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The Accelerated Failure Time Model Under Biased Sampling
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Summary. Chen (2009, Biometrics) studies the semi-parametric accelerated failure time model for data that are size bi-
ased. Chen considers only the uncensored case and uses hazard-based estimation methods originally developed for censored
observations. However, for uncensored data, a simple linear regression on the log scale is more natural and provides better
estimators.
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1. The Model
Let ξ > 0 and Z be independent random variables, and let
X = {c(Z)}−1ξ, where c(·) > 0 on the support of Z. Here Z is a
covariate (or a vector of covariates) that determines the scale
c of a lifetime variable X: fX |Z (x|z) = c(z)fξ {xc(z)}, where
fR denotes the density function of a random variable R. This
model is a generalization of the accelerated failure time (AFT)
model considered by Chen (2009) in which c(z) = e−β z for a
scalar β.

Obviously, log(X) = − log{c(Z)} + log(ξ) has the form of
a standard regression model with an additive noise log(ξ);
such models have been extensively studied under various as-
sumptions on c(·) and fξ . For the AFT model, log(X) =
−βZ + log(ξ) has the familiar linear regression form with a
constant term E{log(ξ)}, for which least squares is the stan-
dard inference approach.

Often, survival data are obtained by biased sampling in
which observations are over or under represented accord-
ing to their outcome. For example, Wang (1996) and Ghosh
(2008) study the proportional hazard model, and Bergeron,
Asgharian, and Wolfson (2008) study parametric models un-
der size biased sampling. A general biased sampling model
assumes observations from the density

w(x, z)fX ,Z (x, z)
E{w(X, Z)} =

w(x, z)fX |Z (x|z)fZ (z)
E{w(X, Z)} , (1)

where w > 0 is a weight function satisfying E{w(X, Z)} < ∞.
A common example of biased sampling arises in situations

like the following: Patients arrive to several hospitals accord-
ing to independent Poisson processes. A research is planned
in order to study the effect of a hospital-specific covariate Z
on the total hospitalization duration, ξ. Conditionally on Z,
the hospitalization durations are independent of the arrival
processes. The design is of a cross-sectional sampling nature,
where the sample comprises patients staying in the hospitals
at a given fixed time point. We distinguish between two cases:

In the first, all patients staying in the hospitals at sampling
time are sampled, and in the second, only one patient is taken
from each hospital. The likelihood of the first sampling design
is a product of terms as (1), but under the second design, the
likelihood is a product of terms as

fX |Z ,BS(x|z) =
w(x, z)fX |Z (x|z)

E{w(X, Z)|Z = z} =
w(x, z)c(z)fξ {xc(z)}
E{w(X, Z)|Z = z} ,

(2)

where BS stands for biased sampling. This distinction may
be important for inference, but it is often overlooked. In fact,
straightforward calculations show that the density of X |Z un-
der (1) is exactly (2), so that the difference between the two
designs is in the sampling distribution of the covariate (see
further discussion below).

Equation (2) shows that, in general, the conditional dis-
tribution of X given the covariate Z under biased sam-
pling does not belong to the same generalized AFT model
defined above, and special methods are required for fit-
ting such models. However, consider independent realiza-
tions, (X∗

i , Z
∗
i ), from the weighted density fX ∗ ,Z ∗(x, z) =

xα w(z)fX ,Z (x, z)/E(Xα w(Z)), for some weight function
w(·) > 0 and constant α. It is easy to see that

fX ∗|Z ∗(x|z) =
xα c(z)fξ {xc(z)}
E(Xα |Z = z)

=
xα c(z)fξ {xc(z)}
[c(z)]−α E(ξα )

,

so that the model after biased sampling remains in the same
family with X∗ = [c(Z∗)]−1ξ∗ and fξ ∗(t) = tα fξ (t)/E(ξα ), and
the same procedures for estimating c(z), used for data from
fX ,Z , can be used when data are obtained by biased sampling.

The invariance property of the order of weighting and scal-
ing is given by Chen (2009) as Property 1 for the special
AFT model, c(z) = eβ z , under size biased sampling (α = 1
and w ≡ 1). The case α = 1 arises in cross-sectional sam-
pling under steady state assumptions, see van Es, Klaassen,
and Oudshoorn (2000), and it is the most interesting case in
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Table 1
Comparison of standard errors (SE ) and coverage probabilities
of 95% confidence intervals (Cover) of least squares (LS ) and
Chen’s method under the log-normal and the Weibull models

for ξ

Log-normal Weibull

β n Estimate SE Cover SE Cover

0 50 Chen 0.6533 0.955 0.5084 0.951
LS 0.4992 0.950 0.2413 0.957

200 Chen 0.3261 0.952 0.2603 0.950
LS 0.2461 0.950 0.1190 0.947

500 Chen 0.2477 0.950 0.1619 0.949
LS 0.1552 0.950 0.0750 0.950

1 50 Chen 0.5227 0.955 0.4603 0.951
LS 0.5126 0.950 0.2478 0.954

200 Chen 0.2603 0.951 0.2443 0.949
LS 0.2523 0.950 0.1220 0.950

500 Chen 0.1654 0.951 0.1447 0.951
LS 0.1591 0.950 0.0769 0.953

practice. The assumption that w ≡ 1 is also very reasonable,
as one can replace fZ (z) with w(z)fZ (z)/E(w(Z)) without
affecting the conditional distribution of X given Z.

We note that fZ ∗(z) = E(Xα |Z = z)fZ (z)/E(Xα ) =
{c(z)}−α fZ (z)/E[{c(Z)}−α ], which in general differs from
fZ (z). Therefore, the likelihood L2 in Chen (2009) is not a
full likelihood, but conditional on the values of Z∗. If fZ is
known, then there may be a loss of information in using the
conditional likelihood instead of the full likelihood (Bergeron
et al., 2008). However, if fZ is unknown, there is no loss
of information, and the estimator based on the conditional
likelihood is efficient.

To estimate β in the AFT model, Chen (2009) uses hazard-
based methods originally tailored to censored data. The
discussion above shows that log(X∗) = −βZ∗ + log(ξ∗), and
therefore, the least squares approach can be used for esti-
mation. Note that log(ξ∗) and log(ξ) are not identically dis-
tributed and do not have the same mean, and hence the con-
stant term in the regression of log(X∗) on Z∗ (i.e., E{log(ξ∗)})
differs from that in the regression of log(X) on Z (i.e.,
E{log(ξ)}). However, β, which is the parameter of interest,
is exactly the same in the two regressions. Finally, the form
of the weight function xα w(z) is essential for our arguments,
but knowledge of α or of w is not required for inference.

2. Numerical Study
In this section, we compare the performance of the estimator
of Chen (2009) to that of the least square estimator under an
AFT model, X = e−β Z ξ, and size biased sampling (α = 1). As
in Chen (2009), two models for ξ were examined: a standard
log-normal distribution with expectation of e0.5 and a Weibull
distribution with scale parameter 1 and shape parameter 2
with expectation of

√
π/2. Under the log-normal distribution,

the error term log(ξ∗) ∼ N (1, 1) with σ2 : Var{log(ξ∗)} = 1.
For the Weibull distribution, the length-biased density is
f (t) = 4t2e−t2

/
√

π and the corresponding density of the log is
4e3t−e2t

/
√

π with mean 0.0182 and variance σ2 = 0.2337 (nu-
merical integration).

There is one covariate, Z, that has a U(0, 1) distribution. As
commented in Section 1, the density of Z∗ differs from that
of Z, and in the current model it is fZ ∗(z) = βeβ z /(eβ − 1)
for 0 < z < 1. Following Chen (2009), we consider the model
β = 0 in which Z and X are independent, and the model β = 1.
For the former model, Z∗ ∼ U(0, 1), but for the latter, Z∗ has
a tilted uniform distribution with weight function ez .

It is well known that the least squares estimator is unbiased
and that, for a given distribution of Z∗, its performance does
not depend on β. However, since the biased sampling tilts
the distribution of the covariate, the performance of the least
squares estimator does depend on β. Table 1 compares the
standard errors (SE) and the coverage probabilities of a 95%
confidence interval (Cover) of the least squares method to
that of Chen’s; the results for the latter method are taken
from Chen’s paper (2009, Table 1, Semi-G). The standard
error of the least squares estimator is σ

√
E{1/(S∗

n )2}, where
S∗

n
2 is the sample variance of n independent copies of Z∗, and

σ2 = Var{log(ξ∗)}. It is approximately σ/
√

nVar(Z∗), but it
was calculated by 106 simulations. The confidence intervals of
the log normal model are exact; the coverage probability for
the Weibull model was evaluated by 10,000 simulated data
sets.

As expected, the least squares estimator outperforms the
estimator of Chen (2009), with smaller standard errors in all
models. The performance of the least squares estimator un-
der the Weibull model is almost as good as that of the maxi-
mum likelihood estimator (MLE) reported by Chen (2009).
For example, for β = 0, the standard errors of the MLE
under a Weibull model are 0.2297, 0.1096, and 0.0716, for
n = 50, 200, and 500, respectively, quite close to the figures in
Table 1.

3. Concluding Remarks
The AFT model defines a regression on a scale parameter
of a lifetime variable, and it remains an AFT model after
size-biased sampling. This is an important property as new
methodologies are not required for size-biased data. It is of
interest to characterize similar properties for regression mod-
els on a location parameter. Recalling that the log transfor-
mation changes a scale to a location parameter, and noticing
that if X∗ has a weighted distribution with weight xα , then
log(X∗) has a weighted distribution with weight eαx , we con-
clude that the same invariance property holds for a location
parameter under biased sampling with weights eαx .

In summary, linear regression on the log scale is a sim-
ple and effective approach for fitting the AFT model to size-
biased data. Chen’s hazard-based method may be useful when
censoring is present, but such an extension is yet to be devel-
oped.
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The author replied as follows:

As Mandel and Ritov (MR; 2009) referred, the pro-
posed hazard-based estimating procedure in Chen (2009)
was indeed intended with a potential extension to cen-
sored length-biased time-to-event outcomes. Since the
censored length-biased time-to-event outcomes arise most
likely in cross-sectional studies, however, censoring is usually
informative and may create extra complication in statistical
modeling and inferences, see the note by Asgharian (2003).
Without taking into account such embedded informative cen-
soring, a naive application of the hazard-based estimation
procedure, or any other similar ones, may lead to incorrect
inferences, although its application to uncensored size-biased
outcomes is still valid due to the invariance property, as shown
in Chen (2009).

It is nevertheless interesting to see that, for uncensored size-
biased outcomes, the least-squares estimates that MR stud-
ied appear to outperform those of hazard-based by a notice-
able margin, and in some cases, are almost as good as those

of the maximum likelihood. In Mandel and Ritov’s (2009)
Table 1, the cited hazard-based estimates of Chen (2009) are
semiparametric. They do not require the knowledge of ξ∗’s
moments. The performance of MR’s least-squares estimates,
presumably not relying on the true value of σ2 = var(log ξ∗),
either, in real applications. That is, the usual accelerated
failure time (AFT) model, equipped with the least-squares
estimation, may provide an unbiased and nearly efficient esti-
mation of covariate effect for the uncensored size-biased out-
comes. In fact, an early example of using the least squares
can be found in Keiding et al. (2005) for the AFT models of
backward recurrence times.

For either the hazard-based estimation or the least-squares
estimation, however, obstacles remain in dealing with the po-
tential informative censoring arising from the cross-sectional
time-to-event outcomes that are subject to length bias. More
innovative modeling and estimation strategies are needed to
overcome these obstacles.
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