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1 Some Set Theory
1.1 Set and Sample Space

Set is a basic concept in mathematics and probability. We define a set, often
denoted by a capital letter in this note, as a collection of some elements. For
example, R and R"™ denote the set of real numbers and the n-dimensional Euclidean
space, respectively.

Some commonly used notations involving sets include:

e ¢: empty set.
e r € A: z is an element of the set A.
e {x} C A: the set consisting of the singleton = € A is a subset of A.

e {z: astatement}: the set of all elements = for which the statement holds.
For example: the open interval (a,b) can be defined as {z : a < z < b}.

It is necessary to define an ‘abstract space’, often denoted by €2, as a nonempty set
of all the elements concerned. These elements are called ‘points’ and denoted
usually by w. A set containing only part of these elements is called a subset (of 2).
In the probability literature, we often use €2 to denote the sample space, which is
the collection of all possible distinct realizations of a non-deterministic experiment
and an element of €, say w, is called a simple event or a sample point in (2. We shall
decide in latter sections on what class of (sub)sets probabilities are defined for and
on what class of functions are acceptable for random variables.

The choice of the sample space is the first step in formulating a probabilistic model
for an experiment. Let us consider several examples of sample space.
(1) A patient’s survival status at the end of a clinical trial.

Q2 = {dead, alive}, which is a finite sample space.

(2) Number of a patient’s seizures observed in a clinical trial.
©2=1{0,1,2,3,...,}, which is a countably infinitive sample space.

(3) A cancer patient’s survival time after treatment.
Q={T: T > 0}, which is an uncountably infinitive sample space.
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Exercise 1.1 Suppose () has exactly n sample points. Find the number of all
possible subsets of €2.

Exercise 1.2 (courtesy of R. Strawderman) Describe the elements of the sample
space for the following experiment: Players A, B, and C take turns at a game
subject to the following restrictions:

e To start the game, A and B play while C sits out.

e The loser of the 1st round sits out and is replaced by C in the 2nd round (i.e.
the 2nd round is played by the winner of the 1st round and player C).

e The game continues in a similar fashion (i.e. the loser is replaced by the one
who is sitting out) until one player wins two successive rounds.

1.2 Rewisit of Set Calculations

Roughly speaking, subsets of €2 are called events. If {2 is uncountable, we cannot
(need not) handle all possible subsets. Instead, we restrict to a “well-behaved” class
of subsets, broad enough for our purpose. Only those subsets in such a restricted
class will be called events. For example, we may require the interaction (or union)
of events is also an event. In this section, we review the basic calculations involving
in sets.

Definition: For any two sets in €2, we define
1) Union: AUB={w: we Aorwe B}.
2) Intersection: ANB={w: we Aandw e B}.

(1)
(2)
(3) Complementation (with respect to 2): A={weQ: w¢ A}.
(4) Difference: A—B={w: we A, w¢ B} = AN B°.

(

5) Symmetric Difference:
AANB= (A-B)U(B—A)= {w: w € exactly one of A and B}.

It is straightforward to show that the operation of union has the following
properties.



Property 1.1 associative: (A; U Ag) U A3 = A1 U (Ay U A3).
Property 1.2 distributive: (4; U Ag) N Az = (A; N A3) U (41 N A3).

Property 1.3 commutative: A; U Ay = Ay U A;.

If A and B are disjoint, i.e. AN B = ¢, we sometimes write the disjoint union as
AUuB=A+B.

Exercise 1.3 Find A¢, with respect to €2,

(a) Q={r:0<ax<l}A={z:05<x <1}
(b) @={(z,y) : |o[+ Iyl <2}, A={(2,y) : 2* + 9> < 2}
(c) Q= RYA=n>2,B,, where B, ={z:z € (0,1/n)}.

We say two sets are equal if they contain exactly the same elements. Hence, to show
A = B, one needs to demonstrate in two steps that A C B and B C A.

Exercise 1.4 For any three sets, A, B and C, show A A B = C'if and only if
A=BAC.

We define countable infinite unions and intersections as follows.

Definition: Let {4,} be an infinite sequence of sets in Q2. We define

Sup An = — .
n>1 L_JlAn {w: w e A, for some n} and

inf A,, — - . >
w1 QAn {w: w e A, for any n > 1}.

Similarly, we often use Y > | A, to denote a union of a countable sequence of
pairwise disjoint sets. Furthermore, we may extend the intersection or union over a
set of integers to any arbitrary set. For {A;, ¢t € T'}, where T' is an index set,

U Ay =A{w: w e A, for some t € T'} and similarly for the intersection.

teT



Example 1.1 Let T = [0,1] and A, = {t + 1}. Then ] A, = [1,2].

teT

It may be easy to prove

Theorem 1.1 (De Morgan’s rule) (U A = ﬂ Af and (ﬂ A = U A7, where
teT teT teT teT
T is any index set, e.g. finite, countably infinite or uncountably infinite.

Proof: homework. O

One can also easily show, under complementation, C and D are interchanged, i.e.
A C B implies A¢ D B°.

Exercise 1.5 Show

B (QAn) = G(BmAn) and B[ ) (ﬁAn) = ﬁ(BmAn).

n=1 n=1 n=1

1.3 Limit Sets

For an infinite sequence of real numbers, we know how to study its convergence and
define its limit (if it exists). In this section, we discuss the convergence of an infinite
series of sets. We begin with the concepts of ”liminf” and ”limsup” for a sequence of
sets.

Definition: Let {A,} be a sequence of sets in {). Define

e

n=1lk=n

and o s
A= {J[ A
n=1lk=n
A* and A, are termed upper limit and lower limit of the sequence {A,}, usually
denoted by limsup,, A,, and liminf, A, respectively. If A, = A*, we say {4,} is
convergent and write lim,, .., 4, = A, = A*.



Example 1.2 Let Q =[0,1], A, = [0, 2] if nis even and A, = [1 — £,1) if n is odd.
Then by definition, A, = ¢ and A* = {0}. Hence, A, # A*, which implies

lim A,, doesn’t exist.

However, if A,, = [0, 1] for all n, then A, = A* = {0}, which implies lim 4,, = {0}.

Theorem 1.2 (a) w € limsup,, A, if and only if w is in infinitely many of the A,.
(b) w € liminf, A, if and only if there is an m such that w € A, for all n > m.

Proof: (a) Set B,, = ., An, and note that limsup,, A, =(,, Bm. Suppose w
belongs to infinitely many of the A,,. Then for any m, there is an n > m such that
we A, C By, sowe€(), Bn. On the other hand, suppose that w € limsup,, A,,
and that w is in only a finite number of the A,,. Then there is an N such that

w ¢ A, for all n > N, which implies w & B,,, for m > N, so w &, By, which is a
contradiction. Thus w must be in infinitely many of the A,,.

(b) Let C,, =(,—,, An, and note that |J,._, C,, = liminf, A,. If w € A, for all

n > m, then w € C,, C liminf, A,. On the other hand, if w &€ C,, for any m, then
wé& >, Cp. Soif w e liminf, A, then w must be in C,, for some m, and thus in

A, for all n > m. O

Because of part (a), the terminology ‘A,, occurs infinitely often’ is often used to
refer to lim sup,, A,. For example, suppose X, (w) is the number of heads in n flips
of a coin, and A4,, = {w: X,,(w) > n/2}, which consists of all outcomes where the
proportion of heads in the first n flips is > 1/2. In this case, w € limsup,, A, if
Xp(w)/n > 1/2 for infinitely many n, or equivalently, if the proportion of heads is

> 1/2 infinitely often. On the other hand, if w € liminf, A, then w must be in all
but a finite number of the A,. In the example, this means that there is an m (which
can be different for different w), such that X, (w)/n > 1/2 for all n > m.
Equivalently, the proportion of heads is > 1/2 for all but a finite number of n.

Exercise 1.6 Show (limsup,, A,,) ((limsup,, B,) D limsup,,(A, () B,) and
(limsup,, 4,,) J(limsup,, B,,) = limsup,,(A4,, J Bn).

Using the De Morgan’s rule, one may show liminf, A, = (limsup,, A%)¢. In fact,

liminf A4, = D ﬁ A, = (ﬁ [OJ A;) = (hmsupA;)c.

m=1n=m m=1n=m
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Exercise 1.7 Show liminf, A, C limsup,, A,.

Intuitively, this follows as if w lies in all but a finite number of members of the
sequence, it surely lies in infinitely many members of the sequence.

Exercise 1.8 Let Q = R? and A,, the interior of the circle with center at
((=1)"/n,0) and radius 1. Find liminf, A, and limsup,, 4,.

Exercise 1.9 Let a, be a sequence of real numbers, and let A,, = (—00,a,). Find
the connection between lim sup,, a,, and limsup,, A,, and similarly for liminf (Recall
that, for a sequence of real numbers {a,}, liminf, a, = lim,_, in fr>,{ax} and

lim sup,, a, = lim,, o0 supg>n{ar}.)

Parallel to a series of real numbers, we also introduce the concept of monotonicity
to a sequence of sets.

Definition: A monotone sequence of sets is defined as follows

e {A,} is called monotone increasing if and only if A, C A, 4, for any n.

e {A,} is called monotone decreasing if and only if A, D A, for any n.

Then we prove

Theorem 1.3 A monotone sequence of sets is convergent.

Proof: First suppose that A, is increasing. Then

liminf A,, = G ﬁ A = GA”'
n=1

n=1 k=n

On the other hand,

limsup A,, = ﬁ GA’“ C GAk C OA” =B =A,.
k=n n=1

n=1 k=n
As A, C A*, we have that A, = A*.

10



Now we suppose that A, is decreasing. By definition, we have that
A=A =)A,,
n=1
which completes the proof. O

1.4 Zorn’s Lemma and Zermelo Choice Axiom
In this section, we introduce some fundamental set theorems.

Definition: A partial ordering on a set is a relation “<” that is

o reflexive: a < a.

e antisymmetric: if a < b, b < a, then a = b.

e transitive: if a < b, b < ¢, then a < c.
Definition: A set equipped with such a relation “<” is called a partially ordered
set.

Note “a < b” can also be written as “b < a” and “a < b” means “a < b but a #b”.

Example 1.3 Let 2 be a nonempty set and denote by X the class of all the subsets
of 2. It follows that X is a partially ordered set by the ordinary set inclusion
relationship, That is, for any A, B € X', A < B means A C B.

Definition: A set C'is called totally ordered if and only if for all a,b € C, either
a <borb<c. A totally ordered subset of a partially ordered set A is called a chain
of A.

Example 1.4 Any subset of R is totally ordered if taking the ordinary ‘<’
relationship between two real numbers. How about the two-dimensional real space?

Definition: Suppose that X is a partially ordered set and that X, is a subset of
X. An element b is called the upper bound of X if that b € X and any =z € X,

11



implies x < b. If b is an upper bound of X and for any upper bound &', b < ¥, then
b is called the supremum of X,. In other words, the supremum of X is the smallest
upper bound of X (in the sense of “ <7).

Remark 1.1 The upper bound and supremum of X, are not necessarily in X,. The
lower bound and infimum can be defined similarly. The supremum and infimum of
Xy are usually denoted by sup Xy and inf X|,.

Example 1.5 Suppose that X is a class of some subsets of X. Then
sup Xo = U A, inf X, = ﬂ A.

AeXy AeXg

We state below without proof a theorem needed in the further development of basic
set theorems.

Theorem 1.4 Let X be a non-empty partially ordered set and assume that every
non-empty chain of X has a supremum. Further, let a mapping f : X — X satisfy
x < f(z) (z € X), then there exists ¢ € X such that f(c) = c.

The proof of this theorem is rather involved. Interested readers should refer to P.J
Cohen’s Set theory and the Continuum Hypothesis (New York, 1966, Amsterdam).

Definition: Let X be a partially ordered set and x € X. If any y € X such that
r <y implies z = y, then z is called the maximum of X. The minimum of X is
defined similarly.

Remark 1.2 The maximum or the minimum of a set may not be unique.

Example 1.6 Let 2 be a nonempty set and denote by X the class of all the subsets
of 2. It follows that X is a partially ordered set by the ordinary set inclusion
relationship. The maximum of X is 2 and the minimum of X is ¢, the empty set.
Consider a subset of X', X1 = X — {¢}. It is easy to show that every singleton
generated by (2 is the minimum of A.

Theorem 1.5 Fvery partially ordered set has a maximum chain.

Proof: Let X be a partially ordered set with the relation “<”. Let X be the class of
all the chains of X. It follows that X itself is a partially ordered set by the set
inclusion relationship (i.e. C). We prove by contradiction that X has a maximum.

12



Assume that X does not have a maximum. Then for any A € X', as A is not a
maximum, there exists an A; such that A C A; and A # A;. Let f be a mapping
for such a realization, i.e. f: X — X satisfying A C f(A) and f(A) # A. In
addition, every non-empty chain of X has a supremum (think of the union!). Hence,
by Theorem 1.4, there exists an Ay € X such that f(Ag) = Ay, which contradicts to
the definition of f! The theorem is thus proved. O

Now we can easily apply the result to prove Zorn’s lemma, one of the fundamental
theorems in the set theory.

Theorem 1.6 (Zorn’s lemma) Let X be a set with a partial ordering ‘<’. If every
chain in X has a supremum, then X has a mazximum.

Proof: By Theorem 4, there exists a maximal chain X, of X. Let zq = supX,. For
any x € X such that zq < z, we would like to show z¢y = z. If x ¢ X, then

Xo U {x} is a chain containing X, which contradicts to that Xy is a maximal chain.
Therefore, x € Xy. As xq is the supremum of Xy, z < xy. Hence, x = xg, which
implies that z(y is a maximum. O

Another equivalent form of Zorn’s lemma can be stated as

Theorem 1.7 Let X be a set with a partial ordering ‘<’. If every chain in X has
an upper bound, then X has a marimum.

We last introduce the Zermelo’s choice axiom.

Theorem 1.8 Let X be a class of non-empty sets. Then there exists a mapping

f: X — U A such that for every A € X, f(A) € A.
Aex

This theorem tells that one is able to form a set by choosing a point from each set in
a class of sets, a seemingly trivial but fundamental action in set theory. In history, a
nontrivial application of this theorem was in finding a non-Lebesque measurable set
(due to Vitali). More involved investigations can show that Theorems 1.5-1.8 are in
fact equivalent. These theorems indeed form the axiomatic basis for set theory.
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1.5 Field and o-field(algebra)

Length, area, volume, as well as probability are examples of measure that we will
discuss. A measure is a set function, which assigns a number p(A) to each set A in s
certain class. Some structure must imposed on the class of sets on which the set
function p is define. Probability considerations give a good motivation for the
required structure.

In this section, we concentrate on the underlying class of sets and define the
essential structure. Finally, we shall give a precise definition for events in a well
defined probability space.

Definition: A class of sets X is closed under an operation * (e.g. union,
intersection, etc.) if * performed on any member(s) of X’ yields a set which also
belongs to the class.

Example 1.7 X = {¢, A, B,C;AUB,AUC,BUC, AU BUC(C} is closed under

Union.

Definition: A class X of sets in Q is called a field (Boolean field) if (i) X is

non-empty; and (ii) X is closed under finite union and complementation.
This definition means that (i) there exists A C 2 such that A € X’; and (ii) if

A; € Xfori=1---n, then | JA4; € X, and if A € X, then A° € X

i=1

Some properties of a field are summerized below.

Property 1.4 A field X is also closed under finite intersection.

Proof: For A; e X , i=1---n, as A € X, hence, UAS € X.

Since (ﬂAZ> = (U A%, therefore, (A; € X. O
1

Property 1.5 ¢ € X and Q € X (homework)

Example 1.8 (1) X} = {¢,Q} is a field; (2) A, = all subsets of {2 is a field; (3) Let
Q) = (—00,00). A3 = class of all finite interval (a,b) is not a field (why?)

14



Definition of o-field: A class X of sets is a o-field if (i) X' is non-empty (ii)X is
closed under complementation and countable unions. A o-field is often called as a
o-algebra as well.

Example 1.9 A& is a trivial o-field, the ‘poorest’ o-field, whereas A, is the ‘richest’
o-field, containing all subsets of the sample space.

Note that, similar to a field, the empty set, ¢, and the sample space, 2, must be
contained in a o-field as well. It is trivial to see that a o-field is a field, but the
converse is not true.

Exercise 1.10 Find a field which is not a o-field.

Exercise 1.11 Let Q = R, showF = {A : A is countable or A°is countable} is a
o-field.

Exercise 1.12 Let X be a nonempty class defined by
X={A: z€A=2+1, x£2--- are all in A}. Verify that X is a o-field.

1.6 o-field Generated by a Class of Sets

Definition: Let X} and A5 be two o-fields. We define their intersection as
XlﬂXQI{AZ AGXl andAGXQ}.

We can easily show

Theorem 1.9 &) N A&, itself is a o-field.

Proof: one may verify that conditions (i) and (ii) hold (homework). O

Similarly we define countable intersections and arbitrary intersections and can show
that arbitrary intersections of o-fields are o-fields. This result is particularly useful
as it allows us to construct a ‘smallest’ o-field containing a given class of sets.

But it is not the case for unions. For example, given two o-fields, X7 and X5, their
union

X1UX2:{AZ AGXlorAEXQ}

is not necessarily a o-field.
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Example 1.10 Let X} = {¢, A, A°,Q} and Xy, = {¢, B, B,Q}. But
XiU X, ={¢, A, A, B, B¢, Q} is not a o-field.

The next theorem establishes the existence of a minimal o-field containing a given
class of sets.

Theorem 1.10 Given a class of sets, there is a minimum o-field containing it.

Proof: Let S be a given class of sets in 2 and G = {X : X be a o-field X D S}.

G is nonempty as the o-field of all the subsets of € contains S. Hence, (e X is
the smallest o-field containing S. |

Definition: We say that a o-field is generated by a class S of sets if it is an
intersection of all o-fields which contain S, denoted by ().

We list some properties of o(5).

Property 1.6 o(95) is itself a o-field.

Property 1.7 S C o(S).

Property 1.8 S; C Sy implies 0(S1) C 0(Ss).
Property 1.9 If S itself is a o-field, then o(5) = S.

Exercise 1.13 Given a series of o-fields F}, we know that U;—;F; may not be a
o-field. We use Aj—1.F; to denote the smallest o-field containing each F;. A o-field
is said to be countably generated if and only if it is generated by a countable
collection of sets. Prove if each F; is countably generated, so is A;—i.F;.

Let Q@ = R = (—00,00). Consider the following 4 types of finite intervals.

S1=A{[a,b): a<b, a,bER },
Sy ={(a,b): }
83:{(a’b] : }7
Sy = {[a,b] : }.

16



4
Let S = USZ" In other words, S is a class of all finite intervals. But S is neither a

=1
field nor a o-field. An important extension of S to a o-field is through the following
definition.

Definition: The minimal o-field over S is called the Borel o-field on R, denoted by
B =0(5). Any set in B is called a Borel set.

The following shows that any single type of intervals is actually enough to generate
the Borel o-field.

Theorem 1.11 B = o(S;) = 0(52) = 0(S3) = 0(Sy).

Proof: We only prove o(S;) = B.

As Sy C S, hence 0(S1) C 0(S) = B. On the other hand, if we can prove S C o(5}),
then o(5) C o(S51).

In fact, we know S; C ¢(S;). In addition, for any set in Sy, one can write

(a,b) = [OJ {a%—%,b).

n=1

Therefore, Sy C o(S1). Similarly, we can show S3 C ¢(S7), Sy C 0(Sy). Thus,

4
S=Js: ca(s).
i=1

Exercise 1.14 Show that 8 is not generated by all the singletons on R.

We return, at the end of this section, to give the formal definition of an event in a
probability space.

Definition of Events: Let () be a sample space endowed with a o-field F of
subsets of 2. An event is defined to be an element of F, i.e. a set in F.

17



2 Measure Theory

We are now in a position to introduce a measure, Lebesqgue measure, on the Borel
sets of R. Based on the essential properties of Lebesgue measure, we will introduce
a general measure in any abstract space and, specifically, we will discuss the
probability measure in a probability space.

2.1 Lebesque Measure

A Lebesgue measure on R is a generalization of “length of interval” in a real line to
more general sets, e.g. Borel sets. For simplicity, we restrict the sample space to

0, 1].

Definition: Let Z be the class of subintervals (a,b] on 2 = [0, 1] and define
A(I) = |I| = b— a, the ordinary length for I € Z. Let B, be the field of finite unions
of such subintervals. Then for each A € By, there exists disjoint I;,7 = 1,...,n such

that A = UI;. Define
= Z)\(L‘) = Z i
i=1

We call A\ Lebesgue measure.

Theorem 2.1 Lebesque measure A is countably additive on the field By.
Proof: Suppose that A = U2 Ay, where A and Ay, are By- sets. Then A = U} I,
and Ay, = U;”jl Ji; are disjoint unions of Z-sets. By definition,

n oo mg

IO SITES 9 3 LN

=1 k= 1]1
o mg
= ZZI%I—ZMk
k=1 j=1

A natural question is how to measure a set which is not in By. We thus consider
outer measure, an extension of \.

18



Definition: For each A € (), define its outer measure by
A*(A) = inf )~ A(Ay)
where the infimum extends over all finite and infinite sequences A;, As, ..., of By
satisfying A C U, A,,. Here {A,} need not be disjoint.
There are four properties associated with the set function \*
Property 2.1 M (¢) =0
Property 2.2 nonnegativity: for any A C Q A*(A) > 0.
Property 2.3 monotonicity: A C B implies \*(A) < \*(B).

Property 2.4 countably subadditivity: A*(U,4,) <> A(A4,)

Proof: For a given €, choose By-sets B, such that A, C U, B, and

Y A(Buk) < X*(Ay) + €27 (by the definition of A*). Now U,A,, C U,, ;B so that
N (UpArn) <0 A(Buk) < . AM(A,) + €. Hence, the statement follows as € is
arbitrary. |

It is also natural in approximating A from the inside by approximating its
complement A¢ from outside. We define the inner measure by

A(A) = 1— N (A°).

Definition: If A\,(A) = A*(A), we call A is (Lebesque) measurable.
We have another equivalent definition for a measurable set.
Definition: If for any F C (),
N(ANE)+ X (A°NE)=\(E) (1)
we call A (Lebesgue) measurable.
It will not be difficult to show

Theorem 2.2 Any countable set has Lebesgue measure 0.
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Hence, the Lebesgue measure of the set of all rational numbers is actually zero!

Another natural question might be: does there exist a non-measurable set?
Surprisingly, finding a non-measurable set turns out to be a non-trivial task. Only
one non-measurable set was ever found (due to Vitali) in history, which was
constructed based on the Zermelo’s choice axiom.

Finally, we show that

Theorem 2.3 The class of (Lebesque) measurable sets in Q = [0,1] is a o—algebra.

Proof: Let M be the class of measurable sets in 2. It is easy to see that 2 € M.
If Ae M, as (1) is symmetric (with regard to complementation), A¢ € M.

Our goal now is to show M is closed under countably infinite intersections. Toward
this end, we first show that M is closed under finite intersections.

Suppose that A, B € M and E C €2, Then

N(E) = XN(BNE)+X(B°NE)

= NANBNE)+ XN (A°NBNE)
+XN(ANBNE)+ X (A°NB°NE)
N(ANBNE)
+N((A°NBNE)UANB°NE)U(A°NB°NE))
= N(ANB)NE)+ X (ANB)NE)

v

The equality hence follows by subadditivity. hence, AN B € M and M is closed
under finite intersections (so M is a field.)

Now suppose Ay, As, ... are disjoint M sets with union A. Since F,, = U}_, A, lies
in M,
N(E)=XN(ENF,+\X(ENFE).

Applying to the first term an equality for a finite or infinite sequence of disjoint sets
(exercise)

N(EN(JA) = SN (EN AL, 2)
k k
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and applying the monotonicity to the second term (as (F¢ D A°), we have

N(E) > XR:A*(E N Ag) + N(E N A°).

Let n — oo and apply (2) again. Then we end up with
> N(ENA) + A (ENAY) = N(ENA)+ X (EN A
k=1

Hence A = U, A,, lies in M. Now we have shown that M is closed under countable
disjoint unions. For any set By in M, let A; = By and Ay, = B, N BY... N B;_4,
then the Ay are disjoint M sets and U, B, = U A hence lies in M, Wh1ch completes
the proof. O

This theorem indicated that applying finite or countably infinite operations (e.g.
intersection, union or complementation) on measurable sets would still yield a
measurable set.

Exercise 2.1 Prove (2). (Hint: use induction to prove that (2) holds for a finite
sequence. For the infinite case, use monotonicity,

N(EN (U AR) > X(EN (U Ak)) = > AY(E N Ag). Then let n — 00.)

In the end, we summarize the development of Lebesgue measure.

Let Z = {[a,b)}, where a,b can be —o0, 0o, respectively, and A is defined on Z
by A((a,b]) = b — a.

By = {I : I is a finite union of intervals in Z} is a field. (Why?)

e )\ on By is monotone, i.e., By C By = A(By) < A(Ba).

A is countable additive, hence is a measure in By.

A is extended to A*, the outer measure to measure sets outside of By.

the class of A* measurable sets is a o-field, denoted by M.
e As M contains Z = {(a, b]}, B (Borel-o-field) is measurable. (why?)
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2.2  Abstract Measure

In the last section, we have talked about Lebesgue measure, which is defined on a
real line. We now discuss a measure for an abstract space.

Definition: A measurable space is a space 2 endowed with a o-field F of subsets of
2, often denoted by a pair (2, F).

Definition: A measure p defined on a measurable space (£2, F) is set function:
pw:F — RT,

which is non-negative and countably additive. That is, (1) u(A) > 0 for any A € F,
and (2) if A, is a sequence of disjoint sets in F,

M(Z An) = Z 1(An).

Similarly, we can define p for any class of o-field, say S, but " °, A, must be in S.

Exercise 2.2 For any countably infinite set €2, the collection of its finite subsets
and their complements forms a field F. If we define a set function p(E) on F to be
0 or 1 according as F is finite or not, then show pu is finitely additive but not
countably so.

Example 2.1 Lebesgue measure is a measure by the definition in this section.

Example 2.2 Let Q ={1,2,--- ,n,---}, a set of all positive integers,
F = all subsets of 0, let pu(A) = # of integers in A. p is a measure on (2, F), we
call it “counting measure”.

Example 2.3 Let Q = R, F = {A: A is countable or A®is countable}

1, if A is countable;
n(A) = e
0, if A°is countable;

Let A; and As be two disjoint countable sets. Then A; + A, is countable too;,
Hence u(A; + As) =1 # pu(Ar) + u(Az) = 2. So pis NOT a measure!
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Exercise 2.3 We redefine

0, if A is countable;
1, if A°is countable;

show that p is indeed a measure.

Definition: A measure p is finite, if () < oo, otherwise p is a infinite measure. A
measure f is called o — finite, if there exists a countable partition of €2,

Q:iAn,An €F

n=1
such that

1(Ay) < o0
forany n=1,2,---.

By definition, a finite measure is a o—finite measure, but not vice versa, as a
o—finite measure can be infinite.

Remark 2.1 Example 2.2 is a o-finite measure, but not a finite measure.

Theorem 2.4 A measure p defined on a field F can be extended to a measure on
o(F). If u is o-finite, the extension is unique.

A detailed proof can be found in Billingsley (1995, p.37-43), wherein the
construction of the extension is similar to the development of the outer measure in
the context of Lebesgue measure. Similarly, this theorem holds for Lebesgue
measure in higher Euclidean spaces, i.e. R%, R3 ---.

2.3  Probability Measure

Given that an “event” in a probability space (€2, F) is defined as a member of the

o-field F, our interest here is to measure the possibility that an event occurs. For
this purpose, we introduce the concept of a probability measure.

Definition: A set function P : F — [0, 1] is a probability measure on (€, F) if it
satisfies
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(i) (nonnegativity)for any A € F P(A) > 0.
(i) (regularity) P(Q2) = 1.

(iii) (countable additivity) If {A,} is a countable collection of (pairwise) disjoint
sets in F, then P(U A,) = Z P(A,).

In some literature, the conditions above are termed Kolmogorov’s Axioms for
probability.

Exercise 2.4 Let 2 be a sample space for a given experiment, say, . Suppose
that F is repeated n times. Consider the following set function: for any A C 2,
define P,(A) = 23" | I{the outcome of experiment i is in A}, where I{-} is the
indicator function (i.e. equal to one if the argument is true, and zero otherwise).
Note that P,(A) is just the proportion of times the event A occurs in n replications
of the experiment. Prove that Pn(-) is a probability measure.

It is easy to prove that the probability measure P(-) has the following properties:

Property 2.5 P(¢) =0

Proof: AsQ=Q+ ¢+ ¢+ ---, hence P(Q) + P(¢) + P(¢) + - - - = 1. Therefore,
P(¢) = 0. O

Property 2.6 P(A°) =1— P(A)
Property 2.7 AC B= P(A) < P(B)
Proof: consider B = A+ A°N B. O

Property 2.8 P(U::1 A,) <> P(A).
Proof: consider the decomposition
UJAn = As + A§ Ay + ASAGAs + - + ASAS -+ Ay,
together with P(ASAs) < P(Ay). O
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Property 2.9 (continuity) (i) If A, 1T and A,, € F,thenP(lim, A,) = lim,, P(A,).
(ii) Similarly, if {A,} |, then P(lim A,,) = lim P(A4,).

Proof: (i) As A, 1, lim,, 00 A, = U, An. We then write lim,,_,, in a disjoint
union, i.e.
n—oo
So,
P(lim A,) = P(A1)+ P(A{Ag) + -
= lim P(Ay)+---+ P(AJAS--- A,)
n—oo
= T}L%LP(AI + -+ ATAS - AL

= lim P(A4,).

n—0o0

(i) homework. O

The following indicates that the definition of probability has another equivalent
form.

Exercise 2.5 Show conditions (ii) and (iii) in the definition of probability measure
can be replaced by “If Q = U2, A;, where A; are (pairwise disjoint), then
Yoo P(A) =17,

Proof: homework (Hint: write

Q=004+ A)=0_A)+A+ A1 +A+---.)

Using the continuity properties we are able to prove a theorem concerning the
probabilities of the lower and upper limits of a sequence of sets.

oo 0

We recall that, for a series of sets {A,}, we defined liminf, A, = U ﬂAk and

n=1lk=n
limsup,, 4, = ﬂ UAk.

n=1lk=n

Theorem 2.5 Suppose A, € F for all n. Then

P(hmnsup A,) = nll_r)rgop (L__J An) ) (3)

25



m—0o0

P(limninf A,) = lim P (ﬁ An> . (4)

n=m

Proof: Letting B, = ,—,, A, and C,, = (), Ay, then B,, is a decreasing
sequence of sets and (), is an increasing sequence, with B,, | limsup,, A, and

Cy, 1 liminf, A,. (3) and (4) then follow from the continuity properties of
probability measures. O

We are then able to prove an important theorem in the probability literature. This
theorem indicates what can be expected by interchanging the order of limit and
probability measure.

Theorem 2.6 (Fatou-Lebesgue Theorem) For any sequence {A,} € F

P(liminf A,,) <liminf P(A,,) < limsup P(4,) < P(limsup 4,,).

n n

In addition, if im A,, ezists, P(lim A,,) = lim P(A4,,).
Proof: Let B, =\, Ak. Then

liminf A, = U B, = lim B,.
n n—oo
n=1

As B, C A,, so P(B,) < P(A,). Therefore,
lim P(B,) = lin%inf P(B,) < limninf P(A,).
Also notice that
P(limninf A,) = P(lim By,).
Hence, if lim A,, exists, P(lim A4,) = lim P(A,,). O
Another useful theorem we shall prove is the first Borel-Cantelli lemma.

Theorem 2.7 If )" P(A,) converges, then P(limsup, A,) = 0.
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Proof: From limsup, A, C U2, A follows
P(limsup A,) < P(U;2,, Ay) < > P(A
n k=m

and this sum tends to 0 as ) . P(A,) converges. O

The first Borel-Cantelli lemma is useful in establishing the strong law of large
numbers for a sequence of i.i.d random variables with a finite mean; see Bilingsley
(1995, p.85).

2.4 Independence and Conditional Probability

Intuitively, two events A and B are independent if a statement concerning the
occurrence or nonoccurrence of one of the events does not change the odds about
the other event. This leads us to introduce fundamental new concept peculiar to the
theory of probability, that of ‘independence’.

Definition: Two events A and B are independent, if and only if
P(AB) = P(A)P(B)

or

P(A|B) = P(A), P(A|B%) = P(A).

Naturally we may extend the definition for a (finite) series of events.

Definition: Events Ay, ---, A, are completely independent if and only if
P<Ak1 Aks> :P(Akl)P(Aks) for every 1 < ki< <ksg<n.

Exercise 2.6 For events Ay, ..., A,, consider the 2" equations
P(Bin...NB,)=P(By)...P(B,)

with B; = A; or A{ for each 7. Show that A;,..., A, are independent if all these
equations hold.

But pairwise independence is not equivalent to completely independence as
indicated in the following exercise.
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Exercise 2.7 Toss two fair coins. Denote by A;=H in the first toss, As=H in the
second toss and As=HH or T'T. Then show P(A;A;) = P(A;)P(A;) but
P(A1AyAy) # P(A1)P(A3) P(As).

Given a series of independent events, we can prove the following second
Borel-Cantelli lemma.

Theorem 2.8 If A, is an independent sequence of events and ), P(A,) diverges,
then P(limsup,, A,) = 1.

Proof: Tt suffices to show that P(U2; N2, A%) = 0 can hence is enough to show
PN A¢) =0 for every n. Since 1 —x < e 7,

P (ﬂ AZ) = [ = P(Ay) <exp [_mek)

k=n k=n

Since ), P(Aj) diverges, the last expression tends to 0 as j — oo, and therefore

(1) ({3 ) o

By Theorem (2.6) (the Fatou-Lebesgue Theorem), limsup,, P(A,) > 0 implies
P(limsup,, A,) > 0, whereas in the theorem above the hypothesis ) P(A,) = oo is
weaker but the conclusion is stronger because of the additional assumption of
independence.

For arbitrary number (e.g. infinite or uncountable) of events, we define their
independence as follows.

Definition: Events in a class C are independent, if and only if events in all finite
subclass are independent.

Definition: Let C; and C5 be two class of events. C'; and C5 are independent if
and only if for any A; € C] and any Ay € Cy, A; and A, are independent.

Noting that a o—field itself is a class of events, we have the following theorem.

28



Theorem 2.9 Let Cy and Cs be two class of events such that C;,i = 1,2 are closed
under finite intersection and Cy and Cy are independent. Then o(CY) and o(Cs) are
independent.

Proof: see Billingsley (1995, p.55). O

We have considered the situation of independence for two events, where the
occurrence or nonoccurrence of one event does not alter the odds about the other.
In the absence of independence, the odds are altered and the concept of conditional
probability measures quantitatively the change.

For example, in a series of independent trials where two events are observed,
suppose that P(A) = 0.4 and P(AN B) = 0.1. Given a large number of trials, if we
restrict to the trials on which A has occurred, B will occur roughly 25% of the time.
In general, the ration P(AN B)/P(A) is a measure of the probability of B under
the condition that A is known to have occurred. In other words, the concept of
‘conditional probability’ arises when we restrict to only parts of the sample space.

Definition of Conditional Probability: Given a probability space (2, F, P), for
a B € F such that P(B) > 0, and any A € F, the conditional probability of A given

B is defined to be
P(ANB)

P(A|B) = “P(B) (5)

In the next section, we will also consider the definition of conditional probability
P(A|B) when the event B has probability 0. Of course, the definition of (5) is no
long valid. An indirect approach will be used.

Exercise 2.8 P(-|B) is a probability measure on (2, F).

Theorem 2.10 (i) If P(B) > 0, A and B are independent if and only if
P(A|B) = P(A). (ii) (law of multiplication law) If P(A;---A,—1) > 0, then

P(A;---A,) = P(A))P(A3]A))P(A3|A1Ag) -+ - P(An|Ar -+ Any).
Proof: (i) follows by definition. To prove (ii), observe that P(A;---A,_1) >0

implies that P(A;) > 0, P(A; N A2) >0,-,P(A;...NA,_1) > 0. Hence, all the
conditional probabilities involved are well defined. Using

P(A - A) = P(A, AL ..M A, )P(A,...NA,_1),
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we complete the proof by induction. O

3 Random Variables

We begin with some basic concepts involving mappings.

Definition: Let X be a mapping from  — Q'. For any w € €2, there is a unique
X(w) € . Qis called the domain of X and Q' the range of X. If w # w’ implies
X(w) # X(w'), X is called injective. For any

AC O X(A) ={y:yeQ,y=X(w) for some w € A} is called the image of A
under X. If X (Q) = ', X is called surjective or onto and €' is called range or strict
range of X. For B C {7,

X 'B)={weQ: X(w) € B}

Remark 3.1 X(A) = B doesn’t necessarily imply X~ !(B) = A.

The next proposition, a standard exercise on inverse mapping, is essential.

Theorem 3.1 X! commutable with set operations

XHUY Bn) = U, X7 H(Bu).
o X7HNY Bn) =M, X~ (Bn).
X
X

1
1

H(BY) = (X7U(B))".

YB, — Bs) = X" Y(B)) — X~ 1(B,).

Proof: Homework. O

Now, let C' be a class of events in 2’ and define
XN O)={A: A€ Q, A= X"YB),for some B € C}. Then we have two relevant
theorems.

Theorem 3.2 Let C be a o-field in ', then X1 (C) is also a o-field.

Proof: homework. O
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Theorem 3.3 Let C' be any class of sets in Q) and o(C') is the minimal o-field, then
XHo(C)) = o(X7(C))

Proof: homework. O

3.1 Random Variables

A random variable is a quantity associated with a random experiment. If an
experiment is carried out in a probability space (2, F, P) and the outcome
corresponds to a sample point w € (), a measuring process is performed to obtain a
number X (w). Thus X is a function mapping €2 to the real space.

We are often interested in measuring the probability of events involving X. For
example, we may want to know the probability of X belongs to B, a Borel set.

Thus we want to compute P(w : X(w) € B). To let this make sense, we need to
require {w : X(w) € B} is an event. In other words, we need to have

{w: X(w) € B} € F. This leads to the following definition of random variable.

Definition 1: Let (€2, F, P) be a probability space. A random variable X is a
function €2 — R such that the inverse image of all Borel sets are in F, i.e.,
X~YB) € F for any B € B.

Definition 2: A random variable X is a function: 2 — R such that
X~ (—o00,b) € F for any real number b.

Theorem 3.4 Definitions 1 and 2 are equivalent.
Proof: homework. (Hint: Consider the collection A of all subsets S of R such that
X71(S) € F and prove A is a o-field.) 0

It is customary to omit the argument w in X (w) in probability theory. Thus, with
no confusion, X stands for a general value of X (w) of the function as well as the
function itself and [X < b] is short for {w : X (w) < b.} Hence, we write

X —00,b) =[X <b] = {w: X(w) < b}

Finally, for two random variables, X, Y, we define their sum Z = X + Y if
Z(w) = X(w) 4+ Y(w) for any w € Q.
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Definition of Pointwise Convergence of R.V.: Let{ X, } be a sequence of
random variables. Y = lim X,,is defined as any w, Y (w) = lim X,,(w). In a similar
way, we define Y = limsup,, X,, and Y = liminf, X,,.

One of the basic reasons why measurable functions are useful is that a pointwise
limit of measurable functions is still measurable.

Theorem 3.5 Let {X,,} be a sequence of random variables defined on (0, F, P),
lim inf,, X, limsup,, X,,,lim X,,, are random variables provided they are finite
function and are defined pointwise.

Proof: To prove that Y = liminf,, X, is a random variable, we need to show
Y ! (~o00,b) € F.

In fact,

[V < b] = liminf X,, <] = () |J[Xe <.
n=1k=n

Noting that limsup,, X,, = —(liminf,,(— X)), one may also show Y = limsup,, X, is
a random variable. a

We have previously discussed independence of events; we now consider independent
for random variables. Intuitively, independence of {X;,i =1,...,n} means a
statement about one or more X; does not change the odds concerning the remaining
X;. A formal definition is as follows.

Definition: The random variables {X;,7i = 1,...,n} are said to be independent if
and only if for any Borel sets {B;,i = 1,...,n}, we have

p {ﬁ(Xi € Bi)} = ﬁP(XZ- € B,).

=1 =1

Let 14 be the indicator function of the set A C F, i.e.

]A(w):{l weA

0 otherwise.
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Then it is easy to note that, for a series of events, say, {A4;,i=1,...,n}, a
definition of independence equivalent to that in Section 2.4 is that their indicators
are independent.

3.2 Simple Random Variable

The previous section dealt with general random variables, i.e. measurable functions
on () with arbitrary range. We here introduce the simplest but extremely important
random variables with only finite range.

Definition: X is a simple random variable if and only if there exists a finite
measurable partition of Q, ie. Q=53"" A;  A; € F. and X(w) = z; for any
we A;,i=1,--- ,n. Here, x; are real numbers (not necessarily distinct).

Example 3.1 Let 14 be the indicator function of the set A. Then [, is a simple
random variable.

Exercise 3.1 Check 4 is a random variable.
Example 3.2 X =Y " 2,14, is a simple random variable.

Remark 3.2 A set A is called P-null if P(A) = 0. Empty set is a null set, but the
converse is not true.

3.8 Approzimation Theorem

Simple random variables are easy to handle. Further, as shown in the next theorem,
each random variable can actually be approximated by a series of simple random
variables. This result is very useful for the development of expectation in the later
sections.

Theorem 3.6 (Approzimation Theorem)

(a) Every random variable is the limit of a sequence of simple random variables.

(b) Every non-negative random variable X can be approzimated by a sequence of
non-negative and monotone increasing sequence of simple random variable, i.e,
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if X >0, we can construct a sequence of { X, } such that for each n {X,} is a
simple random variable, X, > 0 and X,, T X as n — oo.

Proof: (a) Let X be a random variable. We construct a sequence of simple random
variable.

For a fixed w € €, define

n2"

Xn(w) = —nlixc—n)(w) + Z

k=—n2+1

This is equal to
—n  ifX(w) < —n
Xo(w) =45 il < X(w) < £
n  ifX(w) >n.

Obviously, for n =1,2,..., X,, are all simple random variables.

To show lim X,, = X i.e. for any w,lim X,,(w) = X (w). Take an arbitrary w and let
b, = X (w). Then for any n > |b,|, | X,(w) — X (w)| < 5. Hence, as
n — 00, | X, (w) — X(w)| — 0.

(b) Consider

k—1
Xo(w)=>" I(w) gt < xe oy 4 1 (x50 (W)

on 2n 2

3.4 Distribution Function

Given a probability space (§2, F, P), let X be a random variable. For any B € B,
where 9B is the Borel o-field in R, the set function Px on (R,B) defined by

Px(B) = P(X™/(B)) = P([X € B])
is called the distribution function of X.

One may verify that Py is a probability measure on the space (R, B).
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Definition: Py is called the probability measure induced from (2, F, P) by the
random variable X, also the probability distribution of X.

The numbers Px(B), B € F, completely characterize the random variable X in that
they provide the probabilities of all events involving X. It is useful to know such
information can actually be captured by a single real function, namely, cumulative
distribution function. The equivalence of the cumulative distribution function to Px
will be proved in Theorem (3.11).

Definition: Define a point function Fx(z) = Px(—o0,x) = P([X < z]) for any real
number z. we will write F'(x) for Fx(x), which is called the cumulative distribution
function of X.

A cumulative distribution function has two fundamental properties.

Property 3.1 F(x) is non-decreasing and left continuous.

Proof: For z < 2/, we want to show F(z) < F(z'). As (—
is a probability measure, hence Py(—o00,z) < Px(—

00, 1) C (—o0,2') and Py
= F(z) < F(2).

0o, '
As (—o0,z — 2) 1 (=00, ) when n — oo, F(z — ) = F(z),n — oo, i.c.,
F(x—0) = F(x). O

Property 3.2 F(—o0) =0 and F(o0) =1

Proof: Consider (—oo,x) | ¢,z — —o0, and (—o0,z) T R,z — oo. O

Remark 3.3 As (—oo,x + %) 1 (=00, z],n — 00, then
F(x+0) = Px(—00,z] = Px(—o00,z) + Px({z}), so P([X =z]) = F(x + 0) — F(z).
If we define F'(x) = P(X < x) then F is right continuous.

Independence of random variables can be characterized in terms of cumulative
distribution function as follows.

Theorem 3.7 Let X,..., X, be random variables on (2, F, P). Let F; be the
cumulative distribution function of X;,i =1,...,n and F the (joint) cumulative
distribution function of X = (X1,...,X,). Then Xi,..., X, are independent if and
only

F(zy,...,2,) = Fi(z1) ... Fu(xy)

35



for all real x1, ..., x,.

Proof: see Ash (1972, p.214).

The following theorem states that a cumulative distribution function does not have
‘too many’ discontinuities. In fact, the set of these discontinuities is a null set, i.e.
its Lebesgue measure is 0.

Theorem 3.8 FEvery cumulative distribution function F(x) has at most a countable
numbers of discontinuous points.

Proof: Consider and intervals [—k, k], let —k <1z <29 <-+- <, <k be any n
discontinuous points of F(z) in this interval. F'(x;) < F(x; +0) Let

P(z;) = F(x; + 0) — F(x;) then Y"1 | P(x;) < F(k) — F(—k) < 1. So the number of
jumps by more than 1/n can be at most n, Let S, be set of discontinuous points in
[—Fk, k] with jump size greater than % It is a finite set. D = set of all discontinuous
points=J,;—, U~ , Sy x=countable union of finite sets=countable. Therefore D can

always be written as D = {z,}. O

We give a simpler proof as well. For each discontinuous point x, consider the open
interval I, = (F(x—), F(z+)). If 2’ is another point of jump and x < 2/, say, then
there is a point Z such that x < Z < 2/. Hence by monotonicity, we have

F(z+) < F(3) < F(a'—).

It follows that I, and I, are disjoint, though they may abut on each other if
F(z+) = F(2'—). Now we can associate with the set of discontinuities a set of
pairwise disjoint open sets. Such a collection of intervals is countable as each
interval can be indexed by a rational number it contains. O

As the simpler proof only uses the monotonicity of F(z), we in fact have proved a
more general theorem.

Theorem 3.9 Any monotone function has at most countable discontinuities.

We may even further decompose a cumulative distribution function into the sum of
a continuous cumulative distribution function and a piece-wise constant cumulative
distribution function.
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Theorem 3.10 (Decomposition Theorem) Every cumulative distribution function
F(z) can be decomposed (uniquely) as F(x) = pF.(x) + (1 — p)Fy(x), where
0<p<1andF. and F; are both proper cumulative distribution functions. F, is
continuous and Fy is a pure step function.

Proof: Let {z,,}5°, be the set of discontinuous points of F(x). Write
p(ay) = F(zp 4+ 0) — F(xg) and denote by (1 —p) =32 p(x;), 0 <p < 1.

Take 1
Fa(x) = 37— ) p(aa)
and 1
Fo(z) = ];[F(fv) — (1= p)Fu(z)]

We first consider F;. Obviously, it is increasing and left continuous i.e.
Fy(x —0) = Fy(x). Also, Fy(—o0) = 0, since (—oo,z) | ¢ as x — —oo. In addition,
Fy(00) = 1. So Fy(x) is a proper cumulative distribution function .

We observe that F.(z) is left continuous, F.(—oc0) = 0 and F.(co) = 1. We next
prove F is right continuous and increasing. Let =’ > x, since

p(Fe(2') = Fo(x)) = F(2') — F(z) - Z p(zn)

r<xnp <z’

=(F@)=Fz+0)— >  plz,) >0

r<xn <z’

and let 2’ | x, we then have F.(z + 0) = F.(x).
Now assume there are two decompositions:
F(z) = pFe(z) + (1 = p)Fa(z) = p'F(x) + (1 = p') F(x).

Hence,
pFe(z) —p'F(x) = (1 - ) Fi(x) — (1 — p) Fa(x).

The contradiction occurs as the left side is continuous function and right side is a
step function. O
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By definition, the probability measure Px of a random variable X uniquely
determines its cumulative distribution function F'(z). The following theorem shows
that the other way around is also true. Hence, Px and F'(z) are two equivalent
definitions.

Theorem 3.11 (Correspondence Theorem) The cumulative distribution function
F(x) uniquely determines the probability measure Py on (R,B).

Proof: We shall prove this theorem based on the definition of F'(x) = Px(—o0, z)
and the fact that Px is a probability measure.

Let S = {(—o0,a), [a,b), [b,c0)}. Given only a cumulative distribution function
F(x), define
Px(=00,a) = F(a), Px([a,b)) = F(b) — F(a),

and
Px[b,00) =1 — F(b), Px(a,b) = F(b) — F(a+0).

Thus F'(x) determines Py for all intervals and in particular for those in S. Let F' =
field of finite unions of intervals in S. Let B € F'. Thus B has the representation
B =377, Bj. Hence,

Px(B) = ZPX(BJ-).

For any other representation, we get the same Px(B). So Py is uniquely defined on
F. That F' is a field and Py is a measure imply Py is uniquely defined on (R, B) by
the Extension Theorem. O

Theorem 3.12 If F is a non-decreasing and left continuous function with
F(—00) =0, F(c0) =1, then there exists on some probability space a random
variable X for which P(X < x) = F(x).

Proof: By the Correspondence Theorem, F'(x) uniquely determines a probability
measure Px on (R,B). For the probability space, take (Q2, F, P) = (R,*B, Px) and
for the random variable, take the identity function, i.e. X (w) = w for any

we€ Q= R. Then P(X < x) = Px(x) = F(z). O

Definition: If g : R — R such that ¢7'(B) € B for any B € B, we term g a Borel
function on R — R.
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It can be shown that the Borel function of a random variable is also a random
variable, i.e. Y = ¢g(X)(w) = g(X(w)), where g(X) is a function 2 — R, is a
random variable. Note that the distribution function of Y = g(X) can be calculated
by Py(B) = Px(¢97'(B)) = P(X~'g~!(B)).

Example 3.3 Let X be a random variable with a cumulative distribution function
F(z). Suppose Y = — X, then the cumulative distribution function of Y is

P([Y <y]) = P([X > —y]) = Px(~y,00) =1 = F(—y +0).

Finally we consider a multi-dimensional random variable. A k—dimension random
vector X is a map 2 — RF such that X~1(B*) € F for any B* in the
k—dimensional Borel o—field on R*, defined as the o—field generated by all k—dim
rectangles. This topic will be discussed in detail in Section 9.

4 Expectation of Random Variables

If X is a random variable on (2, F, P), the expectation of X is defined by

BE(X) = /Q XdP, (6)

provided such an integral exists. Thus F(X) is the integral of the Borel measurable
function with respect to the probability measure.

We shall discuss in the next section how integral (6) is defined and calculated for
different types of random variables. We begin with simple random variables and
extend to nonnegative random variables. Finally, we define (6) for a general random
variable.

4.1 Abstract Lebesgue Integration

Definition for Simple R.V.: Let X be a simple random variable on (9, F, P), i.e.
X =>"" a1, where A; € F. Y. A; = Q. Then we define

E(X) :/QXdP:/QX(w)dP(w) P4,

i=
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and for any C € F

/ XdP = / XIcdP =Y x;P(CA,).
¢ @ i=1

Often we write [ XdP for fQ XdP.

We summarize below some properties associated with the expectation defined above.

Property 4.1 f XdP is uniquely defined. That is, if X = Z;.L:I xjla; and

X =" xllc, are two representations for the simple random variable X, then

f XdP has the same value.

Proof: Let

i

i g J

where z;; = x; = 2. Now consider

> Z 2, P(Dy) =Y > ayP(A;C) = ijpmj) = Z 2/ P(C;).

i

Property 4.2 X > 0 implies fXdP > 0.
Property 4.3 If X >0, [ XdP =0 then P(X =0) = 1.

Property 4.4 Linearity: [(aX +0Y)dP =a [ XdP +b [YdP or
E(aX +bY) =aFE(x) + bE(y).

Property 4.5 Monotonicity: If X > Y, then [ XdP > [YdP or E(X) > E(Y).

Definition for Non-negative R.V.: Let X be a non-negative random variable,
ie. X(w) >0 for all w € Q2. By approximation theorem, there exists a sequence
{X,} of non-negative simple random variable such that X,, 1 X. So we define

/XdP: lim | X,dP.

n—oo
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Since X1 < Xp--+, [ X1dP < [ X5dP---. Hence, {[ X,dP} is a increasing
sequence of real number and, therefore, its limit may be infinite or finite. If the
limit is finite, we say X is integrable, whereas if the limit is co, we say the integral
exists but X is not integrable.

The expectation obtained by using the simple random variable approximation is
indeed unique as shown in the following theorem.

Theorem 4.1 (Uniqueness) Let { X, },{X],} be two approximation sequences, such
that 0 < X, 1 X and 0 < X], 1 X. Then

lim [ X,dP = lim [ X dP.

n—oo mM— 00

Proof: Take an arbitrary ¢ > 0 and let A,,, = [X,, > X] — ¢|. Fix an m, and
consider A,,,, T € as n — oco. Hence,

/ X, dP > / Xpla, dP > / (X! — €Iy, dP

= / X! Ix. dP — eP(Anm) = / X! dP — X! dP — €P(Apm)
A%m

Let K, be the upper bound of X/ . Then

[xap= [ X;,dp ~ KuP(AS,) - eP(Aun)

Let n — oo. Then for a fixed m,

lim [ X,dP > /X;ndP —0—¢

n—oo

Since € is arbitrary, lim [ X,,dP > [ X dP. Letting m — oo, we have
lim [ X,dP > lim [ X/ dP.

Exchange the roles of {X,,} and {X }, we have that
lim/XndP < lim/andP.
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Therefore,

lim/XndP = lim/X;ndP.

Remark 4.1 All the properties of simple random variables hold for positive
random variables.

Now we may consider the integral for an arbitrary random variable.

Definition for Arbitrary R.V.: Let X be an arbitrary random variable. Write
Xt = XI[X20]7X_ = —X][X<0}.
Note X = XT — X~. We then define the expectation of X as

/XdP:/X+dP—/X_dP.

If each of them on right side is oo, we say [ XdP doesn’t exist; if one of them is
finite, and the other is oo, then [ XdP is either 400 or —oo, we say the integral
exists but X is not integrable; if both are finite, [ XdP is finite, we say X is
integrable. By definition, X is integrable is equivalent to |X| is integrable as

X =XT+X".

If {X,} is a sequence of random variables on (€2, F, P) and let X,, — X a random
variable. Then does

lim E(X,) = E(lim X,)

n—oo n—o0

hold always?

In fact, this does NOT always hold true! Let 2 = [0, 1]. Consider

n wel0,z]
X”<w):{ 0 we (i1]

For each w € [0, 1], X,,(w) = X = 0. But F(X,) =1 for any n.

A condition is said to hold almost surely (or almost everywhere) with respect to a
measure 4 if and only if there is a set B € F such that u(B) = 0 and the condition
holds outside of B. From the perspective of integration, functions that differ only on
a set of measure 0 are identical as shown in the following theorem.
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Theorem 4.2 Let X and Y be two random variables and X =Y almost surely.
Then if [ XdP exists, so does [YdP and

/XdP:/YdP.

Proof: see Ash (1972, p.46). O

Exercise 4.1 Let X, Y be two random variables in the probability space (2, F, P).
If

/ X(w)dP(w) = / Y(w)dP(w)
c c
holds for any C' € F, then X =Y a.e (with respect to P).

(Hint: If not, then P(X # Y') > 0. Notice that
w: X(w) #Y(w)] =U,[w:|X(w) —Y(w)| > 1/n] and derive contradiction.)

Similar to the expectation of simple random variables, the expectation of arbitrary
random variables has two important properties.

Theorem 4.3 (i) Monotonicity: If X and Y are two random variables and

X <Y almost surely, then
/ XdP < / YdP.

(ii) Linearity: If X and Y are two random variables and o, B are finite real
numbers, then

/(aXJrﬁY)dP:a/XdPJrﬂ/YdP.

Proof: see Billingsley (1995, p.206). O

Theorem 4.4 (monotone convergence theorem) Suppose 0 < X, T X, a random
variable. Then

lim [ X,dP = /XdP.

n—oo
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Proof: see Billingsley (1995, p.201-202).
An equivalent form of the monotone convergence theorem is as follows.

Remark 4.2 0 < X,,,Y =>"* X, and Y is a random variable then
E() X, =) E(X,).
n=1 n=1

Proof: 0 < )" | X; 17Y. This form is useful as it allows a term-wise integration for
the limit sum of a series of positive random variables.

An important consequence of the monotone convergence theorem is known as
Fatou’s lemma, which has the virtue of no assumptions on the integrand with a
one-sided conclusion.

Theorem 4.5 (Fatou’s lemma) (i) For nonnegative X,,,
/(lim inf X,,)dP < lim inf/XndP.
(il) Z > X,,, where Z is a integrable random variable, then

/(lim sup X, )dP > lim sup/XndP.

Proof: (i) Let G,, = infy>, Xk, then 0 < G, T G = liminf,X,,. Then applying the
monotone convergence theorem and noticing that

/XndP > /GndP—> /GdP: /limianndP

(ii) Consider Y,, = Z — X,, and apply (i). O

gives the result.

Exercise 4.2 Show if X, Xy, ... are random variables, X,, > X for each n and X
is integrable, then

/(lim inf X,,)dP < lim inf/XndP.
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The inequality in Fatou’s lemma can actually be strict manifested by the following
example.

Example 4.1 On the unit interval, take X (w) =0 and X, (w) = n*Ij,—1. Then
for each w X, (w) converges to X (w), but [ X,(w)dP =n 4 0= [ X(w)dP.

Scrutinizing the phenomenon that [ X, (w)dP does not converge to [ X (w)dP, one
may conjecture that it may be due to the unboundness of X,,(w). This is indeed the
case as shown by the following dominated convergence theorem as a direct
application of Fatou’s lemma.

Theorem 4.6 (Dominated Convergence Theorem) If | X,,| < Z, where Z is a
integrable random variable and lim X,, = X, then

lim [ X,dP = /XdP.
n—00

Proof: At the outset only assume that the X,, are dominated by an integrable Z.
Let X, = liminf, X, and X* = limsup,, X,,. As X* X, are random variables and
dominated by integrable Z, hence they are integrable. Since Z + X, and Z — X, are
nonnegative, Fatou’s lemma gives

/ZdP+/X*dP: /lin%inf(Z—i—Xn)dP < lirrilinf/(Z—i—Xn)dP: /ZdP—i—limninf/XndP
and
/ZdP—/X*dP— /limninf(Z—Xn)dP < limninf/(Z—Xn)dP— /ZdP—limsup/XndP.
Therefore,

/limnianndP < linilinf/XndP < limsup/XndP < /limsuandP.

Now consider X,, — X, hence X is dominated by integrable Z. Therefore, X is also

integrable and
lim/XndP: /Xdp: /liandP.
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An application of the DCT is differentiation under integration, which shall be
discussed in the next section. On the other hand, example 4.1 shows that that this
theorem fails if no dominating Z exists. The next result, the bounded convergence
theorem, is a special case of the DCT when the dominating Z is a constant.

Theorem 4.7 (Bounded Convergence Theorem) If X,, are uniformly bounded and
lim X,, = X, then

lim XndP:/XdP.
n—oo
Exercise 4.3 Let X, X5, ... be random variables on (Q, F, P). If

Z/ | X,|dP < oo,
n=1 Q

show that Y >, X,, converges everywhere a.e with respect to P and
> / X,dP = / > X.dP.
n=1 Q Q n=1

(Hint: first show > 7 |X,| is integrable. Thus, " >° | X,,| is finite a.e. Then,
> X, converges almost everywhere. Now consider V,, = Y, X}, and verify the
conditions in the DCT and apply the DCT.)

Now consider the random variable g(X): 2 — R, where g(z) is a Borel function
R — R. We can calculate E(g(X)) = |, 9(X)dP using the definition of expectation
of a random variable.

In the following, we also consider another equivalent representation of the integral.
Consider [ r 9(7)dPx, and consider (R, B, Px) playing the role of Basic probability
space. If g is a simple function, i.e. g =) ¢;/p,. Then

/Qg(ZE)dPX = ZCjPX(Bj)-

For g > 0, there exists simple g, T g, we define

/g(x)dPX = lim/ gndPx.
R R
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For a general g, we consider ¢ = ¢* — g~ and define

/Rg(ﬂf)dpxZ/Rng(x)dPx—/Rg_(a:)dPX.

Now we show

Theorem 4.8
/Q (X)dP = /R o(2)dPx (2)

Proof: Let I = [, g(X)dP and I, = [, g(x)dPx. We outline the proof using 3 steps.

Step 1. Suppose that g(z) is a simple function i.e. g(z) = > c;Ip,(x), then

L= ¢;Px(B;) =Y _ ¢;P(X\(B;)),
and
g(X)(w) = g(X (W) =D e;lp,(X (W) =D cjlx-1n)(w)

since w € X 1(B;) is equal to X (w) € B;.

As g(X) = > cjlx-1(p,), hence
I = [,9(X)dP =" ¢;P(X'(B;)) = sumc;Px(B;) = L.

Step 2. Suppose that ¢ is a non-negative Borel function, there exists a sequence
{gn} of simple Borel functions such that 0 < g, 1 g, then by Step 1,

I, =1lim [ g,(x)dPx(z)= lim [ g,(X)dP

But 0 < g, T ¢ and ¢,,(X) is a simple random variable g, (X)(w) = g.(X(w)),

lim [ gn(X)dP = / g(X)dP = I,.
Q Q

n—oo

Step 3. Suppose that g is a general Borel function, then ¢ = g™ — ¢g~.

By Step 2, [, g"dPx(x fﬂg X)dP and ng dPx(z) = [9~ (X
Therefore, [,(g% — g7 )dPx(x f g+dPX — [r9 dPx(x) =
Jo 9t (X)dP — [, 9™ (X )dP = fR )(X)dP O
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Example 4.2 Consider a special case when ¢g(z) = x. Then
E(X) = [, XdP = [ xdPx & [* zdF(z).

Exercise 4.4 If X is a non-negative random variable with finite expectation, then
E(X) :/ P(X > z)dz.
0
(Hint: use integration by parts to show [~ zdF(z) = [°[1 — F(x)]dx.)

Example 4.3 fab_o xdF(x) = f[a,b) xdPy = [*°_xlj,pdF(z). Specially,
faﬁo xdF(z) = f{a} xdPx = aPx({a}) = a[F(a+ 0) — F(a)]. Note that f: and fab+0
may be different.

Remark 4.3 When the space is real line, the integral is called Lebesgue-Stieltjes
integral (LS), whereas for a general it is called abstract Lebesgue-integral.

4.2 Riemann-Stieltjes (R-S) Integral

Riemann-Stieltjes integral is a straightforward extension of Riemann integral and is
defined in a similar way.

Definition: For a partition on a finite interval [a, b], say,
a = < Tpg <0 < Ty, 41 = b, denote by gnp = inf{g(z) : xpp < < zppi1}
and o, = sup{g(z) : Tpx < < gy} Let

So =D gn[F(@nps1) — F(@nn)]
k=1
and .
Sn = Gkl F(@nns1) = F(zn)]
k=1

Let n — oo such that the max span of subdivision — 0. If
lim S,, = lim Sp =15
which is finite, then we call S the Riemann-Stieltjes integral and denote

S = (RS) /  g(2)dF (@),
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It is trivial to see that the ordinary Riemann integral is a special case when
F(z)=x.

Remark 4.4 The R-S integral may NOT be equal to the Lebesgue-Stieltjes
integral.

Example 4.4 Let P(X =0) =1 and g(z) = I{s>0. Consider fg ( ). Since
S—OS—1theRSmtegraldoesntemst but g(0) =0, [ g(x) )=0x1=0

We give below a classical example of a function that is Lebesgue integrable but not
R-S integrable.

Example 4.5 F(z) = 1,0 <z <1, g(x) = l4(x), A = set of rational numbers in
0,1]. S, =0,5, =1 (RS) integral doesn’t exist, but [ g(z)dF(z) =1 x P(A) = 0.

Example 4.6 Define a function f(z) = sini on an open interval (0,1). Then

fo x)dz is RS integrable (in the sense of improper integral). But as f(x) is not
absolutely integrable, its Lebesgue integral does not exist.

Under certain conditions, however, these two types of intergals are equivalent.

Theorem 4.9 If g is a continuous function a.e (with respect to the Lebesgue
measure) on a finite interval [a,b], then f;g(a:)dF(m)zs the same in both RS and LS.
For (—o0, +00), if g is continuous, the two integrals are same, provided that g is
LS-integrable. In addition, that g is Lebesque integrable is equivalent to |g| is
Lebesgue integrable.

Proof: see Ash (1972, p.55). a

Finally, the following exercise shows that the DCT may not always hold for
Riemann integrals.

Exercise 4.5 Give an example of a sequence of functions f,, on [0, 1] such that each
fn is Riemman integrable, |f,| <1 for all n and f,, — f everywhere, but f is not
Riemann integrable.
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4.8 Moments
Expectations of certain functions of X are of particular interest.

Definition: Let a be a real number, r positive, then E(|X — a|") is called the
absolute moment of X of order r about a . It can be oco; otherwise, if r is an integer,
E((X — a)") is the corresponding moment about a. (In literature, the moment
about the origin, F(X"), is often called moment, and the absolute moment about
the origin, F|X]|", the absolute moment). The moments about the mean is called the
central moments. That of order 2 is particularly important and is called the
variance, var(X), and its positive square root the standard deviation. We define
factorial moments by E(X(X —1)---(X —r+ 1)) when r is an integer.

We say the r—th moment exists if £(X") is finite; otherwise if E(X") is either +o00
or —oo, we say that it doesn’t exist.

Some properties of moments are

Property 4.6 E(X") is finite if and only if £E(|X|") is finite. Also, finiteness of the
r-th moment implies finiteness of lower moments, i.e. E(X") is finite implies E(X*)
is finite for any 0 < s < 7.

Proof: The first assertion is true as that X" is integrable is equivalent to that | X"|
is integrable.

Now Let 0 < s <r, E(|X]|") is finite and | X|* <1+ |X]|". In fact, when
| X <1,]X]* <T1andif | X|>1,|X]° <|X]|". O

Property 4.7 That E(X") is finite implies P(|X| > n) = o(==), as n — c0. i.e.
n"P(|X| >n) — 0 as n — oo.

Proof: Write v, = E(]X|"). Consider

vT—/ \X!’"dPJr/ X|rap
[[X]<n] [|X|>n]

and

W P(X| > n) < /

[1X[>n]

X ["dP = v, — / | X|" T <n AP
Q
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Define Y,, = | X|"[|x|<n. Hence 0 <Y, 1 [X|". By MCT
/YndP — /]X\’"dP = Up,88 N — 00
or, equivalently,
— / |X’r[[|X|§n]dP — O,as n — oo
0

Hence,
P(|X]|>n) =0,

as n — Q. O

Remark 4.5 Conversely, n" P(|X| > n) — 0 as n — oo implies that E(|X|"¢) is
finite for any 0 < e < 7.

Proof: home work. (Hint: Consider [, |X[~“dP =3
show,

n=0 Jn<|X|<n+1 | X |"~¢dP. Then

oo

/ X[ dP < Y (n+ 1) P(n < |X|<n+1)
Q n=0

= D> (n+ 1) (P(X]|>n) = P(X|>n+1))

= Sy = P(X] = ) Y Y,

n=0 n=0
Then prove that >~ °  a, is convergent.) O

We end this section with two well-known inequality and we leave their proofs as
exercises.

Exercise 4.6 (Holder’s Inequality) For 0 < p < oo, let LP = LP(Q), F, P) be the
class of random variables X for which F(|X|P) is finite. Define
1X|], = (E(|X|P)YP. For 1 < p,q < 00, if 1/p+1/g=1and X € LP,Y € L9, show

XYl = EIXY] < [[X]]|[Y],
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Thus the Schwartz inequality is only a special case with p = ¢ = 2. (Hint: Using the
convexity of —log(x), show that, for any ¢,d > 0,

1 1 1 1
—log(=c? + —-d?) < —(—logc?) + —(—logd?).
p q p q

P q : | XY |X]P [Y]4
Hence cd < ¢?/p + d?/q. Then notice that XL < ae + q||X||g')

Exercise 4.7 (Minkowski’s Inequality) If X, Y € L¥(1 < p < o), then
X +Y € L” and
X + Yl < [[XT]p + [[Y]p-

(Hint: The claim is obvious when p = 1. When p > 1, find ¢ such that
1/p+1/qg=1. Then p/q = p — 1. Consider

X +Y|z=[|X +Y|PdP < [|X||X +Y|+dP + [|Y]|X + Y|+dP and apply the
Holder’s inequality.)

5 Two Important Inequalities
5.1 Markov Theorem

Theorem 5.1 (Markov Theorem) Let X : (Q, F, P) — (R,B). g(X) is a Borel
function R — R such that g(x) > 0, and for any x in a set B € B,g(x) > K > 0,

then
Bo(X))

P(X eB)<
(X eB) < =5

Proof: As P(X € B) = Px(B), so

Blo(0) = [ g(X)aPc+ [ g(xX)dPx = KPy(B).

Using the Markov theorem, one can trivially prove the very famous Chebyshev’s
inequality.

Theorem 5.2 (Chebyshev’s Inequality) If X is a random variable such
thatE(X) < oo and var(X) < oo, then for each u > 0

var(X)
u?

P(IX - E(X)[>u) <
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Proof: let u = E(X) and take g(x) = (z — p)> O

Suppose that a random variable X assumes values m — a, m, m + a with
probabilities p, 1 — 2p, p. It can be shown that there is an equality in (7). Hence,
Chebyshev’s inequality can not be improved without special assumptions on X.

An important application of Chebyshev inequality is in the proof of the Weak Law
of Large Numbers. Before stating the main theorem, we begin with the concept of
convergence in probability.

Definition: For a sequence of random variable X,, and a random variable X, we say
that X,, converges to X in probability as n — oo if and only if for any given € > 0,

P(|X,—X]|>¢) —0, n — 0o.

Theorem 5.3 (Weak Law of Large Numbers) Let Xy, Xs, ... be independent
random variables (not necessarily with the same distribution), each with finite mean
and variance. Assume var(X;) < M for a fited M > 0 and anyi=1,2.... Let
Sp=X1+ ...+ X,. Then (S, — E(S,))/n converges in probability to 0, that is, for
any gien € > 0,

S, — E(S,
lim P(|¥\ > €)= 0.
n—oo n
Proof: By Chebyshev’s inequality,
Sn — E(Sy) 1 S,
P(|T| >e€) < E—Qvar(z)
1
= 53 var(Sy)
1 n
= 53 var(X;)
=1
M
< 5,0
e2n

a

Convergence in probability is one of the convergence modes for sequences of random
variables. The other modes include convergence almost surely, convergence in
distribution and convergence in moment. We briefly talk about the important
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concept of convergence almost surely and the other convergence modes and their
inter-relationships will be left to discuss later.

Definition of Convergence Almost Surely: Let (2, F, 1) be a space, and f a
measurable function on Q — R, i.e. f~1(B) C F. If {f,} is a sequence of
measurable functions, we let A ={w : f,(w) = f(w)}. Wesay f, — f a.e

(with respect to ), if pu(A¢) = 0.

It should be stressed that the concept of convergence almost surely is always with
respect to a particular measure.

Example 5.1 Let Q = R" F =9 and p = pr. If

—An AE +
e i forx € N
fn(m) = a! .

0 otherwise

where A, — A. Let f(z) =0 for any z € RT. Then f, — 0 a.e (with respect to pr,)
but f, - 0 a.e (with respect to p*) where p* is counting measure of integers. In
fact, f, — g a.e (with respect to p*) where g(z) = e‘A§ (on N7T).

Exercise 5.1 If X7, Xy, ..., € LP(Q, F,u) (p > 0) and

1 X — Xogallp < (3)",n=1,2..., then {X,} converges a.e. (with respect to ).
(Hint: let A, = {w : | X, (w) — Xyq1(w)| > 27"} Use the Markov inequlity to show
wu(A,) <27, By the first Borel-Cantelli lemma, p(limsup,, A,) = 0. But if

w ¢ limsup,, A,, then | X (w) — Xpy1(w)| < 27% for large k, so X,,(w) is a Cauchy
sequence, and hence converges.)

With little modification in the previous proofs, it follows that the Monotone
Convergence theorem and Dominated Convergence theorem in the last section are
also valid if the condition of pointwise convergence is relaxed to be that of
convergence almost everywhere or almost surely.

Theorem 5.4 (MCT) If 0 < X,, 1 X a.s, then E(lim X,,) = lim E(X,,).

Remark 5.1 A general statement for the MCT, not necessarily under the
probability measure, is:

If 0 < f, 1T fa.e(with respect to u), then lim /fndu = /fdu.
n—oo
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Similarly the Dominated Convergence theorem can be restated

Theorem 5.5 (DC’T) If | fu] < g for any n, and [ gdu is finite. and f, — f a.e
(with respect to w). then [ fodu — [ fdp.

The following theorem concerning interchanging integral and differentiation is a
direct result of the DCT.

Theorem 5.6 (Differentiation Under Integral) Given any measurable space
(Q, F, 1), let I be an interval in R and {fy,0 € I} be a class of measurable functions
indexed by 0 such that fy: Q2 — R. [fffgd[t is defined for any 0, then under

conditions: (1) d9 exists at 6y and (2) ] feo
neighborhood of 0y and [ gg,dp is finite,

(5 [ odilo, = [ ()

Proof: homework. (Hint: for any real sequence 6,, — 6y, consider

J foudn— | foudi _ [ fo. — foo fou = foo g,
9n - 00 9 - 60

and apply DCT.) O

| < go, for all 0 in a small

If the conditions above are replaced by stronger conditions: (1) % df g exists at . (2)

]df 9] < g, independent of 6, and [ gdy is finite. Then the above operatlon is valid at
every 6 € I.

5.2 Jensen’s Inequality

Definition of Convex function: A Borel function g : R — R is convex in an
interval [ C R if g(Azy + (1 — N)x2) < Ag(z1) + (1 — N)g(z2), for any xq, 29 € I and
any 0 <\ < 1.

The basic properties of a convex function g are:
(1) g is continuous on I.

(2) For any « € I, the right and left derivatives exists
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(3) If g is twice differentiable, then g () > 0 for any 2 € I and, conversely, a
positive second derivative implies the function is convex.

(4) For any z( € I, there exists a number L(z) such that
g9(z) — g(x0) = (x — m9) L(xo) for any = € I.

Theorem 5.7 (Jensen’s inequality) Let X be a random variable, g : R — R is a
Borel function which is convex on R and E(X) finite, then E(g(X)) > g(E(X)).

Proof: Use property (4), with 2y = E(X)
9(X) —g(E(X)) = (X — E(X))L(E(X)),
and then take expectations on both side. O

Remark 5.2 The condition on g in the theorem can be weakened to be “g is
convex on an interval I such that Py(I) =1".

We give below two simple but important applications of Jensen’s inequality.

Example 5.2 Let X be a non-negative random variable. Choose g(x) = % and

I =(0,00). Then E(+) > ﬁ

Example 5.3 Denote by v, = E(|X]|"). Let g(r) = log F|X|" = logv,, r > 0. Then
g(r) is a convex function of 7. Therefore, [v,]* is increasing as a function of , i.c.

1 1
E|X|<v:<vd < -

Proof: homework. O

Exercise 5.2 Let f(z,y) be a convex real function on the two-dimensional plane.
Show that f is convex if it has continuous second derivatives that satisfy

fi1 >0, f20 >0, firfor > [

Then show function f(z,y) = y? — 2zy is convex in each variable separately but not
convex on the plane.
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6 The Radon-Nikodym Derivative (Density Function)
6.1 Abstract Continuity and Probability Density Function

Given a triplet (2, F, u), where u is a measure on (€2, F) (it may not be a
probability measure), let f: Q — R™ = [0,00) and be measurable. We define a new

set function
= / Jdu,
A

for any A € F.

One may easily observe that

(1) P is a measure on (2, F).

Proof: Let A=) A;. To show P(A) =) P(A,), we write

/ FLadys = / Flss 4y

= /foAjdu = Z/fIAjdu => P(4))
j=1 Jj=1
The last equality holds by MCT. |

Here, f is called the Radon-Nikodym derivative of P with respect to p and write as

dP
f=—ordP = fdu
dp

(2) u(A) = 0 implies P(A) = 0.

Proof: homework. O
In particular if P is a probability measure ( [, fdu = 1), f is called probability
density function of P with respect to pu.

6.2 The Radon-Nikodym Theorem

Now we know if P(A) = [, fdu, then certainly u(A) = 0 implies P(A) = 0. But can
we go in the opposite direction? That is, given a probability P and a measure p
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such that p(A) = 0 implies P(A) = 0 for any A € F, is there an f such that
P(A) = [, fdu? The answer is yes as indicated by the Radon-Nikodym theorem.

Before going into the main theorem, we start with some terminologies.

Definition: Let x4 and v be two measures on (2, F). v is called absolutely
continuous with respect to p if and only if u(A) = 0 implies v(A) = 0 for any
A € F. In this case v is often called dominated by pu, denoted by v << p.

Definition: v and p are called mutually singular if there exists a set N € F such
that p(N) = 0,v(N°¢) = 0.

Remark 6.1 These two definitions can not both hold except for the trivial
measure.

Example 6.1 Consider the space (R*,B7). Let u* be a counting measure of
integers and P a probability measure of binomial distribution b(n,p). That is,

n!

P{ZB} = ] 'pan_x’x = 07 172a e, M.
x! !

(n—x)
Then
P <<y’

But how about the other way around, i.e. pu* << P? In fact, this is not true. Since
P({n+1}) =0, but p*({n+1}) = L.

Example 6.2 Let P° be a probability measure of a Poisson distribution, i.e.

AT

x!’

P'(z) =e x=0,1,2,--,

then PY << p* and p* << PY. Hence, P° and u are mutually absolutely continuous.

Example 6.3 Define P° as above and let ;1 = u7, be the Lebesgue measure. For
N={0,1,2,---} € B, P’(N°) =0 and pz(N) = 0 imply that P° and p;, are
mutually singular.

Theorem 6.1 (The Radon-Nikodym Theorem) Let p and v be two o— finite

measures on (2, F). v << p if and only if there exists a finite non-negative
measurable function f such that v(A) = fA fdp for any A € F. Also, f is uniquely
determined except possibly on a pu—null set.
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Proof: see Ash (1972, p.63-65). O

We now consider an important application of the theorem on the real line. Consider
(Q,F) = (R,B). Let v = Px be a probability measure induced by a random
variable and p = uy the Lebesgue measure. Suppose that Py << pp, then by the
R-N Theorem, there exists an f > 0 such that Px(B) = [, fdu.. Furthermore

xT

Fy(x) = Px(—o0,) = /  fdpy, e / " pwr,

In this case, we also say Px or F'is absolutely continuous with respect to puy and
f(z) is the probability density function of X.

Example 6.4 Let (Xi, -+, Xg) be a random vector on (RF, B*) and pf a
k—dimensional Lebesgue measure. Let Py << u¥ then

x1 T
F(xl,...’xk):/ / f(xlsz’...’xk)dml...dxk_

Example 6.5 Consider again (R,B). Let u* be a counting measure of integer and
Py a distribution for binomial b(n,p). As Px << p*, hence

Fa) = [ :Oﬂ:c)du*

by the R-N theorem, where

f(x) = :E!(;Lix)!pan_m? r=0,1,---,n
0 otherwise

is the probability density function of b(n, p), with respect to p*.

When the counting measure is considered, we call the random variable X a discrete
type. Another commonly used definition for a discrete random variable is as follows.

Definition: A random variable X is called discrete if and only if there is a
countable set B C R such that P(X € B) = 1.

Remark 6.2 That F'is absolutely continuous implies that F' is continuous.
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Proof:

/‘ Flt)dt = L/ f(t)dt = F(z 4 0)
since pur({x}) =0. O

The following example shows that the other direction usually is not true!

Example 6.6 Note that F(z,y) = min(z,y) on the square [0,1] x [0,1] is a
continuous function. But F' is not absolutely continuous with respect to ,u(L2). To see
this, notice that F(x,y) is the c.d.f for a random variable which uniformly
distributed on the diagonal segment of the unit square. Then the F'—measure for

the diagonal segment, a ,u(LZ)—null set, is nonzero.

We construct below a random variable which has a continuous distribution, but does
not have a density function. This example was given in Feller (V2 Section 1.11).

Example 6.7 Let Y, be mutually independent random variables assuming 1 and 0
with probability % Let X =3 77, Z—,‘j (think X be the gain of a gambler receiving
the amount of 3 x 47 if the k-th toss yields a head or 0 if the k-th toss yields a
tail). Hence,

Ilezl,thenX:% %
P(X<1i)= landP(XZ%):
be thecdfofX Hence, F(x

exceeding 2 5

therwise if Y7 = 0 then X < 3Zk o35 = 1. The
which implies that P(3 < X < 2) = 0 Let F(x

):%franyxé(z,z] andF( )hasnojump

)

We may further calculate that:

1 15 1

A 16

1 3 13 1
PY1=1Y, = - =PE<X< ==
(Y, 5 =0) . (4_ _1& :

1 3 1.1
PYi=0Y,=1)=-=—P(2<X<-)="=
(Vi =0Yo=1)=7 (=X=7=3
POYi=0,Yy = 0) =+ — P(X < =) = >

Peee 4 =767 " 0

=

0



Consider that

1 ore(s s
Flz)=<11 ze (3,3,

3 13 15

1 € (55 53]

Hence, F(z) has no jump exceeding 1.

Inductively, at the n—stage, we may show that F(z) has no jump exceeding 5. Let

13 1 3 13 15 1 3 n -3 4" -1
A = (=2 Sl I i R UTEDR s IR .
Hence L ) )
A =1
pr(An) =5+ 5+t o 5

But Px(A,) = P(X €A,)=PXe (2 +...+ P22, 5]) =0 and F(z) has

) qn 9 4n
no jump exceeding 5 5w Let n — 0o, So F'(x) is contlnuous

As A, - A=Ux2 A, Px(A) =0. But ug(A) = lim, 00 pr.(A,) = 1. So Px and pp,
are mutually singular. Hence, Py can not be absolutely continuous with respect to
w1z, or have a density function. |

In fact, F'(x) is a continuous function increasing from F(0) =1 to F'(1) =1 in such
a way that the intervals of constancy add up to length 1. Roughly speaking F'
increases only in a pug-null A°, which is like a Cantor set.

Cantor Set: The Cantor set is constructed as follows: from [0, 1] remove the open
middle third (3, g) from the remainder, a union of two closed intervals, remove the
two open middle thirds, (§,2) and (£, 9) The Cantor set is what remains when this
process is continued mﬁmtely It can be shown that the Cantor set is uncountable
but has (Lebesgue) measure 0.

6.3 Absolute Continuous Cumulative Distribution Function

The previous section stated that F'(x) is called an absolute continuous cumulative
distribution function for a random variable X if F'(z) can be written in a Lebesgue

integral form
= / f(y)dy,



where f(z) is a nonnegative real Borel function, called the probability density
function of X. If f is continuous, this integral is a Riemann integral. Since
F(z) = 1as z — oo, we have [~ f(¢)dt = 1.

Furthermore, if F'(x ) is absolutely continuous with respect to the probability density
function f(z), then ( ) exists a.e (with respect to ju) and dF(x) = f(x)

Let us consider a pair of random variables, (X7, X5). Assume its cumulative

distribution function F'(xi,z5) is absolutely continuous with respect to ,u(LQ). Then

by the R-N Theorem, there exists a finite (a.e) f(x1,22) > 0 such that

$1,SC2 / / f Y1, Y2 dﬂ

By convention, this Lebesgue integral can be written

X1 x9
/ / f (Y1, yo)dydyo.

Also, % = f(y1,y2) a.e (with respect to ,u(LQ)).

We next derive the marginal distribution for X;. As

Fl(xl) = X1 < (L’1> P(Xl < (L’l,Xg < OO)

“+o00
= / / f(y1, y2)dyadys = / 9(y1)dy,

where g(y;) f f(y1,y2)dya, hence, g(y) is the probability density function of
Xi.

Example 6.8 Consider a mixed distribution of Fi(x): N(0,1) << ur and
Fy(x) : b(n,p) << p*, such that F(z) = 1F(z) + 3 F>(x). Let
po = pr + p*, e pg(A) = pr(A) + p*(A), then pg is a measure too. One may show

F(z) << po.
In fact, po(B) = 0 implies pr(B) = 0 and p*(B) = 0. Hence Py (B) + P»(B) = 0.

Then from the N-R theorem, there eXists a probability density function f(x) of
F(x) with respect to po such that F(z) = [*_ f(y)dy. It turns out

fz) = 1(\/1276‘122]140 + (Z)qun_x[A)

62



where A ={0,1,2,--- ,n}. (homework: verify this.)

Exercise 6.1 If F'is an absolutely continuous distribution function, show

/_OOF(x+c)—F(a:)da::c

o0

for any ¢ € R.

7 Transformation of Random Variables

Our goal here is to find the distribution of functions of random variables. Let
X = (Xy, -, Xk) be a k-dimensional random vector. Suppose
g=1(g1,...,9) : R* — R!. Consider

Yi=9¢:(X),i=1,...,L
A question of particular interest is what the distribution of Y = (Y3,--- ,Y)) is.

Assume that X = (X, -, Xx) has a cumulative distribution function F(z) and a
probability density function f(x). To find the probability density function (or
cumulative distribution function ) of g(X), we use the definition of cumulative
distribution function, i.e.

Fy(y) = P(g(X) < y) = Px(g™"(—oc0.y)) = / IF ().

g (—o0y)

For illustration purposes, some typical cases are stratified below.

Case 1: X has a discrete distribution with probability density function fx(x) and
Y = g(X), where g is a Borel function R' — R. Here, [ is the dimension of X.

As X is discrete, S = {x : fx(x) > 0} is countable. Let S’ = ¢g(.S) and denote by
A, ={x € S,g9(x) =y}. Then for any y € S’

o ZmeAy fX(x)v (TS S/,
fr(y) = {07 yé s

The key step is [w: Y(w) =y] = [w: X(w) € 4,].
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Example 7.1 Calculate the distribution of the sum of two independent Poisson
random variables. Suppose that X = (Xj, X3) are independent Poisson random
variables with distribution parameters A;, Ao. Consider Y = ¢g(X) = X; + X,. So
here g : R* - R. Let N* ={1,2,--- ;}. Then S=NT x N* and §' = g(S) = N.
Hence, for any y € S’ = N*

AR Y
p= Y eniend X

xq! ! .
(x1,22)ENTXNT ! 2 y
T1t+x2=Y

where A = A\; + \o.

Case 2: X is absolutely continuous with probability density function fx(z) and
Y = g(X). Here, g is a discrete function, i.e. a function whose range is at most
countable.

Let S = {z, fx(z) > 0}. Suppose that S = ¢g(5) is a countable set, say {y1,ya, - - }.
Let S; ={z € S,9(z) =v;} = ¢ '({y;}) N'S. Then

fy(y) =PY =vy;) = /s fx(x)dr,i=1,2,---.

Example 7.2 Suppose that X = (X, Xy, X3) are independent identically
distribution with a common probability density function e ™, 0 < x < oo. Thus, the
probability density function of X is

—(z1+x2+3) R3+
e , on
:I; prng
fx(x) {O otherwise.

Now g(X) =Y = the rank of X;. Let S = {(x1,z9,23) : x; > 0,i = 1,2,3}. Then
Px(S) =1.

On 9, rank is well-defined 5" = ¢(S) = {1,2,3}. Then one may calculate the
distribution of Y on S’. For example,

—(z1+x2+T 1
P(Y = 2) = fy(2) — e, e (x1+zota3) g
r3<xr1<T2

Case 3:
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(i) X is absolutely continuous with a probability density function fx(z) and g is one
to one. Let S ={x: fx(z) > 0} and S’ = ¢(S). We further assume that g~'(y) has
a continuous first order derivative on S’. Then Y = ¢g(X) is also absolutely
continuous and has a cumulative function

Fy(t)=P(g(X) <t)= / s fx(z)dz

/ fx(g™( dg / fr(y

Therefore, fy(y) = fx (g_l(y))\dg:l—;(y)] is the probability density function of Y.

(ii) With the same set up as above, except that ¢ is not one to one on S — ', we
assume that: (a) there is a partition of S = ZZL:I S; such that g restricted to each .S,

is one to one onto a set S): g; : S one to one S]. g is restriction of ¢ to the domain of
S, " = UE S and S] need not be disjoint; (b) each g; ' has a continuous derivative
on S;. Then the probability density function of Y is

k e )
= 2 I xla W)=
Proof: Consider Fy(t) = P(g(X) <t). As A={x € S:g(x) <t} =>AS;, hence
_ /Afx(.r)da: = ; p Fx(@)dz

:E; [ s

i=

—Z [ st
-/ ny )97 () i(w)ldy.

Exercise 7.1 Let X ~ N(0,1) and g(x) = (z — 2)%. Find the probability density
function of g(x).
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Exercise 7.2 Let X and Y be independent and follow N(0,c?). Define random
variables R and © by X = Rcos(©) and Y = Rsin(©). Show R and © are

independent and find their density functions.

Case 4:

(i) X = (X4, Xy, -+, Xi) has a continuous cumulative distribution function Fy(z)
and a probability density function fx(z). Suppose g = (g1,...,9,) : R¥ — RP.
Consider Y; = ¢;(X),i =1,2,--- ,p, (I < k).

Assume that: (a) we can find k£ — p other functions, Y; = g;(z),j =p+1,--- , K,
such that, the function Y = g(X) = (¢1(X), -+, gx(X))T : R¥ — R* is one to one
on S — 5, where S and S’ are defined as before; (b) let the inverse function
denoted by h(y) = (hi(y),--- , hi(y))T and let

J() Ooh 1 Oy
y:_: e “ e cee |
Oy ow, .. oh

oY1 Oy

Assume that the partial derivatives of h; exists, continuous and J(y) doesn’t vanish
except possibly on a set of Lebesgue measure 0. Then the joint probability density
function of Y = (Y7, --- ,Y%) is

fr () = fx(hay), - he(y)]J (v)]

on S’. We can integrate out y,11,- -,y in fy(y) to get the probability density
function of Yy, -+, Y.
(ii) With the similar assumptions as before, instead of assuming g = (g1,...,gx) is

one to one on R¥ — R* we suppose that S is a finite disjoint union of S, i.e.

S = U1L=1 Sy, such that on each S, g : S; — 5] is one to one. Here, S’ = U S and
S/ need not be disjoint. Let h' be the inverse of g restricted to Sy, i.e. ' : S — S,
and h! o g(x) = x for any = € S]. Then the probability density function of

YV =g(X) = (q1(X),...,q(X)) is

Fr(w) =Y L) fx (B (), -+ b)) T ()]

Example 7.3 Let X, X5 be two independent random variables following N (0, 1).
Find the probability density function of Y; = %
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As Xj, X; are independent, the density function for X = (X7, X5) is
_i+a3

fx(x1,29) = 5=~ 2 on R?. We take S = R? — (-,0) (since Px(Xs=0) =0). Let

T
v = 91(1’17332) = ;,92 = 92(331,952) = X2.
2
Then S’ = g(S) = R? and
T1 = Y1Y2, T2 = Y2.

And
Jw) =7 ]
So on &, s
fr(yi,y2) = %€_W|yz|~
Hence,

> 1 y%y%-&-y% 1 1
frg —e 2 d e
fri (1) /Oo 5 ¢ |ya|dys Py

for y; € R, which is the probability density function of Cauchy distribution.

Note as both E(X ™) and F(X ™) are 400, the expectation of the random variable
following the Cauchy distribution doesn’t exist.

Example 7.4 Let X, X5, -+, X, be ii.d random variables with an absolutely
continuous cumulative distribution function F'(x) and a probability density function
f(z). Suppose that Y1 <Y, < --- <Y, are the order statistics of the X’s. That is,
Y1 = min(Xy, -+, X,,), Yo = second smallest of Xi,---,X,, and so on.

The space of X is S = R™ and the space of Y is ' = {y:y; <yo <---y,}. We can
exclude all equalities from S and S’ since the probability of any two X being equal

is 0. Then 8" ={y: v <yo2 <---uyn}. fx(x) =T, f(x:), Let Si,Ss,---,Sn be all
n! possible permutation of the ordinals of S/, S = Zil S;.

On S;, the map is
Y1 = Tiyy o 5 Yn = Ty,

67



where (i, ,4,) is a fixed permutation of (1,2,--- ,n) and ¢g* : S; — S’ is one to
one.
Y1 = Ty L1 = Y5
— : = |7 (y)| =1
Yk = Zi, Lk = Yjn
Since the determinant of n x n matrix whose columns are some permutation of the
of the columns of I, is 1 or -1,

ZHf ) —n'Hf Vi)

=1 1=1

for —oco <y; <yy < --- <y, <o0o. The last equality follows as on each set 5;,

H?:l f(%) = H?:l f (i)

Next to find the probability density function of Y3, -+, Y, (r < n), one may proceed
by integrating out y, 41, , ¥y, in fy(y) over the range y, < y,41 < -+ < y,. Note
that

yn dyn =1- F(yn—l)a

F(Yn-1))f (Yn-1)dyn—1

- / (1 = wudu = L= FGn=2))”
Fyn—2) 2 ’

/ynl
/.0

and so on. Hence,

f(y17"'ay7“ - 'nyz r))

for —co <y < --- <y < 00. O

Exercise 7.3 Suppose A, B, C' are positive, independent random variables with
distribution function F. Show the quadratic equation Az% + Bz + C = 0 has real
solutions with probability [ [ F(x?/4y)dF (z)dF (y).
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Other commonly used methods to determine the distribution of transformed
random variables include:

(1) Handling the cumulative distribution function first then obtaining the
probability density function.

Example 7.5 Find probability density function of ¥; = min(Xy,---, X,,). Note
that
1—Fy,(y)=Pr(Y1>y)=Pr(al X; > y)=(1 - F(y))".

Therefore, Fy,(y) =1 — (1 — F(y))". Hence,

Sn(y) =n[l = Fy)]" " f(y).

(2) Use of characteristic function or moment generating function.
(3) Use of Probability generating function.

(4) Identification of moments to those of a known distribution.

8 Conditional Distribution and Expectation
8.1 Conditional Distribution

Definition: Let (€2, F, P) be a probability space and let a pair of random variables,
(X,Y), have a cumulative distribution function F'(z,y). Denote by Px and Py the

probability measures induced by X and Y respectively. Let 28 be the Borel o—field
on R. We define the conditional distribution as

P(X"H(B1)NY Y(B,)) aet V(Bi, By)
P(X~1(By)) ~ Px(By)

P(Y € Bo|X € By) =

provided Px(B;) > 0.
For example, if By = {z} and Px({z}) > 0,

V({I}7 BQ)
Px({z})

The left side above also can be denoted as Py|x—(B>).

P(Y € By|X € {z}) =
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This definition can also be extended to accommodate when Px(B;) = 0. Again let
= {z} and suppose that Px({z}) = 0. Introduce By, = [x,x + €] so that
Px(By.) > 0 for any € > 0. So

V<Ble7 B2>

le

is well defined. Let ¢ — 0. Provided that the limit v(x, Bs) exists and is unique,
we call this limit Py|x—.(B2) = v(x, By).

Example 8.1 Let F(z,y) be absolutely continuous with a probability density
function f(z,y). Assume that f(z,y) is also continuous and that fx(z) is the
marginal probability density function for X. Let fx(z) > 0 on [zg, zo + h]. Tt follows

PV < ylX € e = Ll SOt
< € |Tg,xg + € = e
y
x )
— f—o as € — 0.
fX(ZEO)

Now formally, we can also write

J2 . flao, t)dt fy f(xo,t
[ flao, t)dt fX(SUO)

FY|X:mo<y) =

Here Fy|x—s,(y) is a distribution function with the probability density function

f(zo,y)

fY‘X:xo v) = fx (o) '

For two arbitrary sets B; and B, in B, recall that
V(B1,By) = P(X (B N Y 1(By)).
It is easy to show that

Theorem 8.1 Keep B fized, allow By to vary over B. Then V (-, By) is a finite
measure on (R,B) and V (-, By) << Px.
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Proof: Notice that V(R, By) = P(Y'(By)) < 1 is finite and V (-, By) is
non-negative.

In addition,
V(Y Bij.By) = ZBM )Nyt ZX (By;) NYY(By))
J

= ZP YBy)ny~t ZVBU,BQ

So, V(+, By) is a finite measure.

If Px(B;) =0, sois P(X~'(By)). Hence, V(By, By) =0 as
V(By, By) < P(X7Y(By)). -

Thus, by the R-N theorem, there exists a uniquely determined measurable function
g(x, By) > 0 such that

V(B, By) = /Bg(%Bz)dPX (8)
for any B € ‘B.
We next study this measurable function, g(x, By). One may show that
(1) 0 < g(x, By) <1, a.e (with respect to Px).

Proof: if possible, suppose g(z, Bs) > 1+ ¢ on By, Px(B;) > 0, so
V(By, By) > Px(Bj) which is impossible. O

(2) if B= {2z} and Px({z}) >0, V({z}, Bs) = g(z, By) Px({z}) so
V({$}7BQ)
)= T )

(3) Define Py|x—.(Bs2) to be g(x, By). Then Py|x—,(-) has all the properties of a
probability measure for almost all x, a.e( with respect to Px).

Proof: First, the nonnegativity of Py|x—,(-) is obvious.

Second, we show its regularity, i.e. Py|x—,(R) =1 a.e. In fact, notice that
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V(B,R) = Px(B) = [, dPx for any B € B. Using (8) where B, = R, we have

/PYX:x(R)dPX:/dPX.
B B

Hence, Py|x—(R) = 1, a.e(with respect to Px).

To prove countable additivity, we show Py |x—.(B2) = Z]Oil Py |x—z(Bsj) a.e (with
respect to Px) if By = Y 2, By;. We consider

V(B,By) = ZVBBQJ

-y / Py 1x—s(Ba;)dPy
j=1"78

:/B[Z Py|x=:(By;)]dPx,

where the last equality is by the MCT.

Again compare (8) and obtain that

Pyix—o(Bs) = ZPY|X —o(By;) a

One may notice that equation (8) is actually essential in the development of
acquiring the conditional probability of Y € B, given X, Py|x—,(B2). Now directly
starting from equation (8), we give below a much more abstract definition for the
conditional probability.

Definition: Given two random variables X, Y on the probability space (€2, F, P),
suppose a bivariate function, g(x, By), where z € R and B a Borel set in B,
satisfies (i) for any fixed Bs, g(x, Bs) is a Borel measurable function with respect to
x,i.e. g(X, By) is a random variable. (ii) for any fixed z, g(z,-) is a probability
measure on (R,B). If, for a fixed B, € B,

P(X€B,Y € By) = / o(z, By)dPy
B
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holds for any B € B, then g(z, Bs) is called the conditional probability of Y € By
given X = z, and the random variable g(X, Bs) is defined to be the conditional
probability of Y € B, given X, often denoted by Py|x(Bs).

8.2  Conditional Fxpectation

In Section 3.4, we introduced the cumulative distribution function
F(z) = Px(—00, ) to characterize a random variable X. Similarly, we may define
the conditional distribution function of Y given X = x to be

FY|X:a:(y) - PY\X:x(_Ooay)a
based on which we may further consider its conditional expectation.

Definition of Conditional Expectation: The conditional expectation of Y given
X =z is defined to be E(Y|X = z)= [, dey|X »(y), or if h(-) is a measurable
function on R, define E[h(Y)|X = z] fR Y)dFy|x—.(y). Let

g(x) = Elh(Y)|X = z]). Then define E[h(Y )\X]) g(X).

Notice that there is a subtle difference between E[h(Y)|X = z] and E[h(Y)|X].
Simply speaking, the former is a real value of a measurable function evaluated at x,
while the latter is a random variable. For instance, if E[h(Y)|X = z] = 22, then

Eh(Y)|X] = X?

Theorem 8.2
E(E(h(Y)|X)) = E(h(Y)).

Proof: First take h(-) to be an indicator function, i.e. h(y) = Ig(y) where B is a
Borel set. Then

EhY)] = PYeB)=P(XeRY €B)

— /R[PYX;U(B>]CZPX _/R/R(IB(Z/)dPYle)dPX
= Ex[E(h(Y)[X)].

Next, use simple functions 1 h(y)(nonnegative) and use the fact that
h(y) = h*(y) = h~(y). =
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If taking h(-) to be an identity function, we have
E(Y) = E(E(Y]X)) (9)

Exercise 8.1 Follow the proof of Theorem 8.2 and show that, for any Borel set B
on the real line,

E(I(X € BYY) = E(I(X € B)E(Y|X)). (10)

Using conditional expectation, we have an alternative way to define conditional
probability when Y, X are random variables and E(Y’) is finite. We first consider
nonnegative random variables and extend to general random variables easily.

Nonnegative Random Variable: We will use the R-N theorem to define the
conditional expectation for a nonnegative random variable.

Let Y be a nonnegative random variable with a finite expectation. Define a set
function v on (R,B) by v(B) = E[YIp(X)]. We show that v(-) is a finite measure
dominated by Px. Thus the conditions in the R-N theorem are satisfied and we may
define the resulting Radon-Nikodym derivative to be the conditional expectation.

To proceed we first show

Theorem 8.3 v(-) is a finite measure dominated by Px on (R,B).

Proof: Obviously v(R) = E(Y) is finite and v is non-negative. In addition,

o(Y By) = B(Y I 5,(X)) = B[Y_ YIn (X)) = 3 o(B))

J=1
where the last equality is by the MCT.

As Px(B) = 0 implies Pxy (B x R) = 0, hence

v(B) = / ylp(x)dPxy = / ydPxy = 0.
RXR BXxR

By the R-N theorem, there exists a non-negative, finite, measurable function
h(xz) : R — R, determined uniquely a.e (with respect to Px), such that

v(B) = / h(xz)dPx, for any B € 8.
B

74



We can thus define E(Y|X = x) = h(x), a measurable function of x (instead of y!).
Hence,

Bxr(YIa(X)) = [ B(Y|X = 2)dPx = ExlIn(X)E(Y|X)]

General Random Variable: If Y is any random variable with finite E(Y), let
Y=YT-Y . With E(Y'|X), E(Y"|X) defined, we readily define
E(Y|X)=EYT|X)—- E(Y"|X).

8.3 Abstract Conditional Expectation

We have defined the conditional expectation in terms of a conditional probability
function, and this is adequate as long as we only deal with a fixed pair of random
variables. In the later sections, we might be interested in stochastic processes or a
whole family of random variables. It turns out a more flexible definition can be
established independent of conditional distributions. That is, we may use identity
(10) to define E(Y|X = z) and E(Y|X).

Definition: Let X, Y be a pair of random variables on (2, F, P). If E(Y) is finite
and there exists a Borel measurable function g such that that

E(YVIa(X)) = [ g(e)iPs(a)
B
holds for any B € 8. Furthermore, if the integrand function g is unique with
respect to Py. Then we define E(Y|X = x) = g(x) and E(Y|X) = g(X).

From this definition, it is noticeable that the conditional expectation E(Y|X = x) of
Y given X = x is a finite measurable function of x, whose value at a point x is
denoted by E(Y|X = z) and E(Y|X) is defined in such a way that (10) holds for
any B € ‘B.

Exercise 8.2 If Y is a constant ¢ a.e. then prove E(Y|X = z) = c a.e. (with
respect to Px).

Exercise 8.3 Using the fact “if [, fdu < [, gdp for any B € B, where p is a
o—finite measure on R, then f < g a.e. (with respect to u),” prove that Y7 <Y, a.e.
implies E(Y1|X =) < E(Y2|X = ) a.e. (with respect to Px).
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The conditional expectation E(Y|X) has the following properties.

Property 8.1 E(Y|X = z) is a measurable function of x alone. Hence, E(Y|X) is
a random variable and Ex(E(Y|X)) = Ey(Y).

Property 8.2 Let ¢(Y) be a measurable function of Y, with finite expectation.
Then E(t(Y)|X = x) is well defined. In particular, we may redefine the conditional
probability of Y € Bs, given X, to be Py|x(By) = E[Ip,(Y)|X] for any Borel set B.

Property 8.3 One may extend to the case with a k— vector X = (zq, - ,zy),
v(B) = E[YI5(X)],B C RFso E(Y|X =) : R* — R is a measurable function of z.

Property 8.4 Conditional expectation has all the properties of expectation or
integral a.e (with respect to Px). In particular, (1) If Y > 0, the

E(Y]X) > 0 a.e (with respect to Px); (2)

EM|X) + E(Y3]X) = E(Y1 + Y3|X) a.e (with respect to Py).

Proof of (2): Consider for any B € B,
[ (BOIIX =) + B = 0))dPx
B

_ / BE(Yi|X = 2)dPx +/ E(Ys|X = 2)dPy
B B

= E(IB(X)Yl) + E(]B<X)Y2)
— BUs(X)(: + 13)).

The first and the third equalities are by linearity of integrals, while the second is
due to the definition of conditional expectation. Hence, again by definition,
E(Y1|X) + E(Ys|X) = E(Y) + Y3|X) a.e (with respect to Px). O

Property 8.5 If E(Y) is finite and E(Y ¢g(X)) is finite, then

EYg(X)|X =z) =g(x)E[Y|X = z] a.e (with respect to Py).

Proof: First, take g(z) = I¢(x) where C' € B. Then for any B € B, by definition,

BYVIc(X)Is(X)) = | B(VIc@)|X = 2)dPx
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But, we also have

E(YIe(X)I5(X)) = E(YIne(X)) = /B CBYIX = )Py = / Ie(x)E(Y|X = x)dPy.

So
EYIo( X)X =2)=1c(x)E(Y|X = x).

At the second step, we use a sequence of simple random variables to approximate a
non-negative random variable and generalize to general cases. O

Property 8.6 That X and Y are independent implies
E(Y|X) = E(Y) a.e (with respect to Px).

Property 8.7 Conditional variance, with all the following moments assumed finite,
var(Y|X) = E(Y?|X) - (E(Y]X))?,

is a measurable function of the random variable of X.

It then follows that

Ex(var(Y|X)) = E(Y?) — Ex(E(Y|X)?)
= var(Y)+ E(Y)? - ExE(Y|X)?
= var(Y) — (Bx(E(Y|X)?) — (ExE(Y|X))?)
= wvar(Y) —var(E(Y|X)).

Hence,
var(Y) = Ex(var(Y|X)) +var(E(Y|X)).

So far we have defined the conditional expectation for a pair of random variables. A
little more abstraction and generalization allow us to to define the conditional
expectation of an arbitrary variable Y with respect to an arbitrary o-field of sets.

Definition of Abstract Conditional Expectation: In an abstract probability
space (2, F, P), let Fy be an arbitrary o-field of sets contained in F. Let Y be a
random variable with finite expectation. A random variable U is called an abstract

7



conditional expectation of Y relative to Fy if and only if U is Fy-measurable (that is,
(U < a) € Fy for any real a) and

E(IgY) = E(IzU) or /

YdP = / UdpP
B B

holds for every B € Fy. In this case, we write U = E(Y|Fy).

Generally, the conditional expectation E(Y|X = x) is more intuitive than the
conditional expectation on a o-field. However, the latter is often easier to handle in
formal arguments and, hence, is almost universally preferred in the probability
literature. In fact, denoting by o(X) = {X~1(B) : B € B}, the o-field generated by
X, and letting Fy = o(X), the present definition concurs with (10). In other words,
the conditional expectation of E(Y|X) should be understood to be E(Y|o(X)).

By definition, if Fy = F, we may take E(Y|Fy) =Y if Fy is a trivial o-field,
containing only €2 and the empty set, then E(Y|Fy) = E(Y); if Y is itself Fy
measurable, then E(Y|Fy) =Y.

The existence of abstract conditional expectation can be proved by using the R-N
theorem. Additionally, one may have a general formula

E(YZ|Fy) = Z - E(Y|F)

for any Fp-measurable function Z. The following, an extension of Theorem (8.2)
lists another important property of the abstract conditional expectation.

Theorem 8.4 If Fy, F1 are two o-fields and Fo C F1. Then

E(Y|Fo) = E(E(Y|F1)|Fo)
and

E(Y|Fo) = E(E(Y|Fo)|F1).
Proof: Let Uy = E(Y|Fy) and Uy, = E(Y|Fy). It follows that

E(Y -Ip)=E(U, -Ip) = EUs - Ip)

for any B € Fy. By definition, if Fy C Fi, then E(Y|Fy) = E(E(Y|F1)|Fo)-
From U, is Fyp-measurable, hence, Fi-measurable, follows

E(Y|Fo) = E(E(Y|Fo)|F1). O
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Exercise 8.4 If Y is a constant ¢ a.e. then prove E(Y|Fy) = c a.e. (with respect to
P).

Exercise 8.5 If V) <Y, a.e, then E(Y:|Fy) < E(Y2|Fy) a.e. (with respect to P).

Parallel to the unconditional expectations, Jensen’s inequality holds for abstract
conditional expectations.

Theorem 8.5 (Jensen’s inequality) Let X be a random variable on (2, F, P) and
Fo a sub-o-algebra. If g : R — R is a Borel function which is convex on R and
E(X|Fy) is finite a.e (with respect to P), then E(g(X)|Fo) > g(E(X|Fo)) a.s with
respect to P.

8.4 Martingales

For a sequence of random variables X, Xs, ..., we may think of X,, as the price for
a stock at time t¢,,. Having observed the first n prices, the expected price for time
tpi is B(X,11]| Xy, ..., X,,). If this is equal to X,,, the market is ‘fair’ as the
expected gain at time t,,1 is F(X,11 — X,|X3,..., X,) =0. If

E(X,1| Xy, ..., X,) > X, the market is ‘favorable’; otherwise, if

E(Xpi1]X1, ..., Xn) < X, the market is ‘unfavorable’.

Study of this type of sequences motivates an important concept of martingale in
modern probability literature.

Definition: Let X;, X, ... be a sequence of random variables on a probability
space (2, F, P) and Fi, Fs, ... be a sequence of o-fields in F such that F; C Fiy1.
The sequence (X, F;),i = 1,2,... is called a martingale if and only if the following
conditions hold:
(i) X; is F;-measurable for i =1,2,....
(i) B(IX.]) < oc.
(i) E(Xi41|Fi) = X, a.e (with respect to P).

If condition (i) holds, we often say F; form a filtration and if condition (ii) is true,
we call X; adapted to F;. More explicitly speaking, if X; represents the total gain of
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a gambler after the i-th play and F; represents his information about the gam at
that time, condition (iv) means that his expected fortune after the next play is the
same as his present fortune. Thus a martingale represents a fair game. If “=" in
condition (iv) is changed to “ <7 (or “ > ") we call (X;, F;) a supermartingale (or

submartingale).

Exercise 8.6 If (X;, F;) is a martingale, show for any k£ < n, with probability 1,
E(X,|Fy) = Xi.

Exercise 8.7 If (X, F;) is a martingale, show for any positive integer k and n,

cov( Xk — Xpn, Xpn) = 0.

By Jensen’s inequality, convex functions of martingales are submartingales.

Theorem 8.6 If X1, X5, ... is a martingale on a probability space (2, F, P) with
respect to Fi C Fa, ..., a sequence of o-fields in F, and if g(-) is conver and g(X,,)
are integrable, then g(X1),9(X2), ... is a submartingale with respect to Fy, Fa, . . ..

Proof: As X,, = E(X,11|Fn) and so ¢(X,,) = g(E(X,41|Fn)). If g is convex, by
Jensen’s inequality, it follows that

9(Xn) = g(E(Xn1|Fn)) < E(g(Xni1)| Fn)acs.

A more interesting generalization of the discrete martingale is in the framework of
continuous processes, e.g. survival or death processes. Before proceeding further, we
first introduce the concept of a stochastic process.

Definition of Stochastic Process: On a common probability space (92, F, P), a
stochastic process is a family of random variables X = {X(¢) : t € I'} indexed by a
set I'.

In the definition, T" usually indexes time, and is often either {0,1,2...,} (discrete
process) or [0,00) (continuous process). The random functions X (-,w) : R* — R for
each w € ) are called the sample paths or trajectories of X. A process is called
right— or left— continuous or said to have limits from left or right if the sample
paths have such a property almost surely with respect to P.
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For a continuous process, i.e I' = [0, 00), the following is a rigorous formulation of
information accruing over time.

Definition of Filtration: On (2, F, P), a family of sub-o-fields {F;,t > 0} is
called a filtration if s <t implies F, C F;.

For example, we may define F; = 0{X(s) : 0 < s < t}, the smallest g-algebra with
respect to which each of the random variables X (s),0 < s <t is measurable. In
plain words, F; contains the information generated by the process X on [0, ].

Definition of Predictable Process: A process is called predictable with respect
to a o-field if it is measurable with respect to that o-field.

We are now able to define the continuous version of a martingale, which has
fundamental implications in many diverse areas such as stochastic differential
equations, queuing theory and survival analysis.

Definition: On a common probability space (Q, F, P), let M = {M(t) : t > 0} be a
right continuous stochastic process with left-hand limits and {F; : t > 0} a
filtration. M is called a martingale with respect to {F; : t > 0} if

(i) For each t, M(t) is measurable with respect to F;-measurable.
(i) E(|M(t)]) < oc.
(i) E(Myys|Fr) = M(s) a.s (with respect to P) for all s, > 0.
M is called a submartingale if (iii) is replace by E(M; s|F;) > M(s) a.s (with

respect to P). and a supermartingale if (iii) is replace by E(M|F:) < M(s) a.s
(with respect to P).

We conclude this section with a theorem which gives the theoretical foundation to
the survival analysis.

Doob-Meyer Decomposition Let N be a right-continuous nonnegative
submartingale with respect to a stochastic basis (2, F,{F; : t > 0}, P). Then there
exists, uniquely (with respect to P) a right-continuous martingale M and an
increasing right-continuous predictable process A such that E(A(t)) < oco) and

N(t) = M(t) + A(t)
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a.s for any ¢ > 0.

9 Product Measure, Iterated Integral and Convolution

Let (Qq, Fi, p1), (2, Fa, 2) be two measurable sample spaces. The Cartesian
product of these two spaces, €21 X {2, is the set of all ordered pairs (w1, ws), where
w; € Q;,1=1,2. Among all the sets in this product space, we consider rectangles
Ay x Ag, where A; € ;. With sets of this form, we wish to construct on 2; x {25 a
product measure p such that pu(A; x As) = p1(Ay)ua(Az). In the case where p; and
1o are Lebesgue measure on the real line, ;1 will be Lebesgue measure in the plane.
The main result is Fubini’s theorem, by which double integrals can be calculated as
iterated integrals.

9.1 Product Measure

Definition: Let (Qy, Fy, p1), (2, Fa, p2) be two sample spaces. The product space
) x €, is defined to be

Q= {(U}l,U)Q) Twp € Ql,UJQ € QQ}

A set of the form A; x Ay = {(wy,ws) 1 wy € Ay, we € Ao}, is called a rectangle
(measurable rectangle: F = {A; x Ay : Ay € Fi1, As € Fa}).

Remark 9.1 F is neither a field nor a o— field. The o—field generated by F,
o(F), is called the product o—field of F; and F» and is denoted by F; x Fs.

In this way, we can define the Borel o-field on a two-dimensional plane. Take

O =y =R, F1 = F; =*B. Then the Euclidean Borel o-field is defined to be
B2 =B x B, the smallest o— field generated by the Borel rectangle of the form
By X By ={(z,y) :x € B € B,y € By € B}. It, in fact, is also generated by
rectangles of the form {(x,y) :a < x < b,c < y < d}; see Chung (2001, p.38). We
are then able to define a Borel function on a two-dimensional plan.

Definition: If f: R* — R such that f~'(B) C B? for any B € B, we call f a Borel
function on R? — R.

Returning to introduce a measure on the product measurable space
(Ql X Qg,fl X f2)7 we deﬁne, on the class f, ,u(A1 X Ag) = ,ul(Al)/LQ(A2> If J251 and
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1o are o—finite, by the extension theorem, this can be extended uniquely to a
measure on F; X JFy and this extended measure is denoted by pq X puo.

Example 9.1 Suppose Q0 = Ry, F1 =B, 1 = pur, and Qs = Ry, Fo =B, o = iy,
as in the real space. Consider two components of an experiment:

(Q1, F1, P1) 33 (R,B) and (o, Fo, Py) 23 (R, B). Now given Y = f(X1, X5), what is
the domain of Y7 In fact, it is the product space

(Qy x Qg, F1 X Fo, 1 X pg = product measure), as (X, X») is a pair of independent
random variables (€, s) — R

9.2 Iterated Integral Theorem (Fubini’s Theorem)

Let Y = f(Xy, X3), where f(-,-) is a bivariate Borel function and X;, X5 are two
random variables. We first prove that Y is indeed a random variable.

Theorem 9.1 Suppose X; is a random variable with respect to (Q;, F;),1 = 1,2 and
f(-,+) is a bivariate Borel function. Then'Y = f(X1, X2) is a random variable with
respect to the product space (Qq X Qg, F1 X F3).

Proof: For any 2-dimensional set A C R?, we write
(Xth)ilA = {(wl,wg) : (Xl(w1)7X2<1U2)> € A)} Then

FX1, Xo) ™18 = (X1, X)L fH(B) € (X1, Xo) B2 C F x Fo.

Only the last inclusion needs a proof. If A = By X By, where By € B and By € B,
then
(X1, X5) HA) = X7Y(B)) x X5 14(By) € Fy x Fo.

Now the collection of sets A such that (X, X5)7*(A) € F; x F, form a o-field
(similar to the proof in Theorem (3.4). As this o-field contains all the Borel
rectangles, hence, it must contain B2. Therefore, each set in B2 belongs to this
collection, which completes the proof. O

Exercise 9.1 (Two-dimensional Jensen’s Inequality) Let f(z,y) be a real convex
Borel function on the plane and X, Y are two random variables with finite

expectations. Prove
fE(X),E(Y)) < E(f(X,Y)).
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Now we consider f,, (ws) : 22 — R defined by f,, (ws) = f(wy,ws). This is called
wi—section of the function f and it can be shown that it is measurable respect to
F3. We have the following integrals

/Q . flwr, wa)d(py X pa), (11)
/Q ( g S (w2)dpz)dpy (12)

and
/Q ( g Juo (w1)dp )dpus. (13)

Integral (11) is called the double integral, while integrals (12) and (13) iterated
integrals. Under some general conditions, these integrals exist and are equal, as
indicated by the following Fubini’s theorem for product measures.

Theorem 9.2 (Fubini’s Theorem or Iterated integrals theorem) Let (21, Fi, 1) and
(Qq, Fa, pt2) be two measure spaces where both g and pg are o—finite. If f(w, ws)
is an (Fy x Fz) measurable function (21,Qs) — R and one of the following
conditions holds (1) f >0 or (2) [q .o, fd(in X p2) is finite, then integrals (11),
(12) and (13) are equal.

Proof: see Billingsley (1995, p.234). O

A simple application of Fubini’s Theorem can give the following well-known result.

Theorem 9.3 Let X,Y be two independent random variables. Then
E(XY)=EX)E(Y).

Proof: Here, 91:R1—>PX, 92:R2—>Py andPXxPy:PXy. By
independence Fx Fy = Fxy. Hence,

E(XY) = / zyd(Px x Py) = / x / ydPydPy = E(Y)E(X).
R1XR2 Ry Ro
O

Products of more than two probability spaces can be treated similarly; for detailed
discussion, see Billingsley (1995, p.238).
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9.3  Convolution

Convolution, in addition to moment generating functions or characteristic functions
(which will be covered later). is an important technique in quantifying the finite
summation of independent random variables. To see this, we consider a pair of
independent random variables X and Y with distribution functions F' and G
respectively. Consider the probability of X + Y falling into B, a Borel set on the
real line, i.e. B € B. As we will show later,

P(X+Y € B) = /OO G(B — 2)dF(x).

—0o0

This motivates us to define convolution as follows.

Definition: Let F' and G be two univariate cumulative distribution functions.
Define a function on R — [0, 1] by

F+G(u) = / G(u — x)dF(z), for any u € R.

o0

The function F' * G is called the convolution of F with G.

Remark 9.2 F x (G itself is a proper cumulative distribution function .

Proof:

(Non-decreasing) If u < «’, then G(u — ) < G(u' — z) for any z. Hence,
[G(u—2x)dF < [G(u' — z)dF.

(Left continuous) Let u, T u we want to show F * G(u,) T F * G(u).

Let u, T u, then by left continuity of G, |G(u, — x)| <1 and G(u, — ) T G(uy).
Then by DCT,

lim G(u, — z)dF(z) = / G(u — z)dF(z)
Lastly, F' « G(00) = 1, F x G(—o0) = 0. O

Remark 9.3 If X and Y are two independent random variables with cumulative
distribution function F' and G, the F' % (G is the cumulative distribution function of
X+Y.
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Proof:

P(X+Y <u)= / Ipyyeu(z,y)d(F x G)
R1><R2

/R ( / Iycu—s) (y)dG)dF = /_ N G(u — z)dF
— P« Glu) )

But the converse is not necessarily true. That is, the fact that '« G may be the
cumulative distribution function of X + Y for random variables X,Y with
cumulative distribution function F and G doesn’t imply X and Y are independent.

Remark 9.4 (commutative) As F'* G(u) or G * F'(u) is the cumulative distribution
function for X +Y if X and Y are two random variables with cumulative
distribution function F' and G, therefore, F'x G(u) = G * F(u).

Remark 9.5 (associative)
(Fl * FQ) * F3 = F1 * (FQ * Fg)

If Xy, ---,X, are i.i.d with common cumulative distribution function F' and F™* is
F convoluted with itself n times, i.e. F™ = F"~D* « I then F™ is the cumulative
distribution function of > | X;.

In addition, the convolution * also has two important properties.
Property 9.1 If either F' or GG is continuous then F'* G is continuous.

Property 9.2 If either F or G is absolutely continuous (with respect to ) then
F % G is also absolutely continuous (with respect to uz).

Proof: Let G << pr and has g(y) = jﬂ—GL. Consider v(u) = [7_g(u — z)dF(x) and

let F' % G be denoted by V', we will show that V' << uy and v(u) is its probability
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density function.

/abv(u)dML = /ab(/_oo g(u — z)dF(x))dpug,

[e.e]

_ /Z(/abg(u _ 2)du)dF ()
- [ swanar

:/ﬁ«%hﬂw—Gm—x»ﬂ%w:VVO—V@»

o0

If this is true for arbitrary intervals, then V << pp and C‘i—‘i = v(u). Additionally, if

F << py and % = f(z), then v(u) = [7°_g(u— x)f(x)dx is called the convolution
of two densities of f and g. O

Example 9.2 Let X ~ b(n,p) and Y ~ U(0, 1) be two independent random
variables. Find the distribution function of U = X + Y.

We know that the cumulative distribution function for U(0, 1) is absolutely
continuous (with respect to uz) with density g(u) = Ijo1)(«). Then form the
convolution of densities of b(n,p) and U(0,1):

v(u) = /OO g(u—z)dF(x)

—00

= /On Ioay(u — x)dF ()

n
- [u] ;n—[u]
- p q I
<[U])

where [u] is the greatest integer < w.

Therefore, the probability density function of X + Y is
v(u) = ()pg" 0 <u<n+ 1. O

Example 9.3 Suppose that X, ---, X, are i.i.d random variables with the

common probability density function f(x) = e 0 < z < co. Find the cumulative
distribution function of U, = Y"1 | X;.
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We proceed by using induction. First consider when n = 2,
vl = [ flu-a)fa)ds
= / flu—2z)f(z)dr =e"u
0

Now assume for n =k — 1,

e—uuk—Q
Uk-_l(U) = m
Then for n = k,
ww) = [ ealu - 2)f(w)ds
u e_“(u _ .’L')k_2 e U /u o e—uuk—l
= ) gp=—= _ de — %
/0 i e T AR A o sy
for any u > 0. O

Exercise 9.2 Show that the family of normal distributions is closed with respect to
convolution in the sense that the convolution of any two in the family with arbitrary
parameters is another in the family with some parameters.

10 Characteristic Function
10.1 Complex Numbers

Complex numbers are abstract quantities that turn out to have many useful
applications. (Actually, the same can be said about real numbers.) A complex
number z is usually written in the form x = a + bi, where a and b are real numbers
called the real and imaginary parts, and 7 is an abstract quantity defined by the
property that i> = —1. The ‘“+’ in a + bi should be interpreted similar to the ‘+’ in
algebraic expressions such as x + exp(y). It does not have an interpretation in terms
of addition of (real) numbers, though, and complex numbers could just as easily be
thought of as being values (a, b) lying in a 2-dimensional vector space. The plane
formed by plotting a on the horizontal (real) axis and b on the vertical (imaginary)
axis is called the complex plane. It will be convenient to define 2 functions,
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R(a + bi) = a and S(a + bi) = b, which give the real and imaginary parts of a
complex number. Also, let C be the set of complex numbers.

Two complex numbers a + bi and ¢ + di are equal if a = ¢ and b = d. The basic
arithmetic operations are

(a+bi)+ (c+di) = (a+c)+ (b+ d)i,

(a+bi) — (c+di) = (a—c)+ (b—d)i,

(a+ bi)(c+ di) = (ac — bd) + (ad + be)i,
and
ac+bd  bc—ad .

+ 1,

c2 + d? c2 + d?
Note that the definition of multiplication can be obtained by multiplying term by
term, and using the definition > = —1. Also, the definition of division is such that
(c+di){(a+bi)/(c+di)} = a+bi,if ¢*+d?* > 0. Using the definition of
multiplication with d = 0,

(a+bi)/(c+di) = (® +d* #£0).

cla+ bi) = (ac) + (be)i.

From these definitions, the use of ‘+’ in a + bi is justified, since it satisfies the usual
properties of ‘+’ in manipulating algebraic formulas.

Exercise 10.1 Find an expression of the form a + bi for 1/i.

The complezx conjugate of a + bi is a + bi = a — bi. The norm (or absolute value or
modulus) of a complex number is

|a+bi| = {(a+bi)(a+bi)}'/? = (a® + )"/

In general, a norm on a vector space V is a function p : V' — R! such that (a)

p(v) >0 for all v € V| with p(v) = 0 if and only if v = 0, (b) p(av) = |a|p(v) for all
a € R' and v € V, and (c) p(v +w) < p(v) + p(w). Here properties (a) and (b) are
immediate from the definition, while property (c), called the triangle inequality, will
be established below. (In general it is assumed here that vector spaces are defined
over the field of real numbers.) It is easily verified directly from the definition that

max(|al, [b]) < |a + bi] < |a| + [b]. (14)
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Exercise 10.2 Show that the product of complex conjugates is the complex
conjugate of the product. That is, if z = a + bi and y = ¢ + di, then Ty = (7)(7).

If the point a + bi is plotted in complex the plane, then it can also be represented in
polar coordinates, using the standard transformation a = r cos(6) and b = rsin(6).
Then r = |a + bi|, 6 (the counter-clockwise angle in radians from the positive
horizontal axis) is given by 6 = + arccos(a/r), with the sign of 6 chosen so that both
cos(f) and sin(#) have the correct sign, and a + bi = r{cos(#) + isin(#)} (f can
equivalently be defined in terms of extended versions of the arcsin or arctan
functions). The angle 6 is called the argument of a + bi, which is often written
arg(a + bi). The angle is not unique, since adding any integer multiple of 27 gives
the same point in the complex plane. The value of 6 lying in (—m, 7] is called the
principal value. (This definition for the interval of the principal value is common,
but may not be universal.)

From the polar coordinate representation and the properties of the sine and cosine
functions, if a + bi = r1{cos(0;) + isin(6;)} and ¢+ di = ro{cos(fy) + isin(fy)}, then

(a+bi)(c+di) = mrira[cos(fy)cos(fy) — sin(6y)sin(fy) + i{cos(6;) sin(fz) + cos(6s) sin(6) }]
= rira{cos(0y + 02) + isin(6y + 69)}.

This is a polar coordinate representation with radius 77y and angle 6, + 6. Thus
|(a + bi)(c+ di)| = riry = |a + bil|c + di,
so the norm of a product is the product of the norms.

Exercise 10.3 If a + bi = r{cos(#) + isin(#)}, show
(a + bi)k = r*{cos(kf) + isin(k6)}.

An inner product (or scalar product) on a vector space V' is a function

(-,-): V x V — R!' such that (a) (v,v) > 0, with equality if and only if v = 0, (b)
(v,w) = (w,v), (c) {av,w) = afv,w) for all « € R, and (d)

(u+v,w) = (u,w) + (v,w). An inner product for complex numbers can be defined

(a+bi,c+di) = R{(a + bi)(c+ di)} = ac + bd. (15)

(If (a,b) and (¢, d) are points in R?, then the standard Euclidean inner product
gives the same formula.) This inner product is consistent with the definition of the

90



norm above, since
(a+bi,a+bi) = a® +b* = |a + bi|>.

To verify that (15) is an inner product, from the previous expression
(a+bi,a+bi) >0,
with equality only if a = b= 0. Also
(a+bi,c+di) =ac+bd =ca+db=(c+ di,a+ bi),

(a(a+ bi),c+ di) = (aa)c + (ab)d = a(ac + bd) = a{a + bi, c + di)

for any real o, and
((a+bi)+(e+fi), c+di) = (ate)c+(b+f)d = (act+bd)+(ec+ fd) = {a+bi, c+di)+{e+ fi, c+di).

It can be shown that any inner product satisfying properties (a) through (d) above
will satisfy the Cauchy-Schwarz inequality, so

|{a + bi, c + di)| < |a + bil|c+ di.
This is also easily verified here directly from the definition of the inner product.
The triangle inequality,
la + bi + ¢+ di| < |a + bi| + |c + di,

can be established using the Cauchy-Schwarz inequality. Setting x = a + bi and
y = ¢+ di, it follows that

e +yl =@ty z+y) = (g,2) +2@,y) + {yy) < |2 + 2yl + |y* = (=] + |y])*.
A sequence of complex numbers z,, = a, + b,¢ has a limit xq = ag + bot, if for any

€ > 0, there is a value N (€) such that |z, — x| < € for all n > N(e). Equivalently,
Xy — o if |z, — 20| — 0.

Theorem 10.1 lim,, ., x, = xg if and only if lim, ., a, = ag and lim,_,, b, = by.
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Proof: Suppose a,, — a¢ and b,, — by. From (14),

|(an + bnl> — (CL() + bol)| < |an — ao‘ + |bn — b0| — 0, SO (an + an) — (CL() + bol)
Conversely, from (14), |a, — ag| < |z, — x| and |b, — by| < |z, — 20, so if

|z, — zo| — 0, so must |a, — ag| and |b, — bl O

A set A C C of complex numbers is open if for every € A there is an €, > 0 such
that {y: |y — 2| < e} C A. A set B is closed if B¢ is open.

Exercise 10.4 Prove that if B is closed, then it contains all its limit points. That
is, show that if z1, x5, ... is a sequence of points with z,, € B for all n, and if
T, — xo, then zy € B.

A complex infinite series > 7 (an + byi) is absolutely convergent if

Yo lan +b,yi| < 0o, From (14), > |a, + byt| < oo if and only if both > |a,| < oo
and > |b,| < oco. If 37 (a, + by,i) is absolutely convergent, then its value is
defined to be lim, o0 Y v, (@ + byi). Clearly,

W{iiréoi(an+bni) :ian—l—iibn. (16)
n=1 n=1 n=1

It can be shown in general that the value of an absolutely convergent series is not
affected by arbitrary rearrangements of the terms in the series.

10.2  Complez-valued Functions

A complex-valued function f is a rule assigning a unique complex number to each
point in the function’s domain. Regardless of the domain of f, since every complex
number can be written in the form a + bz, it follows that f can be represented

fC) =9()+h()i, (17)

for real valued functions g(-) = R{f(-)} and h(-) = S{f(:)}. In particular, if the
domain of f is a subset of the complex numbers, then

fla+bi) = g(a,b) + h(a,b)i, (18)

for real valued functions g and h. Important properties of f, such as continuity and
differentiability, could be investigated through these real component functions.
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Generalizing familiar real functions to complex variables is nontrivial, and generally
not unique. Two examples follow.

Example 10.1 The exponential function. How should exp(z) be defined when

x = a + bi is complex? Two minimal criteria are first, the definition should reduce
to the standard exponential function for reals when b = 0, and second, familiar
properties of the exponential function, such as exp(z + y) = exp(z) exp(y), should
hold for complex arguments. If in fact we require exp(a + bi) = exp(a) exp(bi),
where exp(a) has the usual definition for real a, then the remaining problem is to
define exp(bi).

Another property that exp(a) has for real a is the Taylor series representation

o0

exp(a) = Z a® k.

k=0

Formally substituting bi for a, the resulting complex series is absolutely convergent
for all b. Thus this gives a well defined function, whose value is defined through
(16). Since the series is absolutely convergent, the terms may be rearranged. Thus

i(bz’)k Jk! = i i2RD? ) (2k) 4 i PRI /() 4 1)
= i(—nk”b%/(%)! +i i(—l)’“”b%“/(% +1)!

= cos(b) + isin(b),

from the Taylor series representations of the sine and cosine functions. This
suggests defining exp(ib) = cos(b) + isin(b), and

exp(a + ib) = exp(a){cos(b) + isin(b)}.

This is the standard definition. As the Taylor series representation suggests, with
this definition many of the properties of the real exp(-) function carry over to the
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complex setting. For example,

exp{(a + bi) + (c+ di)}
= exp{(a+c)+ (b+d)i}
= exp(a)exp(c){cos(b+d) +isin(b+d)}
exp(a) exp(c)[cos(b) cos(d) — sin(b) sin(d) + i{sin(b) cos(d) + cos(b) sin(d)}]
exp(a) exp(c){cos(b) + isin(b) }{cos(d) + isin(d)}
= exp(a+ bi) exp(c + id).

g

Example 10.2 Natural logarithms. The log(-) function is defined as the inverse of
exp(-). That is, log(a + bi) is the value ¢ + di such that exp(c + di) = a + bi.
Defining r and 6 to be the norm and argument of a + bi, so

a+ bi = r{cos(f) +isin()}, and noting that exp(c+ di) = exp(c){cos(d) + isin(d)},
gives that ¢ = log(r) and d = 0, so

log(a + bi) = log(|a + bi|) + i arg(a + bi) = log(a® + b*)/2 + i arccos{a/(a® + b2)1/2},

where again arg(x) is the argument of the complex value z. (Note that

+ arccos{a/(a® + b*)Y/?} = L arcsin{b/(a® + b*)'/?} = & tan"1(b/a), with the signs
in each case chosen to put the point in the proper quadrant, so there are several
alternate forms.) Since arg(z) is not unique, neither is the complex logarithm, but
the principal value of the logarithm can be defined as the value obtained from the
principal value of the arg(-) function. From this definition of the logarithm,
arbitrary powers of complex numbers can be defined by

(a4 b)) = exp{(c + di) log(a + bi)}.

In both examples, a formal definition of the function has been given of the form
(18). While it is true that complex functions can always be represented in this form,
it may not always be trivial to give explicit formulas.

Exercise 10.5 Using the complex form of the natural logarithm, give an expression
for the principal value of log(—a) for any positive real a.
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A complex function f : C — C is continuous at xq if for any € > 0 there is a 6. > 0
such that |f(z) — f(xo)| < € whenever |z — zo| < d.. Here | - | is again the complex
norm function.

Exercise 10.6 Show that if f(a + bi) = g(a,b) + h(a, b)i, then f is continuous at
To = ag + boi if and only if g and h (as functions from R? — R') are continuous at

(ao, bo)

Clearly if f is continuous at z, then f(x,) — f(zo) whenever x,, — xy. The
converse is also true, as given in the next exercise.

Exercise 10.7 Show that if f(z,) — f(x¢) for every sequence =, — ¢, then f is
continuous at xg.

A continuous limit can also be defined for complex functions. lim,_,,, f(z) = fy if
for any € > 0, there is a §. > 0 such that |f(z) — fo| < € for | — x| < d.. If f is
continuous at zg, then lim, ., f(x) = f(xo).

The derivative of a complex function f at x can be defined by
F'(x) = lm{f(x + 2) — f(2)}/2, (19)

if the limit exists. Here z — 0 in the set of complex numbers, and the division by z
is a complex division. Because z = ¢ + di is two-dimensional, there are many paths
by which z can approach 0. For the derivative to exist, the above limit must exist
and give the same value along any such path.

A function f is analytic (or holomorphic or regular) at x, if it is defined and is
differentiable at every point in some neighborhood of .

Suppose f(a + bi) = g(a,b) + h(a,b)i. Representing z = ¢ + di, consider taking the
limit in (19) by first taking the limit as d — 0, and then the limit as ¢ — 0. If g and
h are continuous and have partial derivatives, then

, gla+c,b+d)+h(a+c,b+d)i—gla,b) —h(a,b)i  gla+c,b)+ h(a+cb)i—g(a,b) — h(a,b)
a0 c+di B c
and

g 20+ 00) 4 hla+ e b)i = g(ah) = hab)i_ Dgla) | Ohad),

-0 c Ja Oa
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Similarly, taking lim, ,q first, and then lim,_,q, gives

0g(a,b)  Oh(a,b)
oy T oy

since 1/i = —i. If the derivative of f exists at a + bi, then (20) and (21) must be
equal, since they are limits as z — 0 along two different paths. These expressions
are equal if

(21)

dg(a,b)  Oh(a,b) dg(a,b)  Oh(a,b)
o o ™ T T
These relationships are known as the Cauchy-Riemann equations. If these four
partial derivatives are continuous at (a,b) and satisfy (22), then it can be shown

that f is analytic at a + bi, and in particular, f is differentiable, and the derivative
is given by either of (20) or (21).

(22)

Example 10.3 For f(a + bi) = exp(a + bi), g(a,b) = exp(a) cos(b) and
h(a,b) = exp(a)sin(b). Thus

—89((92’ b _ exp(a) cos(b), 89(;(: b __ exp(a) sin(b), (9héc;, b _ exp(a) sin(b),
and Oh(a, b)
ab’ = exp(a) cos(b),

so (22) is satisfied, and from (20), the derivative of exp(z) at © = a + bi is
exp(a) cos(b) + exp(a) sin(b)i = exp(a + bi). Thus the exponential function is its own
derivative, just as it is for real numbers. O

Exercise 10.8 Show that the principal value of log(z) is differentiable for z # 0
and —7 < arg(x) < m, with dlog(x)/dz = 1/z.

It can be shown that usual properties of derivatives, such as formulas for derivatives
of products and the chain rule for differentiating composite functions, apply to
derivatives of complex functions (at points where they are differentiable).

10.3 Measurability and Integration

Recall that the o-field of Borel sets in R! (or RF) is the o-field generated by the
open sets; that is, the smallest o-field containing the open sets. Since we have a
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well-defined system of open sets for complex numbers, we can define a o-field of
measurable sets in a similar way. Let B, be the smallest o-field containing the open
sets in C. (This is not the only useful definition of measurable complex sets. Recall
in particular that the Lebesgue measurable sets in real spaces is a larger collection
than that generated by the open sets.)

Let F be a o-field of measurable subsets of a space 2. A function f:Q — C is
measurable with respect to F if the pre-image of any measurable complex set is in
F. That is, f is measurable if f~1(A) ={w e Q: f(w) € A} € F for every
measurable A C C.

As is the case in real Euclidean spaces, the o-field B, generated by the open sets can
be generated by various other collections of sets. In particular, B, is generated by
the collection of open rectangles of the form

A ={a+bi:r <a<ryrs<b<rg}.

In fact, any open set can be expressed as a countable union of such sets (this is
related to the fact that the set of rational numbers is everywhere dense, so only
rectangles with rational vertices need to be considered, and the set of rational
numbers is countable). For f: Q — C, setting g = R(f) and h = J(f), clearly

f(w) =g(w)+ h(w)i € A, if and only if r| < g(w) < 19 and r3 < h(w) < ry. Thus
FHA) =g H{(r1,m2)} N A= {(rs,r4)}. Since the collection of open rectangles of
the form A, generates B., f is measurable if f~(A,) € F for all such A,. This is
equivalent to ¢g~'(I,) € F and h™'(I,) € F for all open intervals I, = (ry,73), which
is equivalent to the Borel measurability of g and h (see eg Theorem 13.1 (i),
Billingsley, 1995). Thus a complex valued function f is measurable if and only if the
two real valued functions g(-) = R(f(-)) and A(-) = I(f(:)) are measurable.

With concepts of measurability defined, it would be possible to directly build up a
general theory of integration for complex valued functions similar to that for real
valued functions. However, the representation (17) provides a simpler approach.
Suppose (€2, F, P) is a probability space, and that f: Q — C is a measurable
complex valued function. Then f(w) = g(w) + h(w)i for some real valued measurable
functions g, h. As with real valued functions (also called random variables), f
induces a probability measure on C. That is, P(f(w) € A) = P(w € f~(A)) for
measurable A. The integral of f with respect to the measure P is defined to be

[ f@1dp@) = [ gw)aPw) +i [ hw)dpe).
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f is defined to be integrable if both g and h are; that is, if [ |g|dP < oo and
[ |h|dP < co. Since
max{|g|, |h|} < [f] < lg] + |h|

(by (14)), f is integrable if [ |f|dP < oo, and integrability of f implies integrability

of g and h. Also,
‘/fdp‘ g/]f\dP. (23)

To see that this is true, first note that if g and h are simple functions (step
functions) taking values g; and h; on a measurable partition of €2, this result follows
directly from the triangle inequality, since then [ fdP =" ; @j(g; + hyi) for some
constants a; > 0 (the «; are the probabilities of the corresponding components of
the partition), and | Y a;(g; + hyi)| < 37, ajlg; + hyil = [ [f|dP. Since the
integrals in the general case are limits of sequences of integrals of simple functions,
(23) must hold in general, too.

Since the complex integral is defined in terms of two real integrals, the usual
properties of integration, such as [(fi + fo) dP = [ fidP + [ fodP, are immediate.
The convergence theorems of Lebesgue integration also can be generalized to
complex functions by applying them separately to the real and imaginary parts of f.

In the special case where = R! and P is absolutely continuous with respect to
Lebesgue measure, with density p(-), it follows that

/f(u) dP(u) = /g(’u)p(u) du+i/h(u)p(u) du.

10.4 Characteristic Functions

The characteristic function of a real valued random variable X with distribution P is

o(t) = E{exp(itX)} = /exp(z'tu) dP(u) = /cos(tu) dP(u) +i/sin(tu) dP(u).
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Since [ |cos(tu)|dP(u) <1 and [ |sin(tu)|dP(u) < 1, exp(itu) is integrable, and
the characteristic function always exists. Also,

ot +1) = 6(0)] < [ Jexpita)||expline) — 1]dP(a)
— [feosth) = 1+ sn(ha)?) 2 aP(a)
— /{2 — 2cos(hx)}/2dP(x),

and this last expression — 0 as h — 0, so ¢(t) is uniformly continuous in ¢. Also
note ¢(0) =1, and |¢(t)| < [ |exp(itz)| dP(x) =1 for all ¢, by (23).

Example 10.4 Suppose X has support on the countable set {zq,xo, ...}, with
P(X =xzj) = p;. Then

o(t) = Z cos(tx;)p; +1 Z sin(tx;)p;,
=1 =1

which can be written more compactly as ), exp(itz;)p; (rearrangement of the
terms in the series can be justified by the fact that Zj | exp(itz;)p;| < 00). O

Example 10.5 If X ~ U(0, 1), then

o(t) = /0 cos(tu) du+ z'/o sin(tu) du = t~*[sin(t) —i{cos(t) — 1}] = i{1 —exp(it)}/t.

|

For symmetric distributions with P(X < —z) = P(X > z) for all z, the
contributions from the sine term at positive and negative x cancel out, and

o(t) = /Cos(tu) dP(u),
and hence is real.

In general, evaluating the trigonometric integrals in the definition of the
characteristic function is not trivial. Often it is better to approach the problem
through the theory of line integration in the complex plain. These techniques are
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beyond the scope of this course, however. The following result provides a somewhat
indirect means of obtaining the characteristic function of many common
distributions.

Theorem 10.2 Let ¢(t) be the characteristic function of the distribution P. If
= [exp(tu) dP(u) < oo for all t in a neighborhood of 0, then ¢(t) = (it),
where 1 (it) is defined as given in the proof below.

Proof: Since ¥ (t) = ff exp(tu) dP(u) 4+ [, exp(tu) dP(u) both integrals must be
finite for ¢(¢) to be finite, and since this must hold for both positive and negative
values of ¢ in a neighborhood of 0, [ exp(|tu|) dP(u) < oo for ¢ in some
neighborhood of 0. Thus by (47),

k k
00 > /exp |tu]) dP(u /Z |tu] Z/ \tu!

so by (48),

t):/g%dlj(u):;/%d]?(u):;%/ukdp(u)

Then 1 (it) is defined by substituting it for ¢ in the final series in this expression.
From the previous argument, this series is absolutely convergent for ¢ in a
neighborhood of 0, so this function is well defined there, and

Y(it) = Z% / u® dP(u)

k=0
_ i(_l)m_t% / ap(u) + i 31 / W2 dP(u)
(2k)! pr (2k + 1)!
- / Z peer b ap i [ Yoo ar)
prd (2k + 1)!
= /cos(tu) dP(u) +i/sin(tu) dP(u)
= o(t),
again using (48), the fact that the series are absolutely convergent, and from the
Taylor series representations of the sine and cosine functions. O
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Example 10.6 For the standard normal distribution, ¢ (t) = exp(¢?/2). Thus
¢(t) = exp(—t?/2).

Example 10.7 For the gamma distribution with shape o and scale=1,

Y(t) = [a* texp{—(1 — t)a}dz/T'(a) = (1 — ) (for t < 1). Thus

o(t) = (1 —it) ™ = exp{—alog(l —it)}.

More generally, if ¢ () involves functions that do not have complex analogs defined,
then it may be necessary to work directly with the series representation.

IfY =o0X + p, then

by (1) = / expit(ou-+pi)} dPy (u) = exp(itn) / expfi(to)u} dPx (u) = exp(iti)éx (ot).

10.5 Conwvolutions

One of the most important properties of characteristic functions is that if X and Y
are independent, then ¢x vy (t) = ¢x(t)dy (t); that is, the characteristic function of
the sum of independent random variables is the product of their characteristic
functions. This follows because

ox(t)py(t) = [E{cos(tX)} + iE{sin(tX)}][E{cos(tY)} + iE{sin(tY)}]
= E{cos(tX)}E{cos(tY)} — E{sin(tX) }E{sin(tY") } + ¢[E{cos(tX) }E{sin(tY)}
+E{sin(tX) }E{cos(tY)}]
= E{cos(tX)cos(tY) — sin(¢tX) sin(tY') } + i[E{cos(tX) sin(tY") + sin(tX) cos(tY) }|
= E{cos(tX +tY)} +iE{sin(tX +tY)}
Px 4y (t). (24)

Of course, this extends to the sum of any number independent random variables.

10.6 Taylor Series and Derivatives

The convolution formula above makes it easy to give the characteristic function for
a sum of independent random variables. To study the asymptotic properties of such
sums, formulas for series expansions, with error bounds, are useful.
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To derive appropriate formulas, we can start with the expansions for the sine and
cosine functions. Since d* cos(z)/dx*|,—o = cos(km/2), Taylor’s theorem gives

1 ©d"t cos(t
cos(x Zcos k7r/2 k' — dt%?()(x —t)"dt.

By separately considering positive and negative z, it is easily verified that in either

case,
T d"t cos(t) = |z
— 2 (x—t)"dt| < —t)V"dt = ——.
/0 oo (1 _/0 (ol — oy e = L

Also, using integration by parts,

T dn+1 t :1: dn "
/0 dt:i?( )‘(37 —t)" dt‘ = '—cos(mr/Q):c" + n/O %()(x — t)”ﬂ dt‘ < 2[z|".
Thus
|x|n+1 2|:L,|n
cos(x Zcos km/2) u <( TOU a )

Similarly,

sin(x Z sin k7r/2)—‘

k=0

|x|n+1 2‘1"”)

<
i ((n+ D' nl

Since i* = cos(km/2) + isin(kw/2), where i = 1 by definition, combining the
previous 2 results gives that

" (iz)*
exp(ix) — Z ( k‘)

k=0

cos(x) + isin(z Zcos k:7r/2 zZsm k:7r/2 1

|:L,|n+1 2|x|n

= 2mm<<n+1>!’ ol ) (25)

Using this expression, it then follows that if ¢(¢) is the characteristic function of X,

and E(|X|") < oo, then
n+1 n
< 2E < min £X] : 21t X1 . (26)
(n+1)!" n!

'cb(t) -3 W
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(With a bit more work, it can be shown that the leading factor of 2 on the error
bound is not needed, but that is not important in most applications.) Note that the
right hand side of (26) is finite.

Suppose E(|X|) < oo. Consider ¢/(0). From the definitions,

/ o . ¢(h>_¢(0)
A
xp(thu) — 1
~ lim %dp(u)

By (25), [{exp(ihu) — 1}/h| < 2|u|, and by assumption, [ |u|dP(u) < co. Thus by
the dominated convergence theorem, the limit may be taken inside the integral, and
then

cos(hu) +isin(hu) —1

lim M — lim = ju,

h—0 h h—0 h

¢'(0) = i/udP(u) = E(X).

Using an induction argument, it can be shown that if E(|X|") < oo, then d"¢(t)/dt"
exists on a neighborhood of 0, and

A (0) /dt" = B(X™). (27)

It can also be shown that if d"¢(t)/dt" exists on a neighborhood of 0, and n is even,
then E(X™) < oo, so the nth moment exists. For odd n this can fail, since there are
distributions where (for example) ¢'(0) exists, but E(|X|) = co. What happens in
this case is that lim,_,~ ffa udP(u) exists, but that is not the same as existence of
E(X).

10.7 Cumulants

The cumulant generating function of a random variable X with characteristic
function ¢(t) is

k(t) = log o(t).
If E(|] X)) < oo, the jth cumulant of X is defined to be

kj =i dk(0)/dt.
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From Exercise 10.8, the chain rule, (27), and the fact that ¢(0) = 1,
1 = Vi (0) dt = 716/(0)/6(0) = B(X),

and

Ry = —d(0)/d* = —¢(0)/6(0) + {¢/(0)/6(0)}? = Var(X).

Exercise 10.9 Suppose E(X*) < co. Show k3 = E(X — u)? and
kg = E(X — p)* — 3Var(X)?, where u = E(X).

Example 10.8 If X ~ N(0,1), then ¢(t) = exp(—t?/2). Thus (t) = —t?/2, so
ko =1, and k; = 0 for j # 2.

In general, if X has characteristic function ¢(¢) and cumulant generating function
k(t), with cumulants k1, Ko, ..., and Y = bX + a, then ¢y (t) = ¢(bt) exp(ita), so
Ry (t) = ita + k(bt). The first cumulant of YV is therefore a + bxq, and the jth
cumulant of Y is ¥ x; for j > 2.

10.8 Uniqueness and Inversion

One of the most important properties of characteristic functions is that they
uniquely determine the corresponding probability distribution. That is, different
probability distributions will always have different characteristic functions. (It is
interesting to note, though, that different distributions can have characteristic
functions that agree for ¢ on some interval, but not everywhere; see Chung, 1974,
Theorem 6.5.5.) This uniqueness property is a consequence of Theorem 10.3, below,
which indicates how to recover the distribution from the characteristic function.
This theorem is usually called the inversion theorem.

First 2 preliminary results, needed in the proof, will be established. The first is that
if T'> 0 and c is real, then

/T cos(te)/tdt = 0. (28)

This follows because from the change of variables u = —t, it follows that
[0 cos(te)/t dt = — fOT cos(uc)/udu. The second result is that

T

lim sin(tc)/t dt = sign(c)m/2, (29)

T—o0 0
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where sign(c) = —1,0,+1 for ¢ < 0, ¢ =0, and ¢ > 0. To see this, first note that the
case ¢ = 0 is clear. If ¢ < 0, then since sin(tc) = —sin(—tc), it follows that
fOT sin(tc)/tdt = — fOT sin(t|c|)/t dt. Thus it remains to show that

T
lim sin(te)/t dt = 7/2,

T—o00 0

for ¢ > 0. From the change of variables u = ct,
T Tc

lim sin(te)/tdt = lim sin(t)/t dt

T—o0 0 T—o00 0

Tc [o8)
= lim sin(t)/ exp(—tu) du dt
0

T—o00 0

00 Tc
= lim/ / sin(t) exp(—tu) dt du
T—oo [q 0

= lim /Oo {—usin(t) — cos(t)} exp(—tu) | .

T— J, 14 u? -0
/°° du Y /°° exp(—Tcu){usin(Tc) + cos(Tc)} du
= — lim
o 1+ u?2  Tooo 0 1+ u?

= tan '(o0) — tan"'(0) — 0
= m/2.

(Several steps in this argument require verification of regularity conditions. These
are left as exercises.)

Theorem 10.3 Let F(x ) P(X <), and let ¢(t) be the characteristic function of
this distribution. If P(X =a) = ( =0) =0, then

o(t) dt. (30)

T o »
F(b)— F(a) = zlim ZL/ exp(—ita) - exp(—ith)

Proof: By Fubini’s Theorem, which can be applied because the integrand is

105



bounded,

T exp(—ita) — exp(—itb)
/_T 2mit o(t) dt
- / exp(—zta)Q;l:Xp(—th) /00 exp(itu) dF'(u) dt
_ / / exp{it(u — a)}Q;ZteXp{zt( —o} 4P ()
_ / / cos{t(u—a }27:itcos{t(u —-b)} N Z,sin{t(u - a)}Z;itsin{t(u —b)} dt dF (1)

_ % /oo / sin{t(u —a)} ; sin{t(u —0)} dt dF (u)
_ %/_‘:/0 sin{t(u —a)} ; sin{t(u—0)} gt dF (),

from (28), and the fact that sin(t)/t = sin(—t)/(—t). Taking the limit as 7" — oo,
using the dominated convergence theorem to bring the limit inside the integral
(which can be justified by showing that the integrand is bounded), and using (29),
it follows that

711_1)20 % /_T exp(—ita) Z—t exp(—itb)¢(t) 0
_ / Tlggo/ sin{t(u —a)} ; sin{t(u —0)} it dF (u)

= % /OO [sign(u — a)7/2 — sign(u — b)w /2| dF(u)

—00

_ l/m {0 < u<b)+ [(u=a)/2+ [(u=b)/2} dF (u)

T J -0

_ / " aF ()

= F(b) = Fa),
since P(X =a) =P(X =0b) =0. O

Corollary 1. If ¢x(t) = ¢y(t) for all t, then X and Y have the same distribution.
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Proof: By the previous theorem, the characteristic function uniquely determines
P(a < X < b) for all a,b with P(X = a) = P(X =b) =0. There are at most a
countable number of points ¢; with P(X = ¢;) > 0 (see eg Billingsley, 1995,
Theorem 10.2). For any mass point ¢;, P(X = ¢;) = lims_o P(c; +6 > X > ¢; — 0)
(the limit must exist because P(c¢; +0 > X > ¢; — J) is monotone and bounded as a
function of ¢). Similarly, P(Y = ¢;) = lims_,o P(¢; +60 > Y > ¢; — d). Since
P(cj4+0>X>c¢;—0)=P(c; +5 >Y > c¢; — §) except for at most a countable
number of 9,

P(X =¢;))—P(Y =¢j) :(lsi_r%{P(cj+5>X >c;—0)—Pcj+6>Y >¢;—6)} =0.

Thus all mass points must have the same mass, and the two distributions must be
the same. |

Corollary 2. If [* |¢(t)|dt < oo, then F is absolutely continuous with density

fla) = — / " expl—ita)o(t) dt. (31)

—00
Proof: Since |cos(z) — 1| < |z| and |sin(z)| < |z,
|exp(iz) — 1| < |cos(z) — 1| + |isin(z)| < 2|x|. Thus

_ |exp{—it(b—a)} — 1|
t]

exp(—ith) — exp(—ita)
1t

<2|b—al.

Applying the previous Theorem,

™

F(b) - Fla) < b‘a/_m () dt — 0

e}

as (b —a) — 0, so there can be no mass points, and the distribution is absolutely
continuous. Also,

lim F(x+h) — F(x) — lim 1 / exp(—itx) — gxp{—zt(x +h)}
h—0 h h—0 27 | ith

(t) dt

since the limit can be taken inside the integral, because the integrand is dominated
by 2|¢(t)| (for h small), which by assumption is integrable, and

lim 1- exlp(—z'th) _1- cos(—th) — isin(—th) _1,

h—0 ith ith
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since {1 — cos(z)}/z — 0 and sin(z)/x — 1 as x — 0. Thus f(z) = F'(x) exists and
has the required form. O

Corollary 3. The cumulative distribution function is given by

F(z) = L + L lim TT(t,:L’) dt = % 1 lim /T Stexp(Zit2)o(t)) dt, (32)

2 2 T—oo 0 T T—o0 t

at points x where F' is continuous, where
r(t ) = exp(itz)p(—t) .—texp(—itx)gb(t)'
i
Proof (outline): First note that ¥(x) = (x —7)/(2i) for any complex z. The
equivalence of the two integrals in (32) follows from this, and because ¢(t) = ¢(—t)
and exp(—itx) = exp(itz) (see also Exercise 10.2).

Now suppose x > 0 (the case x < 0 requires only minor changes in notation), and x
and 0 are continuity points of F. (A similar argument can be used when 0 is a mass
point, taking into account that (30) gives the average of the right and left hand
limits of F' at mass points a or b.) Set b = 2 and a = 0 in (30), and add this to the
formula obtained from (30) by making the change of variables ¢ = —t in the integral.
This gives

2 F(z) — FO)} = lim i/ r(t, 7) df — lim i/ r(£,0) dt.

T—o0 27T T T—o0 27T T

Also, since \s{exp(—itx) (t)}/t is always an even function of ¢,
f (txdt—Zfo (t,z)dt. Thus

F(z) = L lim Tr(t) dt + F(0) — lim L /Tr(t, 0) dt. (33)

27‘[‘ T—o0 0 T—o0 27T
Now r(t,0) = —2 [ sin(tz)/t dF(x), and similar to the derivation of (30),

1 (7 (t
lim —/ r(t,0)dt = ——/ / SIn) e ()
T—o0 277 0 T—)oo

— 5 [ sim @) aF@)

_ —% {/OoodF(x)—/_(;dF(x)}

= —{1-F(0) - F(0) + 0}/2
— {2F(0) —1}/2.
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Substituting this expression in (33) completes the proof. O

The inversion formula (30) is expressed in terms of a limit because generally the
integrand is not integrable over the entire real line. The limit always exists, though,
provided ¢(t) is the characteristic function of a probability distribution or
sub-distribution.

Example 10.9 From Example 10.5, the characteristic function of the U(0, 1)
distribution is ¢(t) = i{1 — exp(it)}/t. Using (30) with @ = 0 and b = x gives that
the cumulative distribution function is

1 [T 1—exp(—itx) 1 —exp(it
F(z) = lim — exp(—ite) 1 = exp(it) dt
T—o00 27T -T t t
— lim 1 /T 1 — cos(t) — cos(—tx) + cos(t — tx) gt
T—o00 270 _T 12

- %{1 —x sign(—2z) — (1 — z) sign(l — z)}
= 2I(0<z<1)+I(z>1),

since the sine terms implicit in the first line integrate to 0, and

T cos(bt )| " T psin(bt
/ cos(bt) dt = _oos(et)|T / SH;( ) dt — —mb sign (b),
-T

2 t i

as T — oo. |

The inversion theorem provides an indirect way of deriving characteristic functions
for some distributions, as illustrated in the following example.

Example 10.10 The double exponential (Laplace) distribution has density
exp(—|z|)/2. Since this is symmetric, its characteristic function is given by

> 1

o(t) = /OOO cos(ta) exp(—) dz = " fyin 1) — st =T

142

where the antiderivative can be obtained by integrating by parts twice (and can be
verified by differentiation). From (31), it then follows that

1

o 1
exp(—|z])/2 = b /_Oo exp(—itx) e dt.
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Making the change of variable u = —t and multiplying by 2 gives that

1 [ ) 1
;/ exp(zu:zc)l+ du = exp(—|z|).

2
e U

Since the Cauchy distribution has density 1/{m(1 + u*)}, this last expression shows
that the characteristic function of the Cauchy distribution is ¢(t) = exp(—|t|). Note
that the Cauchy distribution does not have any finite moments, and its

characteristic function is not differentiable at 0. a

Exercise 10.10 Suppose X ~Bernoulli(p).

(a) Show ¢x(t) = (1 — p) + exp(it)p.

(b) Calculate the inversion formula (32) at the mass points = 0 and x = 1. Show
that the result is the average of the left- and right- hand limits of F'(z) at these
points.

More interesting applications involve settings where the density or the cumulative
distribution function is difficult to derive or compute directly, but the characteristic
function can easily be given. Then the inversion formulas provide a means of
computing or approximating the distribution. As will be seen later, this is the basis
of the central limit theorem and various other asymptotic approximations. In the
following example, the inversion formula gives a one-dimensional integral for the
exact cumulative distribution function, which can then be evaluated using numerical
quadrature methods.

Example 10.11 Consider computing F(z) = P(X'AX < x), where Ajxj is an
arbitrary (known) symmetric matrix, and X ~ N(u, V), the k-variate normal
distribution with mean vector p and covariance matrix V' (assumed positive
definite). Quadratic forms in normal variables arise in a variety of statistical
problems, especially in models for variance components. Let B be such that

BB’ =V (eg the Choleski factor). Then W = B~ X — u) ~ N(0, ), and

X = BW + pu. Also, let Q'DQ be the spectral decomposition of B’AB. That is,
Q'DQ = B'AB, D is diagonal with diagonal elements d; (the eigenvalues of B’AB),
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and @ is orthogonal (Q'Q = QQ' = I; @ consists of the eigenvectors of B’AB). Then
X'AX = (W+ B 'u)B'AB(W + B ')
W+ B~ 1) Q' DQ(W + B~'p)

(
= (QW + QB 'n)D(QW + QB 'p)
= (Z—i—z/) D(Z +v)

= Z dj(Z; + vy)?,
j=1

since D is diagonal, where Z = QW ~ N(0, 1), so the Z; are iid N(0, 1), and
v=QB .

Since (Z; + v;)? has a noncentral chi-square distribution with 1 degree of freedom,
its characteristic function has a known form. It is also easily derived, using
Theorem 10.2. For [¢| < 1/2, the moment generating function of (Z; + v;)? is

P(t) = /OO ﬁ exp{t(z + yj)ﬂ} exp(—22/2) dz

- ol 20T [ 20 oxpl (1 - 21)/2(: — 200,/ (1~ 201
= eXp{tVQ/(l —2t)}/(1— 1/2

since the last integrand is the density of the N{2tv,;/(1 —2t),1/(1 — 2t)}
distribution. Then the characteristic function of (Z; 4+ v;)* is ¢;(t) = ¢ (it), and
because the terms in the sum are independent, the characteristic function of

Zj dj(Zj + I/j)Q 1S

H% djit) Hexp{d itv? /(1 — 2d;it)}/ (1 — 2d;it)"/?

and by (32),

Thus the next step is to derive an expression for

S{exp(—itz)p(t)} = %{ XP (—zta: + Z % — - Zlog (1 —2d; zt)) }
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Using the definition of complex division,
i —2d;+i
1—2dyit 1+ 4822’

and by Example 10.2,

. 1 o 1 o
log(1 — 2d;it) = 5 log(1 4 4td7) + i tan™' (—2td;) = 5 log(1 4 4t*d?) — itan™"(2td;),
S0

exp{—>_,2(td;v;)*/(1 + 4t°d3)}
Hj(l —|—4t2d?)1/4 X

S {exp (—z‘tx +i Y {td;/(1+482d5) + (1/2) tan_1(2tdj)}> }

exp{— X, 2tdy,)? /(1 + 4°d2))
[L,(1+422d2)7

X sin (—ta: + Z{tyj?dj/(l + 4t%d3) + (1/2) tan—1(2tdj)}> .

J

S{exp(—itz)o(t)} =

Substituting this formula in (??) then gives an expression for F'(x). The integral
can be evaluated by standard methods, such as the trapezoidal rule (because of the
oscillating nature of the integrand, more sophisticated approaches may not perform
well). This method for evaluating the distribution of quadratic forms was given by
Imhoff (1961, Biometrika, 48:419-426). O

Exercise 10.11 Suppose Xi,...,X,, are iid Cauchy random variables. Find the
distribution of > | X;/n (this distribution can be recognized directly from its
characteristic function, so a formal inversion is not needed).

Exercise 10.12 Suppose Uy, ..., U, are iid U(0, 1), and set X = U; +--- 4+ U,. Use
(32) to give an expression for P(X < ).

11 Distributions on Spaces of Sequences

Let Xi, Xs,... be independent Bernoulli random variables, with P(X; = 1) = p. Let
Q) be the set of all possible outcomes x = (z1, za, . . .),

Q={zr=(21,29,...):2;=0,1,5=1,2,...}
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The cardinality of 2 is the same as that of the real numbers. This follows because
every real number z € [0, 1] has a unique representation as x = Y °°, x;/2/, where
each z; =0, 1, so there is a 1 to 1 correspondence between the real numbers in [0, 1]

and the elements of €.

Let X = (X3, X5,...), and
s(x,n) = le
i=1

In this space, events on the limiting behavior of the partial sums s(X,n) = >""  X;,
such as

P{lims(X,n)/n =p} (35)

and P{limn~/2|s(X,n) — np| > a}, are of interest. In interpreting these quantities,
it is important to realize that each point in the sample space is a binary sequence

x = (x1,2,...). For each such point, the event either is or is not satisfied. For
example, if z; =1 for all j (and p < 1), then lim s(z,n)/n =1 # p, while
limn~='2|s(z,n) — np| = limn'/2(1 — p) = oo > « for any finite a. On the other
hand, if p=1/2 and x9; = 1 and 29,1 =0, j = 1,2,..., then lim s(z,n)/n = p and
limn~1/2|s(z,n) — np| = 0. The probability that the limit satisfies the stated
criterion is the probability of all sequences = € €2 which satisfy the event. Thus (35)
can equivalently be expressed P(X € R), where R = {z € Q : lim,, s(z,n)/n = p}.
Note that there is nothing random in the definition of R; it just consists of all
binary sequences with the stated property.

This section is concerned with making the concept of probability distributions on
spaces of sequences more precise. Since the cardinality of this space is the same as
for real numbers, it turns out that it is not possible to define a probability
distribution consistently on all possible subsets of €2. Thus issues of measurability
will also need to be considered.

The statement (35) should not be confused with

li1rlnP(|s(X, n)/n—pl<e) =1 (36)

for all € > 0. (36) only requires considering the distribution of s(X,n) at each finite
n, where standard results on measures on finite-dimensional product spaces give
measurability and distribution results. It is not necessary to consider the space of
sequences to make sense of this. It will be seen later that (36) is weaker than (35).
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For a sequence x = (x1,3,...) € Q, let a,(x) = (z1,...,x,) be the first n
components of x. For any H C €2, define

Ap(H) ={x € Q: an(x) = a,(y) for some y € H}.

Then A, (H) is the set of all points in {2 whose first n components agree with some
element of H. There are 2" distinct binary sequences {z1,...,x,}. Let

K = K(H,n) be the number of distinct such sequences that occur in elements of H,
K < 2" Then H can be divided into K distinct subsets Hy, with each x € H,,
having the same values for its first n elements. If 2(*) is an arbitrary element of Hj,
then A,({z®™}) = A, (Hy), and A, (H) = |, A,({z®}). Although A, (H) is a
subset of the space of infinite sequences, only the first n components of a sequence
need to be examined to determine whether a point lies in this set. Since Xy,..., X,
are iid Bernoulli, it thus is appropriate to define

P{X € A,({z®})} = H p7 (1= )= = e _ pynes@®in)

for each ), and since the sets A, ({z}) are disjoint, set

K
P{X € Ay (H)} =Y p @ (1 —pyr e (37)

k=1

Note that A,,(H) C A, (H) for any m > n. Also, A, {A.(H)} = A,,(H) for n < m,
since A, (H) already contains all possible values for elements in positions m and
higher.

Consider the collection Cy of all such sets A, (H) for all finite n and all H C 2. This
collection is a field, since (1) it contains 2 and ¢ (consider H = Q and H = ¢), (2)
if m > n, then

H) UAm(G) = Am{An(H>} UAm(G> = Am{An(H) U G} € Co,

so Cp is closed under finite unions, and (3) A,(H)® = A, {A.(H)°}. (This last
relationship just states that A, (H)° is the set of all sequences whose first n elements
do not match those of any element in H.)

If P as defined above is a probability measure on the field Cy, then by the extension
theorem (see Section ?7?), P will have a unique extension to the o-field generated by
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Co. To see that P is a probability measure on Cy, first note that from (37),

0 < P(X € A) <1 forany A € Cy. To show finite additivity of P on Cy, suppose
A,(H) and A,,(G) are disjoint, and m > n. Defining K and #(!), ... 2 as above,
for the set A,,(H)|J Amn(G). Then

K

P[X € A, {A,.(H) UG} Z s(®) m) )mfs(z(k)yn)?

and

P{X € Ay(H)| JAn(G)} = P[X € An{A.(H)| JGY]

K

_ 2 s(z(®) m) )m—s(ac(k)7m)

S Ji(k) m m—s JT(k) m
S S I

) €A {An (H)}

> pEma ettt
2W) €A (G)
= P[X € A, {A.(H)}+ P{X € A,.(G)}
= P{X e A,(H)}+P{X € A,.(G)},

so P is finitely additive. To show that P is countably additive, recall that this
follows from finite additivity plus the continuity condition (42). Here (42) is easily
established by showing that if £y D Ey D ---, with E,, = A,,,(H,) and

P(X € E,) > 6 > 0 for all n, then () E,, cannot be empty. First note that if

P(X € E,) > 6, then E, cannot be empty, so by assumption, all of the E,, are
non-empty. If all the F),, are non-empty, then their intersection cannot be empty, as
given in the following lemma. Since P(X € E,) > § implies (" E,, # ¢, if (E, = ¢
it must follow that lim,, P(X € E,) = 0, so P is countably additive on Cy.

Lemma. If £y D Fy D -+, with E,, = A, (H,), and E,, # ¢ for all n, then

Proof: Since the E,, are non-empty, select an element z(™ = (xgn), xé ,...) from E,
for each n. In the sequence asgl), x?), ..., there must be a value (0 or 1) that occurs
infinitely often. Let this value be uq, and let l1; < l15 < --- be all values of n where
x(") —w. N id (li2) ,.(l13) Acai h 1

1~ = u1. Now consider x5 *', x5 ', . ... Again, there must a value that occurs
infinitely often in this sequence. Let uy equal this value, and let ly; < lyy < -+ be
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the subset of l19, [13, ... where xg” ) — uy. Continue in this fashion, obtaining a

sequence u1, U, . . ., and an increasing sequence of values ly1, l21, ... such that

xgl”l) =wuj, j=1,...,n. Set 19 = (u1,us,...), and consider an arbitrary

E, = A,,(H) for some m and H. Choose an [* € {l;; : 7 > m} with [* > k. Then
there is a w € Ej« C Ej, with w; = u; for 7 < m. Since Ej, includes all possible
extensions of the first m elements of the sequences in H, it follows that xq € Ej.
Since k was arbitrary, zo € E, for all n, and thus zq € (), E,, so [, En # ¢. O

Since P is a probability measure on Cy, it therefore has a unique extension to o(Cp).
By the continuity properties of measures on o-fields, this extension must satisfy

P(X € B) = lim P{X € A,(B)}
n—oo
for any B € o(Cp). Clearly for this distribution, P(X = x¢) = 0 for any x¢ € Q (if
0<p<l).

This development thus leads to a well-defined collection of measurable sets and a
probability measure on the space of sequences of iid Bernoulli random variables.

Now consider the measurability of the set in (35). Define

B(n,d) ={x € Q:|s(X,n)/n—p| < d}. Since B(n,d) € Cy for any n and §, and
since s(X,n)/n — p if and only if for each [ there is an m(l) such that
|s(X,n)/n —p| <1/l for n > m(l), clearly

{lims(X,n)/n =p} = ﬂhmme n,1/l) = ﬂU ﬂ B(n,1/l) € 0(Cy).  (38)

m n>m

Exercise 11.1 Show that {z € Q : limn~Y2|s(X,n) — np| > a} € o(Cy).

Note that (36) is equivalent to

lim lim P{B(m,e)} = 1.

el0 m—o0

Using (4) and the representation (38), it follows that

P{lims(X,m)/m = p} =lim lim P (ﬂ B(k,e)) .

el]0 m—oo
k>m

Since B(m, €) D (s, B(k,€) for each m, it follows that if
P{lim s(X, m)/m = p} = 1, then lim P(|]s(X,m)/m — p| < €) = 1 as well. This is a
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special case of the result that convergence almost everywhere implies convergence in
probability.

A development similar to that above for iid Bernoulli variables can be given fairly
generally for probability measure spaces for sequences of independent random
variables. Suppose that the X, j =1,2,... are independent, with

P(X,; € B) = P;(B) defined for all Borel sets B. Let 2 be the set of all sequences
(z1,2,...), x; € R'. For Borel sets By, ..., By, define

An(By,...,B)) ={z€Q:x;€ Bj,j <njz; € R',j >n}.

The collection of all such sets for all n and all Borel sets B; is easily shown to be a
field F. On this field, the function

P{AW(By,.... Bu)} = [[ Pi(B)) (39)

is probability measure. Thus by the extension theorem, P has a unique extension to
o(F), which then defines a probability measure on a o-field of subsets of §2. Details
of this argument are given in Chung (1974), Theorem 3.3.4.

It also is not necessary to limit attention to sequences of independent random
variables. For example, if s(X,n) is defined as before as the sum of the first n terms
of X, then (Y3,Ys,...), with Y,, = s(X,n)/n, has a joint distribution that can be
obtained from the distribution of X. A general treatment in the dependent case is
similar to that above, with the product in (39) replaced by an appropriate joint
probability P{(X,...,X,) € By X --- x By,}.

In the following, the space of real valued sequences will be denoted by R>, and the
o-field of Borel sets as defined above by B,,. When equipped with a probability
measure P, the resulting probability measure space is denoted

(R, B, P). (40)

12 Some Useful Theorems

The following results, which are often cited in the probability literature, are
summarized here for easy reference.
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Continuity Property of Probability Measures. If (2, F, P) is a probability
measure space, and A; C A,, C -+ is an increasing sequence of sets in F, and
By D By, D -+ is a decreasing sequence of sets in JF, then

P(A,) —» P <U An> and P(B,) — P (ﬂ Bn> . (41)
Note that | J,, A, in a sense is the limit of the sequence of sets A,, and [, B, can
similarly be thought of as the limit of B,,.
Suppose P is a finitely additive probability measure defined on (2, F). If
P(E,) — 0 (42)

for any decreasing sequence Ey D Fy D --- of sets in F such that (| E,, = ¢, then P
is countably additive; see eg Chung (1974), Theorem 2.2.1, or Billingsley (1995),
Example 2.10. Note that in R!, the sets £, = {z : 0 < x < 1/n}, for example, are a
decreasing sequence with (), £, = ¢.

Extension Theorem. Let Fy be a field of subsets of a set €2, and P a probability
measure defined on Fy. Then P has a unique extension to F = o(Fy), the o-field
generated by Fy. (Billingsley, 1995, Theorem 3.1)

Dominated Convergence Theorem. For measurable functions, if |f,,| < g almost
everywhere (ae), where [ gdP < oo, and if f, — f ae, then

lim / fndP = /f dP. (43)
In terms of random variables, if X7, X, ... are defined on a common probability
space and X,, — X ae, and if | X,,| <Y ae for some Y with E(Y) < oo, then
E(X,) — E(X).
Note that the condition | X,| <Y ae can also be expressed P(|X,| <Y) = 1.

On probability spaces, sequences of uniformly bounded random variables are always
dominated. That is, if there is an M < oo such that P(|X,,| < M) =1 for all n, then
defining Y by P(Y = M) = 1, it follows that P(|X,| <Y)=1and E(Y) = M < cc.
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Thus if X3, X5, ... are uniformly bounded, and X,, — X ae, then E(X,,) — E(X).
In particular, if Xy, Xs, ... are uniformly bounded, and X,, — 0 ae, then

E(X,) — 0. (44)

The following two results are used frequently.

Theorem 12.1 Suppose [|X|dP < oo and a3 < ay < --- is a sequence of
constants with a, — oco. Then

/ X |dP — 0.
| X |>an

Proof: Since X is integrable,

00 > /|X|dP2/ IX|dP > anP(IX| > an).
[X[>an

so P(|X| > a,) < [|X|dP/a, — 0. Define I(|X| > a,) =1 if |X| > a, and
I(|X| > a,) = 0 otherwise. Now

P{limsup | X|I(|X| > ap) >0} < P(|X]| > a,) — 0,

m—o0

so | X|I(|X| > a,) — 0 ae. Since | X|I(|X]| > a,) < |X]|, and | X]| is integrable, the
result follows from the dominated convergence theorem. |

Theorem 12.2 Suppose [|X|dP < oo and Ay, As, ... is a sequence of sets with
P(A,) — 0. Then

/ X dP — 0. (45)
An

Proof: For any a > 0,

/XdP‘gaP(An)+/ |X| dP. (46)
An | X|>a

By the previous theorem, lim,_, f‘ X|>a |X|dP =0, so given any € > 0, there is an
a such that f|X|>a |X|dP < €/2. Since P(A,) — 0, there is then a value N such
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that P(A,) < ¢/(2«a) for n > N. Thus from (46), given any € > 0, there is an N
such that | [, X dP| < ae/(2a) +¢/2 = e. Hence, [, X dP — 0 asn — oo, O

Integration of Series. For measurable functions,

(a) if f, > 0, then
[ faar =3 [ pap (47)

where both sides may be infinite;

(b) if >, fn converges ae, and | Y_,_, fn| < g ae, where [ gdP < oo, then Y f,
and the f,, are integrable, and [ > f,dP =Y [ f,dP;

(¢)if Y, [ |ful dP < 0o, then h =Y f, is absolutely convergent ae, is integrable,

" / hdP =" / fndP. (48)

(see Billingsley, 1995, page 211)

The following result is useful for investigating convergence of infinite series.

Theorem 12.3 Suppose f(t) is a decreasing function. Then

/ f(t dt<2f f(t)dt.

k—1

Proof: .
/ t)dt = Z f t)dt > Z t=> 1)
j=k JI-1 j=k VI~ 1 j=k
S [T rgae= S [ swya= / £(0
pargs pargd

a

Independent Sets. Let A, ..., A, be collections of measurable subsets of 2. The
collections are independent if P((;_, A;) = [[; P(4;) for any sets A; € A;,
7=1,....n

Theorem 12.4 Suppose Ay, ..., A, are independent, and each A; is closed under
finite intersections. Then the generated o-fields o(Ay),...,0(A,) are independent.
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(see Billingsley, 1995, Theorem 4.2). “Closed under finite intersections” means that
if A,B e .Aj, then AmB S .Aj.
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