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Abstract

This paper investigates how dynamics in the search environment affect consumers’
search and purchase decisions. We develop a dynamic search model with a non-
stationary search environment. We estimate the model using data on consumers’ search
duration, search intensity in each period, and purchase decision in the Beijing hous-
ing market. We find that the dynamics in the search environment have larger effects
on consumers’ search and purchase decisions and welfare than traditional search fric-
tions such as search costs. Moreover, we find that a static search model would yield
unrealistically high estimates of search costs.
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1 Introduction

In many markets, consumers need to search before making a purchase decision. The
extent to which a consumer searches thus determines the choice set for the purchase. Conse-
quently, search frictions hinder search and limit the choice set. Examples abound in various
sectors: the automobile market, the travel accommodation market, the real estate market,
the mortgage market, and many more.
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Furthermore, in many scenarios, the search environment changes over time as prices
change, new products enter the market, or existing products exit the market. For example,
consumers searching for a car during the COVID-19 pandemic faced rapid price increases and
volatile dealer inventories. Homebuyers in 2022–2023 saw significant increases in mortgage
rates. Consumers planning vacations during peak seasons may experience rapid changes in
the price and availability of accommodations and travel services. The real estate market is
also dynamic, with property availability and prices changing over time.

In this paper, we study how dynamics in the search environment affect consumers’ search
and purchase decisions. Consider a scenario in which prices increase rapidly. On the one
hand, by searching longer, a consumer can learn about more products, expand her choice set,
and find a more suitable product. On the other hand, if she searches longer, her preferred
product in her previously searched set will become more expensive, and the products she
can search for in the future will have higher prices than the current price level. Thus, the
dynamics of the search environment affect the consumer’s search and purchase outcomes.

To study such effects, we develop a dynamic search model with a non-stationary search
environment. In this model, consumers make search (how much to search in each period)
and purchase (when to purchase and which product to purchase) decisions. Specifically,
a consumer’s utility depends on observable product characteristics (e.g., the location and
size of a property) and a match value that is learned only through the search process (e.g.,
the view and sun exposure of a property). At the beginning of each period, consumers
have information about observable characteristics for all products and match values for their
searched products. Then, in each period, a consumer decides the extent of her search and
learns the match values of her searched products. She then decides whether to make a
purchase and, if so, which product to buy, choosing from either her previously searched set
or the newly searched set.

Both search and purchase decisions are dynamic in our model. The purchase decision is
dynamic because consumers can choose to buy immediately or wait for another period. The
search decision is also dynamic because higher search intensity in one period leads to a larger
choice set and a higher value of buying now, along with a smaller set of products to visit in
future periods and a lower value of waiting. In making both search and purchase decisions,
consumers consider the evolving market environment. Although our model is developed in
the context of housing search, it can be used to study other settings where consumers make
dynamic search and purchase decisions in a changing environment.

To the best of our knowledge, this paper is the first to incorporate a non-stationary
environment into a dynamic search model. In a changing environment, consumer search
is affected not only by search costs but also by changes in the search environment. A
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static search model ignores the latter, leading to biased estimates of search costs. For
example, in scenarios where the search environment deteriorates over time (e.g., due to an
increase in prices or a decrease in product availability), both search costs and the change in
the environment contribute to limiting consumer search. By ignoring the dynamics of the
environment, a static model would lead to an overestimation of search costs, and thus an
overestimation of consumer gains from reducing search costs.

Our empirical setting is the Beijing housing market between August 1, 2015 and July
31, 2016. This setting is ideal for studying how the dynamics of the search environment
affect consumers’ search and demand for two reasons. First, the period is characterized
by rapid price appreciation, with an annual increase of 30%. Second, the dataset we use
for our analysis is novel in that it contains information not only on consumers’ purchase
decisions, but also on their complete search activities. Our data come from the largest real
estate agency in Beijing, Lianjia. For each consumer in our sample, the dataset provides
a complete record of the consumer’s search and purchase behavior. We observe when the
consumer starts searching, when she stops searching, how many and which properties she
visits in each period, and which property she finally purchases.

Estimating our dynamic search and purchase model is challenging, and a solution used
in the literature cannot be easily adapted to meet this challenge. In our model, the state
variable, which includes the characteristics of all unsearched products as well as the char-
acteristics and match values of all searched products, has a very large dimension. Such a
challenge also arises when estimating a dynamic demand model where the state variable in-
cludes the observable characteristics of all products in the current choice set. The dynamic
demand literature (e.g., Gowrisankaran and Rysman, 2012) addresses this challenge by re-
ducing the high-dimensional state variable to a one-dimensional inclusive value and assuming
that the inclusive value evolves according to a stationary Markov process. However, unlike
a dynamic demand model where the state variable describes the choice set and the choice
set evolves exogenously, in our model the state variable describes two sets (the searched and
unsearched sets) and both sets evolve endogenously. Thus, it is inappropriate to assume that
the inclusive value of each set evolves according to a stationary Markov process.

We address this challenge with two ideas. First, before estimating the dynamic model,
we back out the mean utility of each property by matching the observed share of visits
that the property receives. In estimating the dynamic model, we replace the vector of
characteristics with the scalar mean utility for each property. Second, following many papers
in the dynamic estimation literature,1 we further reduce the dimensionality of the state

1Many papers approximate a high-dimensional state variable with lower-dimensional statistics. Examples
include Collard-Wexler (2013), Sweeting (2013), and Hodgson (2019).
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variable by assuming that instead of the mean utilities of all properties, consumers track
several highest mean utilities, the average of the mean utilities of the other properties, and
the number of properties.

Correspondingly, we carry out the estimation in two steps.2 In the first step, we back
out the mean utility of each property. We do this by matching the model implication for
the share of visits that each property receives to the observed share. In this step, we also
estimate the coefficients of the property characteristics in the utility function. We refer to
these parameters as static parameters. In the second step, we estimate parameters that
capture the variance of match values (which determines the magnitude of search benefits),
search costs, and waiting costs. We refer to these parameters as dynamic parameters. We
estimate these dynamic parameters by solving the dynamic search and purchase model,
obtaining the model implications for search duration, number of visits in each period, and
purchase decision, and searching for parameters that maximize the likelihood of the observed
outcomes.

Such sequential estimation requires that the model implication for the share of visits
a property receives, which we use to back out the mean utilities and estimate the static
parameters, does not depend on the dynamic parameters. This requirement is satisfied
because we assume that while consumers choose the number of properties to search in each
period, the set of properties they visit is exogenous and drawn from a distribution that
depends on the mean utilities of the properties. A similar exogeneity assumption is made
in Hortaçsu and Syverson (2004). However, unlike Hortaçsu and Syverson (2004), where
consumers sample a single index fund, consumers in our model sample a set of properties.
Therefore, to carry out the first stage of estimation, we extend a standard Logit model from
choosing a single option to choosing a set of options. We derive the probability that a set
is sampled, which then implies the probability that a particular option is sampled. We also
extend the contraction mapping result in Berry, Levinsohn and Pakes (1995) to show that
there is a unique vector of mean utilities such that the model-implied visit shares match the
observed visit shares even in our extended model.

Our estimation yields intuitive results. According to our estimates, consumers prefer
larger and newer properties with more living rooms and bedrooms, located on higher floors
and close to subway stations. The estimated standard deviation of match values is equivalent
to a value of CNY100,593, which is about 3% of the average list price and more than 150%
of the per capita annual disposal income in Beijing in 2016, indicating a significant benefit

2Similar sequential estimation procedures are used to estimate multi-stage static models (e.g., Eizenberg,
2014; Fan and Yang, 2020, 2022) and dynamic models (e.g., Chatterjee, Fan and Mohapatra, 2022; Elliott,
2022; Bodéré, 2023).
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of searching to learn match values. We also find that consumers incur an average search cost
of CNY1,244. In our data, a consumer visits an average of 6.71 properties before making a
purchase. Therefore, the average search cost per property is CNY185.

In contrast, a static search model estimated on the same dataset yields an estimate of the
standard deviation of match values that is 50% smaller, while yielding a search cost estimate
that is 250 times larger. The static model yields a smaller estimate of the standard deviation
parameter than the dynamic model because the static model uses less variation in the data
to identify this parameter. The static model uses the extent to which observable property
characteristics cannot explain purchasing behavior to identify the standard deviation of the
unobservable match value. While the static model relies only on such a static feature of
the data (which property is purchased), the dynamic model additionally exploits a dynamic
feature of the data, i.e., when the purchased property is visited. In particular, a larger recall
share (the share of consumers who purchase a property that they visited in an earlier period)
implies a larger standard deviation of the match value. This is because if a consumer does
not immediately purchase the property she eventually purchases, her decision to continue
searching means that she thinks there is a good chance of getting a better draw of the match
value. In our data, the recall rate is over 15%. At the same time, the static model yields a
much larger estimate of search costs despite the smaller estimate of search benefits (due to a
smaller estimate of the standard deviation of the match value). The search cost per visit is
about CNY 46,000, or $7,000, which we find unreasonably high. This is because the static
model does not account for the dynamics in the search environment. During the sample
period, house prices increased rapidly. By ignoring the increased prices as a search friction,
the static model overestimates the search cost.

Based on the estimated dynamic search model, we quantify how the dynamics of the
environment affect consumers’ search and purchase behavior and consumer welfare through
counterfactual simulations. We consider both changes in prices and changes in product
availability (i.e., entry of new listings and exit of existing listings). We find that halving the
price increase, doubling the entry rate of new listings, or halving the exit rate of existing
listings leads to longer searches, more total visits before purchase, and purchases of properties
that generate more utility. Considering the trade-off between higher search and waiting costs
(resulting from more property visits and longer searches) and higher utility from finding a
more desirable property (again, resulting from more searches), the net gain is CNY16,696
when consumers face a slower price increase, CNY47,269 when the entry rate is doubled,
and CNY18,247 when the exit rate is halved.3

3In the counterfactual scenario where the price increase is halved, consumer welfare increases mechanically
due to lower prices. To remove such a mechanical effect and to isolate the effect of inducing more search, we
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To quantify the relative importance of traditional search frictions such as search costs
versus search frictions due to dynamics in the search environment, we also conduct a coun-
terfactual simulation in which we reduce the search cost per visit by half. Unsurprisingly,
consumers search for more weeks, visit more properties before buying, and buy properties
with higher utility. The net gain is CNY16,103. Thus, both traditional search frictions such
as search costs and search frictions arising from the dynamics of the search environment
significantly affect consumers’ search and purchase behavior and welfare. For the same per-
centage change (halving or doubling), changing the dynamics of the search environment has
a greater impact than changing the search cost.

This paper contributes to the empirical consumer search literature. Examples of this
literature include Honka (2014) and Murry and Zhou (2020) for simultaneous search models
and Moraga-Gonzalez, Sandor and Wildenbeest (2023) and Hodgson and Lewis (2023) for
sequential search models, and Santos, Hortaçsu and Wildenbeest (2012) for testing simulta-
neous versus sequential models.4 While the existing papers consider stable search environ-
ments where both the set of products and their prices are fixed, our paper studies consumer
search in changing search environments. Here, both product availability and prices can vary
over time, impacting consumers’ search and purchase decisions. Our results indicate that
these changes have significant effects on consumers’ search and purchase behavior as well as
consumer welfare.

This paper is also related to the dynamic demand literature. Examples of this liter-
ature include Hendel and Nevo (2006), Gowrisankaran and Rysman (2012), Lee (2013),
Shcherbakov (2016), and Aguirregabiria (2023). We differ from these papers in two ways.
First, we study both dynamic search and dynamic demand. In our model, consumers’ search
decisions determine the choice set for purchases. Therefore, unlike the papers in the dy-
namic demand literature, the choice set evolves endogenously. Second, we tackle the issue
of a high-dimensional state space differently. Since the transition of the choice set is en-
dogenous, we cannot assume that the inclusive value follows a Markov process and replace a
high-dimensional state variable by a one-dimensional inclusive value. Instead, we estimate
the mean utilities of properties “offline”, i.e., before estimating the dynamic parameters, and
consider the state variable to include the mean utilities of the top properties, the average
mean utility of the remaining properties, and the number of properties.

The remainder of the paper is organized as follows: Section 2 describes the setting and
the data. Section 3 develops the dynamic search and purchase model. Section 4 explains

report the net gain, where the utility of the purchased property is calculated based on the actual prices.
4Other examples include Kim, Albuquerque and Bronnenberg (2010), Allen, Clark and Houde (2019) and

Brown and Jeon (2020).
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the estimation procedure. Section 5 presents the estimation results. Section 6 compares our
estimation results with those of a static search model. Section 7 quantifies the effects of the
changing environment and search costs through counterfactual simulations. A final Section
8 concludes the paper.

2 Data

2.1 Data Description

Our data come from Lianjia, the largest brokerage company in the second-hand residential
housing market in Beijing.5 The dataset provides information on all second-hand properties
listed on Lianjia and all consumers who registered on Lianjia between August 1, 2015 and
July 31, 2016.

Our data cover 225,608 properties in the six urban districts of Beijing. Beijing Munic-
ipality consists of six urban districts, eight suburban districts and two rural counties. The
six urban districts include two core districts (Dongcheng and Xicheng, which occupy the
area inside the old walled city) and four surrounding urban districts (Haidian, Chaoyang,
Fengtai, and Shijingshan). Our data also cover 455,774 consumers who registered on Lianjia
and were actively searching during our sample period.

To construct our sample, we exclude properties with a list price higher than CNY 10
million or less than CNY 1 million, and properties with a size of less than 25 square meters.
These properties are likely to belong to a separate market. Accordingly, we drop consumers
who visited these properties. We also drop consumers who searched across multiple districts.
The districts in Beijing are quite large. For example, Chaoyang District covers 470.8 square
kilometers (181.8 square miles). In contrast, Manhattan Island is 59 square kilometers (22.7
square miles). As a result, the vast majority (more than 93%) of consumers searched within
one district. At the same time, as will be explained later, including the small share of con-
sumers searched across multiple districts increases the computational burden exponentially.
Finally, we drop 4% of the properties in the data that were never visited by any consumer
in our sample. In the end, our sample consists of 202,845 properties and 414,166 consumers.

For each property in the sample, we observe its address, construction year, floor number,
property size, number of living rooms, and number of bedrooms. We also observe when it
was initially listed and the list price. Based on the property’s location and list price, we
define 221 exclusive segments defined by the neighborhood and price range and assign each

5The market share of Lianjian, as measured by the share of total second-hand residential property trans-
actions in Beijing, was 54% in the first half of 2016. In contrast, the market shares of the second, third and
fourth real estate companies were 13%, 5% and 4%, respectively. (https://m.sohu.com/n/458280155/)
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property to a segment.6 Finally, if a property was sold before the end of the sample, we
observe the transaction date and price.

For each consumer in the sample, we have a complete record of all her property visits. The
search record is complete because all consumers in the sample sign a sole agency agreement
with Lianjia. For each property visit, we observe the date of the visit and the identity of
the property. In addition, if a consumer purchased a property during the sample period, we
also observe which property she purchased and when she purchased it.

2.2 Summary Statistics

2.2.1 Properties

Table 1 presents the summary statistics of the properties in the sample. Of the 202,845
properties in our sample, 85,696 (42%) were successfully sold during our sample period. The
average list price is CNY4.024 million (USD604,000), and the average transaction price is
CNY3.702 million (USD555,000). In the Chinese housing market, the most salient price is
the price per square meter, which averages CNY49,302 ($18,029) and CNY48,367 ($17,501)
per square meter for the list and transaction prices, respectively. On average, a property
stays on the market for approximately 8 weeks.

Table 1: Summary Statistics of Properties

Mean SD
List price (million CNY) 4.024 1.962
List price per m2 (CNY) 49,302 18,029
Indicator of being sold 0.422 0.494
Transaction price (million CNY) 3.702 1.760
Transaction price per m2 (CNY) 48,367 17,501
Weeks on market 8.193 7.402
Property size (m2) 83.707 35.903
Property age (year) 18.151 8.994
Bedrooms 1.997 0.777
Living rooms 1.142 0.547
Indicator of above 10th floor 0.316 0.465
Close to subway stations 0.797 0.402

The average property is 18 years old, with a size of 84 square meters, 2 bedrooms and
1 living room. About 32% of the properties are located on the 10th floor or above. The

6Based on the location of the property, Lianjia divides the market into neighborhoods that differ in terms
of transportation, amenities, etc. We consider four price ranges: less than 3 million, between 3 and 4.5
million, between 4.5 and 6 million, and more than 6 million.
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majority of them (about 80%) are located within 1 km of a subway station, a criterion we
use to define the indicator variable of whether a property is close to a subway station.

2.2.2 Dynamic Search Environment

Both the number of new listings and the number of transactions are relatively stable over
the sample period, as shown in Figure 1(a), which plots these two numbers by week. We
omit the eight weeks around the Chinese New Year in early 2016. Many economic activities
are put on hold every year during the Chinese New Year, when many Chinese return to
their hometowns and resume economic activities only afterward. For example, 2.9 billion
passenger trips were made during the 2016 holiday (Zhou (2016)).7

However, both list and transaction prices increased rapidly during the sample period,
as shown in Figure 1(b). For each week in our sample, we compute the average list price
across all new listings in that week and the average transaction price across all transacted
properties in that week. Since the most salient price in the Chinese housing market is the
unit price per square meter, in calculating these averages we consider prices in CNY per
square meter, and plot them in Figure 1(b). The figure shows a clear upward trend in both
list and transaction prices. Specifically, the average list price increased from CNY 44,417
to CNY 57,993 per square meter, an annual price increase of about 30% during the sample
year. On average, the list price increased by CNY 261 per square meter per week. Similarly,
the transaction price increased from CNY41,854 to CNY55,699 per square meter during the
sample period, an increase of CNY266 per week and an annual increase of 33%.

Figure 1: New Listings, Transactions, and Prices by Week

(a) New Listings and Transactions (b) List Prices and Transaction Prices

7In Supplemental Online Appendix SA, we plot the number of new listings and transactions during the
eight weeks around the Chinese New Year in early 2016. It shows that during these eight weeks, the number
of new listings and transactions dropped to zero and then rose rapidly to about double the pre-holiday level.
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2.2.3 Consumer Search and Purchase

In our sample, 39,500 consumers started a search and made a purchase during the sample
period. Among them, 26,543 consumers either ended their search before the Chinese New
Year holiday or started their search after the holiday.

We observe these consumers’ search duration and total visits. On average, they search for
3.5 weeks and visit a total of 6.62 properties. Figure 2 (a) shows that 41% of them searched
for one week, 20% searched for two weeks, 10% searched for three weeks and the remaining
29% searched for more than three weeks. Figure 2 (b) shows that 51% of them visited five
or fewer properties, 32% of them visited more than five but no more than ten properties,
and the remaining 18% visited more than ten properties before making their purchase.

Figure 2: Search Duration and Total Visits

(a) Search Duration (b) Total Visits

An important feature of our data is that we observe not only the total number of visits,
but also the dynamic characteristics of consumers’ searches (i.e., search duration and search
intensity in each week). Figure 3 shows the average number of visits by search week. “Search
week” refers to the week since a consumer arrived on the platform. For each search week t,
we compute the average number of visits a consumer makes in that search week, where the
average is taken over consumers who search for t or more weeks. Figure 3 shows that search
intensity decreases over search weeks. The average search intensity starts with 3.58 visits in
the first search week, quickly drops to 1.82 visits in the second search week, and continues
to drop to less than 1 visit after five weeks of searching.
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Figure 3: Number of Visits by Search Week

While Figures 2 and 3 show the distribution of consumers’ key endogenous choices, Table
2 reports summary statistics on these endogenous variables as well as exogenous variables
describing a consumer’s search market. Consumers search for an average of 3.5 weeks and
visit a total of 6.6 properties prior to purchase. 17.6% of consumers purchased a previously
searched property. For each consumer, we find the segments in which she searched and define
her search market as their union. Table 2 shows that on average a consumer searches in two
segments with 69% of searches focused on one segment. On average, a consumer’s search
market consists of 654 properties, sees 29 new listings per week, and experiences an exit rate
of 12%. It also faces a weekly increase in the unit list price of CNY228 per square meter.
The gap between the list price and the transaction price, which we call the “price discount”,
decreases by CNY17 per square meter per week.

Table 2: Summary Statistics of Consumers

Mean SD
Search duration (weeks) 3.501 4.012
Total visits 6.624 5.097
Recall share 0.176 0.381
Number of segments searched 1.900 1.029
Visit share of Top 1 segment 0.688 0.331
Number of available properties 654 604
Weekly list price change per m2 (CNY) 228 139
Weekly number of new listings 28.614 22.332
Weekly exit rate 0.122 0.016
Weekly change in price discount per m2 (CNY) -16.960 21.946
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3 Dynamic Search Model

In this section, we develop a model to describe consumers’ search and purchase decisions.
Each consumer i arrives exogenously on the platform. To simplify the notation, we use t

(without the subscript i) to denote the week since a consumer’s arrival on the platform,
which we refer to as the “search week.”

In each period t, consumer i first decides on the number of properties to visit in the
current period and then, after visiting these properties, decides whether to buy one (thus
ending the search) and, if so, which one to buy. In what follows, we first describe the
primitives of the model and then explain these decisions backwards.

3.1 Primitives

3.1.1 Utility

The utility that consumer i gets from property j depends on a mean utility δjt and an
idiosyncratic value vij as follows:

uijt = δjt + vij, (1)

where the mean utility δjt is known to the consumer and the idiosyncratic value vij is learned
by search.

The mean utility δjt is a linear combination of observable characteristics (denoted by xj),
the expected transaction price at the time (pe

jt), and an error term (ξj) as follows:

δjt = xjβ + αpe
jt + ξj, (2)

where the vector xj includes observable property characteristics such as the property size.
The error term ξj captures unobservable property characteristics that are known to con-
sumers (but unobservable to econometricians). For example, consumers infer whether a
property gets a lot of natural light from photos posted on the platform. However, such
information is difficult for researchers to capture.

The expected transaction price (pe
jt) is the list price (denoted by pl

j) minus the expected
gap between the list price and the sales price at that time (denoted by pd

jt).8 The expected
8While we observe transaction prices for purchased properties, we do not observe the price that a consumer

would have paid for a property that she ultimately did not purchase. Therefore, we use the expected
transaction price as the price. A similar approach is used, for example, in Goldberg (1995).
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price gap pd
jt of property j at time t depends on its size (in square meters) and the average unit

discount (in CNY per square meter) for properties in its segment at that time. Specifically,
let x1j be the size of property j, m(j) be the segment of property j, and dmt be the average
gap between the list unit price and the transaction unit price in segment m at time t. Then,
pe

jt = pl
j − pd

jt, where pd
jt = x1jdm(j)t.

Therefore, we can rewrite the mean utility as

δjt = δj − αpd
jt, (3)

where the time-invariant component

δj = xjβ + αpl
j + ξj (4)

depends on the information about property j that is listed on the platform.
The idiosyncratic match value vij captures what consumer i learns after visiting property

j. It includes, for example, consumer i’s tastes for the property’s sun exposure or a particular
amenity in the neighborhood. We assume that vij is i.i.d. and follows a normal distribution
with mean 0 and variance σ2

v .

3.1.2 Search Costs and Waiting Costs

We assume that the cost of searching n properties is C(n) − ϑitn, where the search cost
shock ϑitn is i.i.d. and follows a type-1 extreme value distribution with location parameter 0
and scale parameter κ. The observable component is

C(n) =
(
γ0 + (γ1 + γ2mit)n + γ3n

2
)
1(n > 0). (5)

We allow the marginal search cost to depend on the cumulative number of searches before
time t (denoted by mit). We also include the quadratic term n2 to capture the nonlinearity
in search costs.

Consumer i also incurs a waiting cost wit in each period in which she does not make a
purchase. This waiting cost includes both monetary and non-monetary costs for a consumer.
An example of the non-monetary cost could be the psychological stress caused by not having
a home for the newlyweds before they get married. In China, it is a cultural norm that the
groom’s family is expected to buy a home, or at least find a home and contribute to the
down payment for the newlyweds before marriage. We assume that wit is i.i.d. and follows
a normal distribution with mean w and variance σ2

w.
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3.1.3 Search Set Conditional on the Number of Visits

In each period, consumer i optimally decides the number of properties to visit (denoted
by nit). However, conditional on nit, the exact set of properties she visits in period t is
exogenous. This assumption is similar to that in Hortaçsu and Syverson (2004) and implies
that a consumer’s decision is the number, rather than the set, of properties to visit. This
assumption simplifies the model because, given the number of searches nit, there are Cnit

Ait

possible sets of properties to search if there are Ait properties for consumer i to search. The
cardinality Cnit

Ait
can be very large. For example, if Ait = 15 and nit = 8, then Cnit

Ait
= 6435.

Moreover, this assumption is somewhat justified because there are indeed exogenous reasons
why a consumer may or may not be able to visit a property at a given time.

Specifically, let Ait denote the set of properties in consumer i’s search market that she
has not visited by time t (here, A stands for “available for search”) and Cn(Ait) be the
collection of all n-element subsets of Ait. For a given number of visits n, we assume that
the probability of a particular set N ∈ Cn(Ait) being sampled depends on the mean utilities
{δj : j ∈ Ait} as follows:

Pr(N |Ait, n) = 1 +
n∑

k=1

(−1)k
∑

B∈Ck(N )

∑
l∈Ait\N exp(δl)∑

l∈Ait\N exp(δl) +∑
b∈B exp(δb)

 . (6)

This probability has the following desirable features. First, it is consistent with an
extended Logit model. In Supplemental Appendix A, we extend a discrete choice model
from a setting where a consumer chooses a single option to a setting where a consumer
chooses n options. We show that the probability in (6) is consistent with the extended
model where consumer i visits the n properties with the highest values of δj + LogitErrorij

and LogitErrorij is i.i.d. and follows a type-1 extreme value distribution. Though seemingly
complicated, this expression in (6) is a direct application of the analytic expression of the
choice probability in a standard Logit model and the inclusion-exclusion principle.

Second, as we show in Appendix A, this sampling probability for a set of properties
implies that the following sampling probability for a particular property j ∈ Ait:

Pr(j|Ait, n)

=


0 if n = 0

1 if n = Ait∑n−1
k=0

[
(−1)k ∑

F∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈F exp(δl)+exp(δj)

)]
if 0 < n < Ait

(7)

where Ait = #Ait. This probability itself has the following three intuitive features: (i)
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it is increasing in δj and decreasing in δj′ for j′ ̸= j, i.e., property j is more likely to be
sampled when its own mean utility increases or other properties’ mean utilities decrease; (ii)
it becomes the choice probability in a standard Logit model, i.e., exp(δj)∑

l∈Ait
exp(δl)

, when n = 1;
and (iii) the sum of the sampling probabilities over j in Ait is n, i.e., ∑j∈Ait

Pr(j|Ait, n) = n.

3.1.4 Timing

At the beginning of each period, consumer i observes the mean utility δjt for all properties
in the available-to-search set (denoted byAit, where A stands for “available-to-search”) and
both the mean utility δjt and the match value vij for all properties in the recall set (denoted
by Rit, where R stands for “recall”). Recall set Rit consists of properties that consumer i

has visited before period t and that are still available in period t. In each period, a consumer
makes two decisions: first a search decision and then a purchase decision. The timing is as
follows:

• At the beginning of the period, consumer i observes ({δjt}j∈Ait
, {δjt, vij}j∈Rit

) and the
search cost shocks (ϑitn, n = 0, ..., n̄). She decides how many properties to search in
time t. We denote the number of searches by nit, which is an integer between 0 and n̄.

• A search set Nit ∈ Cnit(Ait) is sampled according to the probability in (6). After
visiting the properties in Nit, consumer i observes the match values of the properties
in the newly searched set, i.e., {vij}j∈Nit

. Here, N stands for “Newly searched”.

• Consumer i now observes the initial information set ({δjt}j∈Ait
, {δjt, vij}j∈Rit

), match
values of the newly searched properties {vij}j∈Nit

, and the waiting cost wit. She decides
whether to buy a property or to continue searching. If she decides to buy in this period,
she also decides which property to buy. We denote this decision as yit and explain it
in more detail in Section 3.2.

3.1.5 Transition of the Environment

From time t to time t + 1, there are three changes in consumer i’s search market. First,
some properties may exit the market. We assume that the exit rate in consumer i’s search
market is χi and use EX IT it to denote the set of exited properties in consumer i’s search
market at time t.

Second, new properties may enter the market. We assume that the number of newly listed
properties in consumer i’s search market follows a Poisson distribution with an arrival rate λi

and use N EW it+1 to denote the set of newly listed properties in consumer i’s search market
at the beginning of time t + 1. We assume that the mean utility of a newly listed property
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in consumer i’s search market follows a normal distribution N(δ̄new
it , (σnew

i )2). Furthermore,
we assume that a consumer, in forming an expectation about the next period, considers the
transition of δ̄new

it to be δ̄new
it+1 = δ̄new

it + αµi,where µi captures the trend in the list price of
new properties in consumer i’s search market.

Third, for properties in Ait ∪ Rit that do not exit, a consumer considers the transition of
δjt to be δjt+1 = δjt + x1jρm(j), where ρm(j) captures the trend in the discounts for properties
in the segment of property j. Since discounts are measured in terms of price per square
meter, we multiply ρm(j) by the size of the property (x1j) when forming the transition of the
mean utility.

Let Ωit = ({δjt}j∈Ait
, {δjt, vij}j∈Rit

, δ̄new
it ) denote the non-transitory variables belonging

to the information set that consumer i has at the beginning of the period. The above three
changes determine the transition of the information set. Specifically, Ωit+1 =({δjt+1}j∈Ait+1 ,

{δjt+1, vij}j∈Rit+1 ,{δ̄new
it+1), where Ait+1 = Ait\Nit\EX IT it∪N EW it+1, Rit+1 = Rit∪Nit\EX IT it,

δjt+1 = δjt + x1jρm(j) for j ∈ Ait\Nit\EX IT it, δjt+1 is drawn from a normal distribution
N(δ̄new

it+1, (σnew
i )2) for j ∈ N EW it+1, and δ̄new

it+1 = δ̄new
it + αµi.

3.2 The Purchase Decision

After searching, consumer i can either recall from the previously searched set Rit, or buy
from the newly searched set Nit, or continue searching. In other words, her optimization
problem at the purchase-decision stage is as follows:

Γi(Ωit, {vij}j∈Nit
, wit) (8)

= max{ max
j∈Rit

δjt + vij︸ ︷︷ ︸
recall

, max
j∈Nit

δjt + vij︸ ︷︷ ︸
buy a newly searched house

, E [Vi(Ωit+1)|Ωit,{vij}j∈Nit
] − wit︸ ︷︷ ︸

wait

},

where E [Vi(Ωit+1)|Ωit, {vij}j∈Nit
] denotes the expected value of continuing the search at time

t + 1 given the information set at the beginning of period t, Ωit, and the match values of
the newly searched properties, {vij}j∈Nit

. A consumer’s purchase decision (denoted by yit)
is the optimizer of the above optimization problem.

3.3 The Search Decision

A consumer’s optimal search intensity in each period, i.e., the number of properties to
search (nit), depends on the comparison between the benefits and costs of searching. We
have specified the search costs in Section 3.1. We now explain the search benefits. The
benefit of searching nit properties is that consumer i learns the match values of the nit newly

16



searched properties and expands her choice set at the purchase stage from the recall set (Rit)
to the union of the recall set and the newly searched set (i.e., Rit ∪ Nit).

Formally, the expected benefit of searching n properties conditional on the information
set Ωit is the expectation of Γi(Ωit, {vij}j∈N , wit) where the expectation is taken over the
sampled searched set (N ), the match values of the properties in that set ({vij}j∈N ), and the
waiting cost shock (wit). In other words, the expected benefit is

EBi(n|Ωit) ≡
∑

N ∈Cn(Ait)
E({vij}j∈N ,wit) [Γi(Ωit, {vij}j∈N , wit)] × Pr(N |Ωit, n), (9)

where the first term E({vij}j∈N ,wit) [Γi(Ωit, {vij}j∈N , wit)] is the expected value of searching a
sampled set N and the second term Pr(N |Ωit, n) is the probability that the set N is sampled
conditional on information set Ωit and the number of searches n. Here, with a slight abuse
of notation, we rewrite Pr(N |Ait, n) in (6) as Pr(N |Ωit, n) to reflect its dependence on
{δjt}j∈Ait

, which is a subset of the information in Ωit.
Consumer i chooses her search intensity nit to maximize her net gain from searching

nit properties. That is, the optimal search intensity nit is the solution to the following
optimization problem:

max
0≤n≤n̄

{EBi(n|Ωit) − C(n) + ϑitn}. (10)

3.4 Bellman Equation and State Transition

We complete the description of the model by presenting the Bellman equation. We define
the ex ante value function as the expectation of the maximum in (10) over the search cost
shocks:

Vi(Ωit) =E(ϑitn,n=0,...,n̄){ max
0≤n≤n̄

[EBi(n|Ωit) − C(n) + ϑitn]} (11)

=κln(
n̄∑

n=0
exp{[EBi(n|Ωit) − C(n)]/κ}) + κτ,

where τ is the Euler constant. Therefore, plugging Γi(Ωit, {vij}j∈Nit
, wit) in (8) into EBi(n|Ωit)

in (9) and then plugging EBi(n|Ωit) into (11) gives us the Bellman equation.

4 Estimation

The estimation consists of two steps. In the first step, we estimate the parameters in the
utility function (α, β) by matching the observed share of visits that each property receives.
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We call these parameters the static parameters. In this step of the estimation, we use all
properties and consumers in our sample.

In the second step, we estimate the remaining parameters, which govern the dynamic
search and purchase decisions, using maximum likelihood estimation. These parameters
include: search cost parameters (γ, κ), waiting cost parameters (w, σw), and the standard
deviation of match values (σv). We call these parameters the dynamic parameters. In this
estimation step, we use a random sample of 1000 consumers who started and ended their
searches during the sample period excluding the eight weeks around Chinese New Year. We
only consider consumers who started searching after the start of the sample because we
need to know how many properties they visited before each period. We do not have to
restrict our sample to those who purchased before the end of the sample. We do so in the
baseline estimation because without such a restriction, the sample may include consumers
who were not seriously searching in the housing market. Nevertheless, as a robustness check,
we repeat the estimation including consumers who did not purchase before the end of the
sample period.

4.1 Static parameters (α, β)

4.1.1 Estimation of Static Parameters

We estimate the parameters in the utility function (α, β) by matching the observed share
of visits that each property gets. In our sample, all consumers search within one district.
Therefore, we partition the sample into six districts and do such a matching district by
district. Specifically, let Jd and Id represent the set of properties in district d and the set of
consumers searching in district d, respectively.

For a property j in district d, its share of visits according to our model is

s̃j(δd) =
∑

i∈Id

∑Ti
t=1 Pr(j|Ait, nit)∑

i∈Id

∑Ti
t=1 nit

, (12)

where δd = (δj, j ∈ Jd). In (12), nit is the observed number of properties that consumer i

visits in period t. Pr(j|Ait, nit) is the probability that property j is among the nit properties
that consumer i visits in period t. It is 0 for j ̸∈ Ait and is given by (7) for j ∈ Ait. The sum
is taken over all consumers searching in district d (indexed by i ∈ Id) and all periods during
a consumer’s search (indexed by t = 1, ..., Ti), where Ti is the search duration of consumer i.

The empirical counterpart of this share is

sj = nj∑
j∈Jd

nj

,
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where nj is the number of visits that property j receives in the sample.
In Appendix A, we extend the contraction mapping result in Berry, Levinsohn and Pakes

(1995) for a single discrete choice model to our setting where a set of options is sampled and
show that the system of equations

s̃j(δd) = sj, j ∈ Jd

has a unique solution. Since ∑j∈Jd
sj = 1, we normalize one dimension of δd in each district

d to 0. Therefore, all inverted mean utilities are relative to that of the normalized property.
To estimate the parameters in the utility function (α, β), we regress the inverted δj on

the list price and property characteristics according to equation (4).9 One concern is that the
list price of a property is likely to be correlated with unobservable property characteristics.
We address this potential endogeneity issue by using an instrumental variable approach.
Specifically, our instrumental variable is the average transaction price of properties in the
same segment where transactions occurred within the three weeks prior to property j’s
listing. This instrumental variable is relevant because property owners and their agents are
likely to choose list prices based on historical transaction prices in the same area and price
range. At the same time, it is reasonable to assume that the transaction prices of properties
sold in the last three weeks before a property is listed are uncorrelated with the unobservable
characteristics of the property.

4.1.2 Discussion of Two-Step Estimation Procedure

In this two-step estimation procedure, we back out the mean utility and estimate the
static parameters in the utility function before estimating the dynamic parameters that
govern search intensity (i.e., the number of searches in each period), search duration (i.e.,
the length of the search), and the purchase decision (i.e., which property to purchase). We
carry out this first step by matching the model implications of search shares conditional on
the observed search intensity and search duration to the observed search shares.

For this two-step procedure to work, we need to be able to write down the model impli-
cation of search shares without solving the dynamic search model. We can do this because
while a consumer endogenously decides the number and length of her searches, the set of
properties visited is exogenous. A similar exogeneity assumption is also made, for example,
in Hortaçsu and Syverson (2004). We extend their specification of the sampling probability
for a product to the sampling probability for a set of products as in (6). According to our

9Since δj is relative to the mean utility of the normalized property, the regressors are pl
j −pl

jd
0

and xj −xjd
0

where jd
0 is the normalized property in district d.
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sampling probability specification, a property with a higher mean utility has a higher prob-
ability of being sampled. The exogenous assumption only means that a consumer and her
agent do not have full control over the set of properties they can visit in a given period, cer-
tain random factors also play a role in determining the set of sampled properties, and these
random factors are unknown to the consumer and thus exogenous. Although not perfect, we
believe that this exogeneity assumption is justified.

The advantage of the two-step estimation procedure is twofold. First, following such
a two-step procedure, we can allow for unobservable property heterogeneity (i.e., ξj in the
utility function) and allow list prices to be endogenous. If we were to estimate the utility
parameters along with the dynamic parameters using maximum likelihood estimation, we
would either have to assume that there is no unobservable property heterogeneity (so that
there is no endogeneity in prices) or model how list prices are correlated with the unobservable
property heterogeneity (to control for the endogeneity of prices).10 Second, we back out the
mean utilities of all properties in the sample in the first step, which allows us to estimate
the transition of the search environment before estimating the dynamic model. For example,
as explained in Section 3.1.5, the mean utility of new listings follows a normal distribution
N(δ̄new

it , (σnew
i )2). We estimate δ̄new

it and σnew
i based on the inverted δj for new listings in

the sample. Appendix B explains in detail how we estimate the parameters describing the
transition of the search environment.

In the end, after the first estimation step, we obtain the transition of the environment in
the dynamic model as well as the observable components of the information set Ωit in the
dynamic model (i.e., δjt = δj + αpd

jt).

4.2 Dynamic Parameters θ = (γ, κ, w, σw, σv)

4.2.1 Estimation of Dynamic Parameters

For each consumer i, we observe her search duration Ti. For each search week t = 1, ..., Ti,
we observe her search intensity (i.e., the number of properties visited nit) and her purchase
decision (i.e., whether yit = recall – to buy a previously visited property, yit = j ∈ Nit – to
buy property j which is newly visited by her in the current period, or yit = wait – to search
longer).11

10In this case, the likelihood function would be an expectation of the probability that the observed search
path is taken and the observed purchase decision is made. This probability depends on ξj ’s. The expectation
is an integral over the distribution of ξj ’s conditional on the observed list prices. Therefore, we need a model
to describe such a conditional distribution.

11We observe the identity of a consumer’s purchased property regardless of whether it belongs to the recall
set Rit or the newly searched set Nit. However, our likelihood function captures whether a consumer recalls,
rather than which property she recalls. This is because the probability of purchasing a particular property
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The likelihood of observing the search and purchase path {nit, yit}Ti
t=1 for consumer i is

li(θ) =
∫ [

ΠTi
t=1Pri(nit|Ωit; θ) · Pri(yit|Ωit, {vij}j∈Nit

; θ)
]

dFv({{vij}j∈Nit
}Ti

t=1) (13)

where Prit(nit|Ωit; θ) is the probability of searching nit properties, Pr(yit|Ωit, {vij}j∈Ait
; θ) is

the purchase choice probability, and Fv({{vij}j∈Nit
}Ti

t=1 is the distribution of match values of
all properties that consumer i has visited before purchase. We now derive these two sets of
probabilities.

At the beginning of a period, consumer i observes Ωit and chooses nit to maximize her net
gain from searching according to the optimization problem in (10). Given that the search
cost shock ϑitn follows the type-1 extreme value distribution with scale parameter κ, the
probability that consumer i searches nit is

Pri(nit|Ωit; θ) = exp{[EBi(nit|Ωit; θ) − C(nit; θ)]/κ}∑n̄
n=0 exp{[EBi(n|Ωit; θ) − C(n; θ)]/κ}

, (14)

where we add the parameters θ to the expected search benefit EBi(nit|Ωit; θ) and search
costs C(nit; θ) to make their dependence on the parameters explicit.

After visiting nit properties, consumer i observes the original information set Ωit and
the newly acquired information set {vij}j∈Nit

. Consumer i now makes a purchase decision
according to (8). Specifically, the consumer chooses between buying one of the previously
searched property (yit = recall), buying a newly searched property (yit = j ∈ Nit), or
continuing the search (yit = wait). The probabilities of these actions are, respectively,

Pri(yit = recall|Ωit, {vij}j∈Nit
; θ) (15)

=1
{

max
j∈Rit

δjt + vij ≥ max
j∈Nit

δjt + vij

}
× Φ

({
max

j∈Rit∪Nit

{δjt + vij} − E [Vi(Ωit+1; θ)|Ωit,{vij}j∈Nit
] + w

}
/σw

)

Pri(yit = j ∈ Nit|Ωit, {vij}j∈Nit
; θ) (16)

=1
{

δjt + vij ≥ max
j∈Rit∪Nit

δjt + vij

}
× Φ

({
max

j∈Rit∪Nit

{δjt + vij} − E [Vi(Ωit+1; θ)|Ωit,{vij}j∈Nit
] + w

}
/σw

)
in the recall set depends on δjt + vij for all j ∈Rit (as well as {δjt}j∈Ait

), resulting in a high-dimensional
state variable. However, the probability of recall depends on a summary statistic max

j∈Rit

δjt + vij (as well as

{δjt}j∈Ait
).

21



Pri(yit = wait|Ωit, {vij}j∈Nit
; θ) (17)

=Φ
({

E [Vi(Ωit+1; θ)|Ωit,{vij}j∈Nit
] − w − max

j∈Rit∪Nit

{δjt + vij}
}

/σw

)
,

where Φ(·) is the distribution function of a standard normal distribution.
We estimate θ using maximum likelihood function estimation, where the log-likelihood

function is L(θ) = ∑I
i=1 ln li(θ). To compute the likelihood function, we need to compute

the value function Vi(Ωit; θ) as a fixed point to the Bellman equation. The state variable
is the information set Ωit = ({δjt}j∈Ait

, {δjt, vij}j∈Rit
), which includes the mean utilities of

the properties available to search ({δjt}j∈Ait
) as well as both the mean utilities and the

match values of the properties available to recall ({δjt, vij}j∈Rit
). Thus, the state space is

large. Following much of the literature on dynamic estimation (e.g., Collard-Wexler (2013);
Sweeting (2013); Hodgson (2019)), we solve this large state space problem by approximating
the high dimensional state variable with lower-dimensional statistics. Furthermore, the state
variable includes both observable and unobservable variables. We simulate the unobservable
variables in estimation. We provide more details on dynamic estimation in Appendix B.

4.2.2 Identification

The dynamic parameters include three sets of parameters: the standard deviation of the
match value (σv), the search cost parameters (γ, κ), and the waiting cost parameters (w, σw).

The standard deviation of the match value is identified by both a static and a dynamic
feature of consumer purchase patterns. Statically, we observe which property each consumer
purchased. Comparing the mean utility of a consumer’s purchased property to the highest
mean utility in the consumer’s choice set at the time of purchase informs us about the
importance of match values. In particular, a larger standard deviation of match values
implies that it is more likely to observe a larger gap between the mean utility of the purchased
property and the highest mean utility. Dynamically, we observe when when each consumer’s
purchased property is visited by the consumer. If a consumer visited her purchased property
in an earlier period and purchased it in a later period, such a recalling behavior means that
the consumer decided to continue the search in the belief that there is a good chance that
she gets a better draw of the match value. Therefore, a larger recall share also indicates a
larger standard deviation of match values.

The search cost parameters are identified by the mean and variance of the search intensity.
Recall that the mean of the search cost is C(n) = exp(γ0 + (γ1 + γ2mit)n + γ3n

2)1(n > 0).
While the fraction of observations with zero searches identifies γ0, how the fraction with n

searches varies as n increases helps us identify γ1 and γ3. Finally, how the search intensity
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varies with mit identifies γ2. As for the scale parameter of the search cost shock, it is
identified by the observed variance in search intensity.

Similarly, the waiting cost parameters are identified by the observed search duration.
In particular, the overall level of search duration identifies the mean parameter w and the
variance of search duration across consumers identifies the variance of the waiting cost shock
σ2

w.

5 Estimation Results

In this section, we present our estimation results and evaluate the model fit. We begin
with the estimates of the parameters in the mean utility function. We then present the
estimates of the dynamic parameters, including the standard deviation of match values, the
waiting cost parameters, and the search cost parameters. We conclude this session with a
discussion of model fit.

5.1 Estimates of Static Parameters

We obtain the estimates of the parameters of the utility function (α, β) by regressing the
inverted mean utility δj on the list price and the property characteristics according to equa-
tion (4). In Table 3, we report the OLS results in Column (I) and the IV regression results
in Column (II). Since properties that are more attractive to consumers in ways that are un-
observable to researchers may have higher list prices, list prices are potentially endogenous,
leading to an upward bias for the price coefficient in the OLS regression. To address this po-
tential endogeneity issue, we use the average list price of properties in a segment three weeks
prior to a property’s listing as an instrument for that property’s list price. This instrumental
variable is highly correlated with the list price. At the same time, it seems reasonable to
assume that this instrumental variable, which depends on the list prices of previously listed
properties, is uncorrelated with the unobservable characteristics of a property. Comparing
the two columns in the table, we find that the IV regression does indeed yield a smaller price
coefficient. In the following, we focus on the IV results.

Overall, the estimation yields intuitive results. Consumers like newer and larger proper-
ties with more bedrooms, more living rooms, located on the 10th floor or higher, and close to
subway stations. For example, suppose the average bedroom size is 20 square meters. Then,
on average, an extra bedroom is valued at 0.307 (=(0.344+0.050×20)/4.384) million CNY.
Similarly, an additional living room with an average size of 30 square meters is valued at
0.579 (=(1.040+0.050×30)/4.384) million CNY. Locating on the 10th floor or above is worth
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CNY35,400 more than locating below the 10th floor. As a robustness analysis, in Appendix
SA, we allow the price coefficient to be district specific and find mild heterogeneity in price
sensitivity among consumers searching in different districts.

Table 3: Estimates of Parameters in Mean Utility

(I) OLS (II) IV
Est SE Est SE

List price (million CNY) -0.193 (0.006) -4.384 (0.133)
Property age (year) -0.031 (0.001) -0.009 (0.001)
# Bedrooms 0.206 (0.007) 0.344 (0.015)
# Living rooms 0.530 (0.008) 1.040 (0.023)
Property size (m2) 0.005 (0.000) 0.050 (0.002)
Indicator of above 10th floor 0.089 (0.007) 0.155 (0.016)
Close to subway stations -0.029 (0.010) 0.199 (0.022)
Neighborhood FE yes yes
R square 0.573 0.529

5.2 Estimates of Dynamic Parameters

Table 4 reports the estimation results for the dynamic parameters, including the standard
deviation of match values (σv), the waiting cost parameters (w, σw), and the search cost
parameters (γ, κ).

The estimated standard deviation of the match value is 0.441. Based on the estimated
price coefficient (α̂ = −4.384), this estimated standard deviation corresponds to a value of
CNY100,593 (= 0.441/4.384 × 106), about 3% of the average list price and 176% of the
per-capita disposal income in Beijing in 2016.12 Therefore, there is a significant benefit of
searching to learn about the match value.

The waiting cost is on average 0.051, which is equivalent to CNY11,633 (= 0.051/4.384×
106) per week. This high waiting cost is consistent with the observation that consumers
search for 3.5 weeks on average before purchasing a property. The main motivation for
buying a property in China is often marriage. The large waiting cost may therefore be
explained by the cultural norm in China that the groom’s family is expected to purchase a
home for the newlyweds before marriage (Wei and Zhang (2011)). However, in relative terms,

12The per-capita disposal income in Beijing is CNY57,275 in 2016 according to the 2017 Beijing
Statistical Yearbook, 9-14 Basic Data on Urban Housseholds (https://nj.tjj.beijing.gov.cn/nj/main/2017-
tjnj/zk/e/indexeh.htm)
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this average waiting cost is only 0.28% of the average list price. The standard deviation of
the waiting cost is slightly smaller than the mean.

The estimated search cost parameters indicate that there is a baseline search cost that
a consumer incurs as long as she searches in a period and that the search cost increases
with the number of visits. Specifically, the baseline search cost (γ̂0) is CNY703 (= 3.080 ×
0.001/4.384×106). As for the marginal search cost, it increases with the cumulative number
of searches a consumer has done in the previous weeks (γ̂2 > 0). It also increases with the
current number of searches (γ̂3 > 0), implying that the search cost is convex in the number
of visits. On average, consumers pay a total search cost of CNY1,244 (i.e., the average of∑Ti

t=1 C(nit)/α across consumers). Given that an average consumer visits 6.71 properties in
total, this implies an average search cost of CNY185 per visit.13

Table 4: Estimates of Dynamic Parameters

Est. SE
SD of match values (σv) 0.441 (0.029)
Mean waiting cost (w) 0.051 (0.016)
SD of waiting cost shock (σw) 0.049 (0.027)
Search cost: (0.001)

constant (γ0) 3.080 (0.713)
n (γ1) 1.039 (0.442)
(cumulative visits)×n (γ2) 4.231 (0.887)
n2 (γ3) 0.202 (0.089)
scale parameter (κ) 3.258 (0.599)

5.3 Model Fit

To assess how well our estimated model fits the data, we simulate for each consumer in
the data her decision “path”, which describes how long a consumer searches, the number of
visits in each week during her search, and which property she purchases. We simulate 50
such paths for each consumer. Appendix C provides details on the simulation. We report
summary statistics about consumers’ search and purchase decisions according to the data
and according to our simulations in Table 5.

Specifically, Table 5 reports summary statistics on search duration, total visits, recall
share (i.e., the share of consumers who purchase a previously searched property), and the
utility of the purchased property. The first two columns summarize the observed data, where
the summary statistics are taken across consumers. We directly observe the search duration

13Alternatively, the average of
∑Ti

t=1
C(nit)∑Ti

t=1
nit

/α across consumers is CNY174.
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and total visits for each consumer as well as the recall share in the data.14 For “utility of the
purchased property”, we report summary statistics of δjt +vij, where property j is purchased
by consumer i in the data, based on the estimated δjt and the estimated standard deviation
of vij. The last two columns summarize the simulated results, taking summary statistics
across consumers and simulations.

Table 5 shows that the estimated model fits the data fairly well. For example, the
simulated average search duration and total visits are 3.841 weeks and 7.223 visits while
their observed counterparts are 3.448 weeks and 6.710 visits. Similarly, the simulated recall
share is 16.1% while the observed recall share is 15.5%. The mean and standard deviation
of the utility of the purchased property are (2.704, 1.921) in the data and (2.591, 2.044)
according to the estimated model.

Table 5: Model Fit: Summary Statistics – Data vs. Simulation

Data Model Simulation
Mean SD Mean SD

Search duration (weeks) 3.448 3.900 3.841 3.143
Total visits 6.710 5.116 7.223 3.574
Recall share 0.155 0.161
Utility of the purchased property 2.704 1.921 2.730 1.210

Figure 4 shows that our model also successfully captures the dynamic pattern of search
intensity. Specifically, Figure 4(a) shows how search intensity changes over time. Take the
third search week as an example. This panel shows that the average number of visits in a
consumer’s third search week is 1.04, where the average is taken over consumers who search
for three or more weeks. From this panel, we can see that consumers visit on average about
4 properties in the first week, the number drops sharply in the second week, and it continues
to drop as consumers search longer. Our simulation based on the estimated model tracks
this dynamic pattern well. Figure 4(b) isolates the extensive margin: how the share of zero
visits changes over time. It shows that the longer consumers search, the more likely they are
to have zero visits in a week. Again, our simulation follows the data pattern well.

14These summary statistics (based on the 1000 randomly sampled consumers) are very close but not
identical to those in Table 2 (based on 26,543 consumers in the sample).
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Figure 4: Model Fit: Visits by Search Week – Data vs. Simulation

(a) Number of Visits (b) Share of Zero Visits

Overall, our dynamic search model fits the data well in both the static and the dynamic
aspects of the data.

6 Comparison to a Static Search Model

In this section, we estimate a static search model and show that ignoring the dynamics
leads to unreasonably large estimates of search costs. A static model endogenizes the total
number of searches and the property purchased, but ignores the duration of the search and
the number of searches in each period. It also ignores the dynamics in the search environment.
There are two types of models with these features in the literature: a simultaneous search
model and a sequential search model. In a simultaneous search model, a consumer searches
a set of properties at once and then purchases one from the searched set. In a sequential
search model, a consumer searches one property at a time and decides whether to continue
the search after each visit. As pointed out by Santos, Hortaçsu and Wildenbeest (2012), in
a classic sequential search model, a consumer purchases the last property visited and never
recalls (unless she visits all properties). Since more than 15% consumers in our data recall,
we consider a simultaneous search model in Section 6.1.

6.1 A Static Search Model

The static model is similar to our dynamic search model except for two key differences.
First, consumers in the static model choose the total number of visits instead of the number
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of visits in each period and the duration of the search. Second, the mean search cost in (5)
is now c(n) = γ1n + γ2n

2. We no longer include a constant term γ01(n > 0). This is because
all consumers in the sample choose n > 0, where n now represents the total number of visits
instead of the number of visits in a period. We also do not include the covariate mit, the
cumulative number of searches prior to time t, in this static model.

The timing of the static model is the same as in the stage game of the dynamic model.
First, consumer i observes the information set Ωi and the search cost shocks (ϑin, n = 0, ..., n̄)
and decides the number of visits ni. Recall that in the dynamic model we distinguish between
the properties available for search at time t (Ait) and those searched before time t (Rit).
There, the information set Ωit consists of the mean utility δjt for j ∈ Ait and both δjt and
the match value vij for j ∈ Rit. Here, in the static model, the information set Ωi is simply
{δj}j∈Ai

, i.e., the mean utilities for all properties in her segments in the sample denoted by
Ai. Then, a search set Ni ∈ Cni(Ai) is sampled according to the probability given in (6)
except that the subscript t is dropped for the static model. After visiting the properties in
the search set Ni, consumer i observes the match value of the searched set, i.e., {vij}j∈Ni

.
Finally, given the information Ωi = {δj}j∈Ai

and {vij}j∈Ni
, consumer i decides on which

property to buy. This decision is denoted by yi, and yi = j means that consumer i chooses
property j ∈ Ni.

We estimate the search cost parameters (γ1, γ2, κ) and the standard deviation of match
values (σv) using MLE. Let θ represent these parameters. The likelihood of observing that
consumer i searches ni properties and buys property j is

li(θ) = Pr(ni|{δj}j∈Ai
; θ) · Pr(yi = j|{δj}j∈Ni

; θ). (18)

In (18), the probability that consumer i searches ni properties is the same as that in (14):

Pr(ni|{δj}j∈Ai
) = exp {[EB(ni|{δj}j∈Ai

) − C(ni)] /κ}∑n̄
n=0 exp {[EB(n|{δj}j∈Ai

) − C(n)] /κ}
,

where the expected benefit of searching n properties is

EB(n|{δj}j∈Ai
) =

∑
N ∈Cn(Ai)

E{vij}j∈N (max
j∈N

δjt + vij) × Pr(N |Ai, n).

Therefore, Pr(ni|{δj}j∈Ai
; θ) depends on both the search cost parameters (γ1, γ2, κ) and the

standard deviation of match values (σv).
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In (18), the probability that consumer i purchases property j is

Pr(yi = j|{δj}j∈Ni
; θ) = Pr(δj + vij ≥ max

j′∈Ni

δj′ + vij′),

which only depends on the standard deviation of match values (σv).

6.2 Estimation Results Based on the Static Search Model

Table 6 reports the estimation results of the static search model. We have two findings
from the comparison of these results with the estimation results of the dynamic model.

First, the static model yields a much smaller estimate of the standard deviation of the
match value, implying a much smaller benefit from searching. The estimated standard
deviation of match values is 0.235 compared to 0.441 in the dynamic model. These estimates
correspond to a value of CNY53,604 and CNY100,593, respectively. Since the variance of
the match value determines the benefits of searching (specifically, the larger the variance,
the larger the benefits), the benefits of searching according to the estimated static search
model are smaller than those according to the estimated dynamic search model.

Table 6: Estimates of the Static Search Model

Est. SE
SD of match values (σv) 0.235 (0.014)
Search cost: (0.001)

n (γ1) 301.994 (3.672)
n2 (γ2) -9.489 (0.086)
scale parameter (κ) 53.192 (0.449)

The static model yields a smaller estimate of σv than the dynamic model because the
dynamic model exploits more variation in the data to identify σv. In the static model, the
standard deviation of match values σv is identified by comparing the mean utility of the
purchased property to the highest mean utility among all searched properties. Specifically,
consumer i purchases j if and only if δj +vij ≥ max

j′∈Ni

δj′ +vij′ . Therefore, a larger gap between
δj and max

j′∈Ni

δj′ implies a larger variance for vij. In a dynamic model, the parameter σv is
identified not only by such a static comparison (i.e., which property is purchased), but also
by a dynamic feature of the data (i.e., when the purchased property is visited). If a consumer
purchases a property that was visited in an earlier period, we say that this consumer recalls.
As explained in Section 4, a larger recall share implies a larger standard deviation of the
match value, because only if there is a large enough chance of getting a large draw of the
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match value will a consumer decide to continue searching despite having visited a property
that turns out to be the best ex post. In our estimation sample, the recall share is as high
as 15.5%. As a result, our dynamic model yields a larger estimate of the variance of match
values.

Second, despite the smaller estimate of search benefits, the static model yields a much
larger estimate of search costs, in fact an unreasonably high estimate of search costs. Table 7
reports the summary statistics of the total search cost incurred by a consumer to search the
observed number of properties she visited. This total search cost is c(ni)/α in the static model
and ∑Ti

t=1 c(nit)/α in the dynamic model. The average search cost is CNY308,177 in the static
model, more than an order of magnitude higher than in the dynamic model (CNY1,244).
Given that a consumer in our estimation sample visits an average of 6.71 properties before
buying, the average search cost for each property is approximately CNY45,928, or $6,889 per
property given the average exchange rate of 0.15 in 2016. We find this estimate unreasonably
high.

The static model gives unreasonably high search costs because it does not take into
account the dynamics in the search environment. During the sample period, house prices
increase rapidly. Therefore, there are two reasons why a consumer stops searching: search
costs and increased prices. By ignoring the latter, the static model overestimates search
costs.

Table 7: Estimated Search Costs in CNY: Static vs. Dynamic

Mean SD
Static search model 308,177 150,543
Dynamic search model 1,244 1,836

7 Impacts of Changing Search Environment and Search
Costs

Having established the importance of considering dynamics in our setting, we now quan-
tify how dynamics in the search environment affect consumers’ search and purchase decisions.
There are three changes to the search environment: price increases, new listings entry, and
existing listings exit. We consider the effects of all three changes through counterfactual
simulations in Section 7.1. Consumers’ search and purchase behavior is also affected by
search frictions such as search costs. To quantify the relative importance of the traditional
search friction such as search costs versus the search frictions stemming from the dynamics
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in the search environment, we consider a counterfactual scenario in which consumers’ search
costs are reduced by half in Section 7.2 and compare the results with those in Section 7.1.

In each counterfactual simulation, we simulate 50 decision paths for each consumer and
report the mean and standard deviation of outcome variables that capture consumer search
behavior (search duration and total visits), purchase outcome (utility of purchased property),
and costs (search cost and waiting cost). Details of the simulation are in Appendix C.

7.1 Effects of Changing Search Environment

In this section, we quantify how the three changes in the search environment (price
increases, entry of new listings, and exit of existing listings) affect consumers’ search and
purchase behavior and consumer welfare.

To examine the effects of price increases, we consider a counterfactual scenario with half
the actual price increase rate. Specifically, we reduce both the rate at which the list price of
new properties increases over time and the rate at which the sales price increases over time.
Table 8 reports summary statistics of the main endogenous outcomes in the counterfactual
scenario in Column (II). For comparison, we also include the outcomes under the actual
observed price change in Column (I).

From Table 8, we can see that as the price change becomes smaller, consumers search
longer, visit more properties before buying, and find properties that generate higher utilities.
The average search duration increases from 3.448 with the observed price change to 4.970
with half the actual price change (Row (1)). Similarly, the total number of visits increases
from 6.710 to 7.892 (Row (2)). As consumers search longer and more, they end up buying
a property that generates a higher utility. Specifically, Row (3) shows that the average
utility of the purchased property increases from 2.704 to 2.905, corresponds to an increase
in value of CNY45,849 (= (2.905 − 2.704)/4.384 × 106). Part of the increase in utility comes
mechanically from a lower price. To remove such a mechanical change that contributes to
the utility increase, or equivalently, to isolate the effect of longer and more searches on
consumer utility, we also report in Row (4) what the utility of the purchased property would
be at the observed price. Under the actual price change, Rows (3) and (4) are, of course,
identical. When the price change is half, the utility at the observed (higher) price in row
(4) is, unsurprisingly, smaller than that in Row (3). Nevertheless, even if we ignore the
increase in utility due to lower prices, there is an increase in utility equivalent to CNY35,356
(= (2.859 − 2.704)/4.384 × 106) according to Row (4). In other words, searching longer and
more contributes to 77% of the increase in utility when the price change is reduced. At the
same time, both the average search cost and the average waiting cost increase. In total, they
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increase by CNY18,660 (Rows (5) and (6)), which is only about half of the increase in utility
due to longer and more searches (CNY35,356). Therefore, on balance, consumers are better
off with a slower price change.

Table 8: Impact of Price Change

(I) Actual (II) Half of Actual
Mean SD Mean SD

(1) Search duration (week) 3.448 3.900 4.970 4.226
(2) Total visits 6.710 5.116 7.892 3.675
(3) Utility of purchased property 2.704 1.921 2.905 1.290
(4) at the observed price 2.704 1.921 2.859 1.286
(5) Search cost (CNY) 1,244 1,836 1,726 2,498
(6) Waiting cost (CNY) 29,724 13,992 47,902 19,662

In addition to price changes, property availability can also change over time. Therefore,
two other changes in the search environment are the entry of new listings and the exit of
existing listings. To quantify how they affect consumers’ search and purchase decisions,
we consider a counterfactual scenario in which the entry rate (i.e., the arrival rate of new
listings) is doubled in Column (II) of Table 9 and a scenario in which the exit rate (i.e.,
the probability that an existing listing will exit) is halved in Column (III) of Table 9. For
comparison, we again include the results with the actual entry and exit rates in Column (I).
In both counterfactual scenarios, consumers have more incentives to search longer compared
to the actual search environment because consumers either expect more new listings in the
future or face a lower probability that her previously visited properties will exit the market.

Comparing Column (II) to Column (I) of Table 9, we can see that, when consumers
anticipate more new listings in the future, they indeed search longer, visit a greater number
of properties before making a purchase, and ultimately purchase properties that generate
higher utilities. Specifically, doubling the entry rate increases consumers’ average search
duration by 1.347 weeks and their average number of visits by 1.083. As a result, their
utility from the purchased property increases by 0.271, which is equivalent to an increase in
value of CNY61,816. Meanwhile, visiting more properties and searching for a longer time
increases the search cost by CNY319 and the waiting cost by CNY14,228. Overall, consumers
are better off.

The comparison of Column (III) and Column (II) shows similar patterns: in anticipation
of a slower exit of existing listings, consumers search for more weeks, visit more properties
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in total, and ultimately purchase a more desirable property. Overall, the average increase in
utility is equivalent to CNY26,232, which more than offsets the average increase in search
costs of CNY159 and waiting costs of CNY7,826.

Table 9: Effects of Entry and Exit

(I) (II) (III)
Actual Double Actual Half Actual

Entry Rate Exit Rate
Mean SD Mean SD Mean SD

Search duration (week) 3.448 3.900 4.795 4.188 4.339 3.626
Total visits 6.710 5.116 7.793 3.760 7.310 3.527
Utility of purchased property 2.704 1.921 2.975 2.221 2.819 1.232
Search cost (CNY) 1,244 1,836 1,563 2,252 1,403 2,043
Waiting cost (CNY) 29,724 13,992 43,952 7,832 37,550 16,443

In the three counterfactual simulations in this section, we vary each of the three changes
in the search environment (price changes, entry of new listings, exit of existing listings)
while holding the other two changes fixed. We do this to quantify how each aspect of search
environment dynamics affects consumer decisions and outcomes. In other words, this is a
quantification exercise, not a policy analysis. However, because the price change, the entry
of new listings, and the exit of existing listings are unlikely to move independently, we plan
to add a counterfactual simulation in which we vary all three simultaneously as a robustness
analysis.

7.2 Effects of Search Costs

While Section 7.1 quantifies the effects of changes in the search environment on con-
sumers’ search and purchase behavior, we now quantify the effects of the traditional search
friction, i.e., search costs. To this end, we simulate the results in a counterfactual scenario
where we reduce the search cost function c(n) by half.

Table 10 shows that when consumers face a lower search cost per visit, they unsurprisingly
extend their search duration by 0.609 weeks and visit 0.873 more properties on average. In
comparison, these changes are 1.522 weeks and 1.182 visits when the price change is halved,
1.347 weeks and 1.083 visits when the entry rate is doubled, and 0.891 weeks and 0.6 visits
when the exit rate is halved.

With more searches, consumers find properties that generate higher utilities for them.
The average increased utility is equivalent to CNY19,617. Interestingly, despite the reduced
search cost per visit, consumers end up incurring higher search costs due to more searches.
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However, the increased search costs (CNY85) and waiting costs (CNY3,429) are dominated
by the increased utility. The net benefit is CNY16,103. This compares to a net gain of
CNY16,696 when consumers face a slower price increase (where utility is calculated based
on actual prices), CNY47,269 when the entry rate is doubled, and CNY18,247 when the exit
rate is halved.

Overall, these results show that while traditional search frictions such as search costs
affect consumers’ search and purchase decisions, search frictions arising from the dynamics
of the search environment also have significant effects on consumers’ search and purchase
behavior and consumer welfare. At least for the same percentage change (halving or dou-
bling), varying the dynamics of the search environment has a greater impact than varying
search costs.

Table 10: Impacts of Search Cost

(I) Actual (II) Half Estimated
Search Cost

Mean SD Mean SD
Search duration (week) 3.448 3.900 4.057 3.374
Total visits 6.710 5.116 7.583 4.036
Utility of the purchased property 2.704 1.921 2.790 1.245
Search cost (CNY) 1,244 1,836 1,325 1,996
Waiting cost (CNY) 29,724 13,992 33,153 15,143

8 Conclusion

In this paper, we study how dynamics in the search environment affect consumers’ search
and purchase decisions and consumer welfare. We present a dynamic model in which con-
sumers make search and purchase decisions knowing that both product prices and availability
change over time. In this model, both the search decision and the purchase decision are dy-
namic. The search decision is dynamic because the number of searches in this period affects
both the value of buying now (the set of choices increases with the number of searches) and
the value of waiting (the set of unsearched items decreases with the number of searches).
The purchase decision is dynamic because the decision is not only which product to buy, but
also when to buy.

We develop a feasible estimation routine to estimate our dynamic search model. Since
the choice set for purchase is endogenously determined by the search decision, the standard
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approach to estimating a dynamic demand model (where the choice set evolves exogenously)
does not apply here. Instead, we develop a two-step estimation procedure to address the
challenge of a large state space.

We apply our model and estimation approach to the Beijing housing market between
2015 and 2016, and quantify the relative importance of search environment dynamics and
traditional search frictions such as search costs. We find that, for some metrics, changes
in product prices and availability have a larger impact on consumers’ search and purchase
decisions and consumer welfare than the traditional search friction due to search costs. We
also find that a static search model would yield an unreasonably high estimate of search
costs.

While our model is developed for the context of the housing market and the estimation
approach is used to study the Beijing housing market, the model and the estimation approach
are potentially applicable to any setting where consumers make purchase decisions after
searching and the search environment changes over time. Moreover, the estimation procedure
involves an extension of a discrete choice model from a single-option choice to a set-of-options
choice, which is also generalizable to other settings where consumers choose a set of products
instead of a single product.
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A Micro Foundation for the Sampling Probabilities

We have three goals in this section. First, we show that the sampling probability
Pr(N |A, n) in (6) can be derived from an extension of a discrete choice model from a single-
option choice to a set-of-options choice. Second, we show that this sample probability implies
a probability for each option j, i.e., Pr(j|A, n) in (7). Third, we show that the solution of
the search share equations (12) is unique. In fact, we show that the mapping used to find
the solution in Berry, Levinsohn and Pakes (1995) is again a contraction mapping even in
our extended model.

A.1 Micro Foundation for the Sampling Probability Pr(N |A, n)

In this section, we show that the sampling probability Pr(N |A, n) is consistent with an
extension of a Logit model. In this probability, A represents the set of all options, n is the
number of options to sample, and N ∈ Cn(A) represents a particular n-element subset of A,
where Cn(A) is the collection of n-element subsets of A.

We assume that the value associated with an option j in A is δj +ϵj, where ϵj is i.i.d. and
follows a type-1 extreme value distribution. We further assume that the n highest valued
options are sampled. In other words, N ∈ Cn(A) is sampled if and only if min

j∈N
δj + ϵj ≥

max
l∈A\N

δl + ϵl. Therefore,

Pr(N |A, n) = Pr(δj + ϵj ≥ max
l∈A\N

(δl + ϵl), ∀j ∈ N ).

This model is an extension of a standard Logit model from restricting n = 1 to any n ≥ 1.
When n = 1, it becomes a standard Logit model. We now derive the analytic expression
for Pr(N |A, n) based on the the inclusion-exclusion principle and the analytic expression for
the choice probability in a standard Logit model.

We first apply the inclusion-exclusion principle. The probability that N is not chosen, i.e.,
1 − Pr(N |A, n), is the probability that there is at least one j ∈ N such that max

l∈A\N
(δl + ϵl) >

δj + ϵj. This probability equals to the inclusion and exclusion of the following probabilities:

• include the probability that this inequality holds for one option in N

• exclude the probabilities that this inequality holds for two options in N

• include the probability that inequality holds for three options in N

• so on and so forth
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In other words,

1 − Pr(N |A, n) =
n∑

k=1

(−1)k−1 ∑
B∈Ck(N )

Pr( max
l∈A\N

(δl + ϵl) > δb + ϵb, b ∈ B)
 .

We then derive the analytic expression for Pr( max
l∈A\N

(δl + ϵl) > δb + ϵb, b ∈ B) using the
choice probability in a standard Logit model.

Pr( max
l∈A\N

(δl + ϵl) > δb + ϵb, b ∈ B) =
∑

l∈A\N
Pr(δl + ϵl > δb + ϵb, b ∈ B ∪ (A\N ))

=
∑

l∈A\N

exp(δl)∑
l∈A\N exp(δl) +∑

b∈B exp(δb)
.

In this equation, the analytic expression for Pr(δl + ϵl > δb + ϵb, b ∈ B ∪ (A\N )) is the choice
probability in a standard Logit model.

Combining the above two steps yields

Pr(N |A, n) = 1 −
n∑

k=1

(−1)k−1 ∑
B∈Ck(N )

Pr( max
l∈A\N

(δl + ϵl) > δb + ϵb, b ∈ B)


= 1 −
n∑

k=1

(−1)k−1 ∑
B∈Ck(N )

∑
l∈A\N exp(δl)∑

l∈A\N exp(δl) +∑
b∈B exp(δb)

 ,

which can be further simplified as

Pr(N |A, n) = 1 −
n∑

k=1

(−1)k−1 ∑
B∈Ck(N )

(
1 −

∑
b∈B exp(δb)∑

l∈A\N exp(δl) +∑
b∈B exp(δb)

)
= 1 −

n∑
k=1

(−1)k−1Ck
n +

n∑
k=1

(−1)k−1 ∑
B∈Ck(N )

∑
b∈B exp(δb)∑

l∈A\N exp(δl) +∑
b∈B exp(δb)


=

n∑
k=1

(−1)k−1 ∑
B∈Ck(N )

∑
b∈B exp(δb)∑

l∈A\N exp(δl) +∑
b∈B exp(δb)

 , (A.1)

where the last line holds because setting x = −1 in the binomial theorem (1 + x)n =∑n
k=0 Ck

nxk yields 0 = 1 −∑n
k=1 Ck

n(−1)k−1.
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A.2 Implied Pr(j|A, n) and Its Properties

A.2.1 The Analytic Expression for Pr(j|A, n)

The probability that option j is sampled conditional on sampling n options is Pr(j|A, n) =∑
N ∈Cn(A):j∈N Pr(N |A, n). When n = 0, Pr(j|A, n) = 0. When n = A = #A, Pr(j|A, n) =

1. In Supplemental Appendix SB, we show that for 0 < n < A,

Pr(j|A, n) =
n−1∑
k=0

(−1)k
∑

F∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈F exp(δl) + exp(δj)

) . (A.2)

In this section, we provide intuitions for this analytic expression.
Option j is sampled if it’s rank, according to value δj + ϵj, is no more than n among all

options in A. In other words, Pr(j|A, n) is the sum of Pr(j’s rank is n−k) for k = 0, ..., n−1.
The probability that j has a certain rank is closely related to the probability that j is the
best in a subset of options. For instance, j has a rank of 1, then j is the best among all
options in A. Similarly, the rank of j is 2 means that j is the best among A − 1 options.

Specifically, the connection between the probability that j is the best in a subset of options
and the probability of j has a certain rank is as follows: ∑F∈CA−n+k(A\j)Pr(j is the best in F∪
j) is the sum of Pr(j’s rank is n−k), Pr(j’s rank is n−k−1), ..., and Pr(j’s rank is 1) where
each probability is properly weighted. Consider a simple example where A = {1, 2, 3, 4} and
n = 3. Let j = 1. When k = 1, F ∈ CA−n+k(A\j) can be {2, 3},{2, 4},{3, 4}. The
event “1 is the best among {1, 2, 3}” includes the event “1’s rank is 1” and partially over-
laps with the event “1’s rank is 2.” The union of the three events “1 is the best among
{1, 2, 3}”, “1 is the best among {1, 2, 4}”, and “1 is the best among {1, 3, 4}” includes the
event “1’s rank is 2” exactly once but counts the event “1’s rank is 1” three times. Therefore,∑

F={2,3},{2,4},{3,4}Pr(j is the best in F ∪ j) =Pr(j’s rank is 2) + 3 Pr(j’s rank is 1).
Such a relationship between the probability that j is the best among a subset and the

probability that j has a particular rank explains the terms exp(δj)∑
l∈F exp(δl)+exp(δj) and Ck

A−n+k−1

in (A.2), which correspond to probability that option j is the best in F ∪ j and the weight
used to adjust double counting.

A.2.2 Three Properties of Pr(j|A, n)

Property 1. Pr(j|A, n) is increasing in δj and decreasing in δk for k ̸= j. Option j

is sampled if and only if δj + ϵj is among the top n highest values in {δj′ + ϵj′}j′∈A. Since
an increase in δj leads to an increase in the probability that option j is among the top-n
options, Pr(j|A, n) is increasing in δj. Similarly, since an increase in δk for k ̸= j leads to a
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decrease in the probability that option j is among the top-n options, Pr(j|A, n) is increasing
in δk for k ̸= j.

Property 2. Pr(j|A, n) becomes the choice probability in a standard Logit model
when n = 1. When n = 1, Pr(j|A, n) in (A.2) becomes

Pr(j|A, 1) =
∑

F∈CA−1(A\j)

(
exp(δj)∑

l∈F exp(δl) + exp(δj)

)
= exp(δj)∑

l∈A exp(δl)
,

because CA−1(A\j) has a singleton element, i.e., A \ j. In other words, Pr(j|A, 1) is indeed
the choice probability in a standard Logit model.

Property 3. The sum of Pr(j|A, n) across j in A is n, i.e., ∑j∈A Pr(j|A, n) = n.
When n = A, Pr(j|A, A) = 1 and, therefore, ∑j∈A Pr(j|A, A) = A. We now consider the
case where n < A.

∑
j∈A

Pr(j|A, n) =
∑
j∈A


n−1∑
k=0

(−1)k
∑

F∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈F exp(δl) + exp(δj)

)
=

n−1∑
k=0

(−1)k

∑
j∈A

 ∑
F∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈F exp(δl) + exp(δj)

)
 .

Let D represent the union of F and {j}. Since F ∈ CA−n+k(A\ j) and {j} have no intersect,
we can rewrite the above equation as

∑
j∈A

Pr(j|A, n) =
n−1∑
k=0

(−1)k

 ∑
D∈CA−n+k+1(A)

∑
j∈D

(
Ck

A−n+k−1exp(δj)∑
l∈D exp(δl)

)
 .

Because in the summation over F ∈ CA−n+k(D), the denominators are the same and each
term exp(δl) for l ∈ D is repeated CA−n+k−1

A−n+k times, the above line can be simplified to

∑
j∈A

Pr(j|A, n) =
n−1∑
k=0

(−1)k

 ∑
D∈CA−n+k+1(A)

Ck
A−n+k−1

 (A.3)

=
n−1∑
k=0

(−1)kCA−n+k+1
A Ck

A−n+k−1

= n.

We provide a proof for the last equality, i.e., ∑n−1
k=0(−1)kCA−n+k+1

A CA−n−1
A−n+k−1 = n in Supple-

mental Appendix SB.3.
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A.3 s̃j(δ) = sj, j ∈ Jd Has a Unique Solution

In this section, we show that, under certain regularity conditions, the system of equations
(s̃j(δd) = sj, j ∈ Jd\{1}) has a unique solution δd = (δj, j ∈ Jd) such that δ1 = 0. Recall
that we normalize the mean utility of the first property to 0 and that the share function is

s̃j(δd) =
∑

i∈Id

∑Ti
t=1 Pr(j|Ait, nit)∑

i∈Id

∑Ti
t=1 nit

, (A.4)

In what follows, we suppress the subscript d for simplicity and use J to denote the cardinality
of J .

The regularity conditions are:

1. 0 < sj <
∑

i∈I

∑Ti
t=1 1(j∈Ait)∑

i∈I

∑Ti
t=1 nit

.

2. For any it, #{δj : j ∈ Ait, δj = ∞} ≤ nit.

3. For any it, #{δj : j ∈ Ait, δj = −∞} ≤ Ait − nit.

Condition 1 imposes a constraint on the observed search share sj. It means that each
property is visited at least once (sj > 0) but not to the extent that it is visited whenever
it is in a consumer’s available-to-search set (sj <

∑
i∈I

∑Ti
t=1 1(j∈Ait)∑

i∈I

∑Ti
t=1 nit

). This condition is an
extension to the condition 0 < sj < 1 in a single discrete choice model.

Conditions 2 and 3 impose constraints on nit in the data. Condition 2 implies that
if a consumer’s available-to-search set includes properties with a mean utility of ∞, the
consumer visits these properties. Condition 3 implies that if a consumer’s available-to-
search set includes properties with a mean utility of ∞, the consumer does not visit these
properties.

Following Berry, Levinsohn and Pakes (1995), we define a mapping f : {0}×RJ−1 → RJ−1

as
fj(δ) = δj + ln sj − ln s̃j(δ) (A.5)

for j ∈ J \{1}. Recall that we normalize δ1 to 0. In Supplemental Appendix SB, we show
that this mapping is a contraction mapping. Therefore, the fixed point of it is the unique
solution to the system of equation s̃j(δ) = sj, j ∈ J \{1}.
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B Estimation Details

B.1 Estimation of the Environment Transition

As explained in Section 3, the transition of the environment in consumer i’s search market
is described by the new listing arrival rate λi, listing exit rate χi, the mean and standard
deviation of a new listing’s mean utility (δ̄new

it , σnew
i ), the trend in new listing’s mean utility

µi, and the trend in discount ρm for each segment in consumer i’ search market. To estimate
these parameters, we start with estimating segment-level parameters.

We estimate the segment-level arrival rate λm by first finding the number of new listings
in segment m in each week in the sample and then taking an average across weeks in the
sample. Similarly, we estimate the segment-level exit rate χm by first computing the exit
rate in segment m in each week (as the ratio of the number of exits to the number of listings)
and then taking an average across weeks.15 We estimate the segment-level mean δ̄new

mw for new
listing’s mean utilities as the average of δj across new listings in segment m and calendar
week w. The estimated standard deviation σnew

m is the standard deviation of all new listings
in segment m. We estimate the trend in new listing’s mean utility µm by first computing
δ̄new

mw+1 − δ̄new
mw and then taking the average across weeks in the sample. Similarly, we estimate

the trend in the discount ρm by first computing dmw+1 − dmw and then taking the average
across weeks in the sample, where dmw is the average gap between the transaction price and
the list price for transacted properties in segment m in calendar week w.

To estimate (λi, χi, σnew
i , µi) in consumer i’s search market, we take the weighted average

of the corresponding segment-level values where the weight is the share share of consumer i’s
searches in a segment. To estimate δ̄new

it , we take the same weighted average across δ̄new
mw to

obtain δ̄new
iw . We then find the corresponding calendar week w and assign the corresponding

δ̄new
iw to δ̄new

it .

B.2 Value Function Approximation

B.2.1 Reduced state space

The state variable Ωit = ({δjt}j∈Ait
, {δjt, vij}j∈Rit

, δ̄new
it ) is high dimensional. We approx-

imate the value function Vi(Ωit; θ) by a function of a lower dimensional state variable as
follows.

First, we define u∗
it = maxj∈Rit

δjt + vij to be the maximum utility among properties in
the recall set and replace {δjt, vij}j∈Rit

in the state variable by u∗
it.

15A property is considered to have exited in a particular week if it is either sold in that week or has not
been visited ever since two weeks prior to that week.
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Second, we assume that instead of tracking δj for all properties in Ait, a consumer tracks
the mean utilities of the top K properties and the average mean utility of the remaining
properties. In other words, we replace {δjt}j∈Ait

by {δ1t, ..., δKt, δ̄K+1t, Ait}, where, with a
slight abuse of notations, δ1t, ..., δKt represent the highest K mean utilities among {δjt}j∈Ait

;
δ̄K+1t denotes the average of δjt for properties outside the top K in the set Ait, and Ait = #Ait

is the number of properties available for search. In practice, we set K = 5.
Let Ω̃it = {δ1t, ..., δKt, δ̄K+1t, Ait, u∗

it} denote the reduced state variable. We approximate
the value function with a polynomial of the reduced state variable.

B.2.2 Simulation of Ω̃it and Its Transition

The state variable Ω̃it includes observable variables (δ1t, ..., δKt, δ̄K+1t, Ait) as well as the
unobservable variable u∗

it. In estimation, we simulate the unobservable u∗
it by drawing vij for

j ∈ Nit, t = 1, ..., Ti.
To simulate the expected value of continuing searching conditional on Ω̃it and match

values of a newly search set of properties N , i.e., E
[
Vi(Ω̃it+1)|Ω̃it,{vij}j∈N

]
, we simulate the

transition of the state variable Ω̃it according to the transition of the environment. In what
follows, we explain how to obtain a simulation draw of Ω̃r

it+1 based on Ω̃it and N , where the
superscript r represents a simulation draw.16

1. Simulate the available-for-search set in the next period

(a) We draw a number newr
it from a Poisson distribution with arrival rate λi. It

represents the number of new listings. We denote the set of new listings by
N EWr

it.

(b) For each house j ∈ Ait, we draw exitr
jt = 1, 0 from a Bernoulli distribution with

exit rate χi and denote the set of exited properties (i.e., j such that exitr
j = 1) by

EX IT r
it.

(c) The available-for-search set in the next period is, therefore, Ar
it+1 = N EWr

it ∪
(Ait \ N \ EX IT r

it). Correspondingly, Ar
it+1 = #Ar

it+1.

2. Simulate {δ1t+1, ..., δKt+1, δ̄K+1t+1}

(a) For j ∈ N EWr
it, we draw δr

jt+1 from N(δ̄new
it+1, (σnew

i )2), where δ̄new
it+1 = δ̄new

it − αµi.

(b) For j ∈ Ait \ N \ EX IT r
it, its mean utility transitions according to δjt+1 =

δjt − αx1jρm(j).
16As explained, Ω̃it itself is simulated. Therefore, we obtain a set of simulation draws of Ω̃it+1 for each

simulated Ω̃it. For notation simplicity, we use Ω̃it to denote a generic simulated state variable and Ω̃r
it+1 to

denote a specific simulated state variable for next period.
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(c) We find the highest K mean utilities for properties in Ar
it+1 and compute the

average the other (Ar
it+1 − K) mean utilities.

3. Simulate u∗
it+1

(a) For each j ∈ N \EX IT r
it, we simulate the match value vr

ij

(b) Define u∗r
it+1 = max

{
{δjt + vij}j∈Rit\EX IT r

it
, {δjt + vr

ij}j∈N \EX IT r
it

}

C Simulation Details

C.1 Model Fit Simulation

To simulate a path (indexed by r) for each consumer, we first draw match values v
(r)
ij

for all properties in consumer i’s search market. We then conduct the forward simulation
as follows. A notation with a superscript (r) indicates a simulated outcome and a notation
without the superscript represents the observed outcome in the data.

At t = 1, the recall set is Ri1 = ∅ and the information set is Ωi1 = ({δj1}j∈Ai1), where
Ai1 is the observed available-for-search set. We simulate the search intensity n

(r)
i1 and the

purchase decision y
(r)
i1 in t = 1 in three steps: (1) We compute Pri(n|Ωi1) according to (14)

for n = 0, ..., n̄ and simulate n
(r)
i1 based on these probabilities; (2) we draw N (r)

i1 based on
Pr(N |Ai1, n

(r)
i1 ) in (6); (3) we compute Pri(yi1|Ωi1, {v

(r)
ij }

j∈N (r)
i1

) according (16) and (17) and
simulate y

(r)
i1 based on these probabilities. If y

(r)
i1 ̸= wait, the path ends. Otherwise, we

continue to t = 2.
At t = 2, the recall set is updated to R(r)

i2 = Ri1 ∪ N (r)
i1 \EX IT i1 and the available-

for-search set is updated to A(r)
i2 = Ai1\N (r)

i1 \EX IT i1 ∪ N EW i2. The information set is
Ω(r)

i2 = ({δj2}j∈A(r)
i2

, {δj2, v
(r)
ij }

j∈R(r)
i2

). We simulate (n(r)
i2 , y

(r)
i2 ) following the same steps except

that yit can be “recall” for t > 1 and the probability is given by (15). If y
(r)
i2 ̸= wait, the

path ends. Otherwise, we continue to t = 3 and repeat the process until y
(r)
it ̸= wait.

C.2 Counterfactual Simulations

The simulation procedure for the counterfactual simulations is similar to that for the
model-fit simulation, with two differences. First, instead of using the estimated value func-
tion, we use backward induction to solve the value function in a counterfactual scenario and
compute Pri(n|Ω(r)

it ) and Pri(yit|Ωit, {v
(r)
ij }

j∈N (r)
it

) based on the computed value function. Sec-
ond, we replace the observed δjt with the simulated δ

(r)
jt in the counterfactual scenario with
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different price dynamics and we replace the observed N EW it with the simulated N EW(r)
it in

the counterfactual scenario with a different entry rate.
We simulate δ

(r)
jt as follows. Let µCF

i denote the price change of newly listed properties in
consumer i’s search area and ρCF

m denote the average discounts of properties in segment m

in a counterfactual scenario. For example, both µCF
i and ρCF

m are half of their counterparts
in the data. For newly listed properties, we draw δ

(r)
jt from N(δ̄new

it+1, (σnew
i )2), where δ̄new

it+1 =
δ̄new

it − αµCF
i . For properties listed in the past that are still on the market for sale, we let

their mean utility transit according to δjt+1 = δjt − αx1jρ
CF
m(j).

Similarly, we simulate N EW(r)
it as follows. Let λCF

i denote the arrival rate of new listings
in consumer i’s search area in a counterfactual scenario. We draw a number newr

it from a
Poisson distribution with arrival rate λCF

i and let newr
it be the number of new listings of

consumer i’s search area at time t in the counterfactual scenario. For each of the newr
it new

listings, we draw δr
jt+1 from N(δ̄new

it+1, (σnew
i )2).
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Supplemental Appendix

SA Additional Tables and Figures

Figure SA.1 shows the numbers of new listings and transactions, and the average list and
transaction prices by week, including the eight weeks during the Chinese New Year.

Figure SA.1: New Listings, Transactions, and Prices by Week

(a) New Listings and Transactions

(b) List Prices and Transaction Prices

47



Supplemental Appendix

Table SA.1 reports the regression results from regressing the mean utility on property
characteristics where we allow the price coefficient to be different for consumers who search in
different districts. We find mild heterogeneity in the price coefficients. Parameters common
to this table and Table 6 (with homogenous price coefficient) are robust.

Table SA.1: Estimates of Parameters in Mean Utility: District-Specific Price Coefficients

(I) OLS (II) IV
Est SE Est SE

List price (million CNY)
Dongcheng -0.261 (0.021) -5.497 (0.204)
Xicheng -0.084 (0.016) -4.827 (0.164)
Chaoyang -0.245 (0.009) -5.301 (0.164)
Haidian -0.001 (0.012) -3.661 (0.143)
Fengtai -0.377 (0.015) -4.770 (0.155)
Shijingshan -0.400 (0.027) -4.066 (0.248)

Property age (year) -0.004 (0.001) -0.009 (0.001)
# Bedrooms 0.217 (0.007) 0.367 (0.017)
# Living rooms 0.527 (0.008) 1.087 (0.025)
Property size (sq. meter) 0.005 (0.000) 0.054 (0.002)
Indicator of above 10th floor 0.082 (0.007) 0.171 (0.018)
Close to subway stations -0.020 (0.010) 0.227 (0.025)
Neighborhood FE yes yes
R square 0.575 0.531

SB Proofs

SB.1 Proof for Pr(j|A, n) in (A.2)

In this section, we show how to derive the analytic expression for Pr(j|A, n) in (7), which
is also in (A.2).

Plugging (A.1) into Pr(j|A, n) = ∑
N ∈Cn(A):j∈N Pr(N |A, n) yields
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Pr(j|A, n) =
∑

N ∈Cn(A):j∈N

n∑
k=1

(−1)k−1 ∑
B∈Ck(N )

∑
b∈B exp(δb)∑

l∈A\N exp(δl) +∑
b∈B exp(δb)


=

n∑
k=1

(−1)k−1 ∑
N ∈Cn(A):j∈N

∑
B∈Ck(N )

∑
b∈B exp(δb)∑

l∈A\N exp(δl) +∑
b∈B exp(δb)

 (SB.1)

=
n∑

k=1

(−1)k−1 ∑
D∈CA−n(A\j)

∑
B′∈Ck−1(A\D)

∑
b∈B′ exp(δb) + exp(δj)∑

l∈D exp(δl) +∑
b∈B′ exp(δb) + exp(δj)


(SB.2)

+
n−1∑
k=1

(−1)k−1 ∑
D∈CA−n(A\j)

∑
B∈Ck(A\D\j)

∑
b∈B exp(δb)∑

l∈D exp(δl) +∑
b∈B exp(δb)

 (SB.3)

=
n∑

k=1

(−1)k−1 ∑
F∈CA−n+k−1(A\j)

∑
D∈CA−n(F)

∑
l∈F\D exp(δl) + exp(δj)∑

l∈F exp(δl) + exp(δj)

 (SB.4)

+
n−1∑
k=1

(−1)k−1 ∑
F∈CA−n+k(A\j)

∑
B∈Ck(F)

∑
b∈B exp(δb)∑
l∈F exp(δl)

 (SB.5)

From (SB.1) to the sum of (SB.2) and (SB.3), we replace A\N by D and separately consider
B ∈ Ck(N ) including j in (SB.2) and those excluding j in (SB.3). For B ∈ Ck(N ) including j

in (SB.2), we use B′ to represent B\j. For B ∈ Ck(N ) excluding j in (SB.3), the summation
goes to n − 1 instead of n because when k = n, such B excluding j does not exist. In (SB.4),
we use F to represent the union of D and B′. Because D and B′ have no intersection, the
double summation over D and B′ in (SB.2) is equivalent to a double summation over F and
subsets of F (i.e., D ∈ CA−n(F)). We do the same to line (SB.3) to obtain line (SB.5).
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Line (SB.4) can be further simplified as

n∑
k=1

(−1)k−1 ∑
F∈CA−n+k−1(A\j)

∑
D∈CA−n(F)

(
1 −

∑
l∈D exp(δl)∑

l∈F exp(δl) + exp(δj)

)
=

n∑
k=1

(−1)k−1 ∑
F∈CA−n+k−1(A\j)

CA−n
A−n+k−1 −

∑
D∈CA−n(F)

∑
l∈D exp(δl)∑

l∈F exp(δl) + exp(δj)


=

n∑
k=1

(−1)k−1CA−n+k−1
A−1 CA−n

A−n+k−1

−
n∑

k=1

(−1)k−1 ∑
F∈CA−n+k−1(A\j)

CA−n−1
A−n+k−2

∑
l∈F exp(δl)∑

l∈F exp(δl) + exp(δj)

 (SB.6)

=
n∑

k=1
(−1)k−1CA−n+k−1

A−1 CA−n
A−n+k−1

−
n∑

k=1

(−1)k−1CA−n−1
A−n+k−2

∑
F∈CA−n+k−1(A\j)

(
1 − exp(δj)∑

l∈F exp(δl) + exp(δj)

)
=

n∑
k=1

(−1)k−1CA−n+k−1
A−1 CA−n

A−n+k−1 (SB.7)

−
n∑

k=1
(−1)k−1CA−n+k−1

A−1 CA−n−1
A−n+k−2 (SB.8)

+
n∑

k=1

(−1)k−1CA−n−1
A−n+k−2

∑
F∈CA−n+k−1(A\j)

(
exp(δj)∑

l∈F exp(δl) + exp(δj)

)
Line (SB.6) holds because in the summation over D ∈ CA−n(F), each term exp(δl) for l ∈ D
is repeated CA−n−1

A−n+k−2 times.
Similarly, line (SB.5) can be further simplified as

n−1∑
k=1

(−1)k−1 ∑
F∈CA−n+k(A\j)

Ck−1
A−n+k−1


=

n−1∑
k=1

[
(−1)k−1CA−n+k

A−1 Ck−1
A−n+k−1

]
. (SB.9)

Combining the simplified expressions for (SB.4) and (SB.5) yields

Pr(j|A, n) =
n−1∑
k=0

(−1)k
∑

F∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈F exp(δl) + exp(δj)

) (SB.10)

This is because line (SB.7) = 0, line (SB.8) = −1, and line (SB.9) = 1. We provide a proof
for line (SB.7) = 0 and line (SB.8) = −1 in Supplemental Appendix SB.3. Line (SB.9) can
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be rewritten as ∑n−1
k=1

[
(−1)k−1CA−n+k

A−1 CA−n
A−n+k−1

]
and, therefore, can be proved by replacing

n in line (SB.8) by n − 1.

SB.2 Proof for the Contract Mapping in (A.5)

In this section, we first show that the mapping in (A.5) has the following four features: (1)
∂fj

∂δk
≥ 0 for any j, k ̸= 1, (2) ∑k∈J \{1}

∂fj

∂δk
< 1 for any j ̸= 1, (3) minj∈J \{1} infδ f(δ) > −∞,

and (4) there is a value, δ̄, with the property that if for any j ̸= 1, δj > δ̄, then fj(δ) < δj. We
then show that these features imply that a truncated version of the mapping is a contraction
mapping, which establishes the result that the mapping has a unique fixed point and thus
the system of equations s̃j(δ) = sj, j ∈ J \{1} has a unique solution.

(1) ∂fj

∂δk
≥ 0 for any j, k ̸= 1

We prove this inequality in three steps.

Step 1. We show ∂ Pr(j|A,n)
∂δj

< Pr(j|A, n) using induction. When n = 1, Pr(j|A, n) be-
comes the choice probability in a standard multinomial Logit model. As a result, ∂ Pr(j|A,n)

∂δj
<

Pr(j|A, n) hold.
To show that ∂ Pr(j|A,n−1)

∂δj
< Pr(j|A, n − 1) implies ∂ Pr(j|A,n)

∂δj
< Pr(j|A, n) for any n ≥ 2,

we first note that option j is sampled if and only if its rank in terms δj + ϵj is no more than
n. Therefore,

Pr(j|A, n) = Pr(j|A, n − 1) + Pr(j’s rank is n).

In the above equation, Pr(j’s rank is n) is the probability that some options (j1, · · · , jn−1)
are the top n − 1 options while j is the nth best option. In other words,

Pr(j|A, n) = Pr(j|A, n − 1)+ (SB.11)∑
{(j1,··· ,jn−1):jl ̸=j}

Pr(j1|A, 1) Pr(j2|A\{j1}, 1) · · · Pr(jn−1|A\{j1, · · · , jn−2}, 1) Pr(j|A\{j1, · · · , jn−1}, 1)

Since the probabilities in the second line are choice probabilities in a standard multinomial
Logit model, ∂ Pr(jl|A\{j1,··· ,jl−1},1)

∂δj
< 0 and ∂ Pr(j|A\{j1,··· ,jn−1},1)

∂δj
< Pr(j|A\{j1, · · · , jn−1}, 1).

Therefore,

∂ Pr(j|A, n)
∂δj

<
∂ Pr(j|A, n − 1)

∂δj

+∑
{(j1,··· ,jn−1):jl ̸=j}

Pr(j1|A, 1) Pr(j2|A\{j1}, 1) · · · Pr(jn−1|A\{j1, · · · , jn−2}, 1) Pr(j|A\{j1, · · · , jn−1}, 1)
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As a result, ∂ Pr(j|A,n−1)
∂δj

< Pr(j|A, n − 1) implies ∂ Pr(j|A,n)
∂δj

< Pr(j|A, n).

Step 2. We show ∂ Pr(j|A,n)
∂δk

< 0 for any k ̸= j. Since Pr(j|A, n) is the probability that
δj + ϵj is among the top n highest values in {δj′ + ϵj′}j′∈A, for any k ̸= j, it decreases as δk

increases.

Step 3. We show ∂fj

∂δk
≥ 0 using the results from steps 1 and 2. For k = j, the result in

step 1 implies

∂fj

∂δj

= 1 − 1
s̃j(δ)

∑
i∈I

∑Ti
t=1

∂ Pr(j|Ait,nit)
∂δj∑

i∈I
∑Ti

t=1 nit

> 1 − 1
s̃j(δ)

∑
i∈I

∑Ti
t=1 Pr(j|Ait, nit)∑

i∈Id

∑Ti
t=1 nit

= 1 − 1
s̃j(δ) s̃j(δ) = 0.

For k ̸= j, the result in step 2 implies

∂s̃j(δ)
∂δk

=
∑I

i=1
∑Ti

t=1 nit
∂ Pr(j|Ait,nit)

∂δk∑I
i=1

∑Ti
t=1 nit

< 0.

Therefore,
∂fj

∂δk

= − 1
s̃j(δ)

∂s̃j(δ)
∂δk

> 0.

These three steps complete the proof that ∂fj

∂δk
≥ 0 for any k ∈ J .

(2) ∑k∈J \{1}
∂fj

∂δk
< 1 for any j ∈ J \{1}

Because increasing the mean utility of every option does not change the sampling prob-
abilities, s̃j(δ) = s̃j(δ + a). Total differentiation of this equation with respect to a implies
that ∂s̃j(δ)

∂δ1
+∑

k∈J \{1}
∂s̃(δ)
∂δk

= 0. Since ∂s̃j(δ)
∂δ1

< 0 for j ̸= 1, we have ∑k∈J \{1}
∂s̃(δ)
∂δk

> 0. As a
result, ∑k∈J \{1}

∂fj

∂δk
= 1 − 1

s̃j(δ)
∑

k∈J \{1}
∂s̃j(δ)

∂δk
< 1.

(3) There is a value δ such that if δj < δ for any j ∈ J \{1}, then fj(δ) > δj.

Given Condition 2, δj = −∞ implies Pr(j|Ait, nit) = 0 and thus s̃j(δ) = 0. In other
words, limδj→−∞ fj(δ) = ∞. By continuity of f(δ), there exists δj such that fj(δ) > δj for
any δ where δj < δj. Let δ = minj δj.
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(4) There is a value δ̄ such that if δj > δ̄ for any j∈ J \{1}, then fj(δ) < δj.

Given Condition 3, δj = ∞ implies Pr(j|Ait, nit) = 1 and thus s̃j(δ) =
∑I

i=1

∑Ti
t=1 1(j∈Ait)∑I

i=1

∑Ti
t=1 nit

>

sj. In other words, limδj→∞ fj(δ) < δj. By continuity of f(δ), there exists δ̄j such that
fj(δ) < δj for any δ where δj > δ̄j. Let δ̄ = maxj δ̄j.

Features (1)–(4) imply that f(δ) is a contraction mapping

First, we show δ < δ̄ by contradiction. Suppose δ = δ̄. Then features (3) and (4)
contradict each other. Suppose δ > δ̄. Then, feature (3) implies that fj(δ̄) > δj, which is
contradiction to feature (4).

Then, we define another mapping f̂(δ) : 0 × [δ, δ̄]J−1 → [δ, δ̄]J−1 as

f̂j(δ) = max{δ, min{fj(δ), δ̄}}.

For any δ, δ′ ∈ 0 × [δ, δ̄]J−1, we define ϑ = ||δ − δ′||. We have

f̂j(δ′) − f̂j(δ) ≤ f̂j(δ + ϑ) − f̂j(δ) ≤ fj(δ + ϑ) − fj(δ) =
∫ ϑ

0

∑
k∈J \{1}

∂fj(δ + z)
∂δk

dz ≤ ςϑ,

where ς = maxj maxz∈[0,δ̄−δ]
∑

k∈J \{1}
∂fj(δ+z)

∂δk
. The first inequality holds because of feature

(1). The second inequality holds because f̂ is a truncated version of f .
By feature (2), ς < 1. Therefore, f̂ is a contraction mapping and has a unique fixed

point. Since features (3) and (4) imply that the fixed point of f is in f̂ ’s domain, f also has
a unique fixed point.
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SB.3 Proof of the Combinatorial Identities

In this section, we prove that for A > n > 1,17

n∑
k=1

(−1)k−1CA−n+k−1
A−1 CA−n

A−n+k−1 = 0 in line (SB.7),

n∑
k=1

(−1)k−1CA−n+k−1
A−1 CA−n−1

A−n+k−2 = 1 in line (SB.8),

n−1∑
k=0

(−1)kCA−n+k+1
A CA−n−1

A−n+k−1 = n in line (A.3).

First, we note that these three identities can be rewritten as

m∑
k=r

(−1)h−rCh
mCr

h = 0,

m∑
k=r+1

(−1)h−r−1Ch
mCr

h−1 = 1.

m∑
k=r+2

(−1)h−rCh
mCr

h−2 = m − r − 1

where the change of variables (m = A − 1, r = A − n, h = A − n + k − 1) in the first
identity, (m = A − 1, r = A − n − 1, h = A − n + k − 1) in the second identity, and
(m = A, r = A − n − 1, h = A − n + k + 1) in the third identity.

To prove the first identity, we take the rth-order derivative of the equation (1 + x)m =∑m
h=0 Ch

mxh. The derivative of the LHS is

dr

dxr
(1 + x)m = Cr

mr!(1 + x)n−r.

The derivative of the RHS is

dr

dxr

m∑
h=0

Ch
mxh =

m∑
h=r

Ch
mCr

hr!xh−r.

Therefore, Cr
mr!(1 + x)n−r = ∑m

h=r Ch
mCr

hr!xh−r. Setting x = −1 yields the first identity.
To prove the second identity, we take the rth-order derivative of the equation (1+x)m

x
=

1
x

+∑m
h=1 Ch

mxh−1. The derivative of the LHS is the sum of terms a(1 + x)bx−c where b > 0.
17We thank Pierre-Louis Blayac and Sergey Fomin at the University of Michigan for recommending “Tables

of Combinatorial Identities Based on Seven Unpublished Manuscript Notebooks of Henry Gould” edited
by Jocelyn Quaintance. The first identity in this section is an application of equation (1.23) in Table
II (https://math.wvu.edu/~hgould/Vol.2.PDF). The proof of the other two identities is inspired by this
equation.
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Therefore, its value at x = −1 is 0. The derivative of the RHS is

dr

dxr

(
1
x

+
m∑

h=1
Ch

mxh−1
)

= r!(−1)rx−1−r +
m∑

h=r+1
Ch

mCr
h−1r!xh−1−r.

Its value at x = −1 is −r! +∑m
h=r+1 Ch

mCr
h−1r!(−1)h−1−r. Therefore,

−r! +
m∑

h=r+1
Ch

mCr
h−1r!(−1)h−1−r = 0,

which implies the second identity.
To prove the second identity, we take the rth-order derivative of the equation (1+x)m

x2 =
1

x2 + m
x

+ ∑m
h=2 Ch

mxh−2. The derivative of the LHS evaluated at x = −1 is again 0. The
derivative of the RHS is

dr

dxr

(
1
x2 + m

x
+

m∑
h=2

Ch
mxh−2

)

=(r + 1)!(−1)rx−2−r + mr!(−1)rx−1−r +
m∑

h=r+2
Ch

mCr
h−2r!xh−2−r

Its value at x = −1 is r![(r + 1) − m +∑m
h=r+2 Ch

mCr
h−2r!(−1)h−r]. Therefore,

(r + 1) − m +
m∑

h=r+2
Ch

mCr
h−2r!(−1)h−r = 0,

which implies the third identity.
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