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Characteristic angles in the wetting of an angular region: Deposit growth

Yuri O. Popov* and Thomas A. Witten
Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA

~Received 24 February 2003; published 11 September 2003!

Solids dispersed in a drying drop migrate to the~pinned! contact line. This migration is caused by outward
flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains
an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper, we theoretically
investigate the evaporation rate, the flow field, and the rate of growth of the deposit patterns in a drop over an
angular sector on a plane substrate. Asymptotic power laws near the vertex~as distance to the vertex goes to
zero! are obtained. A hydrodynamic model of fluid flow near the singularity of the vertex is developed and the
velocity field is obtained. The rate of the deposit growth near the contact line is found in two time regimes. The
deposited mass falls off as a weak powerg of distance close to the vertex and as a stronger powerb of distance
further from the vertex. The powerg depends only slightly on the opening anglea and stays roughly between
21/3 and 0. The powerb varies from21 to 0 as the opening angle increases from 0° to 180°. At a given
distance from the vertex, the deposited mass grows faster and faster with time, with the greatest increase in the
growth rate occurring at the early stages of the drying process.

DOI: 10.1103/PhysRevE.68.036306 PACS number~s!: 47.55.Dz, 68.03.Fg, 81.15.2z
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I. INTRODUCTION

The problem of the so-called ‘‘coffee-drop deposit’’ h
recently aroused great interest@1–4#. The residue left when
coffee dries on the countertop, mineral rings left on wash
glassware, banded deposits of salt on the sidewalk du
winter, and enhanced edges in water color paintings are
amples of the variety of physical systems understood
coffee-drop deposit terminology. Understanding the proc
of drying of such solutions is important for paint manufa
turing, protein crystallography, production of nanowires, p
terning of a surface, DNA stretching in a flow, and oth
scientific and industrial applications.

The theory of the solute transfer in such physical syste
has been developed in works of Deeganet al. @1–3#. In this
theory, the contact line of a drop of liquid is pinned durin
drying process. While the highest evaporation occurs at
edges, the bulk of the solvent is concentrated closer to
center of the drop. In order to replenish the liquid remov
by evaporation at the edge, a flow from the inner to the ou
regions must exist inside the drop. This flow is capable
transferring all of the solute to the contact line and thus
counts for the strong contact-line concentration of the re
due left after complete drying. The theory of Deeganet al.
@1# is very robust since it only requires the pinning of t
edge during drying, which can occur in a number of possi
ways~surface roughness, chemical heterogeneities etc.!, and
it is independent of the nature of the solute. It accounts qu
titatively for the experimentally observed phenomena at le
in the case of geometry analyzed in Ref.@1#. However, only
the simplest case of a round drop was analytically solved
Deeganet al.

Here we consider a complementary problem of a so
drop drying over an angular region~Fig. 1!. An arbitrary
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boundary line can be represented as a sequence of sm
segments, which can be approximated by circular arcs,
fractures, which can be approximated by angular regio
Thus, knowledge of analytical solution for both circul
~solved by Deeganet al.! and angular~considered here!
boundary shapes fills out the quantitative picture of sol
transfer and deposit growth for an arbitrary drop bounda
Keeping this purpose in mind, we specify only one bound
of the drop~the vertex and the sides of the angle! leaving the
remainder of the boundary curve unspecified. Such an
proach turns out to be sufficient to determine the univer
features of the solution, and it allows us to find all the im
portant singularities as power laws of distance from the v
tex of the angle.

Our motivation for focusing on droplets over an angu
sector also arises from the distinctive deposit patterns
served in Deegan’s experiments~Fig. 2!. These patterns are
produced as the contact line retracts~down in the figure!
discontinuously, switching between pinned and movi
states. We expect that the knowledge of the solution fo
single pinned angle can boost the understanding of th
distinctive dynamically produced patterns.

The flow pattern explored in Deegan’s work@1,2# is a new
type of capillary flow that depends sensitively on the peri
eter shape. The range of flows and deposition profiles obt
able by this mechanism remains virtually unexplored. O
study aims to explore the extremes of what behavior can
obtained by varying the perimeter shape.

As a result of our study, we find that the solution in th
angular-sector geometry is in a number of ways differ
from the solution in the circular geometry. In particular, thr
time regimes for the deposit growth are found in the angu
case compared to the two regimes in the circular one
clear-cut signature of the existence of these new regime
also provided. In addition, the new geometry possesses
extra free parameter—the opening angle of the sector—
dependence of all the universal exponents in the power l
for all quantities on this extra parameter yields the possibi
©2003 The American Physical Society06-1
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Y. O. POPOV AND T. A. WITTEN PHYSICAL REVIEW E68, 036306 ~2003!
to control the deposition patterns by simply choosing
proper opening angle. Thus, we obtain results that are b
universal~i.e., do not depend on any physical properties
the constituents! and at the same time dependent on the
ometry in a predictable fashion. These and other useful p
erties of our results are discussed at the end of this pap

In the following section we first consider the physic
assumptions and the mathematical formulation of our the
then calculate the equilibrium surface shape of the drop
the rate of evaporation from the surface of the drop, a
finally obtain the velocity field inside the drop. At the end
the section, we describe the trajectories of the particles
provide the results for the solute transfer to the contact
and the deposit growth in different time regimes. In the l
section, we discuss achievements and limitations of
theory and explore the avenues for further study.

FIG. 1. ~a! A water droplet with a sector-shaped boundary on
plane substrate~side view!. ~b! The same droplet pictured from
another point~top view!. Black lines are the grooves on the su
strate necessary to ‘‘pin’’ the contact line.~Courtesy Itai Cohen.!
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II. THEORY

System and assumptions.We consider a droplet of solu
tion on a horizontal surface bounded by an anglea in the
plane of the substrate~Fig. 1!. We assume that the droplet
sufficiently small so that the surface tension is dominant, a
the gravitational effects can be safely neglected. At the sa
time, we donot assume that the contact angle between
liquid-gas interface and the plane is constant along
boundary line on the substrate, nor do we assume it is c
stant in time. To achieve an angular boundary, the subst
must have scratches, grooves, or other inhomogeneities~suf-
ficiently small compared to the dimensions of the drople!,
which pin the contact line. A strongly pinned contact line ca
sustain a wide range of contact angles; the angle is not fi
by the interfacial tensions as it is on a uniform surface.

The use of the cylindrical coordinates (r ,f,z) is most
natural in this problem, so that the angle occupied by
liquid on the substrate is 0,r ,` and2a/2,f,a/2, and
the coordinate normal to the substrate isz ~Fig. 3!. The ge-
ometry of this problem is much more complicated than t
of the round-drop case solved earlier. We consider a tw
dimensional object—the angular sector—in a thre
dimensional space, and the main complication arises fr
the fact that the symmetry of the object does not match
symmetry of any simple orthogonal coordinate system in t
space. In particular, even the solution of the Laplace equa
~needed below! requires introduction of the special coord
nate system~the so-called conical coordinates, or the o
thogonal coordinates of the elliptic cone! with heavy use of
the Jacobi elliptic functions. Similarly, a separate resea
@5# was required to find the equilibrium surface shape of
drop in this geometry. Thus, given this complex geome

e

FIG. 2. Deposit patterns observed in experiments by Dee
et al. These patterns were left after the contact line moved thro
the area shown. The contact line was retreating down in this im
and the solute was below the contact line.~Courtesy Robert Dee-
gan.!
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CHARACTERISTIC ANGLES IN THE WETTING OF AN . . . PHYSICAL REVIEW E68, 036306 ~2003!
we limit our task to determining only the power-law scalin
for most quantities, and this task proves to be sufficien
challenging by itself.

We describe the surface shape of the droph(r ,f) by local
mean curvatureH that is spatially uniform at any given mo
ment of time, but changes with time as droplet dries. Idea
the surface shape should be considered dynamically toge
with the flow field inside the drop. However, as we show
the Appendix, for flow velocities much lower than the cha
acteristic velocityv* 5s/3h (s is surface tension andh is
dynamic viscosity!, which is about 24 m/s for water unde
normal conditions, one can consider the surface shape i
pendently of the flow and use the equilibrium result at a
given moment of time for finding the flow at that time. Th
equilibrium surface shapeh(r ,f) for the drop over an angu
lar region was found in our earlier paper@5#.

In order to determine the flow caused by evaporation,
needs to know the flux profile of liquid leaving each point
the surface by evaporation. The functional form of t
evaporation rateJ(r ,f) ~defined as evaporative mass lo
per unit surface area per unit time! depends on the rate
limiting step, which can, in principle, be either the trans
rate across the liquid-vapor interface or the diffusive rel
ation of the saturated vapor layer immediately above
drop. As in the work of Deeganet al., we assume that the
rate-limiting step is diffusion of liquid vapor~Fig. 4! and that
evaporation rapidly attains a steady state. Indeed, the tran
rate across the liquid-vapor interface is characterized by

FIG. 3. Geometry of the problem. The plane of the figure co
cides with the substrate.

FIG. 4. The rate-limiting process for evaporative mass loss.
the diffusion of saturated vapor just above the interface rather
the transfer across the interface.
03630
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time scale of the order of 10210 s, while the diffusion pro-
cess has characteristic times of the order ofR2/D ~whereD
is the diffusion constant for vapor in air andR is a charac-
teristic size of the drop!, which is of the order of seconds fo
water drops under typical drying conditions.

We considerslow flows, i.e., flows with low Reynolds
numbers~also known as ‘‘creeping flows’’!. This amounts to
the negligence of the inertial terms in the Navier-Stok
equation. We also employ the so-called ‘‘lubrication appro
mation.’’ It is essentially based on the two conditions refle
ing the thinness of the drop and resulting from the separa
of the vertical and horizontal scales. One is that the press
inside the dropp does not depend on the coordinatez normal
to the substrate:]zp50. The other is related to the sma
slope of the free surfaceu“hu!1, which is equivalent to the
dominance of thez derivatives of any componentui of flow
velocity u: ]zui@]sui ~index s refers to the derivatives with
respect to any coordinate in the plane of the substrate!. The
lubrication approximation is a standard simplifying proc
dure for this class of hydrodynamic problems@6–8#.

Having formulated physical assumptions intrinsic to t
theory, we are now in position to formulate its main idea

Equations.The essential idea behind the theory is tha
pinned contact line entails fluid flow toward that contact lin
since the rate of evaporation is the highest at the edge of
drop while the most of the liquid is concentrated away fro
it. The ‘‘elasticity’’ of the liquid-air interface fixed at the
contact line provides the force driving this flow.

To develop this idea mathematically, we ignore for a m
ment any solute in the liquid. Once the flow is found, o
can track the motion of the suspended particles, since t
are just carried along by the flow. We define depth-avera
flow velocity by

v5
1

hE0

h

usdz, ~1!

where us is the in-plane component of the local thre
dimensional velocityu. Then we write the conservation o
fluid mass in the form

“~hv!1
J

r
A11~“h!21] th50, ~2!

wheret is the time,r is the density of the fluid, and each o
the quantitiesh, J, andv is a function ofr, f, andt. @We will
drop the“h part of the second term everywhere in the fo
lowing since it is always small compared to unity, as it w
be seen from the expression forh(r ,f) below.# This equa-
tion represents the fact that the rate of change of the am
of fluid in a volume element~column! above an infinitesimal
area on the substrate~third term! is equal to the negative o
the sum of the net flux of liquid out of the column~first term!
and the amount of mass evaporated from the surface elem
on top of that column~second term!; Figure 5 illustrates this
idea. Thus, this expression relates the depth-averaged v
ity field v(r ,f,t) to the liquid-vapor interface position
h(r ,f,t) and the evaporation rateJ(r ,f,t). However, this is
only one equation for two variables since vectorv has two

-

s
n
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Y. O. POPOV AND T. A. WITTEN PHYSICAL REVIEW E68, 036306 ~2003!
components in the plane of the substrate. Moreover, as it
pointed out earlier, while the evaporation rateJ is indeed
independent of flowv, the free-surface shapeh should, in
general, be determined simultaneously withv. Thus, there
are actually three unknowns to be determined togetherh,
v r , andvf), and hence two more equations are needed
order to find these equations we will employ the lubricati
approximation.

We start with the Navier-Stokes equation with inert
terms omitted~low Reynolds numbers!:

“p5h¹2u, ~3!

wherep is the fluid pressure,h is the dynamic viscosity, and
u is the velocity. Applying lubrication-approximation cond
tions ]zp50 and ]zui@]sui , we arrive at the simplified
form of this equation

“sp5h]zzus , ~4!

where indexs again refers to the vector components alo
the substrate. From now on we will suppress the subscris
at the symbol of nabla operator, and will assume for the
of this paper that this operator refers to the two-dimensio
vector operations in the plane of the substrate. Solution to
above equation with boundary conditions

usuz5050 and ]zusuz5h50 ~5!

yields

us5
“p

h S z2

2
2hzD , ~6!

or, after vertical averaging~1!,

v52
h2

3h
“p. ~7!

This result is a variant of the Darcy’s law@8,9#. Note that
since a curl of a gradient is always zero andh is a constant,
the previous equation can be rewritten as

FIG. 5. Conservation of mass: the liquid-vapor interface low
exactly by the amount of fluid evaporated from the surface plus
difference between the outflow and the influx of fluid from t
adjacent regions.
03630
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h2D 50. ~8!

This condition is analogous to the condition of the poten
flow (“3v50), but with a quite unusual combination of th
velocity and the surface heightv/h2 in place of the usual
velocity v.

Relation~7! provides the two sought equations in additio
to the conservation of mass~2!. However, it contains one
new variable, pressurep, and hence another equation
needed. This last equation is provided by the condition of
mechanical equilibrium of the liquid-air interface~also
known as the Young-Laplace equation! relating the pressure
and the surface shape:

p522Hs1patm . ~9!

Here patm is the atmospheric pressure,s is the surface ten-
sion, andH is the mean curvature of the surface, unique
related to the surface shapeh by differential geometry. Note
that this expression is independent of both the conserva
of mass~2! and the Darcy’s law~7!. Thus, the complete se
of equations required to fully determine the four dynam
variablesh, p, v r , andvf consists of four differential equa
tions ~together with the appropriate boundary conditions
the contact line!: one equation of the conservation of ma
~2!, two equations of the Darcy’s law~7!, and one equation
of the mechanical equilibrium of the interface~9!. They pro-
vide all the necessary conditions to solve the problem at le
in principle.

In practice, however, solution of these fourcoupleddif-
ferential equations is not possible in the geometry of inter
At the same time, under normal drying conditions the v
cous stress is negligible, or, equivalently, the typical velo
ties are much smaller thanv* 5s/3h'24 m/s ~for water!.
As shown in the Appendix, the four equationsdecoupleun-
der these conditions. As a result, one can employ the e
librium result for the surface shapeh(r ,f) at any given mo-
ment of time, and then determine the pressure and
velocity fields for this fixed functional form ofh. Mathemati-
cally, the original system of equations can be rewritten a

2H52
Dp

s
, ~10!

“~h3
“c!52

J

r
2] th, ~11!

v5h2
“c, ~12!

whereDp5p02patm , c52ep1 /3h, andp0 andp1 are the
leading- and the first-order terms in the expansion of pr
surep5p01ep11••• in a small parametere inversely pro-
portional tov* ~see the Appendix for details!. Note thatp0 is
independent of (r ,f), although it does depend on time~and
this time dependence will be determined later in this pap!.
Therefore, there is a profound difference between Eqs.~9!
and~10!: the former is a local statement, with the right-ha
side depending on the coordinates of a point within the

s
e
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CHARACTERISTIC ANGLES IN THE WETTING OF AN . . . PHYSICAL REVIEW E68, 036306 ~2003!
gular sector, while the latter is a global condition of spat
constancy of the mean curvature throughout the drop. Eq
tion ~10! defines theequilibriumsurface shape for any give
value ofp0 at any given moment of time, and moreover, c
be solved independently of the other equations. Thus,
procedure for finding the solution becomes significantly s
plified: first find the equilibrium surface shapeh(r ,f) from
condition~10! and independently specify the functional for
of the evaporation rateJ(r ,f), then solve Eq.~11! for the
reduced pressurec(r ,f), and finally obtain the flow field
v(r ,f) according to prescription~12!. The next three sec
tions will be devoted to the particular steps of this procedu

Surface shape.There are well-defined equations gover
ing the equilibrium surface shapeh(r ,f) and the evapora
tion rateJ(r ,f), but there is no generic method for solvin
these equations analytically in an arbitrary geometry, in p
ticular, in the geometry of the angular sector under consid
ation. Moreover, even if one could find these exact anal
expressions, a second-order differential equation of the k
of Eq. ~11! would not be guaranteed to have an analy
solution in a closed form for arbitrary functionsh and J.
Hence, a feasible way to proceed analytically is to seek
approximate solution that captures the essential physical
tures and is correct at least asymptotically. Here, in the
ometry of an angular sector, the only possible locations
singularities and divergences~which normally govern the
properties of the solution! are at the vertex of the angle~i.e.,
at r 50) and at its sides~i.e., atf56a/2). Therefore, the
most important physical features will be correctly reflected
asymptotic results~as r→0 and asf→6a/2) are found
analytically.

The boundary problem for the equilibrium surface sha
of the drop consists of the differential equation~10! and
boundary conditions at the vertex and at the sides of
angle:

h~0,f!5h~r ,2a/2!5h~r ,a/2!50. ~13!

Equation~10! represents the fact that the local mean cur
ture is spatially uniform, but changes with time as the rig
hand side (Dp) changes during the drying process. T
asymptotic solution to the boundary problem~10!, ~13! was
found in our earlier paper@5#. The result turned out to hav
two qualitatively different regimes in opening anglea ~acute
and obtuse angles! and can be written as

h~r ,f!5
r nh̃~f!

Rn21
. ~14!

Here R(t)5s/Dp and is the only function of time in this
expression; exponentn has a discontinuous derivative ata
5p/2 and is shown in Fig. 6; and

h̃~f!55
1

4 S cos 2f

cosa
21D if 0<a,

p

2
~n52!,

C cos
pf

a
if

p

2
,a<p ~n5p/a!.

~15!
03630
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The constantC cannot be determined without imposin
boundary conditions onh at some curve on the side of th
drop furthest from the vertex of the angle. It is restricted
neither the equation nor the side boundary conditions,
thus, is not a universal feature of the solution near the ve
of the angle. The constantC can ~and does! depend on the
opening anglea. As we showed in the earlier paper, th
constant must have the following diverging form neara
5p/2:

C5
1

4a22p
1C01O~a2p/2!, ~16!

whereC0 is independent ofa. We will adopt this form ofC
~with C0 set to unity! for all numerical estimates for obtus
opening angles.

Two different values ofn corresponding to the acute an
obtuse angles give rise to the two qualitatively different
gimes for surface shape. This difference can best be s
from the fact that the principal curvatures of the surface s
finite asr→0 for acute angles and diverge as a power or
for obtuse angles. This qualitative difference can be obser
in a simple experimental demonstration, which we provid
in our earlier work@5#. We refer to that earlier work for
further details and discussion. We only note here that
asymptoticr→0 at the vertex of the angle actually mea
r !R ~which is typically of the order of a few millimeters fo
water under normal conditions!, and that“h is indeed small
for r !R and can be safely neglected with respect to un
~i.e., the free surface is nearly horizontal in the vicinity of t
tip of the angle! as was asserted earlier.

Evaporation rate. Since the rate-limiting step in the
evaporation process is diffusion of saturated vapor just ab
the liquid-vapor interface, density of vaporn obeys the dif-
fusion equation. However, diffusion rapidly attains a stea
state~typically in a fraction of a second!, and therefore the
diffusion equation reduces to the Laplace equation

¹2n50. ~17!

FIG. 6. Dependence of exponentn in the power lawh(r ) @Eq.
~14!# on opening anglea, after Ref.@5#.
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Y. O. POPOV AND T. A. WITTEN PHYSICAL REVIEW E68, 036306 ~2003!
This equation is to be solved together with the followi
boundary conditions:~a! along the surface of the drop, the a
is saturated with vapor and hencen at the interface is the
constant density of saturated vaporns , ~b! far away from the
drop, the density approaches the constant ambient vapor
sity n` , and ~c! vapor cannot penetrate the substrate a
hence]zn50 at the substrate outside of the drop. Havi
found density of vapor, one can obtain the evaporation
J52D“n, whereD is the diffusion constant.

This boundary problem is mathematically equivalent
that of a charged conductor of the same geometry at cons
potential if we identifyn with the electrostatic potential an
J with the electric field. Moreover, since there is no comp
nent ofJ normal to the substrate, we can further simplify t
boundary problem by considering a conductor of the sh
of our drop plus its reflection in the plane of the substrate
the full space instead of viewing only the semi-infinite spa
bounded by the substrate~Fig. 7!. This reduces the numbe
of boundary conditions to only two:~a! n5ns on the surface
of the conductor and~b! n5n` at infinity. The shape of the
conductor~the drop over the angular sector and its reflect
in the substrate! now resembles a dagger blade. So, now
have to tackle the problem of finding the electric field arou
the tip of a dagger blade at constant potential in infin
space.

If one decides to account for the thickness of the bla
@given by doubledh(r ,f) of Eq. ~14!# accurately, it becomes
apparent that there is no hope for any analytical solution
this complex geometry. However, taking into account t
near the tip“h is very small and hence the thickness of t
blade itself is very small, we can approximate our thick da
ger blade with a dagger blade of zero thickness and the s
opening angle~i.e., with a flat angular sector!. In the limit
r→0 the contact angleu scales withr as (r /R)n21 and
hence goes to zero. Thus, only the flat blade can be con
ered up to the main order inr. This approximation would no
be adequate for determining the surface shape or the
field, but it is perfectly adequate for finding the evaporati
rate. We will discuss possible corrections to this result la
in this section.

The problem of finding the electric field and the potent
for an infinitely thin angular sector in three-dimension

FIG. 7. Illustration of analogy between evaporation rateJ for a
liquid drop and electric fieldE for a conductor. Consideration of th
drop ~or conductor! and its reflection in the plane of the substra
significantly simplifies the boundary problem.
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space requires introduction of the so-called conical coo
nates~the orthogonal coordinates of the elliptic cone! and
heavily involves various special functions. Luckily, it wa
studied extensively in the past@10–13#, although the results
cannot be expressed in a closed form. An important con
sion from these studies is that ther andf dependences sepa
rate and that the electric field near the vertex of the se
scales withr as a power law with an exponent depending
the opening anglea:

J}r m21J̃~f!. ~18!

Here

J̃~f!}
1

ucosf* u

]Ym~u* ,f* !

]u*
U

u* 5p

, ~19!

andm andYm(u* ,f* ) are the eigenvalue and the eigenfun
tion, respectively, of the eigenvalue problem

2L2Ym~u* ,f* !5m~m11!Ym~u* ,f* ! ~20!

with Dirichlet boundary conditions on the surface of an
liptic cone~degenerating to an angular sector asu* →p). In
the last relation,L2 is the angular part of the Laplacian i
conical coordinates (r , u* , f* ). On the surface of the secto
~i.e., atu* 5p) the relation between the conical coordina
f* and the usual polar coordinatef is sinf
5sin(a/2)sinf* . We refer to work@12# for further details.
Here we notice only that neitherm nor Ym(u* ,f* ) can be
expressed in a closed analytic form; however, the expon
m can be computed numerically and is shown in Fig. 8 a
function of a. Note that this exponent islower than similar
exponents for corresponding angles for both a wedge~a two-
dimensional corner with an infinite third dimension! and a
circular cone. Both these shapes~wedge and cone! allow
simple analytical solutions but none of them would be a
propriate for the zero-thickness sector.

Despite the unavailability of an explicit analytical expre
sion for J̃(f), its analytic properties atf50 and atf5

FIG. 8. Dependence of exponentm in the power lawJ(r ) @Eqs.
~18! and ~27!# on opening anglea, after Refs.@11–13#.
6-6
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CHARACTERISTIC ANGLES IN THE WETTING OF AN . . . PHYSICAL REVIEW E68, 036306 ~2003!
6a/2 are quite straightforward to infer. Indeed,J̃(f) is an
even function off; therefore,J̃8(0)50 ~as well as any othe
odd derivative on the bisector! and

J̃~f!5 J̃~0!1O~f2! ~21!

for small f. Obviously,J̃(0) is positive. On the other hand
at f56a/2 the leading asymptotic of the evaporation ra
~or the electric field! is known to be (Df)21/2 with exponent
21/2 corresponding to the edge of an infinitely thin h
plane in the three-dimensional space@14#. ~We have intro-
duced notationDf5a/22ufu in the previous line.! If one
were to correct this asymptotic in order to reflect the nonz
contact angle at the edge of the sector, the asymptotic for
f56a/2 would have to be written as

J̃~f!'J* ~Df!2l, ~22!

whereJ* is a positive constant and

l5
p22u

2p22u
. ~23!

This result corresponds to the divergence of the electric fi
along the edge of a wedge of opening angle 2u ~both the
drop and its reflection contribute to the opening angle, he
a factor of 2! @14#. However, accounting for the nonzerou is
a first-order correction to the main-order resultl51/2. This
can be seen from the expression for the contact angle:

u5arctanF S r

RD n21

uh̃8~a/2!uG}S r

RD n21

. ~24!

For all opening angles,n.1 ~excepta5p where n51).
Thus, the correction due to the nonzero contact angle
indeed be neglected in the main-order results, andl should
indeed be set to 1/2. Nevertheless, we will keep the gen
notation l for this exponent in order to keep track of th
origin of different parts of the final result and in order
account properly for the casea5p in addition to the range
of opening angles belowp. The numerical value ofl will be
assumed to be 1/2 in all estimates.

For the purposes of the numerical estimatesonly we will
employ the following simplified form ofJ̃(f):

J̃~f!5F S a

2 D 2

2f2G21/2

. ~25!

This model form satisfies both asymptotics~21! and ~22!,
and it allows one to avoid the numerical solution of the
genvalue problem~20! and thus not to repeat the elabora
treatment of works@10–13#. This form is neither exact no
the only one satisfying the asymptotics, and the numer
graphs based on this form should be taken with a pinch
salt. However, we expect it to be a good approximation to
true functionJ̃(f), and in order to check this we conducte
all the numerical calculations for an alternative form ofJ̃(f)
as well:
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J̃~f!5F S a

2 D 4

2f4G21/2

. ~26!

This alternative form also satisfies both asymptotics~21! and
~22!. In most cases~all but one! the discrepancy between th
numerical results based on the two model forms did not
ceed 20%, and this fact has convinced us that at least
orders of magnitude obtained by this approximation are c
rect. We would like to emphasize that only thenumerical

graphs based on the choice ofJ̃(f) are affected by these
simplified forms; all theanalytical results below do not rely
on a particular form ofJ̃(f) and use only the analytica
asymptotics of the preceding paragraph.

Thus, we will use the following expression for the evap
ration rateJ:

J~r ,f!5J0S r

AA
D m21

J̃~f!, ~27!

where functionJ̃(f) is defined in Eq.~19! with asymptotics
~21! and ~22!. Here we broke down the constant prefact
into two pieces: a distance scaleAA ~whereA is the substrate
area occupied by the drop! and all the restJ0 ~which is of
dimensionality of the evaporation rate!. Trivially, J0 is di-
rectly proportional to the difference of the saturated and
ambient vapor densities (ns2n`).

The evaporation rate does not depend on time and
same form ofJ applies during the entire drying process,
the diffusion process is steady. The same is true for the t
rate of mass lossdM/dt since

dM

dt
52E

A
JA11~“h!2rdrdf'2E

A
Jrdrdf}2J0A,

~28!

where the integrations are over the substrate area occu
by the drop. The constancy of this rate during most of
drying process was also confirmed experimentally@3#. This
fact can be used to determine the time dependence of
length scaleR of Eq. ~14! @and hence of the pressurep0 of
Eq. ~10!# explicitly, as the massM of a sufficiently thin drop
is inversely proportional to the mean radius of curvatureR:

M}
rA2

R
, ~29!

where we retained only dimensional quantities and s
pressed all the numerical prefactors sensitive to the detai
the drop shape. From the last two equations one can c
clude that

d

dt S 1

RD}2
J0

rA
~30!

and remains constant during most of the drying proce
Hence,
6-7
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R~ t !5
Ri

12t/t f
, ~31!

whereRi is the initial mean radius of curvature@Ri5R(0)#
and t f is the total drying time:

t f}
rA

J0Ri
. ~32!

Thus, at early drying stages (t!t f), scaleR grows linearly
with time; this time dependence will be implicitly present
the results below. However, it is very weak at sufficien
early times and will be occasionally ignored~by settingR
'Ri) when only the main-order results are of interest.

Flow field.With h andJ in hand, we proceed by solvin
Eq. ~11! for the reduced pressurec. Assuming power-law
divergence of c as r→0 and leaving only the main
asymptotic ~which effectively means that we neglect th
regular term] th with respect to the divergent oneJ/r), we
arrive at the following asymptotically correct expression
c:

c~r ,f!5
J0

r

r m23n11

AAm21R23n13
c̃~f!, ~33!

where time dependence is implicitly present viaR and the
function c̃(f) is a solution to the following differentia
equation:

c̃9~f!13
h̃8~f!

h̃~f!
c̃8~f!2v2c̃~f!52

J̃~f!

h̃3~f!
. ~34!

Herev2 is a combination of the previously introduced exp
nents:

v25~m11!~3n2m21! ~35!

~plotted in Fig. 9 as a function ofa). Computingv according
to prescription~12!, we obtain the depth-averaged flow fie

FIG. 9. Dependence of parameterv2 of Eq. ~35! @governing

solution c̃(f) of Eq. ~34!# on opening anglea.
03630
r

v5v r r̂1vff̂ ~36!

with components

v r~r ,f!52~3n2m21!
J0

r

r m2n

AAm21R2n11
h̃2~f!c̃~f!

~37!

and

vf~r ,f!5
J0

r

r m2n

AAm21R2n11
h̃2~f!c̃8~f!. ~38!

Thus, we need to solve Eq.~34! with respect toc̃(f) in
order to know the flow velocity.

We were not able to find an exact analytical solution
this equation; however, we succeeded in finding approxim
solutions on the bisector (ufu!a/2) and near the contact lin
(Df!a/2), which represent the two opposite limits of th
range of f. ~Again, we defineDf5a/22ufu.! Near the
contact line the third term on the left-hand side of Eq.~34! is
negligible with respect to the other two terms, and hence
solution is

c̃~f!'E
0

f

c* ~j!J̃~j!dj1c* ~f!E
f

a/2

J̃~j!dj

1const ~Df!a/2!, ~39!

where

c* ~f!5E
0

f

h̃23~z!dz. ~40!

The asymptotic of this result is

c̃~f!}
J* ~Df!2l21

~12l2!uh̃8~a/2!u3
~Df→0!. ~41!

This asymptotic can also be inferred directly from Eq.~34!,
without finding its solution.@The constant on the right-han
side of Eq.~39! turns out to be unimportant compared to t
diverging terms.# In the opposite limit, on the bisector, th
second term on the left-hand side of Eq.~34! is negligible
with respect to the other two terms, and therefore the so
tion is

c̃~f!'c̃~0!cosh~vf!

1E
0

f sinh~vj2vf!J̃~j!

vh̃3~j!
dj ~ ufu!a/2!.

~42!

The asymptotic of this result is

c̃~f!}c̃~0!1
1

2 S v2c̃~0!2
J̃~0!

h̃3~0!
D f2 ~f→0!.

~43!
6-8
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CHARACTERISTIC ANGLES IN THE WETTING OF AN . . . PHYSICAL REVIEW E68, 036306 ~2003!
Again, this asymptotic can be obtained directly from E
~34!, without solving it. The reduced pressure on the bisec
c̃(0) is positive, and so is its second derivativec̃9(0)
5v2c̃(0)2 J̃(0)h̃23(0). The latter is due to the facts tha
c̃(f) divergespositively at the edge of the drop@see Eq.
~41!# and that ‘‘the Mexican hat’’ shape for the pressure a
function of polar angle is physically unlikely in this slow
process. The value ofc̃(0) cannot be determined from th
original differential equation; one needs to employ an in
gral condition resulting from the equality of the total influ
into a sector of radiusr by flow from the outer regions of the
drop and the total outflux from this sector by evaporation

rE
2a/2

a/2

uv r uhrdf5E
0

r E
2a/2

a/2

Jrdrdf. ~44!

Upon simplification this condition reduces to the followin
equation defining the constant prefactorc̃(0):

E
0

a/2

@v2h̃3~f!c̃~f!2 J̃~f!#df50. ~45!

Obviously, c̃(0) is proportional toJ̃(0)h̃23(0). Thus, ap-
proximate analytical solutions to Eq.~34! are available in the
two opposite limits.

In order to compensate for the unavailability of the ex
analytical solution to Eq.~34!, we also approached this prob
lem numerically. The numerical solution to Eq.~34! satisfy-
ing conditions~45! for c̃(0) and c̃8(0)50 for c̃8(0) was
found for the two model forms~25! and~26! of J̃(f) and for
approximately 20 different values of the opening angle. In
cases perfect agreement between the numerical solution
the analytical asymptotics of the preceding paragraph
observed. Two examples of the numerical solution toget
with the analytical asymptotics are provided in Fig. 10 f
opening angles 70° and 110°. Both were obtained for
model form ~25! of function J̃(f), and the obtuse-angl
graph used choice~16! for constantC. Different choice of
the model form for functionJ̃(f) did not lead to any signifi-
cant changes of these graphs.

Characteristic behavior of the velocity field~36! is shown
in Fig. 11 for a570° and a5110° @again, obtained for
choice~16! and the model form~25!, but very insensitive to
the particular form ofJ̃(f)]. Note that despite the fact tha
the exponent (m2n) of the power law inr is not a smooth
function of a ~Fig. 12!, the qualitative behavior of the flow
field does not visibly change as the opening angle increa
past the right angle.

The velocity diverges near the edge of the drop. T
could have been deduced directly from the conservation
mass~2!, where the divergent evaporation rate must be co
pensated by the divergent velocity~since the free-surface
height is a regular function of coordinates and, moreov
vanishes near the contact line!. Physically, change of volume
near the edge becomes increasingly smaller as the co
line is approached and hence the outgoing vapor flux mus
matched by an equally strong incoming flow of liquid.
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Streamlines.Given the velocity field in the drop, we ca
now compute the rate of deposit growth at the edge of
sector. We assume that the suspended particles are ca
along by the flow with velocity equal to the fluid velocity
Integrating the velocity field~37! and ~38!:

dr

rdf
5

v r

vf
52~3n2m21!

c̃~f!

c̃8~f!
, ~46!

we find the streamline equation, i.e., the trajectory of ea
particle as it moves with the fluid:

r ~f!5r 0expF ~3n2m21!E
f

a/2 c̃~j!dj

c̃8~j!
G , ~47!

where we assume thatf is positive here and everywher
below ~the generalization to the case of negativef is obvi-
ous as all functions off are even!. Thus, r 5r 0 when f
5a/2, so thatr 0 is the distance from the terminal endpoi
of the trajectory to the vertex. In limit~41! the integral in the
exponent is

FIG. 10. Typical behavior of the numerical solution and t

analytical asymptotics of functionc̃(f) for two values of opening
angle.
6-9
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E
f

a/2 c̃~j!dj

c̃8~j!
'

~Df!2

2~11l!
~Df→0!, ~48!

and the streamline equation reduces to

r'r 0 ~Df→0!. ~49!

The streamlines are perpendicular to the contact line~up to
the quadratic terms inDf). This is in good agreement with
what one would expect near the edge of the drop, since
azimuthal component of the fluid velocity diverges at t
side contact line while the radial component goes to zero
limit ~43! the integral in the exponent is

E
f

a/2 c̃~j!dj

c̃8~j!
'

1

v22k2
ln

a/2

f
~f→0!, ~50!

and hence the result reads

FIG. 11. Characteristic behavior of flow field for two values
opening angle. Each arrow represents the absolute value an
direction of velocityv at the point of arrow origin.
03630
he

In

r'r 0S a/2

f D e

~f→0!. ~51!

Here we introduced

e5
3n2m21

v22k2
5

1

m112k2/~3n2m21!
~52!

and

k25
J̃~0!

h̃3~0!c̃~0!
. ~53!

A few observations are in order about this limit and its e
ponents. First of all,k2 is always positive as all the factors i
Eq. ~53! are. As we explained in the preceding section,
second derivative on bisector c̃9(0)5v2c̃(0)
2 J̃(0)h̃23(0) has to be positive as well, and thereforek2

,v25(m11)(3n2m21). The positiveness of exponente
follows both from this fact~as (3n2m21).0 for all a)
and from the fact that the trajectoryr (f) necessarily has to
diverge asf→0 ~as solute comes from theouter regions of
the drop!.

We cannot computek2 ande explicitly, since we do not
know c̃(0). However, we can gain some idea of the beha
ior of these indices by using approximate forms ofJ̃(f) and
c̃(f). Figure 13 demonstrates the characteristic behavio
parameterk2 as a function of opening angle, obtained n
merically on the basis of the model forms~25! and ~26! for
function J̃(f). Similarly, Fig. 14 shows the behavior of ex
ponente for the same two model forms ofJ̃(f). In order to
obtain these plots, Eq.~34! was solved numerically for eac
a, and thenc̃(0) was fixed by condition~45!. As can be
observed in these graphs, the two model forms ofJ̃(f) lead
to the plots of very similar shape, but shifted by'15–20%
for k2 and by no more than 10% fore in the whole range of
the opening angles. Thus, we conclude that Figs. 13 and

FIG. 12. Dependence of exponent (m2n) in the power laws
v r(r ) andvf(r ) @Eqs.~37! and ~38!# on opening anglea.

the
6-10



th

a

fo

a

o
b

to

e

g
es
then
e at

en

e
ay

e

lf-

gle

tra-
and

s

o

e

o

e

of

CHARACTERISTIC ANGLES IN THE WETTING OF AN . . . PHYSICAL REVIEW E68, 036306 ~2003!
provide correct estimates for the qualitative behavior and
order of magnitude of parameterk2(a) and exponente(a),
respectively. Interestingly, the exponente does not possess
sharp discontinuity of the first derivative ata5p/2 despite
the presence of such discontinuity in parameterk2.

Typical shape of the streamlines is shown in Fig. 15
a570° anda5110°. It was based on the model form~25!

for function J̃(f), and involved the corresponding numeric
solutions for functionc̃(f) ~Fig. 10! employed in Eq.~47!.
This shape is practically insensitive to the model form
J̃(f), and almost an identical copy of this graph was o
tained for the model form~26!.

The distance from a point on a streamline to the bisec
scales withf as fr (f)}f12e when f→0. Since e.1
~Fig. 14!, this distance increases whenf decreases. Thus, th

FIG. 13. Dependence of parameterk2 of Eqs. ~53! and ~54!
@governing exponentse of Eq. ~52!, g of Eq. ~65!, and d of Eq.
~64!# on opening anglea. The two curves correspond to the tw

model forms for functionJ̃(f): the solid curve is based on choic
~25!, the dotted curve is based on choice~26!.

FIG. 14. Dependence of exponente in the power lawr (f) @Eq.
~51!# on opening anglea. The two curves correspond to the tw

model forms for functionJ̃(f): the solid curve is based on choic
~25!, the dotted curve is based on choice~26!.
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streamlines diverge away from the bisector whenf→0, and
hence they donot originate on the bisector. An incomin
element of fluid initially located close to the bisector mov
towards this bisector, reaches a minimum distance, and
veers away towards the contact line. One can also arriv
the same conclusion having started from Eq.~46!. Indeed,
for small f @in limit ~43!# the ratio of the velocity compo-
nents ~46! is v r /vf52(3n2m21)/@f(v22k2)#, or
vf /v r52f/e. The latter ratio represents the angle betwe
a streamline and a coordinate linef5f0 at any point
@f0 ,r (f0)# on that streamline. Sincee.1, the absolute
value of this angle is less thanufu, and therefore, despite th
opposite sign of this angle, the streamline diverges aw
from the bisector for smallf. This tendency can also b
observed directly in Fig. 15.

Another feature apparent from Fig. 15 is the se
similarity of all the streamlines. As is clear from Eq.~47!, the
only scaling parameter of the family of streamlines isr 0, and
therefore all the streamlines can be obtained from a sin
streamline~say, the one withr 051) by multiplying its r
coordinate by different values ofr 0.

Note that Eq.~47! does not containJ0 /r, and thus it is
universally correct regardless of the choice ofJ0. Physically,
this indicates that solute particles move along the same
jectories independently of how fast evaporation occurs
hence how fast the flow is. Also,r (f) does not depend on
the choice of the prefactorC for the obtuse angles. Indeed, a
we mentioned previously, c̃(0) is proportional to

FIG. 15. Typical shape of the streamlines for two values
opening angle~for the same values as in Figs. 10 and 11!.
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Y. O. POPOV AND T. A. WITTEN PHYSICAL REVIEW E68, 036306 ~2003!
J̃(0)h̃23(0). Thus, c̃(f) and c̃8(f) are proportional to
1/C3 for obtuse angles@this could also be observed direct
from Eq. ~34!#. Therefore, the right-hand side of Eq.~47! is
independent ofC.

These general features ofr (f) are reflected in the behav
ior of the indexk2 ~and hence the exponente and all other
exponents dependent onk2 that we will introduce later!.
Sincec̃(0) is proportional toJ̃(0)h̃23(0), k2 is independent
of J̃(0)h̃23(0) despite the explicit presence of this combin
tion in its definition. Thus, indexk2 is indeed independent o
the evaporation intensity and the constant prefactor of
surface shape, in good agreement with the general obse
tions of the preceding paragraph. On the basis of Eq.~45!

defining c̃(0), index k2 can be written in the form

k25v2

E
0

a/2S h̃~f!

h̃~0!
D 3

c̃~f!

c̃~0!
df

E
0

a/2 J̃~f!

J̃~0!
df

, ~54!

demonstrating its independence from the prefactors of e
function of f.

Solute transfer: Three time regimes.Now, given the shape
of the streamlines, we use our knowledge of the initial d
tribution of the solute, namely, that the solute has cons
concentrationc everywhere in the drop at timet50, and
compute the time it takes an element of fluid~moving along
a streamline! to reach the contact line at distancer 0 from the
vertex having started from some point (r ,f) on that stream-
line. This time can be found by integrating eitherdt
5rdf/vf or dt5dr/v r with known vf or v r and the rela-
tion betweenr andf on the streamline@Eq. ~47!#:

t5E
f

a/2rdf

vf
5E

r

r 0dr

v r

5t0E
f

a/2
expF ~n2m11!~3n2m21!E

z

a/2 c̃~j!dj

c̃8~j!
G

h̃2~z!c̃8~z!
dz,

~55!

wheret0 is a combination of system parameters with dime
sionality of time:

t05
r

J0
AAm21R2n11r 0

n2m11 . ~56!

Within this time all the solute that lays on the way of th
element of fluid as it moves toward the contact line becom
part of the deposit~highlighted area in Fig. 16!. The mass
dm of this deposit~accumulated on the contact line betwe
r 0 and r 01dr0) can be found by integratingh(r ,f) over
areadA swept by this infinitesimal volume and multiplyin
the result by the initial concentrationc of the solute:
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dm5cE
dA

h~r ,f!rdrdf. ~57!

Employing relation~47! once again, we obtain

dm5c
r 0

n11dr0

Rn21 E
f

a/2

h̃~z!expF ~n12!~3n2m21!

3E
z

a/2c̃~j!dj

c̃8~j!
Gdz. ~58!

Dependencedm(t) can now be found by eliminatingf from
results~55! and ~58!. Since we use depth-averaged veloc
throughout this paper, we implicitly assume that there is
vertical segregation of the solute.

Exact analytical calculation of the dependencem(t) is not
possible for an arbitrary starting point (r ,f) on a streamline
since no analytical expression forc̃(f) is available for arbi-
trary f and since integrals in Eqs.~55! and ~58! cannot be
computed analytically for arbitraryf even if c̃(f) were
known. However, there are two important cases thatcan be
tackled analytically:~a! early times,when the initial point is
close to the contact line~i.e., whenDf!a/2 andr'r 0) and
only the solute between that initial point and the contact l
is swept into the edge deposit~the starting point is on isoch
rone 1 of Fig. 16 or closer to the contact line!, and~b! inter-
mediate times, when the initial point is close to the bisecto
~i.e., whenufu!a/2 andr @r 0) and virtually all the solute
between the bisector and the contact line is swept into
edge deposit~the starting point is on isochrone 4 of Fig. 1
or further from the vertex!. Situations between these tw
limiting cases~highlighted area in Fig. 16 demonstrates o
of them, starting points on isochrones 2 and 3 would cor
spond to some other! can be extrapolated on the basis

FIG. 16. Qualitative sketch: mutual location of streamlines~the
two lines with arrows! and isochrones~the four numbered lines!.
Solute moves along the streamlines towards the contact line~the
bold line!. Shaded area is swept by an infinitesimal element of fl
between the two infinitesimally close streamlines as that elem
moves towards the contact line. The isochrones are the geom
locations, starting from which the solute reaches the contact lin
the same time. Solute from isochrone 1 reaches the contact
first; solute from isochrone 4 reaches the contact line last.
6-12
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CHARACTERISTIC ANGLES IN THE WETTING OF AN . . . PHYSICAL REVIEW E68, 036306 ~2003!
continuity of the results. Since our region is indefinite
smaller than the drop as a whole, we may treat regions~a!
and ~b! assuming that a negligible fraction of the drop h
evaporated. At some later stage that we call thelate-time
regime, an appreciable fraction of the drop has evapora
and the fluid trajectories have reached back into the bulk
the drop. In this late regime our asymptotic treatments
clearly not adequate to describe the flow as we did
specify any details of the drop geometry far from the vert
Thus, we cannot treat this regime by our methods, and o
the properties of drying process at early and intermed
stages can be found from information in hand.

Apart from the definitions based on the trajectories,
three regimes can be equivalently defined in terms of timt:
~1! early times:t!t0; ~2! intermediate times:t0!t!t f ; and
~3! late times:t't f . Here t0 is the characteristic time de
fined in Eq.~56! ~this characteristic time depends onr 0) and
t f is the total drying time defined in Eq.~32!. The equiva-
lence of the definitions in terms of the initial position on
trajectory and in terms of time can be seen from Eq.~55!. At
early times,Df!a/2, and the integral in Eq.~55! is much
less than 1~as the integrand is finite nearf5a/2 while the
integration range shrinks whenDf→0). Thus,t!t0 at early
times. At intermediate times,ufu!a/2, and the integral di-
verges asf→0. Hence,t@t0 at intermediate times. On th
other hand, the difference between the intermediate and
late regimes lies in their relation to the total drying time
we explained in the preceding paragraph.

As is clear from the definition of the intermediate-tim
regime, the necessary condition for its existence ist0!t f ,
which can be reduced to (r 0 /AA)32m(r 0 /R)n22!1 by com-
bining Eqs.~56! and~32!. Since we always consider suchr 0

that r 0!R and r 0!AA, this condition is obeyed as long a
32m.0 and n22>0. While the former condition is al-
ways true (m,3 for all a), the latter condition is true only
for acute opening angles (n52 for a<p/2). Thus, the
intermediate-time regime is well defined for acute angl
For obtuse opening angles the situation is more complica
Index n satisfies the opposite inequality (n,2 for a
.p/2), and hence for obtuse angles, (r 0 /R)n22@1 when
r 0!R. Combined with inequality (r 0 /AA)32m!1, this
leads to an ambiguous result for how (r 0 /AA)32m(r 0 /R)n22

compares to 1 and hence howt0 compares tot f . This result
depends on the exact relation betweenAA andR and on the
numerical prefactor in the definition oft f that we omitted
everywhere~since it depends on the exact shape of the d
including the unspecified regions outside the sector of in
est!. Generically,AA}R(t) ũ(t), where ũ(t) is the contact
angle in the bulk of the drop, i.e., far away from the verte
Both R and ũ depend on time; however, the intermedia
times are characterized byt!t f , and hence, as can be se
from Eq. ~31!, R(t)'Ri and ũ(t)'u i in this regime@here
u i5 ũ(0)]. Therefore,AA}Riu i , and the necessary cond
tion (r 0 /AA)32m(r 0 /R)n22!1 can be rewritten as
(r 0 /AA)n2m11!u i

22n . The exponents on both sides of th
inequality are positive for obtuse opening angles, and he
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this condition should be expected to be satisfied for not
small initial values of the bulk contact angleu i . The closer
to the vertex the trajectory endpoint is, the better this con
tion is obeyed. On the other hand, the larger the open
angle is, the smallern is, and hence the smalleru i

22n is
~assumingu i,1). Thus, the condition of applicability of the
intermediate-time regime is obeyed worse for larger open
angles. As we explain below, at exactlya5p the
intermediate-time regime is indistinguishable from the ear
time regime, and hence should not exist.

Results form(t,r 0) at early and intermediate times a
presented in the next two sections.

Deposit growth: early times.This regime corresponds t
the growth entirely due to the transfer of particles origina
located near the contact line. The starting point of a part
trajectory is characterized byr'r 0 and Df!a/2. An ele-
ment of fluid Df away from the contact line reaches th
contact line in timet of Eq. ~55!. The massdm swept to the
contact line by an element of fluiddr0 long for this time is
defined by Eq.~58!. In limit ~41! the inner integral in expres
sions~55! and~58! is given by Eq.~48!. Evaluating the outer
integrals in these expressions in limit~41!, expressingDf in
terms of time, and then substituting the result into the expr
sion for mass, we finally obtain the mass of the deposit a
function of time:

dm

dr0
~ t,r 0!'c

r 0
n11

Rn21

uh̃8~a/2!u
2 S 11l

12l

J*

uh̃8~a/2!u

t

t0
D 2/(11l)

.

~59!

Herec is the constant initial concentration of the solute in t
drop. Note thatt0 also depends onr 0. Thus, at early times
the deposit grows in time as a power law

dm

dr0
~ t,r 0!}t2/(11l)r 0

b , ~60!

where ther 0
b arises from ther 0

n11 prefactor and from ther 0

dependence oft0. Using Eq.~56!, we find

b5~n11!2
2

11l
~n2m11!52

~12l!~11n!22m

11l
~61!

and plot it in Fig. 18 as a function of opening angle~the
early-time curve!.

There are two important conclusions to be drawn fro
this result. One is that the power-law exponent of tim
2/(11l)54/3 is exactly the same as in the case of a rou
drop considered by Deeganet al. @1#. This should be of no
surprise since close to the side of the angle~as well as close
to the circumference of a round drop! the contact line looks
locally like a straight line, and the solute ‘‘does not know
about the vertex of the angle or the curvature of the circu
ference. This exponent is determined entirely by the lo
properties of an infinitesimal segment of the contact line
lengthdr0 and is independent of larger geometrical featu
of the system.
6-13
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The value 2/(11l)54/3 of the exponent of time can b
obtained from a very simple argument, relying only on t
assumptions that~a! the contact line is straight,~b! the
streamlines are perpendicular to the contact line, and~c! the
distribution of the solute is uniform. Indeed, the mass of b
the water and the solute is proportional to the volume of
element of fluid near the contact line~Fig. 17!: dm
}(Dl)2dr0. All this mass should be evaporated from the s
face of this volume element in some timet. The evaporation
rate~per unit area! scales asJ}(D l )2l and therefore the rate
of mass loss isJdA}(D l )2l11dr0. The time it takes this
volume to evaporate can now be found as the ratio of
mass to the rate of mass loss:t5dm/(JdA)}(D l )11l. Thus,
(D l )}t1/(11l) and hencedm/dr0}t2/(11l) as asserted.

The other observation is the dependence onr 0. Since ex-
ponentb is always between21 and 0, the singularity inr 0
is always integrable atr 050. Physically, this corresponds t
the statement that the vertex of the sector doesnot dominate
the sides and that the deposit accumulation at the verte
not qualitatively different from the deposit accumulation o
the sides.

Deposit growth: intermediate times.The starting point of
a streamline in the intermediate-time regime lies near
bisector and is characterized by coordinatesr @r 0 and ufu
!a/2. By the time an infinitesimal element of fluid from
vicinity of the bisector reaches the contact line virtuallyall
the solute in the area between the bisector and the con
line will be deposited at the contact line. The analysis
similar to the previous case. In limit~43! the inner integral in
expressions~55! and ~58! is given by Eq.~50!. Calculating
the time it takes an element of fluid to reach the contact
@Eq. ~55!# and the mass accumulated at the contact line
tweenr 0 andr 01dr0 for this time@Eq. ~58!#, and then elimi-
natingf from the two results, we arrive at the dependence
mass on time:

dm

dr0
~ t,r 0!'c

r 0
n11

Rn21

~m11!~3n2m21!2k2

~n2m11!~3n2m21!1k2
h̃~0!

a

2

3S ~n2m11!~3n2m21!

3h̃2~0!c̃~0!
t

t0
D 11k2/[(n2m11)(3n2m21)]

. ~62!

FIG. 17. An illustration of the derivation of the four-thirds la
for a5p. The contact line is normal to the plane of the figu
Lengthdr0 is along the contact line and hence not shown. The fl
is in the plane of the figure from left to right.
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Taking into account thatt0 also depends onr 0, we finally
conclude that the deposit mass grows as a power law

dm

dr0
~ t,r 0!}tdr 0

g , ~63!

where we introduced notations for the exponent of time

d511
k2

~n2m11!~3n2m21!
~64!

and for the exponent ofr 0, originating from both the prefac
tor r 0

n11 and ther 0 dependence oft0 @Eq. ~56!#:

g5~n11!2d~n2m11!5m2
k2

3n2m21
. ~65!

An important observation is that the exponent of tim
stays greater than one in the intermediate-time regime. T
the rate of mass accumulationdm/dt continues to grow with
time in this regime, and the deposit mass grows faster
faster. This result has a simple explanation for both the ea
and the intermediate-time regimes. Since the initial distrib
tion of the solute is uniform, and since the solvent evap
rates, the solute concentration at any given volumeincreases
with time. Thus, even though the fluid and the particles mo
along the same streamlines in practically constant velo
field @assuming thatR(t)'Ri at sufficiently early stages#, the
rate of mass accumulation alsoincreaseswith increasing
time, since portions of solution arriving at the contact line
approximately constant rate have higher and higher so
concentration. Note that this mechanism and this result ar
good agreement with a general conclusion of Deega
works that the rate of mass accumulation must diverge at

.

FIG. 18. Exponent of distancer 0 in the power lawdm/dr0(r 0)
@Eqs.~60! and~63!# as a function of the opening angle for the tw
time regimes. The early-time curve corresponds to the exponeb
of Eq. ~61!; the intermediate-time curves correspond to the ex
nentg of Eq. ~65!. The two curves for the intermediate-time exp

nent correspond to the two model forms for functionJ̃(f): the
solid curve is based on choice~25!, the dotted curve is based o
choice~26!.
6-14
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CHARACTERISTIC ANGLES IN THE WETTING OF AN . . . PHYSICAL REVIEW E68, 036306 ~2003!
end of the drying process~as t→t f) and thatall the deposit
must accumulate at the contact line byt5t f .

Another observation is related to the exponent ofr 0.
Sincek2,v2 as we showed before,g.21. Therefore, the
mass is integrable atr 050, and the statement of the prece
ing section~that the deposit accumulation at the vertex is n
qualitatively different from the deposit accumulation on t
sides! continues to hold in the intermediate-time regime
well. Trivially, g,m.

The exponent ofr 0 must be identically zero atany time
for the opening angle of exactlya5p. Indeed, ata5p the
contact line is just a straight line~i.e., there is no angle a
all!, and therefore there is a full translational symmetry w
respect to which point of this line should be called ‘‘vertex
Thus, the choice ofr 050 is absolutely arbitrary, and ther
can be no dependence onr 0 whatsoever.

Indicesg and d are plotted in Figs. 18 and 19, respe
tively, as functions of the opening angle~the intermediate-
time curves!. The graphs are based on the result for para
eterk2, and the two intermediate-time curves on each gra
correspond to the same two model forms~25! and ~26! for
function J̃(f) as we used in Fig. 13. The two model forms
J̃(f) lead to a very small deviation ford ~less than 5%! and
to a more substantial difference forg. The significant rela-
tive error in exponentg near the valuea5p is due to the
fact that this exponent has to be identically zero at exa
a5p, while for the model forms ofJ̃(f) it is a small, but
nonzero number. Thus, the absolute error is still small,
this small absolute error divided by the small value of t
exponent leads to a large relative difference.

Results for the two time regimes.To facilitate the com-
parison of the results, we plot the exponents for the ea
and the intermediate-time regimes in Figs. 18 and 19

FIG. 19. Exponent of timet in the power lawdm/dr0(t) @Eqs.
~60! and ~63!# as a function of the opening angle for the two tim
regimes. The early-time curve corresponds to the exponent
1l)54/3; the intermediate-time curves correspond to the expon
d of Eq. ~64!. The two curves for the intermediate-time expone

correspond to the two model forms for functionJ̃(f): the solid
curve is based on choice~25!, the dotted curve is based on choic
~26!.
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gether. The absolute values of each exponent are small
the intermediate-time regime, indicating that the depende
on distance and time getsweakerwith time. We do not have
a simple intuitive explanation for such a behavior of the
exponents.

The intersection of the exponents neara5p on both
graphs can be attributed to a couple of reasons. Firs
should be kept in mind that the plotted results forg andd are
based on the relatively arbitrary choice of model forms~25!

and ~26! for function J̃(f). We suspect that these mod
equations for the reduced evaporation rate become incr
ingly inaccurate for large a. For example, J̃(f)
}(cosf)21/2 at exactlya5p, which is not the same as e
ther model form. Second, as was explained just after
~24!, at exactlya5p the contact angleu is not small even
for r !R, and the correction to the exponentl due to this
contact angle@see Eq.~23!# is comparable to the value 1/
assumed in all numerical estimates. All in all, we believe t
this intersection of the early- and intermediate-time exp
nents is an artifact of our formalism and should not be o
served in reality, since the results for the two time regim
should be identical at exactlya5p. At exactly a5p the
contact line is a straight line~no angle! and the trajectories
are perpendicular to that straight contact line. Thus, th
should be no differentiation between the early and the in
mediate times, since this differentiation is based on how
or how close to the bisector the initial point of the trajecto
is located, and any perpendicular to a straight line can
called a bisector. As we showed above, ata5p the exponent
of r 0 must be equal to zero at any time and the exponen
time must be equal to 2/(11l)54/3 at any time.

As we did everywhere above, we also find the numeri
solution for d2m/dtdr0(t) in addition to the early- and the
intermediate-time analytical asymptotics. We find the tim
derivative of dm/dr0 instead ofdm/dr0 itself in order to
demonstrate the amount of mass arriving at the contact
at timet rather than the total mass accumulated by the timt.
We employ the chain rule to obtaind2m/dtdr0 on the basis
of Eq. ~55! for t(f) and Eq.~58! for dm/dr0(f):

d

dt S dm

dr0
D5

d

df S dm

dr0
D

dt

df

5
c

t0

r 0
n11

Rn21
h̃3~f!c̃8~f!

3expF ~m11!~3n2m21!E
f

a/2c̃~j!dj

c̃8~j!
G ,

~66!

then use the numerical result forc̃(f) ~Fig. 10! in order to
find t(f) @Eq. ~55!# and d2m/dtdr0(f) @Eq. ~66!# numeri-
cally, and finally create a log-log parametric plotd2m/dtdr0
vs t, as shown in Fig. 20. The two curves in Fig. 20 corr
spond to the two values ofa we used earlier (70° and 110°)

(1
nt
t
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Again, the plot is based on the model form~25! for function
J̃(f), but very insensitive to the particular form of this fun
tion. This plot clearly demonstrates two different slopes~and
hence two different time regimes! of each curve. The cross
over between the two regimes~slopes! occurs around time
t't0 @i.e., near ln(t/t0)'0], and the early-time slopes ar
equal for both values of the opening angle@and equal to
2/(11l)2151/3 as to be expected from our early-time r
sults#. All these numerical results are in excellent agreem
with our analytical predictions, and the numerical values
time exponents compare very well with those of Fig.
~which should be corrected by21 due to the differentiation
with respect to time in Fig. 20!.

In a similar fashion we obtain a log-log plot fo
d2m/dtdr0 as a function ofr 0. We fix t, then expressr 0 in
terms of f by combining Eqs.~55! and ~56!, and finally
determiner 0(f) andd2m/dtdr0(f) @Eq. ~66!# numerically
on the basis of the numerical result forc̃(f) of Fig. 10. The
resulting log-log parametric plotd2m/dtdr0(r 0) is shown in
Fig. 21 for the two values of the opening angle (70° a
110°). The purpose of this graph is to provide a snapsho
the deposit growth at any given moment of timet. For small
r 0 the accumulation of the solute at the contact line is in
intermediate-time regime, while for larger 0 the growth is in
the early-time regime. The threshold between the two
gimes is defined byt5t0. This condition can be reversed b
solving Eq.~56! with respect tor 0. The resulting value

r * 5S J0

r
AA12mRn21t D 1/(n2m11)

~67!

defines the threshold in terms ofr 0 ~at any moment of time
t): the early regime corresponds tor 0@r * and the interme-
diate regime corresponds tor 0!r * . As can be seen from th
numeric plot, the regimes indeed switch atr 0'r * @i.e., near
ln(r0 /r* )'0]. The intermediate-time slopes are almost eq
for both graphs since the intermediate-time exponentg ~the
upper curves in Fig. 18! varies very weakly witha (g'

FIG. 20. Log-log plot of the numerical solutiond2m/dtdr0(t)
for two values of opening angle~for the same values as in Figs. 1
11, and 15!.
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20.135 for a570° andg'20.111 for a5110°). Again,
the numerical results are in excellent agreement with the a
lytical asymptotics, and the numerical values of expone
compare very well with those of Fig. 18.

III. DISCUSSION

The mechanism presented here does not account f
number of additional effects that can modify the depositio
First, the vertical distribution of the solute was assumed to
homogeneous throughout the drying process, which
equivalent to assuming that vertical mixing is intensive. T
assumption is quite important, and the results are expecte
get modified if the true velocity profile~6! is used instead of
the vertically averaged velocity distribution. Qualitativel
the surface of the drop moves faster than the near-subs
layers, and therefore the particles near the surface reach
contact line sooner than those closer to the substrate.
example, if all solute particles are confined at the free s
face, then the relevant velocity is the surface velocity. Fr
Eq. ~6!, this surface velocity is 3/2 times the average veloc
v(r ,f) of Eq. ~7!. The result is to multiply the characteristi
time t0 by 2/3 in the formulas above. Additional effects ca
be caused by gravity or convection, both leading to the n
uniform vertical distribution of solute.

Second, for higher-viscosity liquids, viscous stresses
come more important, and the typical flow velocities c
become comparable withv* 5s/3h. The velocity diverges
at the edge, and conditionv!v* does get violated at som
distance from the edge. For water this distance is compar
to the typical size of the solute particles~which were
0.1–1 mm in diameter in the experiments!, for higher-
viscosity liquids it may become comparable to the size of
drop ~a few millimeters!. In the latter case the surface sha
cannot be assumed to be equilibrium, as was assumed in
paper. Also, the characteristics of the flow are significan
altered if the concentration of the solute becomes large~this
changes the ‘‘effective’’ viscosity of the solvent!.

Third, the size of the solute particles can introduce ad

FIG. 21. Log-log plot of the numerical solutiond2m/dtdr0(r 0)
for two values of opening angle~for the same values as in Figs. 1
11, 15, and 20!. Parameterr * is defined by Eq.~67!.
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CHARACTERISTIC ANGLES IN THE WETTING OF AN . . . PHYSICAL REVIEW E68, 036306 ~2003!
tional effects. Thus, if the particles are small, diffusion b
comes important, and diffusive currents lead to the redis
bution of the solute. If the particles are too larg
sedimentation may affect the amount of the material reach
the edge. Finally, we ignore the temperature effects on
face tension~Marangoni flows! that have also been observe
in the experiments.

Despite all these shortcomings, we believe that our the
captures the essential mechanism of the deposit growth.
mechanism described is responsible for the transfer of
entire solute to the edge of the drop, and the effects ab
should not alter our main conclusions.

Our results are similar in many ways to the results for
round drops in works of Deeganet al. @1,2#. For example,
the flow is capable of 100% transfer of the solute to
contact line, there are several distinctive time regimes,
deposit mass grows as a power law of time, and even
exponent of this power law is the same in the early-ti
regime. At the same time, there are a number of new feat
that did not exist in the round-drop case.

One of these features is the existence of the third t
regime in addition to the two of the round-drop case. T
intermediate-time regime for the angular sector mathem
cally corresponds to the late-time regime for the round dr
while the late-time regime for the angular sector does
have any analog in the round-drop case. The existence of
new regime is due to the fact that an angle, as a mathema
object, is infinite, while a circle always occupies finite are
A real drop with an angle is also a finite object and henc
must always have a section of the contact line connecting
two sides of the angle. This causes the existence of the t
time regime determined by the solute coming from that
region and influenced by the presence of this new sectio
the contact line. The late-time results for the angular se
heavily depend on the shape of this new section.

Probably, the most exciting feature of the angular-sec
solution is its dependence on the opening angle. Unlike
round-drop case, there is an extra free parameter of
problem—the opening angle of the sector. All the resu
including the exponents of the power laws, depend on
opening angle. Note that these exponents areuniversal, i.e.,
they do not depend on any other parameters of the sys
except for the opening angle. They are as universal as
exponent of distance22 in the Coulomb’s law. At the sam
time, the only parameter they depend on is extremely eas
control—preparing an evaporating drop one can adjust
opening angle of the contact line at his will without an
technical elaborations. Thus, for example, by suitably cho
ing the opening angle~and the time regime!, one can create a
predetermined power-law distribution of the solute along
contact line with virtually any exponent of distance betwe
21 and 0~Fig. 18!. In principle, this feature may have sig
nificant practical applications for all the processes mentio
in the Introduction. Further control over the line depositi
may be achieved by altering the contact line shape from
straight-sided angle to a curved-sided angle.

Apart from the deposition along a line, a similar virtue
the present flow phenomenon is in setting up a well-defi
concentration profile, also depending ona. Initially, the
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amount of solute per unit area is simply proportional to t
thicknessh of the drop. As time goes by and the drop drie
the concentration profile changes, and the relative amoun
solute per unit area increases asr decreases. This tendenc
gets further enhanced with time. This solute concentrat
profile may be important if one wants to deposit mater
within the drop.

While our study does not completely explain the point
shapes observed in Deegan’s experiments~Fig. 2!, it does
show that the deposition is strongest near the tip. Thus,
deposition tends to prevent depinning, and it is strong
where the depinning force is greatest. Hence, it helps
maintain the angular shapes of Fig. 2. Our mechanism d
not explain the particular angle observed in the experime
but, clearly, our kind of analysis is a step towards und
standing the chosen angles, the observed separation bet
the vertices and the deposition profile within the sector.

Our findings have a unique signature that can be rea
verified in experiments. One strong consequence of
theory is that the rate of increase ofdm/dr0 has a sharp
change of behavior as a function ofr 0 for any given time
~Fig. 21!. For small r 0 ~intermediate times! function
d2m/dtdr0(r 0) varies weakly, while for larger 0 ~early
times! it falls off more dramatically with increasingr 0. The
crossover pointr * @Eq. ~67!# moves outwards as a power o
time t with exponent 1/(n2m11). ~Note that this exponen
involves only the accurately known functions ofa.! This
crossover point and its outward motion provide a clear-
signature of our mechanism, and this signature should be
strongest for small opening angles~as Fig. 18 depicts!. In
order to avoid possible nonuniversal effects from late tim
one needs to measure the system before the late-time reg
This measurement can be done by following particles in
flow, or by looking at the build up of fluorescence at th
contact line ~both methods were used by Deeganet al.
@1–4#!. In order to avoid the uncertainties with depth ave
aging, one can employ surface-confined tracer particles.

One open question of our work is related to the unav
ability of the exact form ofJ̃(f) @as discussed after Eq
~19!#. Neither full analytical nor exact numerical form wa
available explicitly, and we had recourse to analytical
ymptotics and approximate numerical expressions. Find
J̃(f) may be a formidable task, but can be accomplished
least in principle, as the earlier works on the subject sugg
@10–13#. So, one way of determining the exponents mo
precisely is to try to determineJ̃(f). Another way is related
to creating such evaporating conditions that functionJ̃(f) is
simpler, for instance,J̃(f) is just a constant. The latter cas
of the uniform evaporation rate is significantly easier to tr
analytically, although there are questions on its experime
realization. Some further efforts may be devoted in this
rection.

Further work is also required in order to account for t
finite width of the deposition region along the contact line.
is observed experimentally that the solute is spread out o
a quite broad range near the tip and the sides of the ang
We believe that the finite width of the deposition region
related to the finite size of the solute particles and fin
6-17
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Y. O. POPOV AND T. A. WITTEN PHYSICAL REVIEW E68, 036306 ~2003!
concentration of the solute. Near the contact line the volu
fraction of particles becomes sufficiently high to influen
~slow down! the flow that carries those particles. Furth
efforts are to be devoted to this problem in the future.
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APPENDIX

The purpose of this section is to demonstrate that for s
ficiently slow flows one can employ the equilibrium surfa
shape for finding the pressure and the velocity fields inst
of having to solve for all the dynamical variables simult
neously. We will also quantify how slow ‘‘sufficiently slow
flows’’ are.

We start from the equation of the mechanical equilibriu
of interface ~9!, where we approximate the doubled me
curvature 2H with ¹2h. This approximation holds true be
cause the free surface of the drop over an angular sect
nearly horizontal near the vertex of the angle, as was sh
in our earlier paper@5#, and the other terms of the function
H@h# are unimportant. Substitution of

p52s¹2h1patm ~A1!

into the Darcy’s law~7! yields

v5v* h2
“~¹2h!, ~A2!

wherev* 5s/3h. Upon further substitution into the conse
vation of mass~2!, we obtain

“•@v* h3
“~¹2h!#1

J

r
1] th50, ~A3!

which, together with Eq.~A2!, constitutes the full system o
equations for findingh(r ,f,t) andv(r ,f,t).

Now, for water under normal conditions,h51 mPa s and
s572 mN/m. Hence, the velocity scalev* is of the order of

v* 5
s

3h
'24 m/s. ~A4!

Obviously, this is a huge value compared to the character
velocities encountered in usual drying process. Theref
one can develop a systematic series expansion in smal
rametere5 ṽ/v* ~where ṽ is some characteristic value o
velocity, say, 10mm/s):

h5h01eh11•••1enhn1•••, ~A5!

v5v01ev11•••1envn1•••, ~A6!
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and keep only theh0 and v0 terms at the end in order to
describe the process up to the main order ine5 ṽ/v* . A
similar expansion can also be constructed for pressure:

p5p01ep11•••1enpn1•••, ~A7!

wherepi are related tohi by Eq. ~A1!:

p052s¹2h01patm , p152s¹2h1 , etc.
~A8!

Physically, conditionṽ!v* is equivalent to the statemen
that the viscous stress is negligible. Let us understand w
h0 andv0 physically correspond to.

Plugging the expansions forh andv into the system~A2!
and ~A3!, one obtains a set of terms for each power ofe,
starting frome21 and up. Equating terms of the main ord
in e yields the following two equations:

h0
2
“~¹2h0!50 and “@h0

3
“~¹2h0!#50, ~A9!

which both can be satisfied if and only if¹2h0 is a function
of time only. Writing it as

¹2h052
p02patm

s
52

1

R~ t !
, ~A10!

we immediately identify this equation with the statement
spatial constancy of the mean curvature of the interfa
which describes theequilibrium surface shape at any give
moment of timet @i.e., we obtained Eq.~10! with the desired
properties ofp0]. Thus,h0 is indeed the equilibrium surfac
shape, and so ish ~up to the corrections of the order o

ṽ/v* ).
Repeating the same procedure for the terms of the n

order ine, we arrive at another two equations:

v05 ṽh0
2
“~¹2h1!, ~A11!

ṽ“@h0
3
“~¹2h1!#1

J

r
1] th050, ~A12!

which can be seen to be equivalent to the set of Eqs.~11! and
~12! upon identificationc5 ṽ¹2h152ep1 /3h. Knowing
the equilibrium surface shapeh0, one can solve the secon
equation above with respect to the reduced pressurec, and
then obtain velocityv0 by differentiating the result accordin
to the first equation. Thus, up to the corrections of the or
of ṽ/v* , one can first find the equilibrium surface sha
h(r ,f) at any given moment of time, and then determine
pressure and the flow fields for this fixed functional form
h, as was asserted in section Theory.
6-18
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