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Effects of kinks on DNA elasticity
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We study the elastic response of a wormlike polymer chain with reversible kinklike structural defects. This
is a generic model fofa) the double-stranded DNA with sharp bends induced by binding of certain proteins,
and (b) effects oftrans-gaucheotations in the backbone of the single-stranded DNA. The problem is solved
both analytically and numerically by generalizing the well-known analogy to the quantum rotator. In the small
stretching force regime, we find that the persistence length is renormalized due to the presence of the kinks. In
the opposite regime, the response to the strong stretching is determined solely by the bare persistence length
with exponential corrections due to the “ideal gas of kinks.” This high-force behavior changes significantly in
the limit of high bending rigidity of the chain. In that case, the leading corrections to the mechanical response
are likely to be due to the formation of multikink structures, such as kink pairs.
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[. INTRODUCTION particular sites on the DNA. However, in a realistic situation
the nonspecific binding takes place as well, and it may affect
Since the pioneering experiments of Sméhal. [1-4],  the overall properties of the DNA in vivo. Since the stretch-
the single-molecule micromechanical studies have becomiag experiments can probe the elastic properties on the
one of the central themes in molecular biophysics. Thesgingle-molecule scale, they may be used to extract the infor-
techniques have contributed substantially into our undermation about the parameters of such DNA-protein interac-
standing of the properties of various biomolecules and theitions. The theoretical study of this paper is important for the
interactions. The original stretching experiments with theinterpretation of the results of this type of future experi-
double-stranded DNAds-DNA) were followed by the theo- ments. This problem was recently addressed in a general
retical work of Marko and Siggig5] who demonstrated that context of the DNA-deforming proteir{22]. In that work, a
the observed elastic responéee., the dependence of the discrete version of the WLC model was used to obtain the
ds-DNA end-to-end extension on the applied stretchingSFretCh'ng curves with the numerlpal transfer matrix tech-
force) is in remarkable agreement with the wormlike chainnique. In our paper, use of the continuous model allows us to
(WLC) model of polymer elasticity. Within this model, the obtain a varlatlonal a_\r)alytlcal result and compare it against
chain is described as a constant-length rod with finite bendth® nuMerics. In addition, our approach yields important in-
ing rigidity subjected to the thermal fluctuations. Various SI9NtS into the underlying physics associated with the pre-
modifications and refinements of the WLC model have beerq'th.d elastic bghl"".\”cf[rr'l -l;h? donly S|grt1|f||<|:ant I|m|t?t|on of theh
proposed over the past decade to include additional eﬁectgnoen(lnuous modet 1S that 1t does not allow one to approac

. X L hypothetical saturation regime where the DNA gets
such as torsional constraif], bond elasticity, and sequence completely covered by the proteins.

disorder[7,8]. Recently, a discrete version of the WLC has The other system where our model is relevant is the ss-

been suggested as a plausible model for th_e sipgle—strand?ﬂ\lA_ While several models have already been proposed to
DNA (ss-DNA [9].'In' most Cases, the mOd'f'Cat'onS_ of the gles_c_ribe its elas_tic prope_rties, none of them is sufficiently
WLC model are within the domain of linear elasticity, and ; \ifieq by the microscopic structure of the molecule, and all
the overall nonlinearity of the observed response is assoclst ihege models break down at high enough stretching forces.
ated with the entropic nature of the problem. Analysis of the backbone structure of the ss-DNA suggests

In this paper, we discuss an intrinsically nonlinear 9€N€Tinat the traditional models such as the WLC or the freely

alization of the WLC that takes into account effects of the:

localized | def s elasti I ._—jointed chain(FJO are unlikely to be adequate as the coarse-
ocalized structural defects on Its elastic response. In pa_rt'Cngjrained description of the chain. Indeed, on the atomic level
lar, we study a generic model of the WLC with reversible

- . A . _ the conformations of the ss-DNA are mainly associated with
Kinklike singularities. This model is relevant to several sys-,4tions of certain bonds. It is well known in the context of
tems of interest. First, the kinklike defects can be used tqpq general polymer physics that such rotations typically in-
model the sharp bending of the ds-DNA backbone associategh e transitions between the discresans and gauche

with _binding_ of dclertai_n pr?tin%,(\)b—fl]. I? d additioIrI\, the , States, which are normally described with the rotational iso-
protein-mediated looping of the would normally result o o gel[23]. On the other hand, there are also elastic

In a nontrivial mutu_al alignment of th? ends of the I_oop, modes associated with small deviations of the torsional
which can also be interpreted as a kink defect. Typ|caIIy,a gles from their local equilibrium valudse., from these

such DNA—protein interactions are sequeng:e-depe_ndent, an nsandgauchestate$. The WLC would be a natural model
there is a strong preference for the proteins to bind to the, describing the long-wavelength elastic modes due to

these small deformations. In order to account for both types
of conformations, one needs to construct a hybrid description
*Corresponding author. Email address: yopopov@umich.edu that would unify the two classical models of polymer phys-
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'\é//_' are characterized by a microscopic length sdglenuch
smaller than the persistence lengittand can be considered
as pointlike for most practical purposes. We also neglect any
FIG. 1. Kink geometry. direct interaction of the kinks separated by more thgn
Thus the three length scales of the problem are related by
ics. In fact, our problem of the WLC with reversible kinks L>1,> 1.
has all the essential features of such a hybrid model. Indeed, An important quantity is the average line density of the
the localtrans conformation can be viewed as a “no-kink” kinks « in the absence of the applied stretching force. This
state, while thegauchestate can be considered as a kink quantity is defined as the Boltzmann probability of the exis-
since it corresponds to a turn in the overall direction of thetence of a kink per characteristic length scale of a kink site
backbone. lo:
Our model is different from a recent model by Wiggins, 1 exp- kT)
Phillips, and Nelson[24], where the kinks are taken as k= ———— =7
freely-bending hinges instead of the fixed-angle singularities lo 1+ exp— e/kT)
c_onsidered hgre. In most cases of the biological relevgnpet each site of length,, there might be either a kinactor
flxed-angle'kmk.s appear as a more adequate descrlpjuon oL p(—e/kT)] or no kink [factor 1, with the probability of
the respective singularities than the free hinges. In parnculathaving a kink at an arbitrary sit@er unit length given by

the expression above. Note that in practice we assume that
between the bonds fixed by the chemistry of the polymer XP ! v N practice w !

(ss-DNA). Similarly, protein binding and protein-mediated e>KT, and therefore
looping feature some characteristic angles determined by the 1
nature of the proteins, although these angles may vary over K=
some range of valug®5] (we consider modification of our

fixed-angle results for the case of these deformable kinkse., kinks are rare and far apart, and only few possible sites
with thermal fluctuations at the very end of this wprlour ~ are occupied by the kinks.

results will be seen to depend on the kink angle quite sub- The chain is stretched by applying forEein the z direc-
stantially, and thus this extra parameter is important. A modefion of the Euclidian coordinates. The effective energy of a
with soft annealed kinks similar {®4] was also considered chain segment between two adjacent kinks is given by the
recently by Yan and Mark{@26] in the context of DNA cy- sum of the bending energy and the coupling to the stretching

1)

exp(— e/kT) < i, 2
lo lo

clization. force:

In the following section we first describe our model for a Say N\ 2
wormlike chain with reversible kinks, and then outline a gen- E - f {ljz(‘?_t) _ Ez _f} ds. (3)
eral approach to its solution by drawing an analogy to the KT Jg L[2\ds/ KT

quantum rotator. Subsequently, we solve the resulting evolu- ) i PO ,
tion equation both analyticallyby the variational methgd ~Here s is the coordinate along the chait(s) is the unit
and numerically(by direct integration and compare the re- tangent vector of the chain atand kink number is located
sults. Finally, we discuss our results in both the weak-forcet coordinates; [so thatl =X(s.;~s)]. This expression was
and the strong-force limits as well as in the intermediateused by Marko and Siggigb] and in some earlier works on

regime, and draw physical conclusions from our findings. Wormlike chain elasticity. This time, however, it does not
apply to the entire chain; instead, it applies only to the chain

segments between kinks. At each kifile., ats;) the tangent
vector experiences an abrupt change of its orientation and
Model hops to a directionm—K away from the preceding one.
d- Mathematically, this can be written as a constraint

Il. THEORY

We consider a wormlike polymer chain with rodlike ben
ing elasticity. The persistence length of the unperturbed f(s - 0) - (s + 0) = cogm - K) = - cosK. (4)
chain is denoted b}, and the total length of the chalnis
much greater than the persistence length throughout this pa-
per. We presume that kinklike structural defects can exist  anajogy to the quantum rotator, and the free energy
anywhere along the chain. These defects are reversible and R ) ) o .
can appear and disappear Spontaneous'y, with certain free- Let l,b(t,S) be the orientational distribution function for
energy pena|ty associated with each of them. We should erﬂhe chain epds. Then the probability distribution for the tan-
phasize that we neglect the sequence dependence of kigent vectort at coordinates for inner points of the chain is
probability, thus limiting ourselves to the case of nonspecificsimply |y(t,s)|>. Function ¢ satisfies a Schrédinger-like
DNA-protein binding only. Each kink is characterized by the equation for evolution along the chain. This can be demon-
(fixed) opening angl& (Fig. 1); this value is the same for all strated by the path-integral technigil®&27] where path in-
the kinks and is an external parameter of the problem. Theéegration is conducted over all possible chain conformations,
presence of each kink costs finite amount of the free energthus accounting, among other things, for the entropy of the
€ (at zero stretching forgewhich is also assumed to be the chain. A more illustrativgthough less rigoroysway to ob-
same for each kink. The structural defects are local, i.e., thetain the same equation also exi§&8]. Here, we will only
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notice that each term in the effective enek@y has a coun- F

terpart in this Schrédinger-like equation, in the same way as W Lu (10)
each term of the mechanical energy in classical mechanics

has a counterpart in the quantum-mechanical Hamiltoniansee Refs[5,27] for details.

Thus, an unperturbed chaimwithout any kink$ obeys the

evolution equationdgi(t,s)=Hy(t,s), whereH, is the ef- Variational solution

fective Hamiltonian Since the lowest eigenvalue is being sought, we use the
. 1 F variational method for finding the analytical solution to
Ho= EAﬁ' k_Ti -t (5  eigenproblem(9). Application of the force makes th di-
p rection highly preferable for the tangential vector, and there-
The term with the Laplacian ib arises from the term with fore the distribution functiony(f) must be strongly peaked at
the s derivative in the effective enerd$), while coupling to | z. Conventionally, we choosg(f) « exp(wz-t/2) as a trial
the external force remains the safup to the sign chande function, or

(see Refs[5,27] for detailg. The HamiltonianH, is the N

Hamiltonian of the quantum rotator in quantum mechanics. () = / @ exp( wZ -t) (11)
Now we need to add a term to this Hamiltonian respon- 4msinhw 2

sible for the nonlocal constrair(@). This teleportationlike

term cbanges the d!rect|on ofabrup_t IY’ with the tangential variational parameter. The lowest eigenvalue can then be es-

vector t(s) hopping instantly by a finite angle—K at the timated as

location of a kink. Such behavior is described by a delta-

upon proper normalizatioff4?(f)d’t=1]. Here w is the

functional kernel in the Hamiltonian: w=- max:, (12)
-~ . . .
ViLt,s) o« | ——a(t -1+ cosK)yft',s), (6)  where
o
where the full Hamiltonian is nowi=H,+V and the 1/2 E:J PpOHY(® . (13
factor provides the proper normalization of the kernel. The

number of such nonlocal hops of the tangential veéter,  Eyaluating the last expression with trial functiéil) yields
the number of kinksyields the proportionality constant in

the expression above. Thus, the missing prefactor is simply — min o F cothe - 1)\ sinh(aw)
the average line density of the kinks and the full Hamil- p=1m I, KT “= o) “dsinhe I’
tonian is
(14
ﬁ{p(f,s):iAﬂ/,(f,sﬂEz.fw(fls) where we introducedv=sin(K/2). Minimization with re-
2, KT spect tow gives the implicit dependence af on the applied
%% . force or, being inverted, the explicit dependence of the force
+Kf2_5(t't'+COSK)I,0(t’,S). (7 on w:
T
2 i —
The structure of the evolution equation F = w_coshw sinho ~ ©
A KT 4, sinfo-w?
aYt,s)  ~ . 1 .
=Hyft,s), (8) ,a sinh(aw)coshw - coslaw)sinhw
Js + Kw - > .
sinffow - o
suggests the standard procedure for solving this kind of (15)

gquantum-mechanical-like problems: expansion in eigenfunc-
tions of the time-independent(i.e., s-independent Note that here and everywhere belawis the particular
Schrddinger equation value of the variational parameter that minimizes the free
. energy (instead of the generic variable implied until this
— ui(t) = Hy(t), (90 point). Knowledge of the free energy as a function of force

wherey(f) and are the eigenfunctions and the eigenvalues,(l4) also allows one to determine the extension of the chain:

respectively. Since each of the terms in such an expansion z 190F I

1
depends on the exponent (®ie negative ofthe correspond- =-- - = =cothw——. (16)
. . T . L L oF A(F/IKT) w
ing eigenvalue, it is easy to conclude that for sufficiently
long chains most terms in the expansion die off very fast, andhus Eqs.(15) and(16) provide the parametric dependence
only the smallest-eigenvalue term governs the long-chain besf the force on the extension, with playing the role of the
havior. Thus we are interested in the lowest eigenvalud  parameter. This extension curve is shown in Fig. 2 for kink
Eq. (9). The free energy of the chain is then simply related toangles of 135° and 45° and several valuescoDur results
this lowest eigenvalue by reduce to those of Marko and Sigdia when no kinks are
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1.0 40
— numerical solution
-=-=-- analytical asymptotics
0.8
o 06 -
: :
g 044 = v /S .
g N A
L
0.2
00
() 135 180
angle K (degrees)
10
FIG. 4. “Critical” value of parametekl, as a function of the
0.8 kink angleK. Both the numerical solution and the analytical asymp-
totics are shown. The instability region is above the solid curve.
g 06
g
k| z 2 I F
44 £_= p _
504 = 5. (19
s L 31+2dp(1-a)KT
0.2
This expression can be compared to the weak-force result for
00 a bare (kink-free) persistence chaire/L=(2/3)I,(F/KT).
Clearly, the elastic response of the chain with kinks is char-
() force FLJT acterized by the renormalized persistent length
FIG. 2. Extension curves: force vs extension. Analytical results | |p |p 20
of the variational solution(a) for K=135° and(b) for K=45°. p eff = + - N + .
Curves for several values of the kink densify, are shown on each 1+2d p(l @) 1+« p(l cosK)
plot. This quantity reduces to the bare persistence lehgit the

absence of kinkéx=0). It is also apparent thad <1, and
present, i.e., wher=0. The new physics introduced by the therefore a wormlike chain with kinks isarder than a
kinks is represented by the term proportionaktim Eq.(15).  wormlike chain without them. Similar renormalization of the
The ratio of the first and the second terms in this equation ipersistence length was also observed in recent numerical re-
determined by the dimensionless parametigf which has sults by Yan and Marc$22]. It may appear that analogous
the physical meaning of the average number of kinks per theenormalization was obtained in Refg,8] as well, however,
persistence length in the absence of force. The larger thithese works consider quenched sequence disorder, and thus
parameter is, the more significant the kink contribution is. the physical origin of their renormalization is very different.

For high bending rigidity(«l,> 1), the renormalized per-
sistence length becomeés.;=1/[«(1+cosK)]. This result

Weak forces and small extensions deserves some discussion as it turns out to be closely related
The asymptotics of the above results in the limit of smallto the Flory result fotrans-gaucherotational isomer$23].
- If a gaucheconformation is considered as a kink, then it is
straightforward to identify the geometrical relations
Z 5 _
[ =3 TO@) 17) K V3. 6
COS— = —sin- (21)
2 2 2

and
andly=b coq#/2), where # is the angle characterizing the
F - [i +x(1+ az)]w +0(od) (18) trans zigzag andb is the length of thg zigzag segme(fig.
kT [2 3). From these results, one can obtain the mean square of the

allow one to obtain the explicit dependence of the extensioﬁj"e’t"’lnce between the chain ends:

on the force in the limit of weak forces and small extensions: F< € )
2+ex
I KT 0
(R = 2, gl = 22 N2 = 2——— " NiPcod-,
o 3 sirF(f) 2
2
(22)
FIG. 3. Geometrical parameters of the Flory model timns-

gaucherotational isomer$23]. which is identical to the result for the Flory mod&i3]
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10 Strong forces and large extensions
— %l =0
0sd x[ =39 / In the opposite limit of largev our results(15) and (16)
1 xl =120 ; ; ; .
B e also allow for simple asymptotic expansions:
2 0.6- xl, =1200
8 z 1
§ -—=1-— (29
g 04 L w
I
0.2 and
001 F o ,l-a
- ] To oo T = a + Kkw exd-(1-a)w]. (25)
P
(@) force FI /T
Thus an explicit dependence for the elastic response is again
L0 available:
— xl =0 PN
084 z kT[1 | 1-a FI
S —=1- = S+ul,——exp -2(1-a) ?E .
S 06]— oo L Fl,[ 2 a T
‘8 —_— rlp=194 (26)
£ o4 . . .
I To the main order, this result reproduces the earlier result of
0.2 Marko and Siggid5] for the one-over-the-square-root de-
pendence on the stretching force. Hence the response of a
00 - . wormlike chain with kinks to the strong stretching is domi-
1 10 100 nated mostly by the bare wormlike-chain elasticity. In addi-
(b) force FI/KT tion, kinks contribute an exponential correction to that main-
order result, which can be interpreted as due to the “ideal gas
10 of kinks.” Indeed, the second term in Ed4) is the average
line density of the kinks in the presence of the stretching
0.3 force, and it is equivalent to the concentration of the mol-
g . ecules in the ideal gas. Thus the second term in (26)
X 06 derived from the free enerdit4) is analogous to the relation
§ 04 p=nkT for the pressure of the ideal gas.
5 044
5
0.2 High rigidity, small kink angle, numerical results
Probably the most interesting feature of Fig. 2 is related to
0.0 ™ " the middle portion of the high-rigidity extension curves,
© force FLAT where an instability region witllz/dF<0 is present. This

instability region exists when parametel, is greater than
FIG. 5. Extension curves: force vs extension. Numerical resulté,he critical Value("lp)o i.e., when the chains are of high

of the direct solution of the evolution equatiéa for K=135°, (b) rigidity. The “critical’.’ va!ue is determined by the conditions
for K=90°, and(c) for K=45°. Curves for several values of the kink F'(2=F"(2)=0 and is given by
density«l, are shown on each pl¢ggame values as in Fig).2Solid

lines represent the numerical results, while the dashed lines repro-( ). = eXp we
. : lp)e=— ,
duce the corresponding analytical results. sinhaw,
——(4w(1 + a®) — 8) + coshaw,(8 — 8wy)
1+2 ex;{i> (27)
o b21 + coséd KT
(R =Nb~— 058 3 (23 wherew, is the solution to

in the limit of rare kinks(e>kT). Note that comparison to tanhaw _ w(3+a?) -6 28
the Flory result for the free rotational mod@hstead of the a w(1+30?) - (3+3a)

trans-gaucheotational on¢ would be impossible due to the

lack of the equivalent angle and absence of a relation similagnd is large for all kink angleghe lowestw, is around 5 for
to Eqg. (21). In the case of the free rotations, the effectivesmall kink angles The last equation allows for simple ana-
kink angle can adopt a continuous spectrum of values bdytical solutions in the limits of small kink anglegrw<1)
tween zero and some positive value corresponding to thend large kink angle$aw>1). Thus the analytical asymp-
rotation by 180°. totics of («l,). in these two limits are readily available:
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exp3+13) 2+43 This instability behavior is similar to the behavior of the
(pe=—"—="(1+3°—%]| (aw<1) (29)  Van der Waals curves for the ordinary liquid-gas system and
8(1+v3) 3+43 hence suggests the coexistence of two “phases.” Of course,
and no true phases can exist in a one-dimensional system like the
DNA molecule under consideration, however, for the worm-
_aexp3 like chain with kinks it may be appropriate to think of “kink-
(lp)e = 2(1-a) (aw>1). (30 free” and “kink-rich” portions of the chain instead of the true
phases.

These asymptotics as well as the exact numerical solution for In order to check this “two-phase” hypothesis, we conduct
(«lp)c are shown in Fig. 4. As can be observed in this figurea direct numerical solution of the evolution equati@hwith

the “critical” value is much lower for sharp kinks, and hencethe Hamiltonian(7). In order to avoid the delta-functional
for smaller kink angles the instability region is present forsingularity inside the integration in the last term, the analyti-
much lower values ofd, and lies in the range of the mea- cal integration of the delta function is carried out, and we
surable stretching forces in Fig. 2. operate with a smooth-kernel Hamiltonian

. 1 Ppp,s)  dps) | F K [P cosk1pPsink ,9dp’
Hlﬂ(p,S):_ (1_p2) 2 _2p +_pl7//(p,S)+_ — [ 2 w(p72 i ’ 2
21, ap ap kT T J —p cosk-\1-pZsink V(1 =p9)(1=p’) = (pp’ + cosK)

(31

(wherep=2z-f and p’=2-1") instead of the original Hamil- approximately to the angle—K away from the direction of
tonian (7). Then we choose an arbitrary initial distribution the applied forc€z), i.e., there is an unusually high portion
function (t,0) and let it evolve by evaluating the right-hand of chain segments at angle—K to the force. This can be
side of Eq.(8) on each step and setting thalerivative(the interpreted as presence of a small, but substantial fraction of
left-hand sid¢ equal to the result. This procedure is stoppedkink pairs (Fig. 7). Indeed, if the two outer chain sections of
when the relative change of the relative extensioih  a kink pair are aligned precisely alodgthen the inner sec-
=[2-ty?(f,9)d% evaluated at each step becomes very smaltion is at angler—K to that direction, and if the kinks in
and hencey(t,s) itself becomes the stationary distribution each pair are close, then the fraction of the chain segments at
function. Such an approach yields more precise results for aingle—K to the force is small compared to the fraction of
the quantities since it does not make amyriori assump- the chain segments aligned with the force, but high com-
tions about the shape of the distribution function. pared to the fraction of the other nonaligned segméints

The results of this numerical solution are shown in Fig. 5full agreement with Fig. ®)]. When the two kinks are in a
for kink angles of 135°, 90°, and 45° and several values.of pair with the outer sections aligned with the force and the
It is immediately apparent that the agreement between thianer section at angler—K to the force(Fig. 7), much less
variational analytical and the exact numerical curves is goodbending is necessary compared to the case of a single kink
for both small and large forcéand extensiongor all values  with both outer sections aligned with the forgég. 1). Thus
of parameters, and hence the analytical results of the precedendensation of kinks into pairs is favorable both because
ing two sections are accurate in the respective limits. Howthe fraction of the “nonaligned with the force” chain seg-
ever, the intermediate regime for high-rigidity chains andments is small and because the energetically costly bending
small kink angles differs substantially from the analyticalis not required. We should emphasize that although kink-
parametric dependence of Eq45) and (16). What causes pairing may be a good way of thinking of this system, we do
this difference, and how can the numerical results be undemrot have a simple yet rigorous theoretical model accounting
stood? for all the properties of such a “gas of kink pairs.”

The answer to both these questions comes from the nu-
merical results for the distribution functiog(t,s) (Fig. 6). .
The distribution profile for large kink angles possesses the Soft kinks
shape assumed in the variational method: a pealakingz So far, we considered only hard kinks, i.e., kinks charac-
with the exponential falloff away from it. However, for rigid terized by the fixed opening angke Each kink could appear
chains and small kink angles, we observe existence of a seend disappear; however, the possibility of its elastic defor-
ondary peak in addition to the main peak. Thus, the discrepmation due to the thermal fluctuations was ignored. In this
ancy between the variational and the numerical results can kesection, we demonstrate how our results are modified when
explained by inadequacy of the trial function in the varia-kinks are of finite rigidity and their opening angle is allowed
tional method, which ignores the possibility of the secondaryto deviate from the equilibrium valug. We limit our dis-
maximum. The location of the secondary peak correspondsussion to small fluctuations aroukg which corresponds to
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0.251 e—(y/2)[arcco$—f 1) - K]zglr(f' ’S)de/
0.20- Veortht,s) =
5 os] f e~ (v2larccos-t - 1) - K521
s
0.104
0.5 f e (72K =K%yt g)d cosK’
oo . | | , = — . (3
-1.0 05 0.0 05 1.0 f e (MK -K)?q cosK’
(a) p
where in the last equalit)}’ is the old delta-functional term
(6) (multiplied by «) considered as a function of the integra-
tion variableK’ instead of the equilibrium valuK.
R Thus the variational solution for the free energy of the
= chain with soft kinks reduces to a single integration of the
last term of the variational resull4) for the free energy of
the chain with hard kinks. This integration can be performed
analytically in the limit of small thermal fluctuationsy
0055 s o0 05 To > w/ @) and leads to the following main order result:
(b) r
Msoft= min{(— - —)(cothw - —)
FIG. 6. Numerical results for the distribution functiaip,s) o [\4l, KT ®
(wherep=2-1) in the limit of larges for the kink angles ofa) 135° . 204 _ 2
and(b) 45°. The two graphs are for the comparable stretching force - KSInI"'(aw) ex;{ w{(l-a )>] , (34
and for the respective values of the kink denditylO times the asinhw 8y
_cr|t|cal depsnty for each kink angle, i.e., for the second from the or, in terms of the force,
right curve in Figs. &) and Hc)].
Fsoft _ w_ZCOShw sinhw - w
high rigidity of each kink. In the opposite limit of large de- KT ~ 4, sinffw — w?
viations, the kinks are almost free and the model of Wiggins Ly )
et al.[24] should be applied. + kw2 SIHF(aw)C?Shw— coshlaw)sinhw
The effective energy of the chain can be written as a sum sinffw — &’
of the contributions(3) of all segments between kinks and 201 _ 2
: N ) o (1-a
the quadratic contributions of all kinks: X ex v (35
Y

In the expressions above we omitted all the terms of the

S+l Iy A\2 F. . order of w/ y or less and retained only the term of the order
j o\s) TkTet ds of w?/y, which is not necessarily small when is large.
Thus, the main effect is simply renormalization of the kink
density k by a factor of expw?(1-a?)/(8y)]. Physically,
when kinks are allowed to relax by deforming the opening
angle, the number of kinks increases, making the chain
harder to extend. However, the absolute value of the effect is
not substantial, and for all reasonably small thermal fluctua-
dLcions of the kink angle(large y) the analytical extension

urves get only slightly distorted for large extensions, with-
out major qualitative changes. For very soft kir(esnall y)
%he results of Wigginet al. [24] should be employed.

Esort _
KT _2 5

+ g[arcc0$— f(s-0) -i(s+0)-KP, (32

where the summation is over kinksThe last springlike term
allows for the thermal fluctuations of the opening angle an
substitutes for the delta-functional constraidy; a similar
term was used in the numerical study by Yan and Mark
[22]. Kink stiffness parametey is assumed to be large, so

that the fluctuations are small. Théterm in the effective
Hamiltonian is then IIl. CONCLUSIONS

z In conclusion, we studied the generic model of the semi-
flexible polymer chain with reversible kinks. It can be
K viewed as a hybrid of the two classical descriptions of the
K polymer elasticity: the WLC and the rotational-isomer-states
models. Therefore, the proposed theory should be applicable
FIG. 7. A pair of kinks. to the ss-DNA whose conformations may involve both the
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discretetrans-gaucherotations of the chemical bonds and
small deformations giving rise to the continuous elasticity.

PHYSICAL REVIEW E71, 051905(2005

The major limitation of our model is that we have ne-
glected the sequence-specific effects by assuming that the

Another important class of systems where our model is apkink energy is constant along the chain. While this may be a

plicable is the ds-DNA with sharp protein-induced bends.

reasonable first approximation to both problems of the ss-

In the limit of weak stretching forces, the elastic responseDNA elasticity and the nonspecific protein-DNA binding, a
of the kinked DNA chain is characterized by a renormalizedsjgnificant future work is needed in order to include the ef-
persistence length, which is smaller than the bare persistenggcis of the sequence disorder.

length. This conclusion is consistent with the observation ggyeral experimental tests of our results can be suggested.

made in the earlier numerical work on the problgzd]. We

obtained the analytical expression for the renormalized pers,

sistence length and showed that the classical results for bo

the pure WLC and the rotational isomer models can be re

covered exactly as limits of our expression. Furthermore, b
using the variational approach, we calculated the complet
nonlinear response of the chain to the stretching. This resu
is in excellent agreement with the direct numerical solutio
over a substantial range of the model parameters.

In the limit of strong stretching forces, we recover the
pure wormlike-chain behavior with exponential corrections

due to the “ideal gas” of kinks. The variational theory breaks

down in the regimes of high chain rigidity and small kink
angles. In this case, the analytical curves have signatures
instability similar to those of the Van der Waals gas. By

n,

In the case of the ss-DNA, in order to probe the “pure”
astic response of the chain one needs to exclude the effects
Of base-pairing and the electrostatic interactions. In the ex-

isting experiments, these effects are not suppressed, and thus

Yirect comparison is not possible at the moméNbte that

ﬁwe electrostatic and the base-pairing contributions were
Simulatedin Ref.[29] instead of being excluded experimen-
tally.) However, in the future an experiment can be done at
the conditions of very strong screenifig., at high salt con-
centration with all-purine or all-pyrimidine ss-DNA se-
quences to avoid these contributions.

The effects of the protein-induced kinks on the ds-DNA
e*asticity can be studied by performing the DNA-stretching
gxperiment at various concentrations of the DNA-binding

roteins.

analyzing our numerical results, we conclude that this behav-

ior corresponds to the creation of multikink objects, e.g.,
kink pairs.
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