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Characteristic angles in the wetting of an angular region: Deposit growth
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Solids dispersed in a drying drop migrate to tp&éned contact line. This migration is caused by outward
flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains
an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper, we theoretically
investigate the evaporation rate, the flow field, and the rate of growth of the deposit patterns in a drop over an
angular sector on a plane substrate. Asymptotic power laws near the (@stdistance to the vertex goes to
zero are obtained. A hydrodynamic model of fluid flow near the singularity of the vertex is developed and the
velocity field is obtained. The rate of the deposit growth near the contact line is found in two time regimes. The
deposited mass falls off as a weak poweof distance close to the vertex and as a stronger p@aadrdistance
further from the vertex. The power depends only slightly on the opening anglend stays roughly between
—1/3 and 0. The poweB varies from—1 to O as the opening angle increases from 0° to 180°. At a given
distance from the vertex, the deposited mass grows faster and faster with time, with the greatest increase in the
growth rate occurring at the early stages of the drying process.
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[. INTRODUCTION boundary line can be represented as a sequence of smooth
segments, which can be approximated by circular arcs, and
The problem of the so-called “coffee-drop deposit” has fractures, which can be approximated by angular regions.
recently aroused great interg4t-4]. The residue left when Thus, knowledge of analytical solution for both circular
coffee dries on the countertop, mineral rings left on washedsolved by Deegaret al) and angular(considered hepe
glassware, banded deposits of salt on the sidewalk duringoundary shapes fills out the quantitative picture of solute
winter, and enhanced edges in water color paintings are exransfer and deposit growth for an arbitrary drop boundary.
amples of the variety of physical systems understood byKeeping this purpose in mind, we specify only one boundary
coffee-drop deposit terminology. Understanding the processf the drop(the vertex and the sides of the andkaving the
of drying of such solutions is important for paint manufac-remainder of the boundary curve unspecified. Such an ap-
turing, protein crystallography, production of nanowires, pat-proach turns out to be sufficient to determine the universal
terning of a surface, DNA stretching in a flow, and otherfeatures of the solution, and it allows us to find all the im-

scientific and industrial applications. portant singularities as power laws of distance from the ver-
The theory of the solute transfer in such physical systemgex of the angle.
has been developed in works of Deegaral. [1-3]. In this Our motivation for focusing on droplets over an angular

theory, the contact line of a drop of liquid is pinned during sector also arises from the distinctive deposit patterns ob-
drying process. While the highest evaporation occurs at theerved in Deegan’s experimer(fSig. 2). These patterns are
edges, the bulk of the solvent is concentrated closer to thproduced as the contact line retra¢tbown in the figure
center of the drop. In order to replenish the liquid removeddiscontinuously, switching between pinned and moving
by evaporation at the edge, a flow from the inner to the outestates. We expect that the knowledge of the solution for a
regions must exist inside the drop. This flow is capable ofsingle pinned angle can boost the understanding of these
transferring all of the solute to the contact line and thus acdistinctive dynamically produced patterns.
counts for the strong contact-line concentration of the resi- The flow pattern explored in Deegan’s wdtk 2] is a new
due left after complete drying. The theory of Deeggral.  type of capillary flow that depends sensitively on the perim-
[1] is very robust since it only requires the pinning of the eter shape. The range of flows and deposition profiles obtain-
edge during drying, which can occur in a number of possibleable by this mechanism remains virtually unexplored. Our
ways (surface roughness, chemical heterogeneitieg, elisd  study aims to explore the extremes of what behavior can be
it is independent of the nature of the solute. It accounts quarebtained by varying the perimeter shape.
titatively for the experimentally observed phenomena at least As a result of our study, we find that the solution in the
in the case of geometry analyzed in Rf]. However, only  angular-sector geometry is in a number of ways different
the simplest case of a round drop was analytically solved byrom the solution in the circular geometry. In particular, three
Deegaret al. time regimes for the deposit growth are found in the angular
Here we consider a complementary problem of a solutease compared to the two regimes in the circular one. A
drop drying over an angular regioffrig. 1). An arbitrary  clear-cut signature of the existence of these new regimes is
also provided. In addition, the new geometry possesses an
extra free parameter—the opening angle of the sector—and
*Corresponding author. dependence of all the universal exponents in the power laws
Email address: yopopov@midway.uchicago.edu for all quantities on this extra parameter yields the possibility
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FIG. 2. Deposit patterns observed in experiments by Deegan
et al. These patterns were left after the contact line moved through
the area shown. The contact line was retreating down in this image
and the solute was below the contact lifi€ourtesy Robert Dee-
gan)

Il. THEORY

System and assumptiond/e consider a droplet of solu-
tion on a horizontal surface bounded by an anglén the
plane of the substratéig. 1). We assume that the droplet is
sufficiently small so that the surface tension is dominant, and
the gravitational effects can be safely neglected. At the same
time, we donot assume that the contact angle between the
(b) liquid-gas interface and the plane is constant along the
boundary line on the substrate, nor do we assume it is con-

FIG. 1. (a) Awater droplet with a sector-shaped boundary on theStant in time. To achieve an angular boundary, the substrate
plane substratéside view. (b) The same droplet pictured from MUSt have scratches, grooves, or_other _|nh0mogenwlé5
another point(top view). Black lines are the grooves on the sub- ficiently small compared to the dimensions of the droplet
strate necessary to “pin” the contact lin€Courtesy Itai Cohep. which pin the contact line. A strongly pinned contact line can

sustain a wide range of contact angles; the angle is not fixed
by the interfacial tensions as it is on a uniform surface.
The use of the cylindrical coordinates, ¢,z) is most

to control the dep(|)5|t|%r]1 patternitb_y SImpILy t(;]h(;osmgb ": atural in this problem, so that the angle occupied by the
Proper opening angie. Thus, we obtain results that are bo iquid on the substrate is<Or <o and — a/2< ¢p<a/2, and

universal(i.e., do not depend on any physical properties ofthe coordinate normal to the substratezi€Fig. 3. The ge-

the constituengsand at the same time dependent on the geymetry of this problem is much more complicated than that

ometry in a predictable fashion. These and other useful propss the round-drop case solved earlier. We consider a two-
erties of our results are discussed at the end of this paper. gimensional object—the angular sector—in a three-
In the following section we first consider the physical gimensional space, and the main complication arises from
assumptions and the mathematical formulation of our theorythe fact that the symmetry of the object does not match the
then calculate the equilibrium surface shape of the drop angymmetry of any simple orthogonal coordinate system in that
the rate of evaporation from the surface of the drop, angpace. In particular, even the solution of the Laplace equation
finally obtain the velocity field inside the drop. At the end of (needed beloyvrequires introduction of the special coordi-
the section, we describe the trajectories of the particles andate system(the so-called conical coordinates, or the or-
provide the results for the solute transfer to the contact linehogonal coordinates of the elliptic coneith heavy use of
and the deposit growth in different time regimes. In the lasthe Jacobi elliptic functions. Similarly, a separate research
section, we discuss achievements and limitations of ouf5] was required to find the equilibrium surface shape of the
theory and explore the avenues for further study. drop in this geometry. Thus, given this complex geometry,
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bisector time scale of the order of 16° s, while the diffusion pro-
i cess has characteristic times of the ordeR&fD (whereD

is the diffusion constant for vapor in air amlis a charac-
teristic size of the drop which is of the order of seconds for
water drops under typical drying conditions.

We considerslow flows, i.e., flows with low Reynolds
numbers(also known as “creeping flows” This amounts to
the negligence of the inertial terms in the Navier-Stokes
equation. We also employ the so-called “lubrication approxi-
mation.” It is essentially based on the two conditions reflect-
ing the thinness of the drop and resulting from the separation
of the vertical and horizontal scales. One is that the pressure
inside the dropp does not depend on the coordinateormal
to the substrated,p=0. The other is related to the small
slope of the free surfad®@ h|<1, which is equivalent to the

_ FIG._3. Geometry of the problem. The plane of the figure coin-§ominance of the derivatives of any componens of flow
cides with the substrate. velocity u: d,u;>dgu; (indexs refers to the derivatives with
o o . respect to any coordinate in the plane of the subgtratee
we limit our task to determining only the power-law scaling |prication approximation is a standard simplifying proce-
for most_ quantmes, and this task proves to be sufficientlyy,re for this class of hydrodynamic problefis-g].
challenging by itself. Having formulated physical assumptions intrinsic to the

We describe the surface shape of the dnop ¢) by local  {heory, we are now in position to formulate its main ideas.
mean curvaturéi that is spatially uniform at any given mo-  gquations.The essential idea behind the theory is that a
ment of time, but changes with time as droplet dries. Ideallysinned contact line entails fluid flow toward that contact line,
the surface shape should be considered dynamically togethgjice the rate of evaporation is the highest at the edge of the
with the flow field inside the drop. However, as we show inqrqn while the most of the liquid is concentrated away from
the Appendix, for flow velocities much lower than the char-it The “elasticity” of the liquid-air interface fixed at the
acteristic velocityy* = /37 (o is surface tension ang is  gntact line provides the force driving this flow.
dynamic viscosity, which is about 24 m/s for water under T, develop this idea mathematically, we ignore for a mo-
normal conditions, one can consider the surface shape indgyent any solute in the liquid. Once the flow is found, one
pendently of the flow and use the equilibrium result at anycan track the motion of the suspended particles, since they

given moment of time for finding the flow at that time. The gre just carried along by the flow. We define depth-averaged
equilibrium surface shape(r, ¢) for the drop over an angu- fjow velocity by

lar region was found in our earlier papé].

In order to determine the flow caused by evaporation, one 1(h
needs to know the flux profile of liquid leaving each point of V= Hfo usdz,
the surface by evaporation. The functional form of the

evaporation rateJ(r,¢) (defined as evaporative mass l0SSyhere v is the in-plane component of the local three-

per unit surface area per unit timelepends on the rate- gimensional velocityu. Then we write the conservation of
limiting step, which can, in principle, be either the transferf i mass in the form

rate across the liquid-vapor interface or the diffusive relax-

ation of the saturated vapor layer immediately above the J

drop. As in the work of Deegast al, we assume that the V(hv)+ —1+(Vh)*+3;h=0, 2
rate-limiting step is diffusion of liquid vapdFig. 4) and that P

evaporation rapidly attains a steady state. Indeed, the transfgjeret is the time,p is the density of the fluid, and each of
rate across the liquid-vapor interface is characterized by thg,e quantities, J, andv is a function ofr, ¢, andt. [We will

drop theVh part of the second term everywhere in the fol-

lowing since it is always small compared to unity, as it will

be seen from the expression fo(r,¢) below] This equa-

tion represents the fact that the rate of change of the amount

of fluid in a volume elementcolumn above an infinitesimal

area on the substratéhird term) is equal to the negative of

the sum of the net flux of liquid out of the colun(first term

and the amount of mass evaporated from the surface element

on top of that columr{second terry Figure 5 illustrates this

idea. Thus, this expression relates the depth-averaged veloc-
FIG. 4. The rate-limiting process for evaporative mass loss. It igty field v(r,¢,t) to the liquid-vapor interface position

the diffusion of saturated vapor just above the interface rather thah(r, ¢,t) and the evaporation ratr, ¢,t). However, this is

the transfer across the interface. only one equation for two variables since vectohas two

@
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=0. (8

\'
Vxﬁ

This condition is analogous to the condition of the potential
flow (VX v=0), but with a quite unusual combination of the
velocity and the surface heighth? in place of the usual
velocity v.

Relation(7) provides the two sought equations in addition
to the conservation of mag®). However, it contains one
new variable, pressur@, and hence another equation is
needed. This last equation is provided by the condition of the
mechanical equilibrium of the liquid-air interfacélso
known as the Young-Laplace equatiaelating the pressure

FIG. 5. Conservation of mass: the liquid-vapor interface lowersang the surface shape:
exactly by the amount of fluid evaporated from the surface plus the

difference between the outflow and the influx of fluid from the

adjacent regions.

p=—2Ho+ Paim- 9

Here p.m is the atmospheric pressure,is the surface ten-

components in the plane of the substrate. Moreover, as it wagon, andH is the mean curvature of the surface, uniquely

pointed out earlier, while the evaporation ratds indeed
independent of flowv, the free-surface shage should, in
general, be determined simultaneously withThus, there

related to the surface shapeoy differential geometry. Note
that this expression is independent of both the conservation
of mass(2) and the Darcy’s law7). Thus, the complete set

are actually three unknowns to be determined together ( of gquations required to fuIIy_ determine 'Fhe fou.r dynamic
vr, andv 4), and hence two more equations are needed. Ivariablesh, p, v,, andv, consists of four differential equa-
order to find these equations we will employ the lubricationtions (together with the appropriate boundary conditions at

approximation.

the contact ling one equation of the conservation of mass

We start with the Navier-Stokes equation with inertial (2), two equations of the Darcy’s lawr), and one equation

terms omittedlow Reynolds numbejs

Vp=7V, €)

wherep is the fluid pressurey is the dynamic viscosity, and
u is the velocity. Applying lubrication-approximation condi-

tions d,p=0 and d,u;>d.u;, we arrive at the simplified
form of this equation

Vsp=1d,Ms, (4)

where indexs again refers to the vector components along
the substrate. From now on we will suppress the subssript
at the symbol of nabla operator, and will assume for the resf
of this paper that this operator refers to the two-dimensional
vector operations in the plane of the substrate. Solution to the

above equation with boundary conditions

Ugl,—0=0 and  dUg,-pn=0 )
yields
Vp/(Z?
US=7 E—hZ ) (6)
or, after vertical averagingl),
h2
V= — EVp (7)

This result is a variant of the Darcy’s |ai8,9]. Note that
since a curl of a gradient is always zero amds a constant,
the previous equation can be rewritten as

of the mechanical equilibrium of the interfat®. They pro-
vide all the necessary conditions to solve the problem at least
in principle.

In practice, however, solution of these focwupleddif-
ferential equations is not possible in the geometry of interest.
At the same time, under normal drying conditions the vis-
cous stress is negligible, or, equivalently, the typical veloci-
ties are much smaller than* = o/37~24 m/s (for wates.

As shown in the Appendix, the four equatiodscoupleun-

der these conditions. As a result, one can employ the equi-
librium result for the surface shapér,$) at any given mo-
ment of time, and then determine the pressure and the
elocity fields for this fixed functional form di. Mathemati-

ally, the original system of equations can be rewritten as

2H=— ﬂ, (10)

g
V(h3V¢):—%—ath, (11
v=h?V y, (12

whereAp=py— Patm, ¥= —€p1/37n, andpy andp, are the
leading- and the first-order terms in the expansion of pres-
surep=py+ep,+ - - - in a small parametes inversely pro-
portional tov* (see the Appendix for detajlsNote thatpg is
independent of(,¢), although it does depend on tintend
this time dependence will be determined later in this paper
Therefore, there is a profound difference between E@s.
and(10): the former is a local statement, with the right-hand
side depending on the coordinates of a point within the an-
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gular sector, while the latter is a global condition of spatial 34
constancy of the mean curvature throughout the drop. Equa-
tion (10) defines theequilibriumsurface shape for any given
value ofpg at any given moment of time, and moreover, can
be solved independently of the other equations. Thus, the 2
procedure for finding the solution becomes significantly sim-
plified: first find the equilibrium surface shapér,¢) from
condition(10) and independently specify the functional form
of the evaporation raté(r,¢), then solve Eq(11) for the
reduced pressurég(r,®), and finally obtain the flow field
v(r,¢) according to prescriptioril2). The next three sec-
tions will be devoted to the particular steps of this procedure.
Surface shapeThere are well-defined equations govern- 0 : : .
ing the equilibrium surface shapg¥r, ) and the evapora- 0 45 90 135 180
tion rateJ(r,¢), but there is no generic method for solving
these equations analytically in an arbitrary geometry, in par-
ticular, in the geometry of the angular sector under consider- fig. 6. Dependence of exponentin the power lawh(r) [Eq.
ation. Moreover, even if one could find these exact analytiG14)] on opening anglex, after Ref.[5].
expressions, a second-order differential equation of the kind

of Eq. (11) would not be guaranteed to have an analyticThe constantC cannot be determined without imposing
solution in a closed form for arbitrary functioisand J.  poyndary conditions oh at some curve on the side of the
Hence, a feasible way to proceed analytically is to seek agrop furthest from the vertex of the angle. It is restricted by
approximate solution that captures the essential physical feggither the equation nor the side boundary conditions, and
tures and is correct at least asymptotically. Here, in the gégs, is not a universal feature of the solution near the vertex
ometry of an angular sector, the only possible locations ofy the angle. The consta can (and does depend on the
singularities and divergencegsvhich normally govern the opening anglex. As we showed in the earlier paper, this
properties of the solutigrare at the vertex of the anglee.,  constant must have the following diverging form near
atr=0) and at its sidesi.e., at¢=* a/2). Therefore, the _ >
most important physical features will be correctly reflected if
asymptotic resultfasr—0 and as¢— = «/2) are found 1
analytically. C=——-—+Cy+O(a—7/2), (16)
The boundary problem for the equilibrium surface shape da—2m
of the drop consists of the differential equati¢h0) and
boundary conditions at the vertex and at the sides of thavhereCy is independent ofr. We will adopt this form ofC
angle: (with C, set to unity for all numerical estimates for obtuse
opening angles.
h(0,¢)=h(r,—al2)=h(r,al/2)=0. (13 Two different values of» corresponding to the acute and

Equation(10 ts the fact that the local obtuse angles give rise to the two qualitatively different re-
qua fon( .) represents the fact that the focal mean Clf'rva'gimes for surface shape. This difference can best be seen
ture is spatially uniform, but changes with time as the right-

X . . f the fact that the principal t f th f t
hand side Ap) changes during the drying process. The rom the fact that the principa’ curvarres ot tne stirtace stay

) Ui he bound bléfD). (13 finite asr—0 for acute angles and diverge as a power of
asymp.totlc SO utl_o n to the boundary problefd), (13) was for obtuse angles. This qualitative difference can be observed
found in our earlier papdis]. The result turned out to have

I i . ) . in a simple experimental demonstration, which we provided
two qualitatively different regimes in opening angieacute in our earlier work[5]. We refer to that earlier work for
and obtuse anglg¢snd can be written as further details and discussion. We only note here that the
7 asymptoticr —0 at the vertex of the angle actually means
r’h(¢) _ (14) r<R (which is typically of the order of a few millimeters for

R1 water under normal conditionsand thatVh is indeed small
for r<R and can be safely neglected with respect to unity
Here R(t)=o/Ap and is the only function of time in this (j.e., the free surface is nearly horizontal in the vicinity of the
expression; exponent has a discontinuous derivative at  tip of the angle as was asserted earlier.

Exponent v

Angle o (degrees)

h(r,¢)=

=/2 and is shown in Fig. 6; and Evaporation rate. Since the rate-limiting step in the
evaporation process is diffusion of saturated vapor just above
}( cos 2 —l) if 0$a<f (v=2) the liquid-vapor interface, density of vaporobeys the dif-
4\ cosa 2 ' fusion equation. However, diffusion rapidly attains a steady
h(¢p)= state(typically in a fraction of a secondand therefore the
T om diffusion equation reduces to the Laplace equation
Ccos: if E<a$7‘r (v=mla).
(15) V2n=0. (17)
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drop or 0.500-
conductor
0.375-
=
-\“‘ E |
substrate ——— ; A % 0.250
N &
: N 0.125-
its reflection
in substrate
; . 0.000 . : : .
FIG. 7. lllustration of analogy between evaporation ratfer a 0 45 90 135 180

liquid drop and electric fieldE for a conductor. Consideration of the
drop (or conductoy and its reflection in the plane of the substrate
significantly simplifies the boundary problem.

Angle o (degrees)

FIG. 8. Dependence of exponemntin the power lawd(r) [Egs.

This equation is to be solved together with the following (18 @nd(27)] on opening angler, after Refs[11-13.

boundary conditionga) along the surface of the drop, the air
is saturated with vapor and henceat the interface is the

constant density of saturated vapgr, (b) far away from the A . . : S
drop, the density approaches the constant ambient vapor delﬂgavny involves various special functions. Luckily, it was

sy .., and () vapor cannot penetrate the subsuate and [ CEREY IS BECSE UL SR RO,
henced,n=0 at the substrate outside of the drop. Having P ' P

. gion from these studies is that thand ¢ dependences sepa-
rate and that the electric field near the vertex of the sector
scales withr as a power law with an exponent depending on
me opening angle:

space requires introduction of the so-called conical coordi-
nates(the orthogonal coordinates of the elliptic corand

J=-—DVn, whereD is the diffusion constant.

This boundary problem is mathematically equivalent to
that of a charged conductor of the same geometry at consta
potential if we identifyn with the electrostatic potential and

J with the electric field. Moreover, since there is no compo- Jort (). (18)
nent ofJ normal to the substrate, we can further simplify theHere

boundary problem by considering a conductor of the shape

of our drop plus its reflection in the plane of the substrate in 1 oY (0% 6%)

the full space instead of viewing only the semi-infinite space J(p)ex g , (19
bounded by the substrat€ig. 7). This reduces the number |cos¢* | J0* o

of boundary conditions to only tw@a) n=ng on the surface

of the conductor angb) n=n.. at infinity. The shape of the andu andY ,(6*,¢*) are the eigenvalue and the eigenfunc-
conductor(the drop over the angular sector and its reflectiontion, respectively, of the eigenvalue problem

in the substratenow resembles a dagger blade. So, now we 5

have to tackle the problem of finding the electric field around —LoY (0%, 0" )= u(pu+1)Y,(6%,¢%) (20)

the tip of a dagger blade at constant potential in infinite
space? 99 P with Dirichlet boundary conditions on the surface of an el-

If one decides to account for the thickness of the bladd!Ptic cone(dggengrgtmg to an angular sectorg@és— ). In
[given by doubledh(r, #) of Eq. (14)] accurately, it becomes the _Iast relatl_onj_ is tr:e afgular part of the Laplacian in
apparent that there is no hope for any analytical solution iffonical coordinatesr( 6%, ¢*). On the surface of the sector
this complex geometry. However, taking into account thatl-€- até* =) the relation between the conical coordinate
near the tipVh is very small and hence the thickness of the®” and the usual polar coordinates is siné
blade itself is very small, we can approximate our thick dag-—Sin(@/2)sin¢*. We refer to work[12] for further details.

ger blade with a dagger blade of zero thickness and the sani&ere we notice only that neithgr nor Y, (6*,¢*) can be
opening angle(i.e., with a flat angular sectorin the limit expressed in a closed analytic form; however, the exponent

r—0 the contact angle scales withr as (/R)”""! and & can be computed numerically and is shown in Fig. 8 as a
hence goes to zero. Thus, only the flat blade can be considUnction of . Note that this exponent iswer than similar
ered up to the main order in This approximation would not €xponents for corresponding angles for both a we@gevo-
be adequate for determining the surface shape or the ﬂo@_lmensmnal corner with an infinite third dimensjoand a
field, but it is perfectly adequate for finding the evaporationcircular cone. Both these shapesedge and coneallow

rate. We will discuss possible corrections to this result lategimple analytical solutions but none of them would be ap-
in this section. propriate for the zero-thickness sector.

The problem of finding the electric field and the potential ~ Despite the unavailability of an explicit analytical expres-
for an infinitely thin angular sector in three-dimensionalsion for J(¢), its analytic properties a$p=0 and at¢=
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o
2
~ g This alternative form also satisfies both asymptot®h and
J(¢)=3(0)+0O(¢? (21)  (22. In most casesall but one the discrepancy between the
5 numerical results based on the two model forms did not ex-
for small ¢. Obviously,J(0) is positive. On the other hand, ceed 20%, and this fact has convinced us that at least the

at ¢= = /2 the leading asymptotic of the evaporation rateorders of magnitude obtained by this approximation are cor-
(or the electric fieldlis known to be (A ¢) ~Y? with exponent  rect. We would like to emphasize that only themerical

—1/2 corresponding to the edge of an infinitely thin half graphs based on the choice f¢) are affected by these
plane in the three-dimensional spgdel]. (We have intro-  simplified forms; all theanalytical results below do not rely

duced notatiomd = a/2—|¢| in the previous ling.If one o 5 particular form ofi(4) and use only the analytical
were to correct this asymptotic in order to reflect the NONZerg,symptotics of the preceding paragraph.

contact angle at the edge of the sector, the asymptotic form at Thus, we will use the following expression for the evapo-
¢=* /2 would have to be written as ration rateJ:

+af2 are quite straightforward to infer. Indeei(,¢) is an

even function of; therefore;)’ (0)=0 (as well as any other
odd derivative on the bisectoand

_ 4 ~112
J(p)= - ¢4} : (26)

J(p)=I*(Ap) N, (22)

whereJ* is a positive constant and

pn—1
J(r,¢>=Jo(J—K) (), @27

™20 (23)  where functionJ( ) is defined in Eq(19) with asymptotics

2m—26 (21) and (22). Here we broke down the constant prefactor
(ipto two pieces: a distance scal@ (whereA is the substrate
area occupied by the drpand all the restl, (which is of
gimensionality of the evaporation rateTrivially, Jo is di-
rectly proportional to the difference of the saturated and the
ambient vapor densitiei{—n..).

The evaporation rate does not depend on time and the
same form ofJ applies during the entire drying process, as

This result corresponds to the divergence of the electric fiel
along the edge of a wedge of opening angk (doth the
drop and its reflection contribute to the opening angle, henc
a factor of 2 [14]. However, accounting for the nonzefds

a first-order correction to the main-order resuit 1/2. This
can be seen from the expression for the contact angle:

P\l v—1 the diffusion process is steady. The same is true for the total
0=arcta+ ﬁ) IR’ (al2)| oc(a) (24)  rate of mass losd M/dt since
For all opening anglesy>1 (excepta=m wherev=1). d_M:_f J,/1+(Vh)2rdrd¢w—f Jrdrd¢x — JoA,
Thus, the correction due to the nonzero contact angle can dt A A
indeed be neglected in the main-order results, arghould (28

indeed be set to 1/2. Nevertheless, we will keep the generic _ _ _
notation\ for this exponent in order to keep track of the Where the integrations are over the substrate area occupied
origin of different parts of the final result and in order to by the drop. The constancy of this rate during most of the

account properly for the case= 7 in addition to the range drying process was also confirmed experimentfgly This
of opening angles below. The numerical value of willbe ~ fact can be used to determine the time dependence of the

assumed to be 1/2 in all estimates. length scaleR of Eq. (14) [and hence of the pressupg of
For the purposes of the numerical estimatety we will  Ed. (10)] explicitly, as the masd of a sufficiently thin drop
employ the following simplified form oB(&): is inversely proportional to the mean radius of curvat|re
~ a2 —1/2 pA?
J(p)= (5) —¢? (25) Mec—-, (29

This model form satisfies both asymptotitzl) and (22),  where we retained only dimensional quantities and sup-
and it allows one to avoid the numerical solution of the ei-pressed all the numerical prefactors sensitive to the details of
genvalue problent20) and thus not to repeat the elaboratethe drop shape. From the last two equations one can con-
treatment of work§10—13. This form is neither exact nor clude that

the only one satisfying the asymptotics, and the numerical

graphs based on this form should be taken with a pinch of d(1 Jo
salt. However, we expect it to be a good approximation to the a(ﬁ) * T oA

true functiond(¢), and in order to check this we conducted

all the numerical calculations for an alternative formi6é) and remains constant during most of the drying process.
as well: Hence,

(30
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FIG. 9. Dependence of parametef of Eq. (35 [governing
solution/($) of Eq. (34)] on opening anglex.

R(t)= 1-ut,’ (31

whereR; is the initial mean radius of curvatuf&®;=R(0)]
andt; is the total drying time:

pA

tfoc _JORi .

(32

Thus, at early drying stages<t;), scaleR grows linearly
with time; this time dependence will be implicitly present in
the results below. However, it is very weak at sufficiently
early times and will be occasionally ignorédy settingR
~R;) when only the main-order results are of interest.
Flow field. With h andJ in hand, we proceed by solving
Eq. (11) for the reduced pressurg. Assuming power-law
divergence of ¢y as r—0 and leaving only the main
asymptotic (which effectively means that we neglect the
regular termg;h with respect to the divergent ordép), we
arrive at the following asymptotically correct expression for

.

m—3v+1

Jo -
W(P), (33

N iR

where time dependence is implicitly present Raand the

function J(¢) is a solution to the following differential
equation:

7 (4)- 3
RO (¢)

h(#) hé(¢)

Herew? is a combination of the previously introduced expo-
nents:

¥'(p) 0% P(P)=— (34)

w?=(p+1)(3v—p-1) (39

(plotted in Fig. 9 as a function af). Computingv according
to prescription(12), we obtain the depth-averaged flow field

PHYSICAL REVIEW E68, 036306 (2003

V=0TtV 46 (36)
with components
Jo L
vr(r,¢>):—(3v—,u—1)?th(dﬂdf(d))
(37)
and
Jo ATV L
v¢(r,¢>=;Wh2<¢)w'(¢). (38)

Thus, we need to solve Eq34) with respect tog(¢) in
order to know the flow velocity.

We were not able to find an exact analytical solution to
this equation; however, we succeeded in finding approximate
solutions on the bisectof ¢| < a/2) and near the contact line
(A p<<al2), which represent the two opposite limits of the
range of ¢. (Again, we defineA ¢=al2—|¢|.) Near the
contact line the third term on the left-hand side of BY) is
negligible with respect to the other two terms, and hence the
solution is

~ ¢ _ al2_
¢(¢)“fo P (£)I(E)dé+ ¢*(¢)L) J(§)d¢

+const (A¢p<<al2), (39
where
[
l/f*(¢)=f0 h=3(9d¢. (40)
The asymptotic of this result is
~ J* A —-A—1
p(P)ox B (Ap—0). (41

(1-2\)[h'(al2)|®

This asymptotic can also be inferred directly from E8¢),
without finding its solution][The constant on the right-hand
side of EQ.(39) turns out to be unimportant compared to the
diverging termg. In the opposite limit, on the bisector, the
second term on the left-hand side of E84) is negligible
with respect to the other two terms, and therefore the solu-
tion is

Y($)~y(0)cosiwep)

+f0¢ S'n“wjﬁsz‘;‘f)‘](é)dg (|p|<al2).
(42)
The asymptotic of this result is
HB <O+ 2| w20)~ 2 )¢2 (¢—0).
2 h%(0)
(43

036306-8
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Again, this asymptotic can be obtained directly from Eqg. 801 - -
(34), without solving it. The reduced pressure on the bisector 204 n“mer.lcal solution )
¥(0) is positive, and so is its second derivatiy¢(0) [ analytical asymptotics
= w?(0)—J(0)h~3(0). Thelatter is due to the facts that = 60+
() divergespositively at the edge of the dropsee Eq. S 50-
(41)] and that “the Mexican hat” shape for the pressure as a §
. . . . . . = 404
function of polar angle is physically unlikely in this slow g
process. The value af(0) cannot be determined from the & 301
original differential equation; one needs to employ an inte- 20-
gral condition resulting from the equality of the total influx
into a sector of radius by flow from the outer regions of the 101
drop and the total outflux from this sector by evaporation: 0
al2 r (al2 0 35
le a/2|Ur|hrd¢= JO Jl MZJ rdrde. (44) Angle ¢ (degrees)
Upon simplification this condition reduces to the following 1.50 merical solution
equation defining the constant prefaci(0): 125 -~ analytical asymptotics
al2 - -
| T @i -Joms-o. @ 2 100
g
. ~ . . ~ T3 £ 0.75-
Obviously, (0) is proportional toJ(0)h™%(0). Thus, ap- g
proximate analytical solutions to E(B4) are available inthe & 54
two opposite limits.
In order to compensate for the unavailability of the exact 0.254
analytical solution to Eq.34), we also approached this prob-
lem numerically. The numerical solution to E@4) satisfy- 0.00 .
ing conditions(45) for ¥(0) and¥’(0)=0 for 3’ (0) was 0 5
found for the two model formé25) and(26) of J(¢) and for Angle ¢ (degrees)

approximately 20 different values of the opening angle. In all
cases perfect agreement between the numerical solution and FIG. 10. Typical behavior of the numerical solution and the
the analytical asymptotics of the preceding paragraph wagnalytical asymptotics of functior( ) for two values of opening
observed. Two examples of the numerical solution togetheangle.
with the analytical asymptotics are provided in Fig. 10 for
opening angles 70° and 110°. Both were obtained for the StreamlinesGiven the velocity field in the drop, we can
model form (25) of function J(¢), and the obtuse-angle NOW compute the rate of deposit growth at the edge of the
graph used choicél6) for constantC. Different choice of ~ Sector. We assume that the suspended particles are carried
the model form for functiod(¢) did not lead to any signifi- along b_y the flow W'.th v_elocny equal t(_) the fluid velocity.
cant changes of these graphs. Integrating the velocity field37) and (38):

Characteristic behavior of the velocity field@6) is shown -
in Fig. 11 for «=70° and «=110° [again, obtained for i_ﬁ__ 3v— -1 P(P) 46
choice(16) and the model forn25), but very insensitive to rdé vy (Bv=p )(7/,((1))’ (46)
the particular form ofi(¢)]. Note that despite the fact that
the exponent 4 —v) of the power law inr is not a smooth  we find the streamline equation, i.e., the trajectory of each
function of o (Fig. 12, the qualitative behavior of the flow particle as it moves with the fluid:
field does not visibly change as the opening angle increases

past the right angle. w2 3 £)dé
The velocity diverges near the edge of the drop. This r(¢)=roex;{(3v—,u—l) = , (47)
could have been deduced directly from the conservation of o P&

mass(2), where the divergent evaporation rate must be com-

pensated by the divergent velocifgince the free-surface where we assume thap is positive here and everywhere
height is a regular function of coordinates and, moreoverpelow (the generalization to the case of negatirés obvi-
vanishes near the contact ljn®hysically, change of volume ous as all functions ofp are evei Thus,r=rq, when ¢
near the edge becomes increasingly smaller as the contaeta/2, so thatr, is the distance from the terminal endpoint
line is approached and hence the outgoing vapor flux must bef the trajectory to the vertex. In lim{@1) the integral in the
matched by an equally strong incoming flow of liquid. exponent is
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FIG. 12. Dependence of exponent{ ») in the power laws
v(r) andv 4(r) [Egs.(37) and(38)] on opening angler.

al2)\€

I’~r0(

51
& (51
Here we introduced
3v—u—1 1
P (52)
w’—k?>  u+l-k?Br—u-—1)
and
J(0
) (0) 53

K == = __-
h*(0)4(0)

A few observations are in order about this limit and its ex-

- 2 . ags -
FIG. 11. Characteristic behavior of flow field for two values of ponents. First of allx” is always positive as all the factors in

opening angle. Each arrow represents the absolute value and
direction of velocityv at the point of arrow origin.

a2 J(§)dé  (Ag)?
L) 5D RETEESY (Agp—0), (49
and the streamline equation reduces to
r~ro (A¢—D0). (49

The streamlines are perpendicular to the contact (upeto

ik (53) are. As we explained in the preceding section, the
second derivative on  bisector ¥/(0)= w%J(0)
—~J(0)h~3(0) has to be positive as well, and thereforg
<w?=(u+1)(3v—u—1). The positiveness of exponeat
follows both from this fact(as (3v—u—1)>0 for all «)

and from the fact that the trajectory¢) necessarily has to

diverge as¢p— 0 (as solute comes from thmuter regions of
the drop.

We cannot comput&? and e explicitly, since we do not
know ¥(0). However, we can gain some idea of the behav-
ior of these indices by using approximate formsJ#) and
¥(¢). Figure 13 demonstrates the characteristic behavior of

the quadratic terms i ¢)). This is in good agreement with arameterc? as a function of opening angle, obtained nu-
what one would expect near the edge of the drop, since thﬁﬁerically on the basis of the model fornf@5) and (26) for

azimuthal component of the fluid velocity diverges at the

side contact line while the radial component goes to zero. |
limit (43) the integral in the exponent is

1

wz— K2

fa/z LGLE
A

and hence the result reads

n (¢—0),

(50

r]iunctionf](q&). Similarly, Fig. 14 shows the behavior of ex-

ponente for the same two model forms d{¢). In order to
obtain these plots, Eq34) was solved numerically for each

a, and theny(0) was fixed by conditior(45). As can be
observed in these graphs, the two model form3(af) lead

to the plots of very similar shape, but shifted #y15-20%

for k% and by no more than 10% farin the whole range of

the opening angles. Thus, we conclude that Figs. 13 and 14
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Angle o (degrees)

45

FIG. 13. Dependence of parametet of Egs. (53) and (54)
[governing exponents of Eq. (52), y of Eq. (65), and § of Eq.
(64)] on opening anglex. The two curves correspond to the two
model forms for functiori(¢): the solid curve is based on choice
(25), the dotted curve is based on choi@6).

provide correct estimates for the qualitative behavior and the

order of magnitude of parametef(a) and exponent(a),
respectively. Interestingly, the exponentioes not possess a
sharp discontinuity of the first derivative at= /2 despite
the presence of such discontinuity in parameter

Typical shape of the streamlines is shown in Fig. 15 for
a=70° anda=110°. It was based on the model for(25)
for functionJ( ), and involved the corresponding numerica
solutions for functiony( ) (Fig. 10 employed in Eq(47).
This shape is practically insensitive to the model form of
J(¢), and almost an identical copy of this graph was ob-
tained for the model forng26).

The distance from a point on a streamline to the bisecto
scales with¢ as ¢r(¢p)x ¢l € when ¢—0. Sincee>1
(Fig. 14), this distance increases wherdecreases. Thus, the

2.0

Exponent €

0.5-

0.0

90 135 180

Angle o (degrees)

45

FIG. 14. Dependence of exponenin the power law (¢) [Eq.
(51)] on opening anglex. The two curves correspond to the two
model forms for functioni(¢): the solid curve is based on choice
(25), the dotted curve is based on choi@6).
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70°

110°

FIG. 15. Typical shape of the streamlines for two values of
opening angldfor the same values as in Figs. 10 and.11

streamlines diverge away from the bisector wiger 0, and
hence they dmot originate on the bisector. An incoming
element of fluid initially located close to the bisector moves
towards this bisector, reaches a minimum distance, and then
veers away towards the contact line. One can also arrive at
the same conclusion having started from E46). Indeed,
for small ¢ [in limit (43)] the ratio of the velocity compo-
nents (46) is vr/v¢=—(3v—,u—1)/[d>(w2—f<2)], or
v4lv,=— ¢le. The latter ratio represents the angle between
a streamline and a coordinate ling= ¢, at any point
[do.,r(dg)] on that streamline. Since>1, the absolute
value of this angle is less thag|, and therefore, despite the
opposite sign of this angle, the streamline diverges away
from the bisector for smallp. This tendency can also be
observed directly in Fig. 15.

Another feature apparent from Fig. 15 is the self-
similarity of all the streamlines. As is clear from Eg7), the
only scaling parameter of the family of streamlinesgsand
therefore all the streamlines can be obtained from a single
streamline(say, the one withry=1) by multiplying itsr
coordinate by different values of,.

Note that Eq.(47) does not contaidy/p, and thus it is
universally correct regardless of the choicelgf Physically,
this indicates that solute particles move along the same tra-
jectories independently of how fast evaporation occurs and
hence how fast the flow is. Also(¢#) does not depend on
the choice of the prefactd for the obtuse angles. Indeed, as

we mentioned previously,Tp(O) is proportional to

036306-11
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J(0)h~3(0). Thus, ¥(¢) and ¥'($) are proportional to
1/C® for obtuse anglefthis could also be observed directly
from Eq. (34)]. Therefore, the right-hand side of E@7) is
independent oC.

These general features of¢) are reflected in the behav-
ior of the indexx? (and hence the exponeatand all other
exponents dependent ot that we will introduce later
Sincey(0) is proportional tal(0)h~3(0), «? is independent
of J(0)h~3(0) despite the explicit presence of this combina-
tion in its definition. Thus, index? is indeed independent of
the evaporation intensity and the constant prefactor of th

surface shape, in good agreement with the general observa-

tions of the preceding paragraph. On the basis of ()
defining~¢//(0), index k2 can be written in the form

~ 3....

h(¢)\ ¥(d)

fa/z( )
o | h(0)) ¥(0)

al2 J( )
—d
fo J(0) ¢

de

2_

2

(59

K
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e

FIG. 16. Qualitative sketch: mutual location of streamlifibe
two lines with arrows and isochronesthe four numbered lings
Solute moves along the streamlines towards the contact(tire
bold line). Shaded area is swept by an infinitesimal element of fluid
between the two infinitesimally close streamlines as that element
moves towards the contact line. The isochrones are the geometric
locations, starting from which the solute reaches the contact line at
the same time. Solute from isochrone 1 reaches the contact line
first; solute from isochrone 4 reaches the contact line last.

demonstrating its independence from the prefactors of each

function of ¢.
Solute transfer: Three time regimédow, given the shape

of the streamlines, we use our knowledge of the initial dis-
tribution of the solute, namely, that the solute has constar’@mpmying relation(47) once again, we obtain

concentrationc everywhere in the drop at time=0, and
compute the time it takes an element of fléidoving along
a streamlingto reach the contact line at distanggfrom the
vertex having started from some poimt, ¢) on that stream-
line. This time can be found by integrating eithelt
=rd¢lv 4 or dt=dr/v, with knownuv 4 or v, and the rela-
tion betweerr and ¢ on the streamlin¢Eq. (47)]:

ja/Zrd b rodr
¢

Uy r Uy

al2 Y(£)dE
¢P(E

/2 ex;{(v—,w DH(Bv—pu—1)

y 1

wheret, is a combination of system parameters with dimen-
sionality of time:

== d¢,
h(O9'(0) ‘
(59

t0=J£O\/KM‘1R‘V+1r6_“+1. (56)

Within this time all the solute that lays on the way of this

dm=cJ’ h(r,¢)rdrd ¢. (57)
dA
rgttdrg (a2
dm=c Rl J¢ h({)ex;{(v-ﬁ-Z)(Sv—,u,—l)
ol2(£)dg
X = d¢. 58
L (&) 59

Dependencem(t) can now be found by eliminating from
results(55) and (58). Since we use depth-averaged velocity
throughout this paper, we implicitly assume that there is no
vertical segregation of the solute.

Exact analytical calculation of the dependenug) is not
possible for an arbitrary starting point,g) on a streamline

since no analytical expression fg( ¢) is available for arbi-
trary ¢ and since integrals in Eq$55) and (58) cannot be

computed analytically for arbitrarys even if J(¢) were
known. However, there are two important cases taatbe
tackled analytically(a) early timeswhen the initial point is
close to the contact lin@.e., whenA ¢p< «/2 andr~r,) and
only the solute between that initial point and the contact line
is swept into the edge deposihe starting point is on isoch-
rone 1 of Fig. 16 or closer to the contact ljnand(b) inter-
mediate timeswhen the initial point is close to the bisector
(i.e., when|¢|<al2 andr>r,) and virtually all the solute

element of fluid as it moves toward the contact line becomebetween the bisector and the contact line is swept into the

part of the deposithighlighted area in Fig. 16 The mass
dm of this depositlaccumulated on the contact line between
ro andry+drgy) can be found by integrating(r,¢) over
areadA swept by this infinitesimal volume and multiplying
the result by the initial concentratianof the solute:

edge depositthe starting point is on isochrone 4 of Fig. 16
or further from the vertex Situations between these two
limiting cases(highlighted area in Fig. 16 demonstrates one
of them, starting points on isochrones 2 and 3 would corre-
spond to some othgrcan be extrapolated on the basis of
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continuity of the results. Since our region is indefinitely this condition should be expected to be satisfied for not too
smaller than the drop as a whole, we may treat regiahs small initial values of the bulk contact ange. The closer
and (b) assuming that a negligible fraction of the drop hasto the vertex the trajectory endpoint is, the better this condi-
evaporated. At some later stage that we call idte-time  tion is obeyed. On the other hand, the larger the opening
regime, an appreciable fraction of the drop has evaporate@ngle is, the smallew is, and hence the smallet? " is

and the fluid trajectories have reached back into the bulk ofassumingd;<1). Thus, the condition of applicability of the
the drop. In this late regime our asymptotic treatments arétermediate-time regime is obeyed worse for larger opening
clearly not adequate to describe the flow as we did no@ihgles. As we explain below, at exactlg=m the
specify any details of the drop geometry far from the Vertex_intermediate—time regime is indistinguis_hable from the early-
Thus, we cannot treat this regime by our methods, and onljme regime, and hence should not exist. =~

the properties of drying process at early and intermediate Results form(t,ro) at early and intermediate times are

stages can be found from information in hand. presented in the next two sections.
Apart from the definitions based on the trajectories, the P€POSIt growth: early timesThis regime corresponds to

three regimes can be equivalently defined in terms of time the growth entirely due to' the transfer Qf particles origina]ly
(1) early timest<t,; (2) intermediate timesty<t<t, ; and Ioc.ated near the contqct line. The starting point of a particle
(3) late times:t~t;. Heretg is the characteristic time de- trajectory is characterized ly=ro and A ¢=<a/2. An ele-

) . . o ment of fluid A¢ away from the contact line reaches the
fined in Eq.(56) (this characteristic time depends og) and .

contact line in time of Eq. (55). The massim swept to the
t; is the total drying time defined in Eq32). The equiva- ne i A d. (59 Wep

S . e " contact line by an element of fluidr, long for this time is
Ien_ce of the dgﬂnmons in terms of the initial position on a yafined by Eq(58). In limit (41) the inner integral in expres-
trajectory and in terms of time can be seen from &4). At gjong(55) and(58) is given by Eq(48). Evaluating the outer
early times,A¢<a/2, and the integral in Eq55) is much  iptegrals in these expressions in lirdtl), expressing\ ¢ in
less than X(as the integrand is finite near= «/2 while the  terms of time, and then substituting the result into the expres-
integration range shrinks wheng—0). Thust<tg atearly  sjon for mass, we finally obtain the mass of the deposit as a
times. At intermediate timesg|<a/2, and the integral di- function of time:
verges asp— 0. Hencet>t, at intermediate times. On the
other hand, the difference between the intermediate and theym rett ' (al2)|
late regimes lies in their relation to the total drying time as F(t’rO)%CRv—l 2
we explained in the preceding paragraph. 0

As is clear from the definition of the intermediate-time

regime, the necessary condition for its existencéoiSti,  erecis the constant initial concentration of the solute in the
which can be reduced ta{/A)>#(ro/R)"~><1 by com-  drop. Note that, also depends ony. Thus, at early times
bining Eqgs.(56) and(32). Since we always consider such  the deposit grows in time as a power law

thatr,<R andro<+/A, this condition is obeyed as long as

3—u>0 andv—2=0. While the former condition is al- dm 214 N)y B

ways true <3 for all «), the latter condition is true only d—ro(t,ro)oct o> (60)

for acute opening anglesvE2 for a<m/2). Thus, the

intermediate-time regime is well defined for acute angleswhere therf arises from the ¢ prefactor and from the,
For obtuse opening angles the situation is more complicate@ependence df,. Using Eq.(56), we find

Index v satisfies the opposite inequalityv<<2 for «

1+n a0 |70
1=N R’ (af2)| to

(59

>7/2), and hence for obtuse anglesy{R)” ?>1 when 2 (1-N)(1+v)—2u
ro<R. Combined with inequality rp/\A)3 #<1, this :3:(”+1)_1+)\(V_M+1):_ 1+\
leads to an ambiguous result for howg (VA)3 ™ #(ro/R)* 2 (61)

compares to 1 and hence haycompares td; . This result

depends on the exact relation betweg andR and on the and plot it in Fig. 18 as a function of opening andtae
numerical prefactor in the definition df that we omitted early-time curve

everywhereg(since it depends on the exact shape of the drop There are two important conclusions to be drawn from
including the unspecified regions outside the sector of interthis result. One is that the power-law exponent of time

esd. Generically, JAxR(t)(t), whered(t) is the contact 2/(1+\)=4/3 s exactly the same as in the case of a round
angle in the bulk of the drop, i.e., far away from the vertex.drop considered by Deegaet al. [1]. This should be of no
Both R and @ depend on time; however, the intermediate SUTPr1S€ SInce close to the side of the ar(gnlewell_as close
times are characterized Hy<t,, and hence, as can be seen© the circumference of a round drofhe contact line looks

N ~ N . . locally like a straight line, and the solute “does not know”
from Eq. (31, R(t)~=R; and 6(t)~6; in this regime[here a5 the vertex of the angle or the curvature of the circum-

6,=6(0)]. Therefore,JA=R;¢;, and the necessary condi- ference. This exponent is determined entirely by the local
tion (ro/VA)® A(rg/R)*"?<1 can be rewritten as properties of an infinitesimal segment of the contact line of
(ro/JA)"~"#*1< 9>~ The exponents on both sides of this lengthdr, and is independent of larger geometrical features
inequality are positive for obtuse opening angles, and hencef the system.
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air 0.00+ .
J dA ™ intermediate times .
g e 3T
\ 025 LT
drop > ’ -
dm =
2 -0.504 ol
> g
- -
substrate Al s | early times
g -0.751 e
FIG. 17. An illustration of the derivation of the four-thirds law § Lot
for a=. The contact line is normal to the plane of the figure. L%‘ 'l
Lengthdrg is along the contact line and hence not shown. The flow -1.00 : . . .
is in the plane of the figure from left to right. 0 45 90 135 180
Angle o (degrees)

The value 2/(3 \)=4/3 of the exponent of time can be

obtained from a very simple argument, relying only on the £ 18 Exponent of distanag in the power lawdmvdr(r)
assumptions thata) the contact line is straight(b) the  [Eqgs.(60) and(63)] as a function of the opening angle for the two
streamlines are perpendicular to the contact line, @hthe  time regimes. The early-time curve corresponds to the expghent
distribution of the solute is uniform. Indeed, the mass of bothof Eq. (61); the intermediate-time curves correspond to the expo-
the water and the solute is proportional to the volume of arenty of Eq. (65). The two curves for the intermediate-time expo-
element of fluid near the contact lin€Fig. 17: dm  nent correspond to the two model forms for functidfp): the

«(Al)?dry. All this mass should be evaporated from the sur-solid curve is based on choid@b), the dotted curve is based on
face of this volume element in some tirheélhe evaporation choice(26).

rate(per unit areascales ad«(Al) ~* and therefore the rate
of mass loss isJdAx(Al)~**1dr,. The time it takes this Taking into account that, also depends on,, we finally
volume to evaporate can now be found as the ratio of itgonclude that the deposit mass grows as a power law
mass to the rate of mass loss:dm/(JdA) = (Al)1**. Thus,
(A octYATN and hencalm/dry=t?(1*N as asserted. 5y

The other observation is the dependence @rSince ex- d_ro(t’ro)“t lo (63)
ponentg is always between-1 and 0, the singularity img
is always integrable at,=0. Physically, this corresponds to where we introduced notations for the exponent of time
the statement that the vertex of the sector dogslominate
the sides and that the deposit accumulation at the vertex is P

itati i i i S=1+ 64
tnhoet gzjdaelgatlvely different from the deposit accumulation on -t D@Br—p-1) (64)

Deposit grqwth: m_termedla_te “”?e“‘e starting point of and for the exponent afy, originating from both the prefac-
a streamline in the intermediate-time regime lies near th vl

bisector and is characterized by coordinatesr, and || Yor ry"* and ther, dependence df [Eq. (56))

<al2. By the time an infinitesimal element of fluid from a 2
vicinity of the bisector reaches the contact line virtuadly y=(+1)-8(v—p+1l)=u— =——. (65
the solute in the area between the bisector and the contact 3v—p-1

line will be deposited at the contact line. The analysis is ] o )
similar to the previous case. In limi@3) the inner integral in An important observation is that the exponent of time
expressiong55) and (59) is given by Eq.(50). Calculating ~ Stays greater than one in the intermediate-time regime. Thus,
the time it takes an element of fluid to reach the contact lindhe rate of mass accumulatidmvdt continues to grow with
[Eqg. (55)] and the mass accumulated at the contact line beime in this regime, and the deposit mass grows faster and
tweenr, andr o+ dr, for this time[Eq. (58)], and then elimi- faster. Thls result_has a S|mple_ explan_atlon for _b(_)t_h th_e egrly-
nating ¢ from the two results, we arrive at the dependence oftind the intermediate-time regimes. Since the initial distribu-

mass on time: tion of the solute is uniform, and since the solvent evapo-
rates, the solute concentration at any given voliumeeeases
dm r3+1 (ut+1)Br—p—1)-«2 - a with time. Thus, even thqugh t'he fluid .and the particles move
—(t,rg)=~c h(0) = along the same streamlines in practically constant velocity
dro R (v—pu+1)(Brv—p—1)+«? 2 field [assuming thaR(t) ~R; at sufficiently early stagésthe
rate of mass accumulation alsocreaseswith increasing
X| (v=—pu+1)(Bv—p—1) time, since portions of solution arriving at the contact line at
approximately constant rate have higher and higher solute
£\ L k(v et 1) (B 1)] concentration. Note that this mechanism and this result are in
XFZ(O)T#(O)—) . (62 good agreement with a general copclusmn o_f Deegan’s
to works that the rate of mass accumulation must diverge at the
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1.57 gether. The absolute values of each exponent are smaller in
the intermediate-time regime, indicating that the dependence
on distance and time getgeakerwith time. We do not have

- — . a simple intuitive explanation for such a behavior of these
1.0 intermediate times exponents.

The intersection of the exponents near 7 on both
graphs can be attributed to a couple of reasons. First, it
should be kept in mind that the plotted results foand 6 are
0.5 based on the relatively arbitrary choice of model for(@s)

and (26) for function J($). We suspect that these model
equations for the reduced evaporation rate become increas-

ingly inaccurate for large @. For example, D)

Exponent of power law dm/dr (t)

0.0 T T T 1 —1/2 = i i I-
0 45 90 135 120 o« (COS¢) at exactlya= 7, which is not 'the same as ei
ther model form. Second, as was explained just after Eq.
Angle o (degrees) (24), at exactlya= 7 the contact anglé® is not small even

for r<R, and the correction to the exponentdue to this

FIG. 19. Exponent of time in the power lawdnvdro(t) [Eqs.  coniact angldsee Eq.(23)] is comparable to the value 1/2

(60) and(63)] as a function of the opening angle for the two time oo\, maq in all numerical estimates. Al in all, we believe that
regimes. The early-time curve corresponds to the exponent 2/(

} . . . is intersection of the early- and intermediate-time expo-
+\)=4/3; the intermediate-time curves correspond to the exponen . . .
) i . nents is an artifact of our formalism and should not be ob-
S of Eq. (64). The two curves for the intermediate-time exponent . . . - .
~ i served in reality, since the results for the two time regimes
correspond to the two model forms for functidf¢): the solid

curve is based on choid@5), the dotted curve is based on choice should llj.e |d€ntlcal "?‘t hexlf’:lctlyz i IAt exachtly a=m th.e
(26). contact line is a stralg t méno ang Q and the trajectorles

are perpendicular to that straight contact line. Thus, there
should be no differentiation between the early and the inter-
end of the drying proces@st—t;) and thatall the deposit mediate times, since this differentiation is based on how far
must accumulate at the contact line toyt; . or how close to the bisector the initial point of the trajectory
Another observation is related to the exponentrgf is located, and any perpendicular to a straight line can be
Sincek’< w? as we showed before;>— 1. Therefore, the called a bisector. As we showed abovegat 7 the exponent
mass is integrable a=0, and the statement of the preced- of ry must be equal to zero at any time and the exponent of
ing section(that the deposit accumulation at the vertex is nottime must be equal to 2/{#\)=4/3 at any time.
qualitatively different from the deposit accumulation on the As we did everywhere above, we also find the numerical
sideg continues to hold in the intermediate-time regime assolution ford?m/dtdry(t) in addition to the early- and the
well. Trivially, y<w. intermediate-time analytical asymptotics. We find the time
The exponent of ; must be identically zero anytime  derivative ofdm/dr, instead ofdnvdrg itself in order to
for the opening angle of exactly= 7. Indeed, ato=7 the = demonstrate the amount of mass arriving at the contact line
contact line is just a straight lin@.e., there is no angle at at timet rather than the total mass accumulated by the time
all), and therefore there is a full translational symmetry withWe employ the chain rule to obtad?m/dtdr, on the basis
respect to which point of this line should be called “vertex.” of Eq. (55) for t(¢) and Eq.(58) for dm/dry(¢):
Thus, the choice of ;=0 is absolutely arbitrary, and there

can be no dependence o whatsoever. i(d_m)
Indices y and 6 are plotted in Figs. 18 and 19, respec- d{dm\ d¢\drg
tively, as functions of the opening anglthe intermediate- a(d_ro) T
time curve$. The graphs are based on the result for param- a4
eter«?, and the two intermediate-time curves on each graph ¢
correspond to the same two model for(2§) and (26) for corutl B
functionJ(¢) as we used in Fig. 13. The two model forms of =% Rovflh3(¢)¢’(¢)

J(¢) lead to a very small deviation faf (less than 5%and

to a more substantial difference fer The significant rela- [{ “’27//( ¢)d gl
tive error in exponenty near the valuexr= 7 is due to the xXexg (u+1)(3v—u—1) = ,
fact that this exponent has to be identically zero at exactly ¢ Y (§)
a=, while for the model forms of(¢) it is a small, but (66)

nonzero number. Thus, the absolute error is still small, but 5

this small absolute error divided by the small value of thethen use the numerical result fgi( ¢) (Fig. 10 in order to

exponent leads to a large relative difference. find t(¢) [Eq. (55)] and d?m/dtdry(¢) [Eq. (66)] numeri-
Results for the two time regime¥o facilitate the com-  cally, and finally create a log-log parametric ptsim/dtdr,

parison of the results, we plot the exponents for the earlyvs t, as shown in Fig. 20. The two curves in Fig. 20 corre-

and the intermediate-time regimes in Figs. 18 and 19 tospond to the two values ef we used earlier (70° and 110°).
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2 1.0-

0.51

0.0+

-0.51

In[(d’my/dtdr,)/(cr," /t R"™)]
Inl(d’m/dtdr )/(cA"*"r#] Jp)]

-1.0

In(t/t,) In(r/r*)

FIG. 20. Log-log plot of the numerical solutic?m/dtdr(t) FIG. 21. Log-log plot of the numerical solutiai?m/dtdro(r o)

for two values of opening angléor the same values as in Figs. 10, fof two values of opening zing(éor the same values as in Figs. 10,
11, and 15 11, 15, and 2P Parameter* is defined by Eq(67).

Again, the plot is based on the model fof@g) for function ~ —0-135 fora=70° andy~—0.111 for «=110°). Again,
J(4), but very insensitive to the particular form of this func- the numerical results are in excellent agreement with the ana-

tion. This plot clearly demonstrates two different slogesd lytical asymptotics, apd the nume.rical values of expanents
hence two different time regimgpsf each curve. The cross- compare very well with those of Fig. 18.
over between the two regiméslopes occurs around time
t~ty [i.e., near In{ty)~0], and the early-time slopes are Ill. DISCUSSION
equal for both values of the opening andknd equal to
2/(1+\)—1=1/3 as to be expected from our early-time re-
sultg]. All these numerical results are in excellent agreemenlg
with our analytical predictions, and the numerical values o
time exponents compare very well with those of Fig. 19
(which should be corrected by 1 due to the differentiation
with respect to time in Fig. 20

In a similar fashion we obtain a log-log plot for
d?m/dtdr, as a function of ,. We fix t, then express, in

The mechanism presented here does not account for a
umber of additional effects that can modify the deposition.
irst, the vertical distribution of the solute was assumed to be
homogeneous throughout the drying process, which is
equivalent to assuming that vertical mixing is intensive. This
assumption is quite important, and the results are expected to
get modified if the true velocity profil&) is used instead of
the vertically averaged velocity distribution. Qualitatively,
the surface of the drop moves faster than the near-substrate

terms of ¢ by combining Egs.(55) and (56), and finally ;
; 2 . layers, and therefore the particles near the surface reach the
determinero(¢) andd“m/dtdro(¢) [Eg. (66)] numerically contact line sooner than those closer to the substrate. For

on the basis of the numerical regult fo($) of Fig. 10. The  oyample, if all solute particles are confined at the free sur-
resulting log-log parametric plat"m/dtdro(ro) is ShOW”O'” face, then the relevant velocity is the surface velocity. From
F|g.°21 for the two values of the opening angle (70° andeq (g), this surface velocity is 3/2 times the average velocity
110°). The purpose of this graph is to provide a snapshot of; 4) of Eq. (7). The result is to multiply the characteristic
the deposit growth at any given moment of tim&or small  me ¢ by 2/3 in the formulas above. Additional effects can

ro the accumulation of the solute at the contact line is in thg,, c5used by gravity or convection, both leading to the non-
intermediate-time regime, while for largg the growth is in | hiform vertical distribution of solute.

the early-time regime. The threshold between the two re-  gecond, for higher-viscosity liquids, viscous stresses be-
gimes is defined by=t,. This condition can be reversed by come more important, and the typical flow velocities can
solving Eq.(56) with respect tay. The resulting value become comparable with* = /37. The velocity diverges
at the edge, and conditian<v* does get violated at some
(67) distance from the edge. For water this distance is comparable
to the typical size of the solute particlesvhich were
0.1-1um in diameter in the experimenisfor higher-
defines the threshold in terms of (at any moment of time  viscosity liquids it may become comparable to the size of the
t): the early regime correspondsitg>r* and the interme- drop (a few millimeters. In the latter case the surface shape
diate regime corresponds tg<<r*. As can be seen from the cannot be assumed to be equilibrium, as was assumed in this
numeric plot, the regimes indeed switchrgt=r* [i.e., near paper. Also, the characteristics of the flow are significantly
In(rq/r*)~0]. The intermediate-time slopes are almost equahltered if the concentration of the solute becomes l4iigje
for both graphs since the intermediate-time exponefthe  changes the “effective” viscosity of the solvent
upper curves in Fig. 18varies very weakly witha (y~ Third, the size of the solute particles can introduce addi-

JO U(v—pn+1)
r* = (;\/Kl_'uRV_lt)
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tional effects. Thus, if the particles are small, diffusion be-amount of solute per unit area is simply proportional to the
comes important, and diffusive currents lead to the redistrithicknessh of the drop. As time goes by and the drop dries,
bution of the solute. If the particles are too large,the concentration profile changes, and the relative amount of
sedimentation may affect the amount of the material reachingolute per unit area increasesradecreases. This tendency
the edge. Finally, we ignore the temperature effects on sumgets further enhanced with time. This solute concentration
face tensior{Marangoni flows that have also been observed profile may be important if one wants to deposit material
in the experiments. within the drop.

Despite all these shortcomings, we believe that our theory While our study does not completely explain the pointed
captures the essential mechanism of the deposit growth. TH&hapes observed in Deegan's experiméfig. 2), it does
mechanism described is responsible for the transfer of thehow that the deposition is strongest near the tip. Thus, the
entire solute to the edge of the drop, and the effects abov@eposition tends to prevent depinning, and it is strongest
should not alter our main conclusions. where the depinning force is greatest. Hence, it helps to

Our results are similar in many ways to the results for themaintain the angular shapes of Fig. 2. Our mechanism does
round drops in works of Deegaet al. [1,2]. For example, not explain the particular angle observed in the experiments,
the flow is capable of 100% transfer of the solute to thebut, clearly, our kind of analysis is a step towards under-
contact line, there are several distinctive time regimes, th&tanding the chosen angles, the observed separation between
deposit mass grows as a power law of time, and even ththe vertices and the deposition profile within the sector.
exponent of this power law is the same in the early-time Our findings have a unique signature that can be readily
regime. At the same time, there are a number of new featuregerified in experiments. One strong consequence of our
that did not exist in the round-drop case. theory is that the rate of increase dfn/dry, has a sharp

One of these features is the existence of the third timghange of behavior as a function of for any given time
regime in addition to the two of the round-drop case. The(Fig. 21). For small ro (intermediate times function
intermediate-time regime for the angular sector mathematid®m/dtdrqy(ro) varies weakly, while for larger, (early
cally corresponds to the late-time regime for the round droptimes it falls off more dramatically with increasing,. The
while the late-time regime for the angular sector does notrossover point* [Eg. (67)] moves outwards as a power of
have any analog in the round-drop case. The existence of thtgne t with exponent 1/¢— x+1). (Note that this exponent
new regime is due to the fact that an angle, as a mathematicadvolves only the accurately known functions af) This
object, is infinite, while a circle always occupies finite area.crossover point and its outward motion provide a clear-cut
A real drop with an angle is also a finite object and hence isignature of our mechanism, and this signature should be the
must always have a section of the contact line connecting thstrongest for small opening angléas Fig. 18 depicls In
two sides of the angle. This causes the existence of the thirdrder to avoid possible nonuniversal effects from late times,
time regime determined by the solute coming from that farone needs to measure the system before the late-time regime.
region and influenced by the presence of this new section ofhis measurement can be done by following particles in the
the contact line. The late-time results for the angular sectoflow, or by looking at the build up of fluorescence at the
heavily depend on the shape of this new section. contact line (both methods were used by Deegahal.

Probably, the most exciting feature of the angular-sectof1—4]). In order to avoid the uncertainties with depth aver-
solution is its dependence on the opening angle. Unlike thaging, one can employ surface-confined tracer particles.
round-drop case, there is an extra free parameter of the One open question of our work is related to the unavail-

problem—the opening angle of the sector. All the resultsapility of the exact form ofJ(¢) [as discussed after Eq.
including the exponents of the power laws, depend on thi$19)]. Neither full analytical nor exact numerical form was
opening angle. Note that these exponentsianigersal i.e.,  available explicitly, and we had recourse to analytical as-
they do not depend on any other parameters of the systerpmptotics and approximate numerical expressions. Finding

except for the opening angle. They are as universal as tl’[?((ﬁ) may be a formidable task, but can be accomplished at

exponent of distance 2 in the Coulomb’s law. At the same 5,44 in principle, as the earlier works on the subject suggest
time, the only parameter they depend on is extremely easy 0-13. So, one way of determining the exponents more

control—preparing an evaporating drop one can adjust th . . ~ .
opening angle of the contact line at his will without any premsely is o try to determing(4). Another way is related

technical elaborations. Thus, for example, by suitably choosto creating such evaporating conditions that functigs) is
ing the opening angléand the time regimegone can create a simpler, for instance](¢) is just a constant. The latter case
predetermined power-law distribution of the solute along theof the uniform evaporation rate is significantly easier to treat
contact line with virtually any exponent of distance betweenanalytically, although there are questions on its experimental
—1 and O(Fig. 18. In principle, this feature may have sig- realization. Some further efforts may be devoted in this di-
nificant practical applications for all the processes mentionedection.
in the Introduction. Further control over the line deposition  Further work is also required in order to account for the
may be achieved by altering the contact line shape from &nite width of the deposition region along the contact line. It
straight-sided angle to a curved-sided angle. is observed experimentally that the solute is spread out over
Apart from the deposition along a line, a similar virtue of a quite broad range near the tip and the sides of the angles.
the present flow phenomenon is in setting up a well-definedVe believe that the finite width of the deposition region is
concentration profile, also depending en Initially, the  related to the finite size of the solute particles and finite
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concentration of the solute. Near the contact line the volumand keep only thény and vy terms at the end in order to

fraction of particles becomes sufficiently high to influenceqescribe the process up to the main ordereinv/v*. A

(slow down the flow that carries those particles. Furthersimilar expansion can also be constructed for pressure:
efforts are to be devoted to this problem in the future.

=potep+---+epyt---, A7
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APPENDIX Physically, conditionv <v* is equivalent to the statement
) o that the viscous stress is negligible. Let us understand what
The purpose of this section is to demonstrate that for sufyy ' andv, physically correspond to.
ficiently slow flows one can employ the equilibrium surface ~ pjygging the expansions forandv into the systenfA2)
shape for finding the pressure and the velocity fields insteag,q (A3), one obtains a set of terms for each powerepf
of having to solve for all the dynamical variables simulta- starting frome ! and up. Equating terms of the main order
neously. We will also quantify how slow “sufficiently slow ;, . yields the following two equations:
flows” are.
We start from the equation of the mechanical equilibrium 5 5 3 5
of interface (9), where we approximate the doubled mean hgV(V<he)=0 and  V[hgV(V<ho)]=0, (A9)
curvature H with V2h. This approximation holds true be-
cause the free surface of the drop over an angular sector {Shich both can be satisfied if and only¥i2h, is a function
nearly horizontal near the vertex of the angle, as was showgs time only. Writing it as
in our earlier papef5], and the other terms of the functional
H[h] are unimportant. Substitution of
Po~ Patm _ 1

21— [
V2hy= RO

p=—oV?h+ pau (A1) (A10)

into the Darcy’s law(7) yields we immediately identify this equation with the statement of

spatial constancy of the mean curvature of the interface,

which describes thequilibrium surface shape at any given

moment of timet [i.e., we obtained Eq10) with the desired

properties ofpg]. Thus, hy is indeed the equilibrium surface

shape, and so i& (up to the corrections of the order of

J vlv*).

V- [v*h3V(V?h)]+—+4,h=0, (A3) Repeating the same procedure for the terms of the next
p order ine, we arrive at another two equations:

v=0v*h?V(V?h), (A2)

wherev* = o/37. Upon further substitution into the conser-
vation of masg2), we obtain

which, together with Eq(A2), constitutes the full system of

equations for findind(r, ¢,t) andv(r,o,t). v0=5h§V(V2hl), (A11)
Now, for water under normal conditiong=1 mPas and

o=72 mN/m. Hence, the velocity scalé is of the order of

~ J

. vV[hSV(VZhl)]+;+&th0=O, (A12)
v*=§~24 m/s. (A4)
which can be seen to be equivalent to the set of Ekjs.and

Obviously, this is a huge value compared to the characteristig) 2) ypon identificationy=0vV2h;= — ep;/37. Knowing

velocities encountered in u;ual d_rying procgss.'Thereforqhe equilibrium surface shag®, one can solve the second
rametere=v/v* (wherev is some characteristic value of then obtain velocity, by differentiating the result according

velocity, say, 10um/s): to the first equation. Thus, up to the corrections of the order
. of v/v*, one can first find the equilibrium surface shape
h=hoteh+---+e'hy+---, (A5)  n(r,¢) at any given moment of time, and then determine the
pressure and the flow fields for this fixed functional form of
V=Vgt+evi+ - +eVut -, (A6)  h, as was asserted in section Theory.
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