
. (7)
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Proof: let µ = E(X) and take g(x) = (x− µ)2. 2

Suppose that a random variable X assumes values m− a,m,m+ a with
probabilities p, 1− 2p, p. It can be shown that there is an equality in (7). Hence,
Chebyshev’s inequality can not be improved without special assumptions on X.

An important application of Chebyshev inequality is in the proof of the Weak Law
of Large Numbers. Before stating the main theorem, we begin with the concept of
convergence in probability.

Definition: For a sequence of random variable Xn and a random variable X, we say
that Xn converges to X in probability as n→ ∞ if and only if for any given ϵ > 0,

P (|Xn −X| > ϵ) → 0, n→ ∞.

Theorem 5.3 (Weak Law of Large Numbers) Let X1, X2, . . . be independent
random variables (not necessarily with the same distribution), each with finite mean
and variance. Assume var(Xi) < M for a fixed M > 0 and any i = 1, 2 . . . . Let
Sn = X1 + . . .+Xn. Then (Sn − E(Sn))/n converges in probability to 0, that is, for
any given ϵ > 0,

lim
n→∞

P (|Sn − E(Sn)

n
| > ϵ) = 0.

Proof: By Chebyshev’s inequality,

P (|Sn − E(Sn)

n
| > ϵ) ≤ 1

ϵ2
var(

Sn

n
)

=
1

ϵ2n2
var(Sn)

=
1

ϵ2n2

n∑
i=1

var(Xi)

≤ M

ϵ2n
→ 0.

2

Convergence in probability is one of the convergence modes for sequences of random
variables. The other modes include convergence almost surely, convergence in
distribution and convergence in moment. We briefly talk about the important
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concept of convergence almost surely and the other convergence modes and their
inter-relationships will be left to discuss later.

Definition of Convergence Almost Surely: Let (Ω,F , µ) be a space, and f a
measurable function on Ω → R, i.e. f−1(B) ⊂ F . If {fn} is a sequence of
measurable functions, we let A = {ω : fn(ω) → f(ω)}. We say fn → f a.e
(with respect to µ), if µ(Ac) = 0.

It should be stressed that the concept of convergence almost surely is always with
respect to a particular measure.

Example 5.1 Let Ω = R+,F = B and µ = µL. If

fn(x) =

{
e−λn λx

n

x!
for x ∈ N+

0 otherwise

where λn → λ. Let f(x) = 0 for any x ∈ R+. Then fn → 0 a.e (with respect to µL)
but fn ↛ 0 a.e (with respect to µ∗) where µ∗ is counting measure of integers. In
fact, fn → g a.e (with respect to µ∗) where g(x) = e−λ λx

x!
(on N+).

Exercise 5.1 If X1, X2, . . . ,∈ Lp(Ω,F , µ) (p > 0) and
||Xn −Xn+1||p < (1

4
)n, n = 1, 2 . . . ,, then {Xn} converges a.e. (with respect to µ).

(Hint: let An = {ω : |Xn(ω)−Xn+1(ω)| ≥ 2−n} Use the Markov inequlity to show
µ(An) ≤ 2−np. By the first Borel-Cantelli lemma, µ(lim supnAn) = 0. But if
ω /∈ lim supnAn, then |Xk(ω)−Xk+1(ω)| < 2−k for large k, so Xn(ω) is a Cauchy
sequence, and hence converges.)

With little modification in the previous proofs, it follows that the Monotone
Convergence theorem and Dominated Convergence theorem in the last section are
also valid if the condition of pointwise convergence is relaxed to be that of
convergence almost everywhere or almost surely.

Theorem 5.4 (MCT) If 0 ≤ Xn ↑ X a.s, then E(limXn) = limE(Xn).

Remark 5.1 A general statement for the MCT, not necessarily under the
probability measure, is:

If 0 ≤ fn ↑ fa.e(with respect to µ), then lim
n→∞

∫
fndµ =

∫
fdµ.
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Similarly the Dominated Convergence theorem can be restated

Theorem 5.5 (DCT) If |fn| ≤ g for any n, and
∫
gdµ is finite. and fn → f a.e

(with respect to µ). then
∫
fndµ→

∫
fdµ.

The following theorem concerning interchanging integral and differentiation is a
direct result of the DCT.

Theorem 5.6 (Differentiation Under Integral) Given any measurable space
(Ω,F , µ), let I be an interval in R and {fθ, θ ∈ I} be a class of measurable functions
indexed by θ such that fθ : Ω → R. If

∫
fθdµ is defined for any θ, then under

conditions: (1) dfθ
dθ

exists at θ0 and (2) |fθ−fθ0
θ−θ0

| ≤ gθ0 for all θ in a small

neighborhood of θ0 and
∫
gθ0dµ is finite,

(
d

dθ

∫
fθdµ)|θ0 =

∫
(
dfθ
dθ

)|θ0dµ

Proof: homework. (Hint: for any real sequence θn → θ0, consider∫
fθndµ−

∫
fθ0dµ

θn − θ0
=

∫
fθn − fθ0
θn − θ0

dµ

and apply DCT.) 2

If the conditions above are replaced by stronger conditions: (1) dfθ
dθ

exists at θ0. (2)

|dfθ
dθ
| ≤ g , independent of θ, and

∫
gdµ is finite. Then the above operation is valid at

every θ ∈ I.

5.2 Jensen’s Inequality

Definition of Convex function: A Borel function g : R → R is convex in an
interval I ⊂ R if g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2), for any x1, x2 ∈ I and
any 0 ≤ λ ≤ 1.

The basic properties of a convex function g are:

(1) g is continuous on I.

(2) For any x ∈ I, the right and left derivatives exists
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(3) If g is twice differentiable, then g
′′
(x) ≥ 0 for any x ∈ I and, conversely, a

positive second derivative implies the function is convex.

(4) For any x0 ∈ I, there exists a number L(x0) such that
g(x)− g(x0) ≥ (x− x0)L(x0) for any x ∈ I.

Theorem 5.7 (Jensen’s inequality) Let X be a random variable, g : R → R is a
Borel function which is convex on R and E(X) finite, then E(g(X)) ≥ g(E(X)).

Proof: Use property (4), with x0 = E(X)

g(X)− g(E(X)) ≥ (X − E(X))L(E(X)),

and then take expectations on both side. 2

Remark 5.2 The condition on g in the theorem can be weakened to be “g is
convex on an interval I such that PX(I) = 1”.

We give below two simple but important applications of Jensen’s inequality.

Example 5.2 Let X be a non-negative random variable. Choose g(x) = 1
x
and

I = (0,∞). Then E( 1
X
) ≥ 1

E(X)
.

Example 5.3 Denote by vr = E(|X|r). Let g(r) = logE|X|r = log vr, r ≥ 0. Then

g(r) is a convex function of r. Therefore, [vr]
1
r is increasing as a function of r, i.e.

E|X| ≤ v
1
2
2 ≤ v

1
3
3 ≤ · · ·

Proof: homework. 2

Exercise 5.2 Let f(x, y) be a convex real function on the two-dimensional plane.
Show that f is convex if it has continuous second derivatives that satisfy

f11 ≥ 0, f22 ≥ 0, f11f22 ≥ f 2
12.

Then show function f(x, y) = y2 − 2xy is convex in each variable separately but not
convex on the plane.
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6 The Radon-Nikodym Derivative (Density Function)

6.1 Abstract Continuity and Probability Density Function

Given a triplet (Ω,F , µ), where µ is a measure on (Ω,F) (it may not be a
probability measure), let f : Ω → R+ = [0,∞) and be measurable. We define a new
set function

P (A) =

∫
A

fdµ,

for any A ∈ F .

One may easily observe that

(1) P is a measure on (Ω,F).

Proof: Let A =
∑
Aj. To show P (A) =

∑
P (Aj), we write

P (A) =

∫
fIAdµ =

∫
fI∑Aj

dµ

=

∫ ∞∑
j=1

fIAj
dµ =

∞∑
j=1

∫
fIAj

dµ =
∑

P (Aj).

The last equality holds by MCT. 2

Here, f is called the Radon-Nikodym derivative of P with respect to µ and write as

f =
dP

dµ
or dP = fdµ

(2) µ(A) = 0 implies P (A) = 0.

Proof: homework. 2

In particular if P is a probability measure (
∫
Ω
fdµ = 1), f is called probability

density function of P with respect to µ.

6.2 The Radon-Nikodym Theorem

Now we know if P (A) =
∫
A
fdµ, then certainly µ(A) = 0 implies P (A) = 0. But can

we go in the opposite direction? That is, given a probability P and a measure µ
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such that µ(A) = 0 implies P (A) = 0 for any A ∈ F , is there an f such that
P (A) =

∫
A
fdµ? The answer is yes as indicated by the Radon-Nikodym theorem.

Before going into the main theorem, we start with some terminologies.

Definition: Let µ and v be two measures on (Ω,F). v is called absolutely
continuous with respect to µ if and only if µ(A) = 0 implies v(A) = 0 for any
A ∈ F . In this case v is often called dominated by µ, denoted by v << µ.

Definition: v and µ are called mutually singular if there exists a set N ∈ F such
that µ(N) = 0, v(N c) = 0.

Remark 6.1 These two definitions can not both hold except for the trivial
measure.

Example 6.1 Consider the space (R+,B+). Let µ∗ be a counting measure of
integers and P a probability measure of binomial distribution b(n, p). That is,

P{x} =
n!

x!(n− x)!
pxqn−x, x = 0, 1, 2, · · · , n.

Then
P << µ∗.

But how about the other way around, i.e. µ∗ << P? In fact, this is not true. Since
P ({n+ 1}) = 0, but µ∗({n+ 1}) = 1.

Example 6.2 Let P 0 be a probability measure of a Poisson distribution, i.e.

P 0(x) = e−λλ
x

x!
, x = 0, 1, 2, · · · ,

then P 0 << µ∗ and µ∗ << P 0. Hence, P 0 and µ are mutually absolutely continuous.

Example 6.3 Define P 0 as above and let µ = µL be the Lebesgue measure. For
N = {0, 1, 2, · · · } ∈ B, P 0(N c) = 0 and µL(N) = 0 imply that P 0 and µL are
mutually singular.

Theorem 6.1 (The Radon-Nikodym Theorem) Let µ and v be two σ−finite
measures on (Ω,F). v << µ if and only if there exists a finite non-negative
measurable function f such that v(A) =

∫
A
fdµ for any A ∈ F . Also, f is uniquely

determined except possibly on a µ−null set.
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Proof: see Ash (1972, p.63-65). 2

We now consider an important application of the theorem on the real line. Consider
(Ω,F) = (R,B). Let v = PX be a probability measure induced by a random
variable and µ = µL the Lebesgue measure. Suppose that PX << µL, then by the
R-N Theorem, there exists an f ≥ 0 such that PX(B) =

∫
B
fdµL. Furthermore

FX(x) = PX(−∞, x) =

∫ x−0

−∞
fdµL

convention
=

∫ x

−∞
f(t)dt.

In this case, we also say PX or F is absolutely continuous with respect to µL and
f(x) is the probability density function of X.

Example 6.4 Let (X1, · · · , XK) be a random vector on (Rk,Bk) and µk
L a

k−dimensional Lebesgue measure. Let PX << µk
L then

F (x1, · · · , xk) =
∫ x1

−∞
· · ·
∫ xk

−∞
f(x1, x2, · · · , xk)dx1 · · · dxk.

Example 6.5 Consider again (R,B). Let µ∗ be a counting measure of integer and
PX a distribution for binomial b(n, p). As PX << µ∗, hence

F (x) =

∫ x−0

−∞
f(x)dµ∗

by the R-N theorem, where

f(x) =

{
n!

x!(n−x)!
pxqn−x, x = 0, 1, · · · , n

0 otherwise

is the probability density function of b(n, p), with respect to µ∗.

When the counting measure is considered, we call the random variable X a discrete
type. Another commonly used definition for a discrete random variable is as follows.

Definition: A random variable X is called discrete if and only if there is a
countable set B ⊂ R such that P (X ∈ B) = 1.

Remark 6.2 That F is absolutely continuous implies that F is continuous.
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Proof:

F (x) =

∫ x−0

−∞
f(t)dt =

∫ x

−∞
f(t)dt = F (x+ 0)

since µL({x}) = 0. 2

The following example shows that the other direction usually is not true!

Example 6.6 Note that F (x, y) = min(x, y) on the square [0, 1]× [0, 1] is a

continuous function. But F is not absolutely continuous with respect to µ
(2)
L . To see

this, notice that F (x, y) is the c.d.f for a random variable which uniformly
distributed on the diagonal segment of the unit square. Then the F−measure for
the diagonal segment, a µ

(2)
L -null set, is nonzero.

We construct below a random variable which has a continuous distribution, but does
not have a density function. This example was given in Feller (V2 Section 1.11).

Example 6.7 Let Yk be mutually independent random variables assuming 1 and 0
with probability 1

2
. Let X = 3

∑∞
k=1

Yk

4k
(think X be the gain of a gambler receiving

the amount of 3× 4−k if the k-th toss yields a head or 0 if the k-th toss yields a
tail). Hence,

0 ≤ X ≤ 3
∞∑
k=1

1

4k
= 1.

If Y1 = 1, then X = 3
4
+ · · · ≥ 3

4
, otherwise if Y1 = 0 then X ≤ 3

∑∞
k=2

1
4k

= 1
4
. Then

P (X ≤ 1
4
) = 1

2
and P (X ≥ 3

4
) = 1

2
, which implies that P (1

4
< X < 3

4
) = 0. Let F (x)

be the c.d.f of X. Hence, F (x) = 1
2
for any x ∈ (1

4
, 3
4
] and F (x) has no jump

exceeding 1
2
.

We may further calculate that:

P (Y1 = 1, Y2 = 1) =
1

4
=⇒ P (X ≥ 15

16
) =

1

4

P (Y1 = 1, Y2 = 0) =
1

4
=⇒ P (

3

4
≤ X ≤ 13

16
) =

1

4

P (Y1 = 0, Y2 = 1) =
1

4
=⇒ P (

3

16
≤ X ≤ 1

4
) =

1

4

P (Y1 = 0, Y2 = 0) =
1

4
=⇒ P (X ≤ 1

16
) =

1

4
.
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Consider that

F (x) =


1
4

x ∈ ( 1
16
, 3
16
],

1
2

x ∈ (1
4
, 3
4
],

3
4

x ∈ (13
16
, 15
16
].

Hence, F (x) has no jump exceeding 1
4
.

Inductively, at the n−stage, we may show that F (x) has no jump exceeding 1
2n
. Let

An = (
1

4
,
3

4
] + {( 1

16
,
3

16
] + (

13

16
,
15

16
]}+ · · ·+ {( 1

4n
,
3

4n
] + · · ·+ (

4n − 3

4n
,
4n − 1

4n
]}.

Hence

µL(An) =
1

2
+

1

22
+ · · ·+ 1

2n
= 1− 1

2n
.

But PX(An) = P (X ∈ An) = P (X ∈ (1
4
, 3
4
]) + . . .+ P (4

n−3
4n

, 4
n−1
4n

]) = 0 and F (x) has
no jump exceeding 1

2n
. Let n→ ∞. So F (x) is continuous.

As An → A = ∪∞
i=1Ai, PX(A) = 0. But µL(A) = limn→∞ µL(An) = 1. So PX and µL

are mutually singular. Hence, PX can not be absolutely continuous with respect to
µL or have a density function. 2

In fact, F (x) is a continuous function increasing from F (0) = 1 to F (1) = 1 in such
a way that the intervals of constancy add up to length 1. Roughly speaking F
increases only in a µL-null A

c, which is like a Cantor set.

Cantor Set: The Cantor set is constructed as follows: from [0, 1] remove the open
middle third (1

3
, 2
3
); from the remainder, a union of two closed intervals, remove the

two open middle thirds, (1
9
, 2
9
) and (7

9
, 8
9
). The Cantor set is what remains when this

process is continued infinitely. It can be shown that the Cantor set is uncountable
but has (Lebesgue) measure 0.

6.3 Absolute Continuous Cumulative Distribution Function

The previous section stated that F (x) is called an absolute continuous cumulative
distribution function for a random variable X if F (x) can be written in a Lebesgue
integral form

F (x) =

∫ x

−∞
f(y)dy,

61



where f(x) is a nonnegative real Borel function, called the probability density
function of X. If f is continuous, this integral is a Riemann integral. Since
F (x) → 1 as x→ ∞, we have

∫∞
−∞ f(t)dt = 1.

Furthermore, if F (x) is absolutely continuous with respect to the probability density

function f(x), then dF (x)
dx

exists a.e (with respect to µL) and
dF (x)
dx

= f(x)

Let us consider a pair of random variables, (X1, X2). Assume its cumulative

distribution function F (x1, x2) is absolutely continuous with respect to µ
(2)
L . Then

by the R-N Theorem, there exists a finite (a.e) f(x1, x2) ≥ 0 such that

F (x1, x2) =

∫ x1

−∞

∫ x2

−∞
f(y1, y2)dµ

(2)
L

By convention, this Lebesgue integral can be written∫ x1

−∞

∫ x2

−∞
f(y1, y2)dy1dy2.

Also, ∂2F
∂x1∂x2

= f(y1, y2) a.e (with respect to µ
(2)
L ).

We next derive the marginal distribution for X1. As

F1(x1) = P (X1 < x1) = P (X1 < x1, X2 <∞)

=

∫ x1

−∞

∫ +∞

−∞
f(y1, y2)dy2dy1 =

∫ x1

−∞
g(y1)dy1,

where g(y1) =
∫ +∞
−∞ f(y1, y2)dy2, hence, g(y) is the probability density function of

X1.

Example 6.8 Consider a mixed distribution of F1(x) : N(0, 1) << µL and
F2(x) : b(n, p) << µ∗, such that F (x) = 1

2
F1(x) +

1
2
F2(x). Let

µ0 = µL + µ∗, i.e. µ0(A) = µL(A) + µ∗(A), then µ0 is a measure too. One may show

F (x) << µ0.

In fact, µ0(B) = 0 implies µL(B) = 0 and µ∗(B) = 0. Hence P1(B) + P2(B) = 0.

Then from the N-R theorem, there exists a probability density function f(x) of
F (x) with respect to µ0 such that F (x) =

∫ x

−∞ f(y)dy. It turns out

f(x) =
1

2
(

1√
2π
e−

x2

2 IAc +

(
n

x

)
pxqn−xIA)
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where A = {0, 1, 2, · · · , n}. (homework: verify this.)

Exercise 6.1 If F is an absolutely continuous distribution function, show∫ ∞

−∞
F (x+ c)− F (x)dx = c

for any c ∈ R.

7 Transformation of Random Variables

Our goal here is to find the distribution of functions of random variables. Let
X = (X1, · · · , Xk) be a k-dimensional random vector. Suppose
g = (g1, . . . , gl) : R

k → Rl. Consider

Yi = gi(X), i = 1, . . . , l.

A question of particular interest is what the distribution of Y = (Y1, · · · , Yl) is.

Assume that X = (X1, · · · , Xk) has a cumulative distribution function F (x) and a
probability density function f(x). To find the probability density function (or
cumulative distribution function ) of g(X), we use the definition of cumulative
distribution function, i.e.

FY (y) = P (g(X) < y) = PX(g
−1(−∞, y)) =

∫
g−1(−∞,y)

dF (x).

For illustration purposes, some typical cases are stratified below.

Case 1: X has a discrete distribution with probability density function fX(x) and
Y = g(X), where g is a Borel function Rl → R. Here, l is the dimension of X.

As X is discrete, S = {x : fX(x) > 0} is countable. Let S ′ = g(S) and denote by
Ay = {x ∈ S, g(x) = y}. Then for any y ∈ S ′

fY (y) =

{∑
x∈Ay

fX(x), y ∈ S ′,

0, y /∈ S ′.

The key step is [ω : Y (ω) = y] = [ω : X(ω) ∈ Ay].
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Example 7.1 Calculate the distribution of the sum of two independent Poisson
random variables. Suppose that X = (X1, X2) are independent Poisson random
variables with distribution parameters λ1, λ2. Consider Y = g(X) = X1 +X2. So
here g : R2 → R. Let N+ = {1, 2, · · · , }. Then S = N+ ×N+ and S ′ = g(S) = N+.
Hence, for any y ∈ S ′ = N+

fY (y) =
∑

(x1,x2)∈N+×N+

x1+x2=y

e−λ1
λx1
1

x1!
e−λ2

λx2
2

x2!
= e−λλ

y

y!
.

where λ = λ1 + λ2.

Case 2: X is absolutely continuous with probability density function fX(x) and
Y = g(X). Here, g is a discrete function, i.e. a function whose range is at most
countable.

Let S = {x, fX(x) > 0}. Suppose that S ′ = g(S) is a countable set, say {y1, y2, · · · }.
Let Si = {x ∈ S, g(x) = yi} = g−1({yi}) ∩ S. Then

fY (yi) = P (Y = yi) =

∫
Si

fX(x)dx, i = 1, 2, · · · .

Example 7.2 Suppose that X = (X1, X2, X3) are independent identically
distribution with a common probability density function e−x, 0 < x <∞. Thus, the
probability density function of X is

fX(x) =

{
e−(x1+x2+x3) , on R3+

0 otherwise.

Now g(X) = Y = the rank of X1. Let S = {(x1, x2, x3) : xi > 0, i = 1, 2, 3}. Then
PX(S) = 1.
On S, rank is well-defined S ′ = g(S) = {1, 2, 3}. Then one may calculate the
distribution of Y on S ′. For example,

P (Y = 2) = fY (2) =

∫
x2<x1<x3
x3<x1<x2

e−(x1+x2+x3) =
1

3
.

Case 3:
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(i) X is absolutely continuous with a probability density function fX(x) and g is one
to one. Let S = {x : fX(x) > 0} and S ′ = g(S). We further assume that g−1(y) has
a continuous first order derivative on S ′. Then Y = g(X) is also absolutely
continuous and has a cumulative function

FY (t) = P (g(X) < t) =

∫
g−1(−∞,t)∩S

fX(x)dx

=

∫ t

−∞
fX(g

−1(y))|dg
−1(y)

dy
|dy =

∫ t

−∞
fY (y)dy.

Therefore, fY (y) = fX(g
−1(y))|dg

−1(y)
dy

| is the probability density function of Y .

(ii) With the same set up as above, except that g is not one to one on S → S ′, we
assume that: (a) there is a partition of S =

∑L
l=1 Sl such that g restricted to each Si

is one to one onto a set S ′
l: gl : Sl

one to one−→ S ′
l. gl is restriction of g to the domain of

Sl, S
′ = ∪L

l=1S
′
l and S

′
l need not be disjoint; (b) each g−1

l has a continuous derivative
on S ′

l. Then the probability density function of Y is

fY (y) =
k∑

i=1

IS′
i
(y)fX(g

−1
i (y))|dg

−1
i (y)

dy
|.

Proof: Consider FY (t) = P (g(X) < t). As A = {x ∈ S : g(x) < t} =
∑
ASi, hence

FY (t) =

∫
A

fX(x)dx =
k∑

i=1

∫
ASi

fX(x)dx

=
k∑

i=1

∫
(−∞,t)∩S′

i

fX(g
−1
i (y))|Ji(y)|dy

=
k∑

i=1

∫ t

−∞
IS′

t
(y)fX(g

−1
i (y))|Ji(y)|dy

=

∫ t

−∞

k∑
i=1

IS′
t
(y)fX(g

−1
i (y))|Ji(y)|dy.

2

Exercise 7.1 Let X ∼ N(0, 1) and g(x) = (x− 2)2. Find the probability density
function of g(x).
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Exercise 7.2 Let X and Y be independent and follow N(0, σ2). Define random
variables R and Θ by X = R cos(Θ) and Y = R sin(Θ). Show R and Θ are
independent and find their density functions.

Case 4:

(i) X = (X1, X2, · · · , Xk) has a continuous cumulative distribution function FX(x)
and a probability density function fX(x). Suppose g = (g1, . . . , gp) : R

k → Rp.
Consider Yi = gi(X), i = 1, 2, · · · , p, (l ≤ k).

Assume that: (a) we can find k − p other functions, Yj = gj(x), j = p+ 1, · · · , k,
such that, the function Y = g(X) = (g1(X), · · · , gk(X))T : Rk → Rk is one to one
on S → S ′, where S and S ′ are defined as before; (b) let the inverse function
denoted by h(y) = (h1(y), · · · , hk(y))T and let

J(y) = |∂h
∂y

| =

∣∣∣∣∣∣
∂h1

∂y1
· · · ∂h1

∂yk

· · · · · · · · ·
∂hk

∂y1
· · · ∂hk

∂yk

∣∣∣∣∣∣ .
Assume that the partial derivatives of hi exists, continuous and J(y) doesn’t vanish
except possibly on a set of Lebesgue measure 0. Then the joint probability density
function of Y = (Y1, · · · , Yk) is

fY (y) = fX(h1(y), · · · , hk(y))|J(y)|

on S ′. We can integrate out yp+1, · · · , yk in fY (y) to get the probability density
function of Y1, · · · , Yp.

(ii) With the similar assumptions as before, instead of assuming g = (g1, . . . , gk) is
one to one on Rk → Rk, we suppose that S is a finite disjoint union of Sl, i.e.
S =

⋃L
l=1 Sl, such that on each Sl, g : Sl → S ′

l is one to one. Here, S ′ = ∪L
l=1S

′
l and

S ′
l need not be disjoint. Let hl be the inverse of g restricted to Sl, i.e. h

l : S ′
l → Sl

and hl ◦ g(x) = x for any x ∈ S ′
l. Then the probability density function of

Y = g(X) = (g1(X), . . . , gl(X)) is

fY (y) =
L∑
l=1

IS′
l
(y)fX(h

l
1(y), · · · , hlk(y))|J l(y)|.

Example 7.3 Let X1, X2 be two independent random variables following N(0, 1).
Find the probability density function of Y1 =

X1

X2
.
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As X1, X2 are independent, the density function for X = (X1, X2) is

fX(x1, x2) =
1
2π
e−

x21+x22
2 on R2. We take S = R2 − (·, 0) (since PX(X2 = 0) = 0). Let

y1 = g1(x1, x2) =
x1
x2
, y2 = g2(x1, x2) = x2.

Then S ′ = g(S) = R2 and
x1 = y1y2, x2 = y2.

And

J(y) =

∣∣∣∣y2 y1
0 1

∣∣∣∣ .
So on S ′,

fY (y1, y2) =
1

2π
e−

y21y
2
2+y22
2 |y2|.

Hence,

fY1(y1) =

∫ ∞

−∞

1

2π
e−

y21y
2
2+y22
2 |y2|dy2 =

1

π

1

1 + y21

for y1 ∈ R, which is the probability density function of Cauchy distribution.

Note as both E(X+) and E(X−) are +∞, the expectation of the random variable
following the Cauchy distribution doesn’t exist.

Example 7.4 Let X1, X2, · · · , Xn be i.i.d random variables with an absolutely
continuous cumulative distribution function F (x) and a probability density function
f(x). Suppose that Y1 < Y2 < · · · < Yn are the order statistics of the X ′s. That is,
Y1 = min(X1, · · · , Xn), Y2 = second smallest of X1, · · · , Xn, and so on.

The space of X is S = Rn and the space of Y is S ′ = {y : y1 ≤ y2 ≤ · · · yn}. We can
exclude all equalities from S and S ′ since the probability of any two X being equal
is 0. Then S ′ = {y : y1 < y2 < · · · yn}. fX(x) =

∏n
i=1 f(xi), Let S1, S2, · · · , Sn! be all

n! possible permutation of the ordinals of S ′, S =
∑n!

i=1 Si.

On Si, the map is
y1 = xi1 , · · · , yn = xin ,
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where (i1, · · · , in) is a fixed permutation of (1, 2, · · · , n) and gi : Si → S ′ is one to
one. y1 = xi1

...
yk = xin

 =⇒

x1 = yj1
...

xk = yjn

 =⇒ |J (i)(y)| = 1

Since the determinant of n× n matrix whose columns are some permutation of the
of the columns of In×n is 1 or -1,

fY (y) =
n!∑
i=1

n∏
i=1

f(yi) = n!
n∏

i=1

f(yi)

for −∞ < y1 < y2 < · · · < yn <∞. The last equality follows as on each set Si,∏n
j=1 f(xij) =

∏n
i=1 f(yi).

Next to find the probability density function of Y1, · · · , Yr(r < n), one may proceed
by integrating out yr+1, · · · , yn in fY (y) over the range yr < yr+1 < · · · < yn. Note
that ∫ +∞

yn−1

f(yn)dyn = 1− F (yn−1),∫ +∞

yn−2

(1− F (yn−1))f(yn−1)dyn−1

=

∫ 1

F (yn−2)

(1− u)udu =
(1− F (yn−2))

2

2
,

· · ·

and so on. Hence,

f(y1, · · · , yr) =
n!

(n− r)!

r∏
i=1

f(yi)(1− F (yr))
n−r

for −∞ < y1 < · · · < yr <∞. 2

Exercise 7.3 Suppose A, B, C are positive, independent random variables with
distribution function F . Show the quadratic equation Az2 +Bz + C = 0 has real
solutions with probability

∫∞
0

∫∞
0
F (x2/4y)dF (x)dF (y).
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Other commonly used methods to determine the distribution of transformed
random variables include:

(1) Handling the cumulative distribution function first then obtaining the
probability density function.

Example 7.5 Find probability density function of Y1 = min(X1, · · · , Xn). Note
that

1− FY1(y) = Pr(Y1 ≥ y) = Pr(all Xi ≥ y) = (1− F (y))n.

Therefore, FY1(y) = 1− (1− F (y))n. Hence,

fY1(y) = n[1− F (y)]n−1f(y).

(2) Use of characteristic function or moment generating function.

(3) Use of Probability generating function.

(4) Identification of moments to those of a known distribution.

8 Conditional Distribution and Expectation

8.1 Conditional Distribution

Definition: Let (Ω,F , P ) be a probability space and let a pair of random variables,
(X, Y ), have a cumulative distribution function F (x, y). Denote by PX and PY the
probability measures induced by X and Y respectively. Let B be the Borel σ−field
on R. We define the conditional distribution as

P (Y ∈ B2|X ∈ B1) =
P (X−1(B1) ∩ Y −1(B2))

P (X−1(B1))
def
=
V (B1, B2)

PX(B1)
,

provided PX(B1) > 0.

For example, if B1 = {x} and PX({x}) > 0,

P (Y ∈ B2|X ∈ {x}) = V ({x}, B2)

PX({x})
.

The left side above also can be denoted as PY |X=x(B2).
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This definition can also be extended to accommodate when PX(B1) = 0. Again let
B1 = {x} and suppose that PX({x}) = 0. Introduce B1ϵ = [x, x+ ϵ] so that
PX(B1ϵ) > 0 for any ϵ > 0. So

P (Y ∈ B2|X ∈ B1ϵ) =
V (B1ϵ, B2)

PX(B1ϵ)

is well defined. Let ϵ→ 0+. Provided that the limit v(x,B2) exists and is unique,
we call this limit PY |X=x(B2) = v(x,B2).

Example 8.1 Let F (x, y) be absolutely continuous with a probability density
function f(x, y). Assume that f(x, y) is also continuous and that fX(x) is the
marginal probability density function for X. Let fX(x) > 0 on [x0, x0 + h]. It follows

P (Y < y|X ∈ [x0, x0 + ϵ]) =
1
ϵ

∫ x0+ϵ

x0

∫ y

−∞ f(x, t)dtdx

1
ϵ

∫ x0+ϵ

x0
fX(x)dx

−→
∫ y

−∞ f(x0, t)dt

fX(x0)
as ϵ→ 0+.

Now formally, we can also write

FY |X=x0(y) =

∫ y

−∞ f(x0, t)dt∫ +∞
−∞ f(x0, t)dt

=

∫ y

−∞ f(x0, t)dt

fX(x0)
.

Here FY |X=x0(y) is a distribution function with the probability density function

fY |X=x0(y) =
f(x0, y)

fX(x0)
.

For two arbitrary sets B1 and B2 in B, recall that

V (B1, B2) = P (X−1(B1) ∩ Y −1(B2)).

It is easy to show that

Theorem 8.1 Keep B2 fixed, allow B1 to vary over B. Then V (·, B2) is a finite
measure on (R,B) and V (·, B2) << PX .
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Proof: Notice that V (R,B2) = P (Y −1(B2)) ≤ 1 is finite and V (·, B2) is
non-negative.

In addition,

V (
∑
j

B1j, B2) = P (X−1(
∑
j

B1j) ∩ Y −1(B2)) = P (
∑
j

X−1(B1j) ∩ Y −1(B2))

=
∑
j

P (X−1(B1j) ∩ Y −1(B2)) =
∑
j

V (B1j, B2).

So, V (·, B2) is a finite measure.

If PX(B1) = 0, so is P (X−1(B1)). Hence, V (B1, B2) = 0 as
V (B1, B2) ≤ P (X−1(B1)). 2

Thus, by the R-N theorem, there exists a uniquely determined measurable function
g(x,B2) ≥ 0 such that

V (B,B2) =

∫
B

g(x,B2)dPX (8)

for any B ∈ B.

We next study this measurable function, g(x,B2). One may show that

(1) 0 ≤ g(x,B2) ≤ 1, a.e (with respect to PX).

Proof: if possible, suppose g(x,B2) > 1 + ϵ on B1, PX(B1) > 0, so
V (B1, B2) > PX(B1) which is impossible. 2

(2) if B = {x} and PX({x}) > 0, V ({x}, B2) = g(x,B2)PX({x}) so

g(x,B2) =
V ({x}, B2)

PX({x})
.

(3) Define PY |X=x(B2) to be g(x,B2). Then PY |X=x(·) has all the properties of a
probability measure for almost all x, a.e( with respect to PX).

Proof: First, the nonnegativity of PY |X=x(·) is obvious.

Second, we show its regularity, i.e. PY |X=x(R) = 1 a.e. In fact, notice that
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V (B,R) = PX(B) =
∫
B
dPX for any B ∈ B. Using (8) where B2 = R, we have∫

B

PY |X=x(R)dPX =

∫
B

dPX .

Hence, PY |X=x(R) = 1, a.e(with respect to PX).

To prove countable additivity, we show PY |X=x(B2) =
∑∞

j=1 PY |X=x(B2j) a.e (with
respect to PX) if B2 =

∑∞
i=1B2j. We consider

V (B,B2) =
∞∑
j=1

V (B,B2j)

=
∞∑
j=1

∫
B

PY |X=x(B2j)dPX

=

∫
B

[
∞∑
j=1

PY |X=x(B2j)]dPX ,

where the last equality is by the MCT.

Again compare (8) and obtain that

PY |X=x(B2) =
∞∑
j=1

PY |X=x(B2j) a.e.

2

One may notice that equation (8) is actually essential in the development of
acquiring the conditional probability of Y ∈ B2 given X, PY |X=x(B2). Now directly
starting from equation (8), we give below a much more abstract definition for the
conditional probability.

Definition: Given two random variables X, Y on the probability space (Ω,F , P ),
suppose a bivariate function, g(x,B2), where x ∈ R and B2 a Borel set in B,
satisfies (i) for any fixed B2, g(x,B2) is a Borel measurable function with respect to
x, i.e. g(X,B2) is a random variable. (ii) for any fixed x, g(x, ·) is a probability
measure on (R,B). If, for a fixed B2 ∈ B,

P (X ∈ B, Y ∈ B2) =

∫
B

g(x,B2)dPX
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holds for any B ∈ B, then g(x,B2) is called the conditional probability of Y ∈ B2

given X = x, and the random variable g(X,B2) is defined to be the conditional
probability of Y ∈ B2 given X, often denoted by PY |X(B2).

8.2 Conditional Expectation

In Section 3.4, we introduced the cumulative distribution function
F (x) = PX(−∞, x) to characterize a random variable X. Similarly, we may define
the conditional distribution function of Y given X = x to be

FY |X=x(y) = PY |X=x(−∞, y),

based on which we may further consider its conditional expectation.

Definition of Conditional Expectation: The conditional expectation of Y given
X = x is defined to be E(Y |X = x)=

∫
R
ydFY |X=x(y), or if h(·) is a measurable

function on R, define E[h(Y )|X = x] =
∫
R
h(y)dFY |X=x(y). Let

g(x) = E[h(Y )|X = x]). Then define E[h(Y )|X]) = g(X).

Notice that there is a subtle difference between E[h(Y )|X = x] and E[h(Y )|X].
Simply speaking, the former is a real value of a measurable function evaluated at x,
while the latter is a random variable. For instance, if E[h(Y )|X = x] = x2, then
E[h(Y )|X] = X2.

Theorem 8.2
E(E(h(Y )|X)) = E(h(Y )).

Proof: First take h(·) to be an indicator function, i.e. h(y) = IB(y) where B is a
Borel set. Then

E[h(Y )] = P (Y ∈ B) = P (X ∈ R, Y ∈ B)

=

∫
R

[PY |X=x(B)]dPX =

∫
R

∫
R

(IB(y)dPY |X=x)dPX

= EX [E(h(Y )|X)].

Next, use simple functions ↑ h(y)(nonnegative) and use the fact that
h(y) = h+(y)− h−(y). 2
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If taking h(·) to be an identity function, we have

E(Y ) = E(E(Y |X)) (9)

Exercise 8.1 Follow the proof of Theorem 8.2 and show that, for any Borel set B
on the real line,

E(I(X ∈ B)Y ) = E(I(X ∈ B)E(Y |X)). (10)

Using conditional expectation, we have an alternative way to define conditional
probability when Y,X are random variables and E(Y ) is finite. We first consider
nonnegative random variables and extend to general random variables easily.

Nonnegative Random Variable: We will use the R-N theorem to define the
conditional expectation for a nonnegative random variable.

Let Y be a nonnegative random variable with a finite expectation. Define a set
function v on (R,B) by v(B) = E[Y IB(X)]. We show that v(·) is a finite measure
dominated by PX . Thus the conditions in the R-N theorem are satisfied and we may
define the resulting Radon-Nikodym derivative to be the conditional expectation.

To proceed we first show

Theorem 8.3 v(·) is a finite measure dominated by PX on (R,B).

Proof: Obviously v(R) = E(Y ) is finite and v is non-negative. In addition,

v(
∑
j

Bj) = E(Y I∑
j Bj

(X)) = E[
∞∑
j=1

Y IBj
(X)] =

∞∑
j=1

v(Bj),

where the last equality is by the MCT.

As PX(B) = 0 implies PX,Y (B ×R) = 0, hence

v(B) =

∫
R×R

yIB(x)dPX,Y =

∫
B×R

ydPX,Y = 0.

2

By the R-N theorem, there exists a non-negative, finite, measurable function
h(x) : R → R+, determined uniquely a.e (with respect to PX), such that

v(B) =

∫
B

h(x)dPX , for any B ∈ B.
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We can thus define E(Y |X = x) = h(x), a measurable function of x (instead of y!).
Hence,

EX,Y (Y IB(X)) =

∫
B

E(Y |X = x)dPX = EX [IB(X)E(Y |X)].

General Random Variable: If Y is any random variable with finite E(Y ), let
Y = Y + − Y −. With E(Y +|X), E(Y −|X) defined, we readily define
E(Y |X) = E(Y +|X)− E(Y −|X).

8.3 Abstract Conditional Expectation

We have defined the conditional expectation in terms of a conditional probability
function, and this is adequate as long as we only deal with a fixed pair of random
variables. In the later sections, we might be interested in stochastic processes or a
whole family of random variables. It turns out a more flexible definition can be
established independent of conditional distributions. That is, we may use identity
(10) to define E(Y |X = x) and E(Y |X).

Definition: Let X, Y be a pair of random variables on (Ω,F , P ). If E(Y ) is finite
and there exists a Borel measurable function g such that that

E(Y IB(X)) =

∫
B

g(x)dPX(x)

holds for any B ∈ B. Furthermore, if the integrand function g is unique with
respect to PX . Then we define E(Y |X = x) = g(x) and E(Y |X) = g(X).

From this definition, it is noticeable that the conditional expectation E(Y |X = x) of
Y given X = x is a finite measurable function of x, whose value at a point x is
denoted by E(Y |X = x) and E(Y |X) is defined in such a way that (10) holds for
any B ∈ B.

Exercise 8.2 If Y is a constant c a.e. then prove E(Y |X = x) = c a.e. (with
respect to PX).

Exercise 8.3 Using the fact “if
∫
B
fdµ ≤

∫
B
gdµ for any B ∈ B, where µ is a

σ−finite measure on R, then f ≤ g a.e. (with respect to µ),” prove that Y1 ≤ Y2 a.e.
implies E(Y1|X = x) ≤ E(Y2|X = x) a.e. (with respect to PX).
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The conditional expectation E(Y |X) has the following properties.

Property 8.1 E(Y |X = x) is a measurable function of x alone. Hence, E(Y |X) is
a random variable and EX(E(Y |X)) = EY (Y ).

Property 8.2 Let t(Y ) be a measurable function of Y , with finite expectation.
Then E(t(Y )|X = x) is well defined. In particular, we may redefine the conditional
probability of Y ∈ B2, given X, to be PY |X(B2) = E[IB2(Y )|X] for any Borel set B2.

Property 8.3 One may extend to the case with a k− vector X = (x1, · · · , xk),
v(B) = E[Y IB(X)], B ⊂ Rk so E(Y |X = x) : Rk → R is a measurable function of x.

Property 8.4 Conditional expectation has all the properties of expectation or
integral a.e (with respect to PX). In particular, (1) If Y ≥ 0, the
E(Y |X) ≥ 0 a.e (with respect to PX); (2)
E(Y1|X) + E(Y2|X) = E(Y1 + Y2|X) a.e (with respect to PX).

Proof of (2): Consider for any B ∈ B,∫
B

(E(Y1|X = x) + E(Y2|X = x))dPX

=

∫
B

E(Y1|X = x)dPX +

∫
B

E(Y2|X = x)dPX

= E(IB(X)Y1) + E(IB(X)Y2)

= E(IB(X)(Y1 + Y2)).

The first and the third equalities are by linearity of integrals, while the second is
due to the definition of conditional expectation. Hence, again by definition,
E(Y1|X) + E(Y2|X) = E(Y1 + Y2|X) a.e (with respect to PX). 2

Property 8.5 If E(Y ) is finite and E(Y g(X)) is finite, then

E(Y g(X)|X = x) = g(x)E[Y |X = x] a.e (with respect to PX).

Proof: First, take g(x) = IC(x) where C ∈ B. Then for any B ∈ B, by definition,

E(Y IC(X)IB(X)) =

∫
B

E(Y IC(x)|X = x)dPX .
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But, we also have

E(Y IC(X)IB(X)) = E(Y IBC(X)) =

∫
BC

E(Y |X = x)dPX =

∫
B

IC(x)E(Y |X = x)dPX .

So
E(Y IC(X)|X = x) = IC(x)E(Y |X = x).

At the second step, we use a sequence of simple random variables to approximate a
non-negative random variable and generalize to general cases. 2

Property 8.6 That X and Y are independent implies
E(Y |X) = E(Y ) a.e (with respect to PX).

Property 8.7 Conditional variance, with all the following moments assumed finite,

var(Y |X) = E(Y 2|X)− (E(Y |X))2,

is a measurable function of the random variable of X.

It then follows that

EX(var(Y |X)) = E(Y 2)− EX(E(Y |X)2)

= var(Y ) + E(Y )2 − EXE(Y |X)2

= var(Y )− (EX(E(Y |X)2)− (EXE(Y |X))2)

= var(Y )− var(E(Y |X)).

Hence,
var(Y ) = EX(var(Y |X)) + var(E(Y |X)).

So far we have defined the conditional expectation for a pair of random variables. A
little more abstraction and generalization allow us to to define the conditional
expectation of an arbitrary variable Y with respect to an arbitrary σ-field of sets.

Definition of Abstract Conditional Expectation: In an abstract probability
space (Ω,F , P ), let F0 be an arbitrary σ-field of sets contained in F . Let Y be a
random variable with finite expectation. A random variable U is called an abstract
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conditional expectation of Y relative to F0 if and only if U is F0-measurable (that is,
(U ≤ a) ∈ F0 for any real a) and

E(IBY ) = E(IBU) or

∫
B

Y dP =

∫
B

UdP

holds for every B ∈ F0. In this case, we write U = E(Y |F0).

Generally, the conditional expectation E(Y |X = x) is more intuitive than the
conditional expectation on a σ-field. However, the latter is often easier to handle in
formal arguments and, hence, is almost universally preferred in the probability
literature. In fact, denoting by σ(X) = {X−1(B) : B ∈ B}, the σ-field generated by
X, and letting F0 = σ(X), the present definition concurs with (10). In other words,
the conditional expectation of E(Y |X) should be understood to be E(Y |σ(X)).

By definition, if F0 = F , we may take E(Y |F0) = Y ; if F0 is a trivial σ-field,
containing only Ω and the empty set, then E(Y |F0) = E(Y ); if Y is itself F0

measurable, then E(Y |F0) = Y .

The existence of abstract conditional expectation can be proved by using the R-N
theorem. Additionally, one may have a general formula

E(Y Z|F0) = Z · E(Y |F0)

for any F0-measurable function Z. The following, an extension of Theorem (8.2)
lists another important property of the abstract conditional expectation.

Theorem 8.4 If F0, F1 are two σ-fields and F0 ⊂ F1. Then

E(Y |F0) = E(E(Y |F1)|F0)

and
E(Y |F0) = E(E(Y |F0)|F1).

Proof: Let U0 = E(Y |F0) and U1 = E(Y |F1). It follows that

E(Y · IB) = E(U1 · IB) = E(U0 · IB)

for any B ∈ F0. By definition, if F0 ⊂ F1, then E(Y |F0) = E(E(Y |F1)|F0).

From U0 is F0-measurable, hence, F1-measurable, follows
E(Y |F0) = E(E(Y |F0)|F1). 2
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Exercise 8.4 If Y is a constant c a.e. then prove E(Y |F0) = c a.e. (with respect to
P ).

Exercise 8.5 If Y1 ≤ Y2 a.e, then E(Y1|F0) ≤ E(Y2|F0) a.e. (with respect to P ).

Parallel to the unconditional expectations, Jensen’s inequality holds for abstract
conditional expectations.

Theorem 8.5 (Jensen’s inequality) Let X be a random variable on (Ω,F , P ) and
F0 a sub-σ-algebra. If g : R → R is a Borel function which is convex on R and
E(X|F0) is finite a.e (with respect to P ), then E(g(X)|F0) ≥ g(E(X|F0)) a.s with
respect to P .

8.4 Martingales

For a sequence of random variables X1, X2, . . ., we may think of Xn as the price for
a stock at time tn. Having observed the first n prices, the expected price for time
tn+1 is E(Xn+1|X1, . . . , Xn). If this is equal to Xn, the market is ‘fair’ as the
expected gain at time tn+1 is E(Xn+1 −Xn|X1, . . . , Xn) = 0. If
E(Xn+1|X1, . . . , Xn) ≥ Xn, the market is ‘favorable’; otherwise, if
E(Xn+1|X1, . . . , Xn) ≤ Xn, the market is ‘unfavorable’.

Study of this type of sequences motivates an important concept of martingale in
modern probability literature.

Definition: Let X1, X2, . . . be a sequence of random variables on a probability
space (Ω,F , P ) and F1,F2, . . . be a sequence of σ-fields in F such that Fi ⊂ Fi+1.
The sequence (Xi,Fi), i = 1, 2, . . . is called a martingale if and only if the following
conditions hold:

(i) Xi is Fi-measurable for i = 1, 2, . . ..

(ii) E(|Xi|) <∞.

(iii) E(Xi+1|Fi) = Xi a.e (with respect to P ).

If condition (i) holds, we often say Fi form a filtration and if condition (ii) is true,
we call Xi adapted to Fi. More explicitly speaking, if Xi represents the total gain of
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a gambler after the i-th play and Fi represents his information about the gam at
that time, condition (iv) means that his expected fortune after the next play is the
same as his present fortune. Thus a martingale represents a fair game. If “ = ” in
condition (iv) is changed to “ ≤ ” (or “ ≥ ”) we call (Xi,Fi) a supermartingale (or
submartingale).

Exercise 8.6 If (Xi,Fi) is a martingale, show for any k ≤ n, with probability 1,

E(Xn|Fk) = Xk.

Exercise 8.7 If (Xi,Fi) is a martingale, show for any positive integer k and n,

cov(Xn+k −Xn, Xn) = 0.

By Jensen’s inequality, convex functions of martingales are submartingales.

Theorem 8.6 If X1, X2, . . . is a martingale on a probability space (Ω,F , P ) with
respect to F1 ⊂ F2, . . ., a sequence of σ-fields in F , and if g(·) is convex and g(Xn)
are integrable, then g(X1), g(X2), . . . is a submartingale with respect to F1,F2, . . ..

Proof: As Xn = E(Xn+1|Fn) and so g(Xn) = g(E(Xn+1|Fn)). If g is convex, by
Jensen’s inequality, it follows that

g(Xn) = g(E(Xn+1|Fn)) ≤ E(g(Xn+1)|Fn)a.s.

A more interesting generalization of the discrete martingale is in the framework of
continuous processes, e.g. survival or death processes. Before proceeding further, we
first introduce the concept of a stochastic process.

Definition of Stochastic Process: On a common probability space (Ω,F , P ), a
stochastic process is a family of random variables X = {X(t) : t ∈ Γ} indexed by a
set Γ.

In the definition, Γ usually indexes time, and is often either {0, 1, 2 . . . , } (discrete
process) or [0,∞) (continuous process). The random functions X(·, ω) : R+ → R for
each ω ∈ Ω are called the sample paths or trajectories of X. A process is called
right− or left− continuous or said to have limits from left or right if the sample
paths have such a property almost surely with respect to P .
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For a continuous process, i.e Γ = [0,∞), the following is a rigorous formulation of
information accruing over time.

Definition of Filtration: On (Ω,F , P ), a family of sub-σ-fields {Ft, t > 0} is
called a filtration if s ≤ t implies Fs ⊂ Ft.

For example, we may define Ft = σ{X(s) : 0 ≤ s ≤ t}, the smallest σ-algebra with
respect to which each of the random variables X(s), 0 ≤ s ≤ t is measurable. In
plain words, Ft contains the information generated by the process X on [0, t].

Definition of Predictable Process: A process is called predictable with respect
to a σ-field if it is measurable with respect to that σ-field.

We are now able to define the continuous version of a martingale, which has
fundamental implications in many diverse areas such as stochastic differential
equations, queuing theory and survival analysis.

Definition: On a common probability space (Ω,F , P ), let M = {M(t) : t ≥ 0} be a
right continuous stochastic process with left-hand limits and {Ft : t ≥ 0} a
filtration. M is called a martingale with respect to {Ft : t ≥ 0} if

(i) For each t, M(t) is measurable with respect to Ft-measurable.

(ii) E(|M(t)|) <∞.

(iii) E(Mt+s|Ft) =M(s) a.s (with respect to P ) for all s, t ≥ 0.

M is called a submartingale if (iii) is replace by E(Mt+s|Ft) ≥M(s) a.s (with
respect to P ). and a supermartingale if (iii) is replace by E(Mt+s|Ft) ≤M(s) a.s
(with respect to P ).

We conclude this section with a theorem which gives the theoretical foundation to
the survival analysis.

Doob-Meyer Decomposition Let N be a right-continuous nonnegative
submartingale with respect to a stochastic basis (Ω,F , {Ft : t ≥ 0}, P ). Then there
exists, uniquely (with respect to P ) a right-continuous martingale M and an
increasing right-continuous predictable process A such that E(A(t)) <∞) and

N(t) =M(t) + A(t)
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a.s for any t ≥ 0.

9 Product Measure, Iterated Integral and Convolution

Let (Ω1,F1, µ1), (Ω2,F2, µ2) be two measurable sample spaces. The Cartesian
product of these two spaces, Ω1 × Ω2, is the set of all ordered pairs (ω1, ω2), where
ωi ∈ Ωi, i = 1, 2. Among all the sets in this product space, we consider rectangles
A1 × A2, where Ai ∈ Ωi. With sets of this form, we wish to construct on Ω1 × Ω2 a
product measure µ such that µ(A1 × A2) = µ1(A1)µ2(A2). In the case where µ1 and
µ2 are Lebesgue measure on the real line, µ will be Lebesgue measure in the plane.
The main result is Fubini’s theorem, by which double integrals can be calculated as
iterated integrals.

9.1 Product Measure

Definition: Let (Ω1,F1, µ1), (Ω2,F2, µ2) be two sample spaces. The product space
Ω1 × Ω2 is defined to be

Ω = {(w1, w2) : w1 ∈ Ω1, w2 ∈ Ω2}.

A set of the form A1 × A2 = {(w1, w2) : w1 ∈ A1, w2 ∈ A2}, is called a rectangle
(measurable rectangle: F = {A1 × A2 : A1 ∈ F1, A2 ∈ F2}).

Remark 9.1 F is neither a field nor a σ− field. The σ−field generated by F ,
σ(F), is called the product σ−field of F1 and F2 and is denoted by F1 ×F2.

In this way, we can define the Borel σ-field on a two-dimensional plane. Take
Ω1 = Ω2 = R, F1 = F1 = B. Then the Euclidean Borel σ-field is defined to be
B2 = B×B, the smallest σ− field generated by the Borel rectangle of the form
B1 ×B2 = {(x, y) : x ∈ B1 ∈ B, y ∈ B2 ∈ B}. It, in fact, is also generated by
rectangles of the form {(x, y) : a < x ≤ b, c < y ≤ d}; see Chung (2001, p.38). We
are then able to define a Borel function on a two-dimensional plan.

Definition: If f : R2 → R such that f−1(B) ⊂ B2 for any B ∈ B, we call f a Borel
function on R2 → R.

Returning to introduce a measure on the product measurable space
(Ω1 ×Ω2,F1 ×F2), we define, on the class F , µ(A1 ×A2) = µ1(A1)µ2(A2). If µ1 and
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µ2 are σ−finite, by the extension theorem, this can be extended uniquely to a
measure on F1 ×F2 and this extended measure is denoted by µ1 × µ2.

Example 9.1 Suppose Ω1 = R1,F1 = B1, µ1 = µL and Ω2 = R2,F2 = B2, µ2 = µL

as in the real space. Consider two components of an experiment:

(Ω1,F1, P1)
X1→ (R,B) and (Ω2,F2, P2)

X2→ (R,B). Now given Y = f(X1, X2), what is
the domain of Y ? In fact, it is the product space
(Ω1 × Ω2,F1 ×F2, µ1 × µ2 = product measure), as (X1, X2) is a pair of independent
random variables (Ω1,Ω2) → R2.

9.2 Iterated Integral Theorem (Fubini’s Theorem)

Let Y = f(X1, X2), where f(·, ·) is a bivariate Borel function and X1, X2 are two
random variables. We first prove that Y is indeed a random variable.

Theorem 9.1 Suppose Xi is a random variable with respect to (Ωi,Fi), i = 1, 2 and
f(·, ·) is a bivariate Borel function. Then Y = f(X1, X2) is a random variable with
respect to the product space (Ω1 × Ω2,F1 ×F2).

Proof: For any 2-dimensional set A ⊂ R2, we write
(X1, X2)

−1A = {(w1, w2) : (X1(w1), X2(w2)) ∈ A)}. Then

f(X1, X2)
−1B = (X1, X2)

−1f−1(B) ⊂ (X1, X2)
−1B2 ⊂ F1 ×F2.

Only the last inclusion needs a proof. If A = B1 ×B2, where B1 ∈ B and B2 ∈ B,
then

(X1, X2)
−1(A) = X−1

1 (B1)×X−1
2 (B2) ∈ F1 ×F2.

Now the collection of sets A such that (X1, X2)
−1(A) ∈ F1 ×F2 form a σ-field

(similar to the proof in Theorem (3.4). As this σ-field contains all the Borel
rectangles, hence, it must contain B2. Therefore, each set in B2 belongs to this
collection, which completes the proof. 2

Exercise 9.1 (Two-dimensional Jensen’s Inequality) Let f(x, y) be a real convex
Borel function on the plane and X, Y are two random variables with finite
expectations. Prove

f(E(X), E(Y )) ≤ E(f(X, Y )).
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Now we consider fw1(w2) : Ω2 → R defined by fw1(w2) = f(w1, w2). This is called
w1−section of the function f and it can be shown that it is measurable respect to
F2. We have the following integrals∫

Ω1×Ω2

f(w1, w2)d(µ1 × µ2), (11)∫
Ω1

(

∫
Ω2

fw1(w2)dµ2)dµ1 (12)

and ∫
Ω2

(

∫
Ω1

fw2(w1)dµ1)dµ2. (13)

Integral (11) is called the double integral, while integrals (12) and (13) iterated
integrals. Under some general conditions, these integrals exist and are equal, as
indicated by the following Fubini’s theorem for product measures.

Theorem 9.2 (Fubini’s Theorem or Iterated integrals theorem) Let (Ω1,F1, µ1) and
(Ω2,F2, µ2) be two measure spaces where both µ1 and µ2 are σ−finite. If f(w1, w2)
is an (F1 ×F2) measurable function (Ω1,Ω2) → R and one of the following
conditions holds (1) f ≥ 0 or (2)

∫
Ω1×Ω2

fd(µ1 × µ2) is finite, then integrals (11),
(12) and (13) are equal.

Proof: see Billingsley (1995, p.234). 2

A simple application of Fubini’s Theorem can give the following well-known result.

Theorem 9.3 Let X, Y be two independent random variables. Then

E(XY ) = E(X)E(Y ).

Proof: Here, Ω1 = R1 → PX , Ω2 = R2 → PY and PX × PY = PX,Y . By
independence FXFY = FX,Y . Hence,

E(XY ) =

∫
R1×R2

xyd(PX × PY ) =

∫
R1

x

∫
R2

ydPY dPX = E(Y )E(X).

2

Products of more than two probability spaces can be treated similarly; for detailed
discussion, see Billingsley (1995, p.238).
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9.3 Convolution

Convolution, in addition to moment generating functions or characteristic functions
(which will be covered later). is an important technique in quantifying the finite
summation of independent random variables. To see this, we consider a pair of
independent random variables X and Y with distribution functions F and G
respectively. Consider the probability of X + Y falling into B, a Borel set on the
real line, i.e. B ∈ B. As we will show later,

P (X + Y ∈ B) =

∫ ∞

−∞
G(B − x)dF (x).

This motivates us to define convolution as follows.

Definition: Let F and G be two univariate cumulative distribution functions.
Define a function on R → [0, 1] by

F ∗G(u) =
∫ ∞

−∞
G(u− x)dF (x), for any u ∈ R.

The function F ∗G is called the convolution of F with G.

Remark 9.2 F ∗G itself is a proper cumulative distribution function .

Proof:

(Non-decreasing) If u < u′, then G(u− x) ≤ G(u′ − x) for any x. Hence,∫
G(u− x)dF ≤

∫
G(u′ − x)dF .

(Left continuous) Let un ↑ u we want to show F ∗G(un) ↑ F ∗G(u).

Let un ↑ u, then by left continuity of G, |G(un − x)| ≤ 1 and G(un − x) ↑ G(ux).
Then by DCT,

lim
n→∞

∫ ∞

−∞
G(un − x)dF (x) =

∫ ∞

−∞
G(u− x)dF (x)

Lastly, F ∗G(∞) = 1, F ∗G(−∞) = 0. 2

Remark 9.3 If X and Y are two independent random variables with cumulative
distribution function F and G, the F ∗G is the cumulative distribution function of
X + Y .
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Proof:

P (X + Y < u) =

∫
R1×R2

I[x+y<u](x, y)d(F ×G)∫
R1

(

∫
I[y<u−x](y)dG)dF =

∫ ∞

−∞
G(u− x)dF

= F ∗G(u).

2

But the converse is not necessarily true. That is, the fact that F ∗G may be the
cumulative distribution function of X + Y for random variables X, Y with
cumulative distribution function F and G doesn’t imply X and Y are independent.

Remark 9.4 (commutative) As F ∗G(u) or G ∗ F (u) is the cumulative distribution
function for X + Y if X and Y are two random variables with cumulative
distribution function F and G, therefore, F ∗G(u) = G ∗ F (u).

Remark 9.5 (associative)

(F1 ∗ F2) ∗ F3 = F1 ∗ (F2 ∗ F3).

If X1, · · · , Xn are i.i.d with common cumulative distribution function F and F n∗ is
F convoluted with itself n times, i.e. F n∗ = F (n−1)∗ ∗ F , then F n∗ is the cumulative
distribution function of

∑n
i=1Xi.

In addition, the convolution ∗ also has two important properties.

Property 9.1 If either F or G is continuous then F ∗G is continuous.

Property 9.2 If either F or G is absolutely continuous (with respect to µL) then
F ∗G is also absolutely continuous (with respect to µL).

Proof: Let G << µL and has g(y) = dG
dµL

. Consider v(u) =
∫∞
−∞ g(u− x)dF (x) and

let F ∗G be denoted by V , we will show that V << µL and v(u) is its probability
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density function.∫ b

a

v(u)dµL =

∫ b

a

(

∫ ∞

−∞
g(u− x)dF (x))dµL

=

∫ ∞

−∞
(

∫ b

a

g(u− x)du)dF (x)

=

∫ ∞

−∞
(

∫ b−x

a−x

g(y)dy)dF (x)

=

∫ ∞

−∞
(G(b− x)−G(a− x))dF (x) = V (b)− V (a).

If this is true for arbitrary intervals, then V << µL and dV
dµL

= v(u). Additionally, if

F << µL and dF
dµL

= f(x), then v(u) =
∫∞
−∞ g(u− x)f(x)dx is called the convolution

of two densities of f and g. 2

Example 9.2 Let X ∼ b(n, p) and Y ∼ U(0, 1) be two independent random
variables. Find the distribution function of U = X + Y .

We know that the cumulative distribution function for U(0, 1) is absolutely
continuous (with respect to µL) with density g(u) = I[0,1](u). Then form the
convolution of densities of b(n, p) and U(0, 1):

v(u) =

∫ ∞

−∞
g(u− x)dF (x)

=

∫ n

0

I[0,1](u− x)dF (x)

=

(
n

[u]

)
p[u]qn−[u],

where [u] is the greatest integer ≤ u.

Therefore, the probability density function of X + Y is
v(u) =

(
n
[u]

)
p[u]qn−[u], 0 ≤ u < n+ 1. 2

Example 9.3 Suppose that X1, · · · , Xn are i.i.d random variables with the
common probability density function f(x) = e−x0 < x <∞. Find the cumulative
distribution function of Un =

∑n
i=1Xi.
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We proceed by using induction. First consider when n = 2,

v2(u) =

∫ ∞

−∞
f(u− x)f(x)dx

=

∫ u

0

f(u− x)f(x)dx = e−uu

Now assume for n = k − 1,

vk−1(u) =
e−uuk−2

(k − 2)!
.

Then for n = k,

vk(u) =

∫ ∞

−∞
qk−1(u− x)f(x)dx

=

∫ u

0

e−u(u− x)k−2

(k − 2)!
dx =

e−u

(k − 2)!

∫ u

0

(u− x)k−2dx =
e−uuk−1

(k − 1)!

for any u > 0. 2

Exercise 9.2 Show that the family of normal distributions is closed with respect to
convolution in the sense that the convolution of any two in the family with arbitrary
parameters is another in the family with some parameters.

10 Characteristic Function

10.1 Complex Numbers

Complex numbers are abstract quantities that turn out to have many useful
applications. (Actually, the same can be said about real numbers.) A complex
number x is usually written in the form x = a+ bi, where a and b are real numbers
called the real and imaginary parts, and i is an abstract quantity defined by the
property that i2 = −1. The ‘+’ in a+ bi should be interpreted similar to the ‘+’ in
algebraic expressions such as x+ exp(y). It does not have an interpretation in terms
of addition of (real) numbers, though, and complex numbers could just as easily be
thought of as being values (a, b) lying in a 2-dimensional vector space. The plane
formed by plotting a on the horizontal (real) axis and b on the vertical (imaginary)
axis is called the complex plane. It will be convenient to define 2 functions,

88



ℜ(a+ bi) = a and ℑ(a+ bi) = b, which give the real and imaginary parts of a
complex number. Also, let C be the set of complex numbers.

Two complex numbers a+ bi and c+ di are equal if a = c and b = d. The basic
arithmetic operations are

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi)− (c+ di) = (a− c) + (b− d)i,

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i,

and

(a+ bi)/(c+ di) =
ac+ bd

c2 + d2
+
bc− ad

c2 + d2
i, (c2 + d2 ̸= 0).

Note that the definition of multiplication can be obtained by multiplying term by
term, and using the definition i2 = −1. Also, the definition of division is such that
(c+ di){(a+ bi)/(c+ di)} = a+ bi, if c2 + d2 > 0. Using the definition of
multiplication with d = 0,

c(a+ bi) = (ac) + (bc)i.

From these definitions, the use of ‘+’ in a+ bi is justified, since it satisfies the usual
properties of ‘+’ in manipulating algebraic formulas.

Exercise 10.1 Find an expression of the form a+ bi for 1/i.

The complex conjugate of a+ bi is a+ bi = a− bi. The norm (or absolute value or
modulus) of a complex number is

|a+ bi| = {(a+ bi)(a+ bi)}1/2 = (a2 + b2)1/2.

In general, a norm on a vector space V is a function ρ : V → R1 such that (a)
ρ(v) ≥ 0 for all v ∈ V , with ρ(v) = 0 if and only if v = 0, (b) ρ(αv) = |α|ρ(v) for all
α ∈ R1 and v ∈ V , and (c) ρ(v + w) ≤ ρ(v) + ρ(ω). Here properties (a) and (b) are
immediate from the definition, while property (c), called the triangle inequality, will
be established below. (In general it is assumed here that vector spaces are defined
over the field of real numbers.) It is easily verified directly from the definition that

max(|a|, |b|) ≤ |a+ bi| ≤ |a|+ |b|. (14)
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Exercise 10.2 Show that the product of complex conjugates is the complex
conjugate of the product. That is, if x = a+ bi and y = c+ di, then xy = (x)(y).

If the point a+ bi is plotted in complex the plane, then it can also be represented in
polar coordinates, using the standard transformation a = r cos(θ) and b = r sin(θ).
Then r = |a+ bi|, θ (the counter-clockwise angle in radians from the positive
horizontal axis) is given by θ = ± arccos(a/r), with the sign of θ chosen so that both
cos(θ) and sin(θ) have the correct sign, and a+ bi = r{cos(θ) + i sin(θ)} (θ can
equivalently be defined in terms of extended versions of the arcsin or arctan
functions). The angle θ is called the argument of a+ bi, which is often written
arg(a+ bi). The angle is not unique, since adding any integer multiple of 2π gives
the same point in the complex plane. The value of θ lying in (−π, π] is called the
principal value. (This definition for the interval of the principal value is common,
but may not be universal.)

From the polar coordinate representation and the properties of the sine and cosine
functions, if a+ bi = r1{cos(θ1) + i sin(θ1)} and c+ di = r2{cos(θ2) + i sin(θ2)}, then

(a+ bi)(c+ di) = r1r2[cos(θ1) cos(θ2)− sin(θ1) sin(θ2) + i{cos(θ1) sin(θ2) + cos(θ2) sin(θ1)}]
= r1r2{cos(θ1 + θ2) + i sin(θ1 + θ2)}.

This is a polar coordinate representation with radius r1r2 and angle θ1 + θ2. Thus

|(a+ bi)(c+ di)| = r1r2 = |a+ bi||c+ di|,

so the norm of a product is the product of the norms.

Exercise 10.3 If a+ bi = r{cos(θ) + i sin(θ)}, show
(a+ bi)k = rk{cos(kθ) + i sin(kθ)}.

An inner product (or scalar product) on a vector space V is a function
⟨·, ·⟩ : V × V → R1, such that (a) ⟨v, v⟩ ≥ 0, with equality if and only if v = 0, (b)
⟨v, w⟩ = ⟨w, v⟩, (c) ⟨αv, w⟩ = α⟨v, w⟩ for all α ∈ R1, and (d)
⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩. An inner product for complex numbers can be defined
by

⟨a+ bi, c+ di⟩ = ℜ{(a+ bi)(c+ di)} = ac+ bd. (15)

(If (a, b) and (c, d) are points in R2, then the standard Euclidean inner product
gives the same formula.) This inner product is consistent with the definition of the
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norm above, since
⟨a+ bi, a+ bi⟩ = a2 + b2 = |a+ bi|2.

To verify that (15) is an inner product, from the previous expression

⟨a+ bi, a+ bi⟩ ≥ 0,

with equality only if a = b = 0. Also

⟨a+ bi, c+ di⟩ = ac+ bd = ca+ db = ⟨c+ di, a+ bi⟩,

⟨α(a+ bi), c+ di⟩ = (αa)c+ (αb)d = α(ac+ bd) = α⟨a+ bi, c+ di⟩

for any real α, and

⟨(a+bi)+(e+fi), c+di⟩ = (a+e)c+(b+f)d = (ac+bd)+(ec+fd) = ⟨a+bi, c+di⟩+⟨e+fi, c+di⟩.

It can be shown that any inner product satisfying properties (a) through (d) above
will satisfy the Cauchy-Schwarz inequality, so

|⟨a+ bi, c+ di⟩| ≤ |a+ bi||c+ di|.

This is also easily verified here directly from the definition of the inner product.

The triangle inequality,

|a+ bi+ c+ di| ≤ |a+ bi|+ |c+ di|,

can be established using the Cauchy-Schwarz inequality. Setting x = a+ bi and
y = c+ di, it follows that

|x+ y|2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+2⟨x, y⟩+ ⟨y, y⟩ ≤ |x|2 +2|x||y|+ |y|2 = (|x|+ |y|)2.

A sequence of complex numbers xn = an + bni has a limit x0 = a0 + b0i, if for any
ϵ > 0, there is a value N(ϵ) such that |xn − x0| < ϵ for all n > N(ϵ). Equivalently,
xn → x0 if |xn − x0| → 0.

Theorem 10.1 limn→∞ xn = x0 if and only if limn→∞ an = a0 and limn→∞ bn = b0.
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Proof: Suppose an → a0 and bn → b0. From (14),
|(an + bni)− (a0 + b0i)| ≤ |an − a0|+ |bn − b0| → 0, so (an + bni) → (a0 + b0i).
Conversely, from (14), |an − a0| ≤ |xn − x0| and |bn − b0| ≤ |xn − x0|, so if
|xn − x0| → 0, so must |an − a0| and |bn − b0|. 2

A set A ⊂ C of complex numbers is open if for every x ∈ A there is an ϵx > 0 such
that {y : |y − x| < ϵx} ⊂ A. A set B is closed if Bc is open.

Exercise 10.4 Prove that if B is closed, then it contains all its limit points. That
is, show that if x1, x2, . . . is a sequence of points with xn ∈ B for all n, and if
xn → x0, then x0 ∈ B.

A complex infinite series
∑∞

n=1(an + bni) is absolutely convergent if∑
n |an + bni| <∞. From (14),

∑
n |an + bni| <∞ if and only if both

∑
n |an| <∞

and
∑

n |bn| <∞. If
∑∞

n=1(an + bni) is absolutely convergent, then its value is
defined to be limm→∞

∑m
n=1(an + bni). Clearly,

lim
m→∞

m∑
n=1

(an + bni) =
∞∑
n=1

an + i
∞∑
n=1

bn. (16)

It can be shown in general that the value of an absolutely convergent series is not
affected by arbitrary rearrangements of the terms in the series.

10.2 Complex-valued Functions

A complex-valued function f is a rule assigning a unique complex number to each
point in the function’s domain. Regardless of the domain of f , since every complex
number can be written in the form a+ bi, it follows that f can be represented

f(·) = g(·) + h(·)i, (17)

for real valued functions g(·) = ℜ{f(·)} and h(·) = ℑ{f(·)}. In particular, if the
domain of f is a subset of the complex numbers, then

f(a+ bi) = g(a, b) + h(a, b)i, (18)

for real valued functions g and h. Important properties of f , such as continuity and
differentiability, could be investigated through these real component functions.

92



Generalizing familiar real functions to complex variables is nontrivial, and generally
not unique. Two examples follow.

Example 10.1 The exponential function. How should exp(x) be defined when
x = a+ bi is complex? Two minimal criteria are first, the definition should reduce
to the standard exponential function for reals when b = 0, and second, familiar
properties of the exponential function, such as exp(x+ y) = exp(x) exp(y), should
hold for complex arguments. If in fact we require exp(a+ bi) = exp(a) exp(bi),
where exp(a) has the usual definition for real a, then the remaining problem is to
define exp(bi).

Another property that exp(a) has for real a is the Taylor series representation

exp(a) =
∞∑
k=0

ak/k!.

Formally substituting bi for a, the resulting complex series is absolutely convergent
for all b. Thus this gives a well defined function, whose value is defined through
(16). Since the series is absolutely convergent, the terms may be rearranged. Thus

∞∑
k=0

(bi)k/k! =
∞∑
k=0

i2kb2k/(2k)! +
∞∑
k=0

i2k+1b2k+1/(2k + 1)!

=
∞∑
k=0

(−1)k+2b2k/(2k)! + i
∞∑
k=0

(−1)k+2b2k+1/(2k + 1)!

= cos(b) + i sin(b),

from the Taylor series representations of the sine and cosine functions. This
suggests defining exp(ib) = cos(b) + i sin(b), and

exp(a+ ib) = exp(a){cos(b) + i sin(b)}.

This is the standard definition. As the Taylor series representation suggests, with
this definition many of the properties of the real exp(·) function carry over to the
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complex setting. For example,

exp{(a+ bi) + (c+ di)}
= exp{(a+ c) + (b+ d)i}
= exp(a) exp(c){cos(b+ d) + i sin(b+ d)}
= exp(a) exp(c)[cos(b) cos(d)− sin(b) sin(d) + i{sin(b) cos(d) + cos(b) sin(d)}]
= exp(a) exp(c){cos(b) + i sin(b)}{cos(d) + i sin(d)}
= exp(a+ bi) exp(c+ id).

2

Example 10.2 Natural logarithms. The log(·) function is defined as the inverse of
exp(·). That is, log(a+ bi) is the value c+ di such that exp(c+ di) = a+ bi.
Defining r and θ to be the norm and argument of a+ bi, so
a+ bi = r{cos(θ) + i sin(θ)}, and noting that exp(c+ di) = exp(c){cos(d) + i sin(d)},
gives that c = log(r) and d = θ, so

log(a+ bi) = log(|a+ bi|) + i arg(a+ bi) = log(a2 + b2)/2± i arccos{a/(a2 + b2)1/2},

where again arg(x) is the argument of the complex value x. (Note that
± arccos{a/(a2 + b2)1/2} = ± arcsin{b/(a2 + b2)1/2} = ± tan−1(b/a), with the signs
in each case chosen to put the point in the proper quadrant, so there are several
alternate forms.) Since arg(x) is not unique, neither is the complex logarithm, but
the principal value of the logarithm can be defined as the value obtained from the
principal value of the arg(·) function. From this definition of the logarithm,
arbitrary powers of complex numbers can be defined by

(a+ bi)c+di = exp{(c+ di) log(a+ bi)}.

2

In both examples, a formal definition of the function has been given of the form
(18). While it is true that complex functions can always be represented in this form,
it may not always be trivial to give explicit formulas.

Exercise 10.5 Using the complex form of the natural logarithm, give an expression
for the principal value of log(−a) for any positive real a.
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A complex function f : C → C is continuous at x0 if for any ϵ > 0 there is a δϵ > 0
such that |f(x)− f(x0)| < ϵ whenever |x− x0| < δϵ. Here | · | is again the complex
norm function.

Exercise 10.6 Show that if f(a+ bi) = g(a, b) + h(a, b)i, then f is continuous at
x0 = a0 + b0i if and only if g and h (as functions from R2 → R1) are continuous at
(a0, b0).

Clearly if f is continuous at x0, then f(xn) → f(x0) whenever xn → x0. The
converse is also true, as given in the next exercise.

Exercise 10.7 Show that if f(xn) → f(x0) for every sequence xn → x0, then f is
continuous at x0.

A continuous limit can also be defined for complex functions. limx→x0 f(x) = f0 if
for any ϵ > 0, there is a δϵ > 0 such that |f(x)− f0| < ϵ for |x− x0| < δϵ. If f is
continuous at x0, then limx→x0 f(x) = f(x0).

The derivative of a complex function f at x can be defined by

f ′(x) = lim
z→0

{f(x+ z)− f(x)}/z, (19)

if the limit exists. Here z → 0 in the set of complex numbers, and the division by z
is a complex division. Because z = c+ di is two-dimensional, there are many paths
by which z can approach 0. For the derivative to exist, the above limit must exist
and give the same value along any such path.

A function f is analytic (or holomorphic or regular) at x, if it is defined and is
differentiable at every point in some neighborhood of x.

Suppose f(a+ bi) = g(a, b) + h(a, b)i. Representing z = c+ di, consider taking the
limit in (19) by first taking the limit as d→ 0, and then the limit as c→ 0. If g and
h are continuous and have partial derivatives, then

lim
d→0

g(a+ c, b+ d) + h(a+ c, b+ d)i− g(a, b)− h(a, b)i

c+ di
=
g(a+ c, b) + h(a+ c, b)i− g(a, b)− h(a, b)i

c
,

and

lim
c→0

g(a+ c, b) + h(a+ c, b)i− g(a, b)− h(a, b)i

c
=
∂g(a, b)

∂a
+
∂h(a, b)

∂a
i. (20)
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Similarly, taking limc→0 first, and then limd→0, gives

−i∂g(a, b)
∂b

+
∂h(a, b)

∂b
, (21)

since 1/i = −i. If the derivative of f exists at a+ bi, then (20) and (21) must be
equal, since they are limits as z → 0 along two different paths. These expressions
are equal if

−∂g(a, b)
∂b

=
∂h(a, b)

∂a
and

∂g(a, b)

∂a
=
∂h(a, b)

∂b
. (22)

These relationships are known as the Cauchy-Riemann equations. If these four
partial derivatives are continuous at (a, b) and satisfy (22), then it can be shown
that f is analytic at a+ bi, and in particular, f is differentiable, and the derivative
is given by either of (20) or (21).

Example 10.3 For f(a+ bi) = exp(a+ bi), g(a, b) = exp(a) cos(b) and
h(a, b) = exp(a) sin(b). Thus

∂g(a, b)

∂a
= exp(a) cos(b),

∂g(a, b)

∂b
= − exp(a) sin(b),

∂h(a, b)

∂a
= exp(a) sin(b),

and
∂h(a, b)

∂b
= exp(a) cos(b),

so (22) is satisfied, and from (20), the derivative of exp(x) at x = a+ bi is
exp(a) cos(b) + exp(a) sin(b)i = exp(a+ bi). Thus the exponential function is its own
derivative, just as it is for real numbers. 2

Exercise 10.8 Show that the principal value of log(x) is differentiable for x ̸= 0
and −π < arg(x) < π, with d log(x)/dx = 1/x.

It can be shown that usual properties of derivatives, such as formulas for derivatives
of products and the chain rule for differentiating composite functions, apply to
derivatives of complex functions (at points where they are differentiable).

10.3 Measurability and Integration

Recall that the σ-field of Borel sets in R1 (or Rk) is the σ-field generated by the
open sets; that is, the smallest σ-field containing the open sets. Since we have a
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well-defined system of open sets for complex numbers, we can define a σ-field of
measurable sets in a similar way. Let Bc be the smallest σ-field containing the open
sets in C. (This is not the only useful definition of measurable complex sets. Recall
in particular that the Lebesgue measurable sets in real spaces is a larger collection
than that generated by the open sets.)

Let F be a σ-field of measurable subsets of a space Ω. A function f : Ω → C is
measurable with respect to F if the pre-image of any measurable complex set is in
F . That is, f is measurable if f−1(A) = {ω ∈ Ω : f(ω) ∈ A} ∈ F for every
measurable A ⊂ C.

As is the case in real Euclidean spaces, the σ-field Bc generated by the open sets can
be generated by various other collections of sets. In particular, Bc is generated by
the collection of open rectangles of the form

Ar = {a+ bi : r1 < a < r2, r3 < b < r4}.

In fact, any open set can be expressed as a countable union of such sets (this is
related to the fact that the set of rational numbers is everywhere dense, so only
rectangles with rational vertices need to be considered, and the set of rational
numbers is countable). For f : Ω → C, setting g = ℜ(f) and h = ℑ(f), clearly
f(ω) = g(ω) + h(ω)i ∈ Ar if and only if r1 < g(ω) < r2 and r3 < h(ω) < r4. Thus
f−1(Ar) = g−1{(r1, r2)} ∩ h−1{(r3, r4)}. Since the collection of open rectangles of
the form Ar generates Bc, f is measurable if f−1(Ar) ∈ F for all such Ar. This is
equivalent to g−1(Ir) ∈ F and h−1(Ir) ∈ F for all open intervals Ir = (r1, r2), which
is equivalent to the Borel measurability of g and h (see eg Theorem 13.1 (i),
Billingsley, 1995). Thus a complex valued function f is measurable if and only if the
two real valued functions g(·) = ℜ(f(·)) and h(·) = ℑ(f(·)) are measurable.

With concepts of measurability defined, it would be possible to directly build up a
general theory of integration for complex valued functions similar to that for real
valued functions. However, the representation (17) provides a simpler approach.
Suppose (Ω,F , P ) is a probability space, and that f : Ω → C is a measurable
complex valued function. Then f(ω) = g(ω)+h(ω)i for some real valued measurable
functions g, h. As with real valued functions (also called random variables), f
induces a probability measure on C. That is, P (f(ω) ∈ A) = P (ω ∈ f−1(A)) for
measurable A. The integral of f with respect to the measure P is defined to be∫

f(ω) dP (ω) =

∫
g(ω) dP (ω) + i

∫
h(ω) dP (ω).
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f is defined to be integrable if both g and h are; that is, if
∫
|g| dP <∞ and∫

|h| dP <∞. Since
max{|g|, |h|} ≤ |f | ≤ |g|+ |h|

(by (14)), f is integrable if
∫
|f | dP <∞, and integrability of f implies integrability

of g and h. Also, ∣∣∣∣∫ f dP

∣∣∣∣ ≤ ∫ |f | dP. (23)

To see that this is true, first note that if g and h are simple functions (step
functions) taking values gj and hj on a measurable partition of Ω, this result follows
directly from the triangle inequality, since then

∫
f dP =

∑
j αj(gj + hji) for some

constants αj ≥ 0 (the αj are the probabilities of the corresponding components of
the partition), and |

∑
j αj(gj + hji)| ≤

∑
j αj|gj + hji| =

∫
|f | dP . Since the

integrals in the general case are limits of sequences of integrals of simple functions,
(23) must hold in general, too.

Since the complex integral is defined in terms of two real integrals, the usual
properties of integration, such as

∫
(f1 + f2) dP =

∫
f1 dP +

∫
f2 dP , are immediate.

The convergence theorems of Lebesgue integration also can be generalized to
complex functions by applying them separately to the real and imaginary parts of f .

In the special case where Ω = R1 and P is absolutely continuous with respect to
Lebesgue measure, with density p(·), it follows that∫

f(u) dP (u) =

∫
g(u)p(u) du+ i

∫
h(u)p(u) du.

10.4 Characteristic Functions

The characteristic function of a real valued random variable X with distribution P is

ϕ(t) = E{exp(itX)} =

∫
exp(itu) dP (u) =

∫
cos(tu) dP (u) + i

∫
sin(tu) dP (u).
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Since
∫
| cos(tu)| dP (u) ≤ 1 and

∫
| sin(tu)| dP (u) ≤ 1, exp(itu) is integrable, and

the characteristic function always exists. Also,

|ϕ(t+ h)− ϕ(t)| ≤
∫

| exp(itx)|| exp(ihx)− 1| dP (x)

=

∫
[{cos(hx)− 1}2 + sin(hx)2]1/2 dP (x)

=

∫
{2− 2 cos(hx)}1/2 dP (x),

and this last expression → 0 as h→ 0, so ϕ(t) is uniformly continuous in t. Also
note ϕ(0) = 1, and |ϕ(t)| ≤

∫
| exp(itx)| dP (x) = 1 for all t, by (23).

Example 10.4 Suppose X has support on the countable set {x1, x2, . . .}, with
P (X = xj) = pj. Then

ϕ(t) =
∞∑
j=1

cos(txj)pj + i
∞∑
j=1

sin(txj)pj,

which can be written more compactly as
∑

j exp(itxj)pj (rearrangement of the
terms in the series can be justified by the fact that

∑
j | exp(itxj)pj| <∞). 2

Example 10.5 If X ∼ U(0, 1), then

ϕ(t) =

∫ 1

0

cos(tu) du+ i

∫ 1

0

sin(tu) du = t−1[sin(t)− i{cos(t)−1}] = i{1− exp(it)}/t.

2

For symmetric distributions with P (X < −x) = P (X > x) for all x, the
contributions from the sine term at positive and negative x cancel out, and

ϕ(t) =

∫
cos(tu) dP (u),

and hence is real.

In general, evaluating the trigonometric integrals in the definition of the
characteristic function is not trivial. Often it is better to approach the problem
through the theory of line integration in the complex plain. These techniques are
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beyond the scope of this course, however. The following result provides a somewhat
indirect means of obtaining the characteristic function of many common
distributions.

Theorem 10.2 Let ϕ(t) be the characteristic function of the distribution P . If
ψ(t) =

∫
exp(tu) dP (u) <∞ for all t in a neighborhood of 0, then ϕ(t) = ψ(it),

where ψ(it) is defined as given in the proof below.

Proof: Since ψ(t) =
∫ 0

−∞ exp(tu) dP (u) +
∫∞
0

exp(tu) dP (u) both integrals must be
finite for ψ(t) to be finite, and since this must hold for both positive and negative
values of t in a neighborhood of 0,

∫
exp(|tu|) dP (u) <∞ for t in some

neighborhood of 0. Thus by (47),

∞ >

∫
exp(|tu|) dP (u) =

∫ ∑
k

|tu|k

k!
dP (u) =

∑
k

∫
|tu|k

k!
dP (u),

so by (48),

ψ(t) =

∫ ∑
k

(tu)k

k!
dP (u) =

∑
k

∫
(tu)k

k!
dP (u) =

∑
k

tk

k!

∫
uk dP (u).

Then ψ(it) is defined by substituting it for t in the final series in this expression.
From the previous argument, this series is absolutely convergent for t in a
neighborhood of 0, so this function is well defined there, and

ψ(it) =
∞∑
k=0

(it)k

k!

∫
uk dP (u)

=
∞∑
k=0

(−1)k+2 t2k

(2k)!

∫
u2k dP (u) + i

∞∑
k=0

(−1)k+2 t2k+1

(2k + 1)!

∫
u2k+1 dP (u)

=

∫ ∞∑
k=0

(−1)k+2 (tu)
2k

(2k)!
dP (u) + i

∫ ∞∑
k=0

(−1)k+2 (tu)
2k+1

(2k + 1)!
dP (u)

=

∫
cos(tu) dP (u) + i

∫
sin(tu) dP (u)

= ϕ(t),

again using (48), the fact that the series are absolutely convergent, and from the
Taylor series representations of the sine and cosine functions. 2
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Example 10.6 For the standard normal distribution, ψ(t) = exp(t2/2). Thus
ϕ(t) = exp(−t2/2).

Example 10.7 For the gamma distribution with shape α and scale=1,
ψ(t) =

∫
xα−1 exp{−(1− t)x} dx/Γ(α) = (1− t)−α (for t < 1). Thus

ϕ(t) = (1− it)−α = exp{−α log(1− it)}.

More generally, if ψ(t) involves functions that do not have complex analogs defined,
then it may be necessary to work directly with the series representation.

If Y = σX + µ, then

ϕY (t) =

∫
exp{it(σu+µ)} dPX(u) = exp(itµ)

∫
exp{i(tσ)u} dPX(u) = exp(itµ)ϕX(σt).

10.5 Convolutions

One of the most important properties of characteristic functions is that if X and Y
are independent, then ϕX+Y (t) = ϕX(t)ϕY (t); that is, the characteristic function of
the sum of independent random variables is the product of their characteristic
functions. This follows because

ϕX(t)ϕY (t) = [E{cos(tX)}+ iE{sin(tX)}][E{cos(tY )}+ iE{sin(tY )}]
= E{cos(tX)}E{cos(tY )} − E{sin(tX)}E{sin(tY )}+ i[E{cos(tX)}E{sin(tY )}

+E{sin(tX)}E{cos(tY )}]
= E{cos(tX) cos(tY )− sin(tX) sin(tY )}+ i[E{cos(tX) sin(tY ) + sin(tX) cos(tY )}]
= E{cos(tX + tY )}+ iE{sin(tX + tY )}
= ϕX+Y (t). (24)

Of course, this extends to the sum of any number independent random variables.

10.6 Taylor Series and Derivatives

The convolution formula above makes it easy to give the characteristic function for
a sum of independent random variables. To study the asymptotic properties of such
sums, formulas for series expansions, with error bounds, are useful.
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To derive appropriate formulas, we can start with the expansions for the sine and
cosine functions. Since dk cos(x)/dxk|x=0 = cos(kπ/2), Taylor’s theorem gives

cos(x) =
n∑

k=0

cos(kπ/2)
xk

k!
+

1

n!

∫ x

0

dn+1 cos(t)

dtn+1
(x− t)n dt.

By separately considering positive and negative x, it is easily verified that in either
case, ∣∣∣∣∫ x

0

dn+1 cos(t)

dtn+1
(x− t)n dt

∣∣∣∣ ≤ ∫ |x|

0

(|x| − t)n dt =
|x|n+1

n+ 1
.

Also, using integration by parts,∣∣∣∣∫ x

0

dn+1 cos(t)

dtn+1
(x− t)n dt

∣∣∣∣ = ∣∣∣∣− cos(nπ/2)xn + n

∫ x

0

dn cos(t)

dtn
(x− t)n−1 dt

∣∣∣∣ ≤ 2|x|n.

Thus ∣∣∣∣∣cos(x)−
n∑

k=0

cos(kπ/2)
xk

k!

∣∣∣∣∣ ≤ min

(
|x|n+1

(n+ 1)!
,
2|x|n

n!

)
.

Similarly, ∣∣∣∣∣sin(x)−
n∑

k=0

sin(kπ/2)
xk

k!

∣∣∣∣∣ ≤ min

(
|x|n+1

(n+ 1)!
,
2|x|n

n!

)
.

Since ik = cos(kπ/2) + i sin(kπ/2), where i0 = 1 by definition, combining the
previous 2 results gives that∣∣∣∣∣exp(ix)−

n∑
k=0

(ix)k

k!

∣∣∣∣∣ =

∣∣∣∣∣cos(x) + i sin(x)−
n∑

k=0

cos(kπ/2)
xk

k!
− i

n∑
k=0

sin(kπ/2)
xk

k!

∣∣∣∣∣
≤ 2min

(
|x|n+1

(n+ 1)!
,
2|x|n

n!

)
. (25)

Using this expression, it then follows that if ϕ(t) is the characteristic function of X,
and E(|X|n) <∞, then∣∣∣∣∣ϕ(t)−

n∑
k=0

(it)k

k!
E(Xk)

∣∣∣∣∣ ≤ 2E

{
min

(
|tX|n+1

(n+ 1)!
,
2|tX|n

n!

)}
. (26)
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(With a bit more work, it can be shown that the leading factor of 2 on the error
bound is not needed, but that is not important in most applications.) Note that the
right hand side of (26) is finite.

Suppose E(|X|) <∞. Consider ϕ′(0). From the definitions,

ϕ′(0) = lim
h→0

ϕ(h)− ϕ(0)

h

= lim
h→0

∫
exp(ihu)− 1

h
dP (u).

By (25), |{exp(ihu)− 1}/h| ≤ 2|u|, and by assumption,
∫
|u| dP (u) <∞. Thus by

the dominated convergence theorem, the limit may be taken inside the integral, and
then

lim
h→0

exp(ihu)− 1

h
= lim

h→0

cos(hu) + i sin(hu)− 1

h
= iu,

so

ϕ′(0) = i

∫
u dP (u) = iE(X).

Using an induction argument, it can be shown that if E(|X|n) <∞, then dnϕ(t)/dtn

exists on a neighborhood of 0, and

i−ndnϕ(0)/dtn = E(Xn). (27)

It can also be shown that if dnϕ(t)/dtn exists on a neighborhood of 0, and n is even,
then E(Xn) <∞, so the nth moment exists. For odd n this can fail, since there are
distributions where (for example) ϕ′(0) exists, but E(|X|) = ∞. What happens in
this case is that lima→∞

∫ a

−a
u dP (u) exists, but that is not the same as existence of

E(X).

10.7 Cumulants

The cumulant generating function of a random variable X with characteristic
function ϕ(t) is

κ(t) = log ϕ(t).

If E(|X|j) <∞, the jth cumulant of X is defined to be

κj = i−jdjκ(0)/dtj.
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From Exercise 10.8, the chain rule, (27), and the fact that ϕ(0) = 1,

κ1 = i−1dκ(0)/dt = i−1ϕ′(0)/ϕ(0) = E(X),

and
κ2 = −d2κ(0)/dt2 = −ϕ′′(0)/ϕ(0) + {ϕ′(0)/ϕ(0)}2 = Var(X).

Exercise 10.9 Suppose E(X4) <∞. Show κ3 = E(X − µ)3 and
κ4 = E(X − µ)4 − 3Var(X)2, where µ = E(X).

Example 10.8 If X ∼ N(0, 1), then ϕ(t) = exp(−t2/2). Thus κ(t) = −t2/2, so
κ2 = 1, and κj = 0 for j ̸= 2.

In general, if X has characteristic function ϕ(t) and cumulant generating function
κ(t), with cumulants κ1, κ2, . . ., and Y = bX + a, then ϕY (t) = ϕ(bt) exp(ita), so
κY (t) = ita+ κ(bt). The first cumulant of Y is therefore a+ bκ1, and the jth
cumulant of Y is bjκj for j ≥ 2.

10.8 Uniqueness and Inversion

One of the most important properties of characteristic functions is that they
uniquely determine the corresponding probability distribution. That is, different
probability distributions will always have different characteristic functions. (It is
interesting to note, though, that different distributions can have characteristic
functions that agree for t on some interval, but not everywhere; see Chung, 1974,
Theorem 6.5.5.) This uniqueness property is a consequence of Theorem 10.3, below,
which indicates how to recover the distribution from the characteristic function.
This theorem is usually called the inversion theorem.

First 2 preliminary results, needed in the proof, will be established. The first is that
if T > 0 and c is real, then ∫ T

−T

cos(tc)/t dt = 0. (28)

This follows because from the change of variables u = −t, it follows that∫ 0

−T
cos(tc)/t dt = −

∫ T

0
cos(uc)/u du. The second result is that

lim
T→∞

∫ T

0

sin(tc)/t dt = sign(c)π/2, (29)
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where sign(c) = −1, 0,+1 for c < 0, c = 0, and c > 0. To see this, first note that the
case c = 0 is clear. If c < 0, then since sin(tc) = − sin(−tc), it follows that∫ T

0
sin(tc)/t dt = −

∫ T

0
sin(t|c|)/t dt. Thus it remains to show that

lim
T→∞

∫ T

0

sin(tc)/t dt = π/2,

for c > 0. From the change of variables u = ct,

lim
T→∞

∫ T

0

sin(tc)/t dt = lim
T→∞

∫ Tc

0

sin(t)/t dt

= lim
T→∞

∫ Tc

0

sin(t)

∫ ∞

0

exp(−tu) du dt

= lim
T→∞

∫ ∞

0

∫ Tc

0

sin(t) exp(−tu) dt du

= lim
T→∞

∫ ∞

0

{−u sin(t)− cos(t)} exp(−tu)
1 + u2

∣∣∣∣Tc

t=0

du

=

∫ ∞

0

du

1 + u2
− lim

T→∞

∫ ∞

0

exp(−Tcu){u sin(Tc) + cos(Tc)} du
1 + u2

= tan−1(∞)− tan−1(0)− 0

= π/2.

(Several steps in this argument require verification of regularity conditions. These
are left as exercises.)

Theorem 10.3 Let F (x) = P (X ≤ x), and let ϕ(t) be the characteristic function of
this distribution. If P (X = a) = P (X = b) = 0, then

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

exp(−ita)− exp(−itb)
it

ϕ(t) dt. (30)

Proof: By Fubini’s Theorem, which can be applied because the integrand is
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bounded,∫ T

−T

exp(−ita)− exp(−itb)
2πit

ϕ(t) dt

=

∫ T

−T

exp(−ita)− exp(−itb)
2πit

∫ ∞

−∞
exp(itu) dF (u) dt

=

∫ ∞

−∞

∫ T

−T

exp{it(u− a)} − exp{it(u− b)}
2πit

dt dF (u)

=

∫ ∞

−∞

∫ T

−T

cos{t(u− a)} − cos{t(u− b)}
2πit

+ i
sin{t(u− a)} − sin{t(u− b)}

2πit
dt dF (u)

=
1

2π

∫ ∞

−∞

∫ T

−T

sin{t(u− a)} − sin{t(u− b)}
t

dt dF (u)

=
1

π

∫ ∞

−∞

∫ T

0

sin{t(u− a)} − sin{t(u− b)}
t

dt dF (u),

from (28), and the fact that sin(t)/t = sin(−t)/(−t). Taking the limit as T → ∞,
using the dominated convergence theorem to bring the limit inside the integral
(which can be justified by showing that the integrand is bounded), and using (29),
it follows that

lim
T→∞

1

2π

∫ T

−T

exp(−ita)− exp(−itb)
it

ϕ(t) dt

=
1

π

∫ ∞

−∞
lim
T→∞

∫ T

0

sin{t(u− a)} − sin{t(u− b)}
t

dt dF (u)

=
1

π

∫ ∞

−∞
[sign(u− a)π/2− sign(u− b)π/2] dF (u)

=
1

π

∫ ∞

−∞
π{I(a < u < b) + I(u = a)/2 + I(u = b)/2} dF (u)

=

∫ b

a

dF (u)

= F (b)− F (a),

since P (X = a) = P (X = b) = 0. 2

Corollary 1. If ϕX(t) = ϕY (t) for all t, then X and Y have the same distribution.
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Proof: By the previous theorem, the characteristic function uniquely determines
P (a < X < b) for all a, b with P (X = a) = P (X = b) = 0. There are at most a
countable number of points cj with P (X = cj) > 0 (see eg Billingsley, 1995,
Theorem 10.2). For any mass point cj, P (X = cj) = limδ→0 P (cj + δ > X > cj − δ)
(the limit must exist because P (cj + δ > X > cj − δ) is monotone and bounded as a
function of δ). Similarly, P (Y = cj) = limδ→0 P (cj + δ > Y > cj − δ). Since
P (cj + δ > X > cj − δ) = P (cj + δ > Y > cj − δ) except for at most a countable
number of δ,

P (X = cj)−P (Y = cj) = lim
δ→0

{P (cj + δ > X > cj − δ)−P (cj + δ > Y > cj − δ)} = 0.

Thus all mass points must have the same mass, and the two distributions must be
the same. 2

Corollary 2. If
∫∞
−∞ |ϕ(t)| dt <∞, then F is absolutely continuous with density

f(x) =
1

2π

∫ ∞

−∞
exp(−itx)ϕ(t) dt. (31)

Proof: Since | cos(x)− 1| ≤ |x| and | sin(x)| ≤ |x|,
| exp(ix)− 1| ≤ | cos(x)− 1|+ |i sin(x)| ≤ 2|x|. Thus∣∣∣∣exp(−itb)− exp(−ita)

it

∣∣∣∣ = | exp{−it(b− a)} − 1|
|t|

≤ 2|b− a|.

Applying the previous Theorem,

F (b)− F (a) ≤ b− a

π

∫ ∞

−∞
|ϕ(t)| dt→ 0

as (b− a) → 0, so there can be no mass points, and the distribution is absolutely
continuous. Also,

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

1

2π

∫ ∞

−∞

exp(−itx)− exp{−it(x+ h)}
ith

ϕ(t) dt

=
1

2π

∫ ∞

−∞
exp(−itx)ϕ(t) dt,

since the limit can be taken inside the integral, because the integrand is dominated
by 2|ϕ(t)| (for h small), which by assumption is integrable, and

lim
h→0

1− exp(−ith)
ith

=
1− cos(−th)− i sin(−th)

ith
= 1,
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since {1− cos(x)}/x→ 0 and sin(x)/x→ 1 as x→ 0. Thus f(x) = F ′(x) exists and
has the required form. 2

Corollary 3. The cumulative distribution function is given by

F (x) =
1

2
+

1

2π
lim
T→∞

∫ T

0

r(t, x) dt =
1

2
− 1

π
lim
T→∞

∫ T

0

ℑ{exp(−itx)ϕ(t)}
t

dt, (32)

at points x where F is continuous, where

r(t, x) =
exp(itx)ϕ(−t)− exp(−itx)ϕ(t)

it
.

Proof (outline): First note that ℑ(x) = (x− x)/(2i) for any complex x. The
equivalence of the two integrals in (32) follows from this, and because ϕ(t) = ϕ(−t)
and exp(−itx) = exp(itx) (see also Exercise 10.2).

Now suppose x > 0 (the case x < 0 requires only minor changes in notation), and x
and 0 are continuity points of F . (A similar argument can be used when 0 is a mass
point, taking into account that (30) gives the average of the right and left hand
limits of F at mass points a or b.) Set b = x and a = 0 in (30), and add this to the
formula obtained from (30) by making the change of variables t = −t in the integral.
This gives

2{F (x)− F (0)} = lim
T→∞

1

2π

∫ T

−T

r(t, x) dt− lim
T→∞

1

2π

∫ T

−T

r(t, 0) dt.

Also, since ℑ{exp(−itx)ϕ(t)}/t is always an even function of t,∫ T

−T
r(t, x) dt = 2

∫ T

0
r(t, x) dt. Thus

F (x) =
1

2π
lim
T→∞

∫ T

0

r(t) dt+ F (0)− lim
T→∞

1

2π

∫ T

0

r(t, 0) dt. (33)

Now r(t, 0) = −2
∫
sin(tx)/t dF (x), and similar to the derivation of (30),

lim
T→∞

1

2π

∫ T

0

r(t, 0) dt = − 1

π

∫
lim
T→∞

∫ T

0

sin(tx)

t
dt dF (x)

= −1

2

∫
sign (x) dF (x)

= −1

2

{∫ ∞

0

dF (x)−
∫ 0

−∞
dF (x)

}
= −{1− F (0)− F (0) + 0}/2
= {2F (0)− 1}/2.
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Substituting this expression in (33) completes the proof. 2

The inversion formula (30) is expressed in terms of a limit because generally the
integrand is not integrable over the entire real line. The limit always exists, though,
provided ϕ(t) is the characteristic function of a probability distribution or
sub-distribution.

Example 10.9 From Example 10.5, the characteristic function of the U(0, 1)
distribution is ϕ(t) = i{1− exp(it)}/t. Using (30) with a = 0 and b = x gives that
the cumulative distribution function is

F (x) = lim
T→∞

1

2π

∫ T

−T

1− exp(−itx)
t

1− exp(it)

t
dt

= lim
T→∞

1

2π

∫ T

−T

1− cos(t)− cos(−tx) + cos(t− tx)

t2
dt

=
1

2
{1− x sign(−x)− (1− x) sign(1− x)}

= xI(0 < x < 1) + I(x ≥ 1),

since the sine terms implicit in the first line integrate to 0, and∫ T

−T

cos(bt)

t2
dt = −cos(bt)

t

∣∣∣∣T
−T

−
∫ T

−T

b sin(bt)

t
dt→ −πb sign (b),

as T → ∞. 2

The inversion theorem provides an indirect way of deriving characteristic functions
for some distributions, as illustrated in the following example.

Example 10.10 The double exponential (Laplace) distribution has density
exp(−|x|)/2. Since this is symmetric, its characteristic function is given by

ϕ(t) =

∫ ∞

0

cos(tx) exp(−x) dx =
exp(−x)
1 + t2

{t sin(tx)− cos(tx)}
∣∣∣∣∞
0

=
1

1 + t2
,

where the antiderivative can be obtained by integrating by parts twice (and can be
verified by differentiation). From (31), it then follows that

exp(−|x|)/2 =
1

2π

∫ ∞

−∞
exp(−itx) 1

1 + t2
dt.
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Making the change of variable u = −t and multiplying by 2 gives that

1

π

∫ ∞

−∞
exp(iux)

1

1 + u2
du = exp(−|x|).

Since the Cauchy distribution has density 1/{π(1 + u2)}, this last expression shows
that the characteristic function of the Cauchy distribution is ϕ(t) = exp(−|t|). Note
that the Cauchy distribution does not have any finite moments, and its
characteristic function is not differentiable at 0. 2

Exercise 10.10 Suppose X ∼Bernoulli(p).
(a) Show ϕX(t) = (1− p) + exp(it)p.
(b) Calculate the inversion formula (32) at the mass points x = 0 and x = 1. Show
that the result is the average of the left- and right- hand limits of F (x) at these
points.

More interesting applications involve settings where the density or the cumulative
distribution function is difficult to derive or compute directly, but the characteristic
function can easily be given. Then the inversion formulas provide a means of
computing or approximating the distribution. As will be seen later, this is the basis
of the central limit theorem and various other asymptotic approximations. In the
following example, the inversion formula gives a one-dimensional integral for the
exact cumulative distribution function, which can then be evaluated using numerical
quadrature methods.

Example 10.11 Consider computing F (x) = P (X ′AX ≤ x), where Ak×k is an
arbitrary (known) symmetric matrix, and X ∼ N(µ, V ), the k-variate normal
distribution with mean vector µ and covariance matrix V (assumed positive
definite). Quadratic forms in normal variables arise in a variety of statistical
problems, especially in models for variance components. Let B be such that
BB′ = V (eg the Choleski factor). Then W = B−1(X − µ) ∼ N(0, I), and
X = BW + µ. Also, let Q′DQ be the spectral decomposition of B′AB. That is,
Q′DQ = B′AB, D is diagonal with diagonal elements dj (the eigenvalues of B′AB),
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and Q is orthogonal (Q′Q = QQ′ = I; Q consists of the eigenvectors of B′AB). Then

X ′AX = (W +B−1µ)′B′AB(W +B−1µ)

= (W +B−1µ)′Q′DQ(W +B−1µ)

= (QW +QB−1µ)′D(QW +QB−1µ)

= (Z + ν)′D(Z + ν)

=
k∑

j=1

dj(Zj + νj)
2,

since D is diagonal, where Z = QW ∼ N(0, I), so the Zj are iid N(0, 1), and
ν = QB−1µ.

Since (Zj + νj)
2 has a noncentral chi-square distribution with 1 degree of freedom,

its characteristic function has a known form. It is also easily derived, using
Theorem 10.2. For |t| < 1/2, the moment generating function of (Zj + νj)

2 is

ψj(t) =

∫ ∞

−∞

1

(2π)1/2
exp{t(z + νj)

2} exp(−z2/2) dz

=
exp{tν2j + 2(tνj)

2/(1− 2t)}
(1− 2t)1/2

∫ ∞

−∞

(1− 2t)1/2

(2π)1/2
exp[−(1− 2t)/2{z − 2tνj/(1− 2t)}2] dz

= exp{tν2j /(1− 2t)}/(1− 2t)1/2,

since the last integrand is the density of the N{2tνj/(1− 2t), 1/(1− 2t)}
distribution. Then the characteristic function of (Zj + νj)

2 is ϕj(t) = ψ(it), and
because the terms in the sum are independent, the characteristic function of∑

j dj(Zj + νj)
2 is

ϕ(t) =
∏
j

ψj(djit) =
∏
j

exp{djitν2j /(1− 2djit)}/(1− 2djit)
1/2

and by (32),

F (x) =
1

2
− 1

π

∫ ∞

0

ℑ{exp(−itx)ϕ(t)}
t

dt. (34)

Thus the next step is to derive an expression for

ℑ{exp(−itx)ϕ(t)} = ℑ

{
exp

(
−itx+

∑
j

djitν
2
j

1− 2djit
− 1

2

∑
j

log(1− 2djit)

)}
.
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Using the definition of complex division,

i

1− 2djit
=

−2tdj + i

1 + 4t2d2j
,

and by Example 10.2,

log(1− 2djit) =
1

2
log(1 + 4t2d2j) + i tan−1(−2tdj) =

1

2
log(1 + 4t2d2j)− i tan−1(2tdj),

so

ℑ{exp(−itx)ϕ(t)} =
exp{−

∑
j 2(tdjνj)

2/(1 + 4t2d2j)}∏
j(1 + 4t2d2j)

1/4
×

ℑ

{
exp

(
−itx+ i

∑
j

{tν2j dj/(1 + 4t2d2j) + (1/2) tan−1(2tdj)}

)}

=
exp{−

∑
j 2(tdjνj)

2/(1 + 4t2d2j)}∏
j(1 + 4t2d2j)

1/4

× sin

(
−tx+

∑
j

{tν2j dj/(1 + 4t2d2j) + (1/2) tan−1(2tdj)}

)
.

Substituting this formula in (??) then gives an expression for F (x). The integral
can be evaluated by standard methods, such as the trapezoidal rule (because of the
oscillating nature of the integrand, more sophisticated approaches may not perform
well). This method for evaluating the distribution of quadratic forms was given by
Imhoff (1961, Biometrika, 48:419–426). 2

Exercise 10.11 Suppose X1, . . . , Xn are iid Cauchy random variables. Find the
distribution of

∑n
i=1Xi/n (this distribution can be recognized directly from its

characteristic function, so a formal inversion is not needed).

Exercise 10.12 Suppose U1, . . . , Un are iid U(0, 1), and set X = U1 + · · ·+Un. Use
(32) to give an expression for P (X ≤ x).

11 Distributions on Spaces of Sequences

Let X1, X2, . . . be independent Bernoulli random variables, with P (Xj = 1) = p. Let
Ω be the set of all possible outcomes x = (x1, x2, . . .),

Ω = {x = (x1, x2, . . .) : xj = 0, 1, j = 1, 2, . . .}
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The cardinality of Ω is the same as that of the real numbers. This follows because
every real number x ∈ [0, 1] has a unique representation as x =

∑∞
j=1 xj/2

j, where
each xj = 0, 1, so there is a 1 to 1 correspondence between the real numbers in [0, 1]
and the elements of Ω.

Let X = (X1, X2, . . .), and

s(x, n) =
n∑

i=1

xi.

In this space, events on the limiting behavior of the partial sums s(X,n) =
∑n

i=1Xi,
such as

P{lim s(X,n)/n = p} (35)

and P{limn−1/2|s(X,n)− np| > α}, are of interest. In interpreting these quantities,
it is important to realize that each point in the sample space is a binary sequence
x = (x1, x2, . . .). For each such point, the event either is or is not satisfied. For
example, if xj = 1 for all j (and p < 1), then lim s(x, n)/n = 1 ̸= p, while
limn−1/2|s(x, n)− np| = limn1/2(1− p) = ∞ > α for any finite α. On the other
hand, if p = 1/2 and x2j = 1 and x2j−1 = 0, j = 1, 2, . . ., then lim s(x, n)/n = p and
limn−1/2|s(x, n)− np| = 0. The probability that the limit satisfies the stated
criterion is the probability of all sequences x ∈ Ω which satisfy the event. Thus (35)
can equivalently be expressed P (X ∈ R), where R = {x ∈ Ω : limn s(x, n)/n = p}.
Note that there is nothing random in the definition of R; it just consists of all
binary sequences with the stated property.

This section is concerned with making the concept of probability distributions on
spaces of sequences more precise. Since the cardinality of this space is the same as
for real numbers, it turns out that it is not possible to define a probability
distribution consistently on all possible subsets of Ω. Thus issues of measurability
will also need to be considered.

The statement (35) should not be confused with

lim
n
P (|s(X,n)/n− p| < ϵ) = 1 (36)

for all ϵ > 0. (36) only requires considering the distribution of s(X,n) at each finite
n, where standard results on measures on finite-dimensional product spaces give
measurability and distribution results. It is not necessary to consider the space of
sequences to make sense of this. It will be seen later that (36) is weaker than (35).
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For a sequence x = (x1, x2, . . .) ∈ Ω, let an(x) = (x1, . . . , xn) be the first n
components of x. For any H ⊂ Ω, define

An(H) = {x ∈ Ω : an(x) = an(y) for some y ∈ H}.

Then An(H) is the set of all points in Ω whose first n components agree with some
element of H. There are 2n distinct binary sequences {x1, . . . , xn}. Let
K = K(H,n) be the number of distinct such sequences that occur in elements of H,
K ≤ 2n. Then H can be divided into K distinct subsets Hk, with each x ∈ Hk

having the same values for its first n elements. If x(k) is an arbitrary element of Hk,
then An({x(k)}) = An(Hk), and An(H) =

⋃
k An({x(k)}). Although An(H) is a

subset of the space of infinite sequences, only the first n components of a sequence
need to be examined to determine whether a point lies in this set. Since X1, . . . , Xn

are iid Bernoulli, it thus is appropriate to define

P{X ∈ An({x(k)})} =
n∏

j=1

px
(k)
j (1− p)1−x

(k)
j = ps(x

(k),n)(1− p)n−s(x(k),n),

for each x(k), and since the sets An({x(k)}) are disjoint, set

P{X ∈ An(H)} =
K∑
k=1

ps(x
(k),n)(1− p)n−s(x(k),n) (37)

Note that Am(H) ⊂ An(H) for any m ≥ n. Also, Am{An(H)} = An(H) for n ≤ m,
since An(H) already contains all possible values for elements in positions m and
higher.

Consider the collection C0 of all such sets An(H) for all finite n and all H ⊂ Ω. This
collection is a field, since (1) it contains Ω and ϕ (consider H = Ω and H = ϕ), (2)
if m ≥ n, then

An(H)
⋃

Am(G) = Am{An(H)}
⋃

Am(G) = Am{An(H)
⋃

G} ∈ C0,

so C0 is closed under finite unions, and (3) An(H)c = An{An(H)c}. (This last
relationship just states that An(H)c is the set of all sequences whose first n elements
do not match those of any element in H.)

If P as defined above is a probability measure on the field C0, then by the extension
theorem (see Section ??), P will have a unique extension to the σ-field generated by
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C0. To see that P is a probability measure on C0, first note that from (37),
0 ≤ P (X ∈ A) ≤ 1 for any A ∈ C0. To show finite additivity of P on C0, suppose
An(H) and Am(G) are disjoint, and m ≥ n. Defining K and x(1), . . . , x(K) as above,
for the set An(H)

⋃
Am(G). Then

P [X ∈ Am{An(H)
⋃

G}] =
K∑
k=1

ps(x
(k),m)(1− p)m−s(x(k),m),

and

P{X ∈ An(H)
⋃

Am(G)} = P [X ∈ Am{An(H)
⋃

G}]

=
K∑
k=1

ps(x
(k),m)(1− p)m−s(x(k),m)

=
∑

x(k)∈Am{An(H)}

ps(x
(k),m)(1− p)m−s(x(k),m)

+
∑

x(k)∈Am(G)

ps(x
(k),m)(1− p)m−s(x(k),m)

= P [X ∈ Am{An(H)}] + P{X ∈ Am(G)}
= P{X ∈ An(H)}+ P{X ∈ Am(G)},

so P is finitely additive. To show that P is countably additive, recall that this
follows from finite additivity plus the continuity condition (42). Here (42) is easily
established by showing that if E1 ⊃ E2 ⊃ · · · , with En = Amn(Hn) and
P (X ∈ En) ≥ δ > 0 for all n, then

⋂
En cannot be empty. First note that if

P (X ∈ En) ≥ δ, then En cannot be empty, so by assumption, all of the En are
non-empty. If all the En are non-empty, then their intersection cannot be empty, as
given in the following lemma. Since P (X ∈ En) ≥ δ implies

⋂
En ̸= ϕ, if

⋂
En = ϕ,

it must follow that limn P (X ∈ En) = 0, so P is countably additive on C0.

Lemma. If E1 ⊃ E2 ⊃ · · · , with En = Amn(Hn), and En ̸= ϕ for all n, then⋂
nEn ̸= ϕ.

Proof: Since the En are non-empty, select an element x(n) = (x
(n)
1 , x

(n)
2 , . . .) from En

for each n. In the sequence x
(1)
1 , x

(2)
1 , . . ., there must be a value (0 or 1) that occurs

infinitely often. Let this value be u1, and let l11 < l12 < · · · be all values of n where
x
(n)
1 = u1. Now consider x

(l12)
2 , x

(l13)
2 , . . .. Again, there must a value that occurs

infinitely often in this sequence. Let u2 equal this value, and let l21 < l22 < · · · be
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the subset of l12, l13, . . . where x
(l1j)
2 = u2. Continue in this fashion, obtaining a

sequence u1, u2, . . ., and an increasing sequence of values l11, l21, . . . such that
x
(ln1)
j = uj, j = 1, . . . , n. Set x0 = (u1, u2, . . .), and consider an arbitrary
Ek = Am(H) for some m and H. Choose an l∗ ∈ {lj1 : j ≥ m} with l∗ ≥ k. Then
there is a w ∈ El∗ ⊂ Ek, with wj = uj for j ≤ m. Since Ek includes all possible
extensions of the first m elements of the sequences in H, it follows that x0 ∈ Ek.
Since k was arbitrary, x0 ∈ En for all n, and thus x0 ∈

⋂
nEn, so

⋂
nEn ̸= ϕ. 2

Since P is a probability measure on C0, it therefore has a unique extension to σ(C0).
By the continuity properties of measures on σ-fields, this extension must satisfy

P (X ∈ B) = lim
n→∞

P{X ∈ An(B)}

for any B ∈ σ(C0). Clearly for this distribution, P (X = x0) = 0 for any x0 ∈ Ω (if
0 < p < 1).

This development thus leads to a well-defined collection of measurable sets and a
probability measure on the space of sequences of iid Bernoulli random variables.

Now consider the measurability of the set in (35). Define
B(n, δ) = {x ∈ Ω : |s(X,n)/n− p| < δ}. Since B(n, δ) ∈ C0 for any n and δ, and
since s(X,n)/n→ p if and only if for each l there is an m(l) such that
|s(X,n)/n− p| ≤ 1/l for n ≥ m(l), clearly

{lim s(X,n)/n = p} =
⋂
l

lim inf
n

B(n, 1/l) =
⋂
l

⋃
m

⋂
n≥m

B(n, 1/l) ∈ σ(C0). (38)

Exercise 11.1 Show that {x ∈ Ω : limn−1/2|s(X,n)− np| > α} ∈ σ(C0).

Note that (36) is equivalent to

lim
ϵ↓0

lim
m→∞

P{B(m, ϵ)} = 1.

Using (4) and the representation (38), it follows that

P{lim s(X,m)/m = p} = lim
ϵ↓0

lim
m→∞

P

(⋂
k≥m

B(k, ϵ)

)
.

Since B(m, ϵ) ⊃
⋂

k≥mB(k, ϵ) for each m, it follows that if
P{lim s(X,m)/m = p} = 1, then limP (|s(X,m)/m− p| < ϵ) = 1 as well. This is a
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special case of the result that convergence almost everywhere implies convergence in
probability.

A development similar to that above for iid Bernoulli variables can be given fairly
generally for probability measure spaces for sequences of independent random
variables. Suppose that the Xj, j = 1, 2, . . . are independent, with
P (Xj ∈ B) = Pj(B) defined for all Borel sets B. Let Ω be the set of all sequences
(x1, x2, . . .), xj ∈ R1. For Borel sets B1, . . . , Bn, define

An(B1, . . . , Bn) = {x ∈ Ω : xj ∈ Bj, j ≤ n;xj ∈ R1, j > n}.

The collection of all such sets for all n and all Borel sets Bj is easily shown to be a
field F . On this field, the function

P{An(B1, . . . , Bn)} =
n∏

j=1

Pj(Bj) (39)

is probability measure. Thus by the extension theorem, P has a unique extension to
σ(F), which then defines a probability measure on a σ-field of subsets of Ω. Details
of this argument are given in Chung (1974), Theorem 3.3.4.

It also is not necessary to limit attention to sequences of independent random
variables. For example, if s(X,n) is defined as before as the sum of the first n terms
of X, then (Y1, Y2, . . .), with Yn = s(X,n)/n, has a joint distribution that can be
obtained from the distribution of X. A general treatment in the dependent case is
similar to that above, with the product in (39) replaced by an appropriate joint
probability P{(X1, . . . , Xn) ∈ B1 × · · · ×Bn}.

In the following, the space of real valued sequences will be denoted by R∞, and the
σ-field of Borel sets as defined above by B∞. When equipped with a probability
measure P , the resulting probability measure space is denoted

(R∞,B∞, P ). (40)

12 Some Useful Theorems

The following results, which are often cited in the probability literature, are
summarized here for easy reference.
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Continuity Property of Probability Measures. If (Ω,F , P ) is a probability
measure space, and A1 ⊂ A2,⊂ · · · is an increasing sequence of sets in F , and
B1 ⊃ B2,⊃ · · · is a decreasing sequence of sets in F , then

P (An) → P

(⋃
n

An

)
and P (Bn) → P

(⋂
n

Bn

)
. (41)

Note that
⋃

nAn in a sense is the limit of the sequence of sets An, and
⋂

nBn can
similarly be thought of as the limit of Bn.

Suppose P is a finitely additive probability measure defined on (Ω,F). If

P (En) → 0 (42)

for any decreasing sequence E1 ⊃ E2 ⊃ · · · of sets in F such that
⋂
En = ϕ, then P

is countably additive; see eg Chung (1974), Theorem 2.2.1, or Billingsley (1995),
Example 2.10. Note that in R1, the sets En = {x : 0 < x < 1/n}, for example, are a
decreasing sequence with

⋂
nEn = ϕ.

Extension Theorem. Let F0 be a field of subsets of a set Ω, and P a probability
measure defined on F0. Then P has a unique extension to F = σ(F0), the σ-field
generated by F0. (Billingsley, 1995, Theorem 3.1)

Dominated Convergence Theorem. For measurable functions, if |fn| ≤ g almost
everywhere (ae), where

∫
g dP <∞, and if fn → f ae, then

lim

∫
fn dP =

∫
f dP. (43)

In terms of random variables, if X1, X2, . . . are defined on a common probability
space and Xn → X ae, and if |Xn| ≤ Y ae for some Y with E(Y ) <∞, then

E(Xn) → E(X).

Note that the condition |Xn| ≤ Y ae can also be expressed P (|Xn| < Y ) = 1.

On probability spaces, sequences of uniformly bounded random variables are always
dominated. That is, if there is an M <∞ such that P (|Xn| < M) = 1 for all n, then
defining Y by P (Y =M) = 1, it follows that P (|Xn| < Y ) = 1 and E(Y ) =M <∞.
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Thus if X1, X2, . . . are uniformly bounded, and Xn → X ae, then E(Xn) → E(X).
In particular, if X1, X2, . . . are uniformly bounded, and Xn → 0 ae, then

E(Xn) → 0. (44)

The following two results are used frequently.

Theorem 12.1 Suppose
∫
|X| dP <∞ and a1 < a2 < · · · is a sequence of

constants with an → ∞. Then ∫
|X|>an

|X| dP → 0.

Proof: Since X is integrable,

∞ >

∫
|X| dP ≥

∫
|X|>an

|X| dP ≥ anP (|X| > an),

so P (|X| > an) ≤
∫
|X| dP/an → 0. Define I(|X| > an) = 1 if |X| > an and

I(|X| > an) = 0 otherwise. Now

P{lim sup
m→∞

|X|I(|X| > am) > 0} ≤ P (|X| > an) → 0,

so |X|I(|X| > an) → 0 ae. Since |X|I(|X| > an) ≤ |X|, and |X| is integrable, the
result follows from the dominated convergence theorem. 2

Theorem 12.2 Suppose
∫
|X| dP <∞ and A1, A2, . . . is a sequence of sets with

P (An) → 0. Then ∫
An

X dP → 0. (45)

Proof: For any α > 0, ∣∣∣∣∫
An

X dP

∣∣∣∣ ≤ αP (An) +

∫
|X|>α

|X| dP. (46)

By the previous theorem, limα→∞
∫
|X|>α

|X| dP = 0, so given any ϵ > 0, there is an

α such that
∫
|X|>α

|X| dP < ϵ/2. Since P (An) → 0, there is then a value N such
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that P (An) < ϵ/(2α) for n > N . Thus from (46), given any ϵ > 0, there is an N
such that |

∫
An
X dP | < αϵ/(2α) + ϵ/2 = ϵ. Hence,

∫
An
X dP → 0 as n→ ∞. 2

Integration of Series. For measurable functions,
(a) if fn ≥ 0, then ∫ ∑

n

fn dP =
∑
n

∫
fn dP, (47)

where both sides may be infinite;
(b) if

∑
n fn converges ae, and |

∑n
k=1 fn| ≤ g ae, where

∫
g dP <∞, then

∑
n fn

and the fn are integrable, and
∫ ∑

n fn dP =
∑

n

∫
fn dP ;

(c) if
∑

n

∫
|fn| dP <∞, then h =

∑
n fn is absolutely convergent ae, is integrable,

and ∫
h dP =

∑
n

∫
fn dP. (48)

(see Billingsley, 1995, page 211)

The following result is useful for investigating convergence of infinite series.

Theorem 12.3 Suppose f(t) is a decreasing function. Then∫ n+1

k

f(t) dt ≤
n∑

j=k

f(j) ≤
∫ n

k−1

f(t) dt.

Proof: ∫ n

k−1

f(t) dt =
n∑

j=k

∫ j

j−1

f(t) dt ≥
n∑

j=k

∫ j

j−1

f(j) dt =
n∑

j=k

f(j)

=
n∑

j=k

∫ j+1

j

f(j) dt ≥
n∑

j=k

∫ j+1

j

f(t) dt =

∫ n+1

k

f(t) dt.

2

Independent Sets. Let A1, . . . ,An be collections of measurable subsets of Ω. The
collections are independent if P (

⋂n
j=1Aj) =

∏
j P (Aj) for any sets Aj ∈ Aj,

j = 1, . . . , n.

Theorem 12.4 Suppose A1, . . . ,An are independent, and each Aj is closed under
finite intersections. Then the generated σ-fields σ(A1), . . . , σ(An) are independent.
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(see Billingsley, 1995, Theorem 4.2). “Closed under finite intersections” means that
if A,B ∈ Aj, then A

⋂
B ∈ Aj.
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