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This paper deals with convergence of the maximum a posterior probability path estimator in hidden Markov
models. We show that when the state space of the hidden process is continuous, the optimal path may
stabilize in a way which is essentially different from the previously considered finite-state setting.
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1. Introduction

Consider a standard hidden Markov model (X,Y ), where X = (Xn)n∈Z+ and Y = (Yn)n∈Z+ are
the hidden state and the observation processes, respectively. The state process X is Markov with
values in a subset S ⊆ R, transition probability Q and initial distribution M: for all measurable
subsets A ⊆ S ,

P(X1 ∈ A) = M(A),

P(Xn ∈ A|Xn−1) = Q(Xn−1,A), P-a.s., n > 1.

We shall consider either countable S , in which case q(u, v) := Q(u, {v}) and μ(u) := M({u}),
or S = R, assuming that Q(u,dv) and M(du) have densities q(u, v) and μ(u) with respect to
the Lebesgue measure. The precise meaning of q(u, v) and μ(u) should be obvious from the
context.

The observed process Y forms a sequence of conditionally independent random variables,
given X1:∞ = (X1,X2, . . .), with the observation density p:

P(Yn ∈ B|X1:∞) =
∫

B

p(Xn, y)dy, P-a.s.,

for any Borel B ⊆ R.
The path estimation problem is to reconstruct the trajectory of the hidden process1 X1 : n =

(X1, . . . ,Xn), given the realization of Y1 : n = (Y1, . . . , Yn) for a fixed horizon n ≥ 1. If S is a

1Hereafter, for x ∈ R
n , xm stands for the mth entry of x and xk:m, k ≤ m, denotes the vector x = (xk, . . . , xm); |x1 : n| =

maxi |xi | and ‖x1 : n‖ =
√∑n

i=1 x2
i

.
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discrete set, a natural estimator is the maximizer of the a posterior probability (MAP estimator):

X̂n
1 : n := argmax

x1 : n∈S n

P(X1 : n = x1 : n|Y1 : n),

where the optimal path is chosen according to the lexicographical order on S n, induced by an
order on S , whenever the maximum is not unique. The obtained path minimizes the probability
of error among all estimators depending on Y1 : n, that is,

P(X̂n
1 : n �= X1 : n) ≤ P(ξ1 : n �= X1 : n) for all σ {Y1, . . . , Yn}-measurable ξ1 : n.

By Bayes’ formula,

P(X1 : n = x1 : n|Y1 : n) = Ln(x1 : n,Y1 : n)∑
u1 : n∈S n Ln(u1 : n,Y1 : n)

,

where Ln is the “posterior” likelihood:

Ln(x1 : n;y1 : n) = μ(x1)p(x1, y1)

n∏
m=2

q(xm−1, xm)p(xm,ym), x1 : n ∈ S n, (1.1)

and hence

X̂n
1 : n = argmax

x1 : n∈S n

Ln(x1 : n,Y1 : n).

Due to the product structure of Ln, the search for the maximizing path can be carried out
efficiently by a dynamic programming procedure, called the Viterbi algorithm, after A. Viterbi,
who introduced it in the context of error correction codes.

When the next observation, Yn+1, is added, the optimal path may change entirely, that is,
for any m = 1, . . . , n, X̂n+1

1:m is, in general, different from X̂n
1:m. In practical terms, the latter

means that2 #S optimal path candidates of length n are to be kept in memory at each time n.
This motivates the question of whether the optimal path stabilizes as the number of observations
grows to infinity or, more precisely, whether the limit

X̂1:m = lim
n→∞ X̂n

1:m (1.2)

exists P-a.s. for each fixed m ≥ 1. If such a limit exists, it defines a random process with paths in
S ∞, named (in [13]) the Viterbi process.

An affirmative answer to this question was given in [5] (see also [10]) under a sufficient condi-
tion (see (2.1) below) which also ensures that the limit sequence X̂ = (X̂m)m≥1 is a regenerative
process. More precisely, a sequence of stopping times can be constructed (see [4]), splitting the
process X̂ into cycles that are i.i.d. and independent of the initial delay. In particular, by the re-
generative property, X̂ satisfies the classical limit laws, such as the law of large numbers (LLN)
and the central limit theorem (CLT).

2#A stands for the cardinality of a set A.
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In fact, the existence of such renewal times under the condition (2.1) can be deduced by a
simple argument (reproduced, for completeness, in Section 2). A more delicate construction in
[12,13] verifies (1.2) under conditions weaker than (2.1).

In this paper, we revisit the question of the existence of the limit (1.2) for hidden Markov
models (HMMs) with continuous state spaces, that is, when S = R and for each u ∈ R, the
transition kernel Q(u,dv) and the initial distribution M(dv) have densities q(u, v) and μ(v),
respectively, with respect to the Lebesgue measure. By Bayes’ formula, the conditional law of
the vector X1 : n given Y1 : n has the density ψn with respect to the Lebesgue measure on R

n:

ψn(x1 : n) := Ln(x1 : n;Y1 : n)∫
Rn Ln(u1 : n;Y1 : n)du1 · · · dun

,

with Ln defined as in (1.1). The MAP path estimator is

X̂n
1 : n := argmax

x1 : n∈Rn

ψn(x1 : n) = argmax
x1 : n∈Rn

Ln(x1 : n;Y1 : n),

where, as in (1.2), the maximum is chosen according to the lexicographical order on R
n (induced,

e.g., by < on R) in case of ambiguity.
Note that for any σ {Y1, . . . , Yn}-measurable random vector ξ1 : n and ε > 0,

P(|X1 : n − ξ1 : n| ≤ ε) = EP(|X1 : n − ξ1 : n| ≤ ε|Y1 : n) = E

∫
[−ε,ε]n

ψn(x1 : n + ξ1 : n)dx1 · · · dxn

and hence the estimator X̂n
1 : n is optimal in the sense that

lim
ε→0

ε−n
P(|X1 : n − ξ1 : n| ≤ ε) = Eψn(ξ1 : n) ≤ E max

x1 : n∈Rn
ψn(x1 : n) = lim

ε→0
ε−n

P(|X1 : n − X̂n
1 : n| ≤ ε)

whenever interchanging the expectation and the limit is possible. Roughly, this means that X̂n
1 : n

yields the best “small” credible intervals among all other path estimates.3

As in state estimation problems such as filtering, the exact calculation of X̂n
1 : n is impossible

beyond a number of models with a special structure, most notably Kalman’s linear Gaussian
setting. A number of efficient numerical techniques, such as particle filters, have been developed
(see, e.g., [6]) to approximate the conditional law of the hidden state process. In this paper, we are
concerned with the convergence properties of the MAP paths, leaving the computational issues
for further investigation.

In Section 2, we explore, through a number of examples, various patterns of convergence
encountered in (1.2), when the hidden state space is continuous. We also give an example of
HMM, for which the MAP path does not converge as the estimation time horizon increases. In
Section 3, we prove a more general result, deducing the existence of the limit (1.2) from certain
strong log-concavity of the transition and observation densities. The Appendix contains a lemma
which is used in the proof of the main result and may be of independent interest. Finally, a short
discussion of the results appears in Section 4.

3In fact, this optimality interpretation turns out to be meaningful even in the infinite-dimensional function space; see
[16,17].
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2. Examples

Let us briefly recall the essential elements of the proof in the finite setting S = {1, . . . , d}. For
simplicity, consider an irreducible finite (and thus recurrent) chain X and define

Di = {y ∈ R :q(x1, i)p(i, y)q(i, x3) > q(x1, x2)p(x2, y)q(x2, x3),∀x2 �= i, x1, x3 ∈ S}.

Suppose that, for a pair of states j0 and i0,∫
Di0

p(j0, y)dy > 0. (2.1)

Recall the definition of Ln in (1.1) and note that on the event Am = {Xm = j0, Ym ∈ Di0}, with a
fixed m > 1 and all n > m,

Ln(x1 : n,Y1 : n) = Lm−1(x1:m−1, Y1:m−1)

× q(xm−1, xm)p(xm,Ym)q(xm,xm+1)Lm+1,n

(
x(m+1):n,Y(m+1):n

)
≤ Lm−1(x1:m−1, Y1:m−1)

× q(xm−1, i0)p(i0, Ym)q(i0, xm+1)Lm+1,n

(
x(m+1):n,Y(m+1):n

)
for an appropriate function Lm+1:n and where equality is attained only at a path x1:m with xm =
i0. Hence, the mth entry of the optimal path must equal i0 for any n ≥ m, that is, X̂n

m = i0. But,
then, given X̂n

m, the first m entries of the optimal path depend only on the values of Y1, . . . , Ym

and are not affected by Yk , k > m. Hence, the limit (1.2) exists on the event Am. Since the chain
(X,Y ) is recurrent, for any fixed m, one of the events Am+1,Am+2, . . . occurs P-a.s. and thus
(1.2) holds P-a.s.

Using the same basic idea, let τ(k), k ≥ 0, be the times at which the chain (X,Y ) revisits the
set {j0} × Di0 :

τ(0) = 1,

τ (k) = inf{n > τ(k − 1) :Xn = j0, Yn ∈ Di0}, k ≥ 1.

By construction, for any k, on the event {τ(k) ≤ n},

L(x1 : n;Y1 : n) ≤ L(xτ
1 : n;Y1 : n) ∀x1 : n ∈ S n,

where xτ
1 : n is the vector which coincides with x1 : n at all but the indices τ(1), . . . , τ (k), where

its entries equal i0.
The upper bound is attained if L(x1 : n;Y1 : n) is maximized over x1 : n, constrained to xτ(1) =

· · · = xτ(k) = i0. Since each xτ(�), � = 1, . . . , k, appears in the product L(x1 : n;Y1 : n) in three
adjacent terms, the optimal choice for each segment xτ(�−1)+1:τ(�)−1, � = 1, . . . , k, is determined
only by the values of Yτ(�−1)+1, . . . , Yτ(�)−1. Hence, in particular, the limit limn→∞ X̂n

1:m exists
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on any of the events {τ(k − 1) < m ≤ τ(k) < ∞}, k ≥ 1. By recurrence of j0 and the condi-
tion (2.1), P(τ (k) < ∞) = 1 and limk→∞ τ(k) = ∞, P-a.s., which verifies the existence of the
limit (1.2).

The stopping times τ(k), k ≥ 1, form a renewal process, with respect to which both (X,Y )

and X̂ = (X̂m)m≥1 are regenerative (see [4] for more details). As pointed out in [12], the condi-
tion (2.1) can be quite restrictive, especially when the transition matrix is sparse. The convergence
in (1.2) and the regenerative property are verified in [12] under less conservative conditions, us-
ing a more sophisticated construction of the renewal times.

In summary, both [5] and [12] deduce the existence of the limit in (1.2) from the explicit
construction of stopping times, based on the discreteness of the hidden process state space. The
following example shows that this still may be possible in HMMs with continuous state spaces.

Example 2.1. Consider a linear HMM with Laplacian state and Gaussian observation noises:

μ(u) = 1

4
e−|u|/2, q(u, v) = 1

4
e−|u−v|/2, p(x, y) = 1√

2π
e−(x−y)2/2.

In this case, the MAP path is given by

X̂n
1 : n = argmin

x1 : n∈Rn

(
|x1| + (x1 − Y1)

2 +
n∑

m=2

|xm−1 − xm| + (xm − Ym)2

)
.

Consider the function x �→ f (x) := |a − x| + (x − y)2 + |x − b| for fixed a, b, y ∈ R. Suppose,
without loss of generality, that a ≤ b and note that f , being strictly convex, is minimized at
a unique point x∗ = argminx∈R f (x). If y ∈ [a, b], then, clearly, x∗ ∈ [a, b] and since f (x) =
−a + (y − x)2 + b on this interval, we have x∗ = y. Consider the case y ≤ a and suppose
x∗ < a. For x < a, f (x) = a − x + (y − x)2 + b − x and hence x∗ = y + 1. By strict convexity,
this implies that x∗ = y + 1 if y < a − 1 and that x∗ ≥ a otherwise. Clearly, x∗ ≤ b, that is,
x∗ ∈ [a, b], which, in turn, implies that x∗ = a for y ∈ [a − 1, a). Similar calculations reveal that
x∗ = y − 1 if y > b + 1 and x∗ = b if y ∈ (b, b + 1].

To summarize, x∗ ∈ [y − 1, y + 1] for any a, b, y ∈ R and x∗ = y, whenever a ≤ y ≤ b. In
particular, X̂n

m−1 ∈ [Ym−1 − 1, Ym−1 + 1] and X̂n
m+1 ∈ [Ym+1 − 1, Ym+1 + 1] for any n ≥ m + 1.

Hence, on the event

Am := {Ym−1 + 1 ≤ Ym ≤ Ym+1 − 1},
Ym ∈ [X̂n

m−1, X̂
n
m+1] and, consequently, X̂n

m = Ym. This, in turn, implies that X̂n
1:m = X̂m+1

1:m for
all n ≥ m + 1 and the existence of the limit (1.2) on any of Ak , k ≥ m + 1. Clearly, the Ak’s
occur infinitely often and hence, as in the discrete case, X̂n

1:m ceases to change, starting from
some random, but P-a.s. finite, time n. In particular, (1.2) holds P-a.s.

However, splitting the optimal trajectory into unrelated segments is not the only way to get the
convergence in (1.2): the following example shows that the limit may exist without ever being
actually attained.
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Example 2.2. Consider the linear Gaussian HMM with

μ(u) = 1√
2π

e−u2/2, q(u, v) = 1√
2π

e−(u−v)2/2, p(x, y) = 1√
2π

e−(x−y)2/2.

In this case, the conditional law of X1 : n, given Y1 : n, is Gaussian and hence

X̂n
1 : n = E(X1 : n|Y1 : n).

For any fixed m ≥ 1, the process X̂n
1:m = E(X1:m|Y1 : n), n ≥ m, is a uniformly integrable vector-

valued martingale and hence the limit (1.2) exists by the martingale convergence. In fact, Kalman
linear filtering theory (see, e.g., [11]) guarantees that in this case (of controllable and observable
dynamics) the stronger P-a.s. exponential convergence holds (see also Remark 3.2 below).

Moreover, E(X1:m|Y1 : n) is a deterministic linear map of Y1 : n and a calculation reveals that
it actually depends on each one of the components in Y1 : n. Since Y1 : n is a non-degenerate
Gaussian vector,

P(X̂n
j = X̂n′

j , for some j ≤ m) = 0

for any n′ > n ≥ m.

Finally, the next example demonstrates that a finite limit in (1.2) may not exist, even when the
hidden state chain is positive recurrent and has countably many states. In fact, it also shows that
the optimal MAP path may not be an adequate estimate: in this case, a trajectory of a positive
recurrent chain V is estimated as a constant trajectory, diverging to infinity, as n → ∞.

Example 2.3. Consider the HMM with the hidden state process Xn = (Un,Vn), consisting of
independent components U and V . The process U = (Un)n≥1 is a sequence of i.i.d. random
variables uniformly distributed over [0,1].

V = (Vn)n≥1 is a random walk on positive integers with reflecting boundary at {1} and the
transition probabilities P(1,1) = 1 − ε, P(1,2) = ε and, for i ≥ 2,

P(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
(i/(i + 1))2

1 + (i/(i + 1))2
, j = i + 1,

ε
1

1 + (i/(i + 1))2
, j = i − 1,

1 − ε, j = i,

(2.2)

where ε > 0 is a small fixed constant (in fact, we shall later choose ε < e−2/(1 + e−2) =
0.119 . . .). V is a positive recurrent Markov chain with the unique invariant distribution

π(j) =

⎧⎪⎨
⎪⎩

1
5C

(
1 + ( 1

2

)2)
, j = 1,

C
1

j2

(
1 +

(
j

j + 1

)2)
, j > 1,

(2.3)
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where C is the normalization constant, independent of ε. We shall assume that V is stationary,
that is, it is started from V1 ∼ π . Stationarity is not really required in what follows and is solely
a matter of aesthetics (e.g., P(V1 = j) = C/j2 will work as well).

Let a0 = 0, ai = 8
∑i

j=1(1/9)j , i = 1,2, . . . , and set Ai = [ai−1, ai), i ≥ 1. Denote by �i =
8(1/9)i the length of the interval Ai and note that [0,1) = ⋃∞

i=1 Ai .
Now, consider the observation density

p((u, v), y) = 1{y∈[0,1]}1{u/∈⋃v
i=1 Ai } +

v∑
i=1

�−1
i 1{(u,y)∈Ai×Ai }.

As we show below, the MAP estimates of U1 : n and V1 : n are given by4:

Ûn
m =

∞∑
j=1

aj−11{Ym∈Aj }, m = 1, . . . , n,

(2.4)

V̂ n
m =

{
2, j∗(n) = 1,
j∗(n), j∗(n) > 1,

where j∗(n) := max{j :
∑n

k=1 1{Yk∈Aj } > 0}. Since all Aj ’s have positive Lebesgue measure,
j∗(n) ↗ ∞ as n → ∞ and, consequently, for any fixed m ≥ 1,

lim
n→∞ V̂ n

m = lim
n→∞ j∗(n) = ∞, P-a.s.

Before proving (2.4), we shall briefly explain why the optimal path of such a form should be
anticipated. Note that since Ui ’s are uniformly distributed in [0,1], the choice of Ûn

i ’s influences
the likelihood (1.1) only through the observation densities. More precisely, whenever {Ym ∈ Ai}
is observed, the maximal gain of �−1

i is obtained if Ûn
m ∈ Ai and V̂ n

m ≥ i are chosen. On the other

hand, the transition probabilities of (2.2) favor paths V̂ n
1 : n without jumps. Hence, the optimal

path V̂ n
1 : n should be constant and large enough to allow access to the narrowest Ai visited by

Ym’s so far, that is, greater or equal to j∗(n). However, if constant V̂ n
1 : n is chosen, it cannot be

too large, as this would decrease the likelihood through the term π(V̂ n
1 ), due to the fast tail decay

of the initial distribution π . This heuristics is implemented by an appropriate balancing between
all the ingredients of the model.

We shall first check (2.4) in the case j∗(n) > 1. To this end, consider the ratio

Ln((u1 : n, v1 : n), Y1 : n)

Ln((Û
n
1 : n, V̂

n
1 : n), Y1 : n)

= π(v1)

π(j∗(n))

n∏
m=2

P(vm−1, vm)

P (j∗(n), j∗(n))

n∏
m=1

p((um, vm),Ym)

p((Ûn
m, j∗(n)), Ym)

(2.5)

for an arbitrary u1 : n and v1 : n. Let N be the number of jumps in v1 : n and v∗(n) = maxk=1,...,n vk .
Note that P(vm−1, vm) = 1 − ε when vm−1 = vm and P(vm−1, vm) ≤ ε otherwise. Hence, as

4The choice of Ûn
m is not unique, unless the lexicographic order is imposed: for example, Ûn

m := Ym yields the same
value of the likelihood.
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P(j∗(n), j∗(n)) = 1 − ε,

n∏
m=2

P(vm−1, vm)

P (j∗(n), j∗(n))
≤

(
ε

1 − ε

)N

.

Further, note that on the event {Ym ∈ Ai}, p((um, vm),Ym) ≤ 1 ∨ �−1
i = �−1

i and p((Ûn
m, j∗(n)),

Ym) = �−1
i , thus

p((um, vm),Ym)

p((Ûn
m, j∗(n)), Ym)

≤ 1.

Moreover, on {Ym ∈ Aj∗(n)},

p((um, vm),Ym)

p((Ûn
m, j∗(n)), Ym)

≤ 1{v∗(n)<j∗(n)} + �−1
j∗(n)1{v∗(n)≥j∗(n)}

�−1
j∗(n)

≤ �−1
v∗(n)∧j∗(n)

�−1
j∗(n)

.

Plugging these inequalities into (2.5), we get

Ln((u1 : n, v1 : n), Y1 : n)

Ln((Û
n
1 : n, V̂

n
1 : n), Y1 : n)

≤ π(v1)

π(j∗(n))

(
ε

1 − ε

)N �−1
v∗(n)∧j∗(n)

�−1
j∗(n)

(2.6)

= π(v1)

π(v∗(n))
ε̃N π(v∗(n))

π(j∗(n))

�−1
v∗(n)∧j∗(n)

�−1
j∗(n)

,

where we define ε̃ := ε/(1 − ε) for the purposes of brevity. Since N ≥ v∗(n) − v1,

π(v1)

π(v∗(n))
ε̃N ≤ π(v1)

π(v∗(n))
ε̃v∗(n)−v1 ≤

(
v∗(n)

v1

)2 1 + (v1/(v1 + 1))2

1 + (v∗(n)/(v∗(n) + 1))2
ε̃v∗(n)−v1

≤
(

v∗(n)

v1

)2

ε̃v∗(n)−v1,

where, in the second inequality, we have used the expression for π(j), j > 1, from (2.3). In fact,
the inequality is also true for v∗(n) = v1 = 1, as both the right- and left-hand sides become 1,
and for v∗(n) > v1 = 1, as π(1) is less than C 1

j2 (1 + (
j

j+1 )2) evaluated at j := 1.

The function x �→ x2ε̃x attains its maximum at x∗ = 2/ log ε̃−1 and is strictly decreasing on
(x∗,∞). Hence, with ε̃ < e−2, that is, with ε < e−2/(1+ e−2), for any y > x ≥ 1, (y/x)2ε̃y−x <

1 and hence

π(v1)

π(v∗(n))
ε̃N ≤ 1. (2.7)

The equality holds if and only if v1 : n is a constant path, that is, vm = v∗(n) for all m = 1, . . . , n.
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Further, if v∗(n) ≤ j∗(n), then

π(v∗(n))

π(j∗(n))

�−1
v∗(n)∧j∗(n)

�−1
j∗(n)

≤
(

j∗(n)

v∗(n)

)2 1 + (v∗(n)/(v∗(n) + 1))2

1 + (j∗(n)/(j∗(n) + 1))2
(1/9)j

∗(n)−v∗(n) (2.8)

≤
(

j∗(n)

v∗(n)

)2

(1/9)j
∗(n)−v∗(n) ≤ 1, (2.9)

where the latter inequality holds since 1/9 < e−2/(1 + e−2).
The sequence π(j) attains its unique maximum at j := 2 and is strictly decreasing for j ≥ 2.

Hence, if v∗(n) > j∗(n) ≥ 2, then

π(v∗(n))

π(j∗(n))

�−1
v∗(n)∧j∗(n)

�−1
j∗(n)

< 1.

Plugging (2.7) and (2.8) into (2.6) yields the following inequality for any u1 : n and v1 : n:

Ln((u1 : n, v1 : n), Y1 : n) ≤ Ln((Û
n
1 : n, V̂

n
1 : n), Y1 : n),

which saturates if and only if vm = j∗(n), m = 1, . . . , n, thus verifying the optimality of (2.4) on
the event {j∗(n) > 1}.

We shall omit the details in the case {j∗(n) = 1}, which is treated similarly: the optimal value
V̂ n

m = 2 is obtained since π(j) is maximal at j = 2. Of course, as j∗(n) eventually leaves the
state 1, the exact value is irrelevant for the main point of the present example, that is, the diver-
gence limn→∞ V̂ n

m = ∞.

3. Convergence in the case of log-concave densities

In this section, we establish the existence of the limit (1.2), deducing it from certain strong log-
concavity properties of the densities q and p. Hereafter, the following assumptions are in force:

(a1) the initial state density μ is a C2(R) log-concave function on R and − logμ(u) ≥ 0;
(a2) the hidden state transition density q is a C2(R2) log-concave function, namely5 q(u, v) ∝

e−α(u,v), where α(u, v) is a non-negative twice continuously differentiable convex func-
tion on R

2;
(a3) the observation density p is a C2(R) log-concave function in the first argument:

p(x, y) ∝ e−γ (x,y), where, for each y ∈ R, the function x �→ γ (x, y) is non-negative,
twice continuously differentiable and strongly convex on R with x∗(y) :=
argminx∈R γ (x, y) ∈ (−∞,∞) and

∂2

∂x2
γ (x, y) ≥ κ > 0 ∀x, y ∈ R,

with a constant κ ;

5f ∝ g means that f/g is constant.
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(a4) for some constant C,

− lim
n→∞

1

n
logLn(X1 : n,Y1 : n) ≤ C, P-a.s.;

(a4) there is a non-decreasing function g : R+ �→ R+, growing to +∞ not faster than a poly-
nomial, such that for all M > 0,

α(x, y) ≤ M �⇒
∣∣∣∣ ∂2

∂x∂y
α(x, y)

∣∣∣∣ ≤ g(M) ∀x, y ∈ R.

Remark 3.1. The log-concavity assumptions (a1)–(a3) are quite restrictive. For example, if Yn =
h(Xn) + wn with wn ∼ N(0,1), then

∂2

∂x2
γ (x, y) = 1

2

∂2

∂x2

(
y − h(x)

)2 = (h′(x))2 − (
y − h(x)

)
h′′(x),

which typically will not admit the uniform lower bound of (a3), unless h is linear, that is,
h′′(x) ≡ 0.

If the assumption (a3) is satisfied, then it implies that γ∗(y) := γ (x∗(y), y) ∈ (−∞,∞) for all
y ∈ R and, moreover,

γ (x, y) − γ∗(y) ≥ 1
2κ(x − x∗)2 ∀x, y ∈ R, (3.1)

which is essential to our approach.
Assuming that − logμ(u), α(u, v) and γ (x, y) are non-negative is equivalent to assuming that

they are lower-bounded by a constant, that is, that the corresponding densities are bounded.
The assumption (a4) is typically satisfied if the state process X is positively recurrent (explicit

recurrence tests can be found in [14]; see also [9]). Finally, (a5) is a technical assumption which
is satisfied in most models of practical interest.

Example 3.1. All of the above assumptions are satisfied for the linear HMM

Xn = aXn−1 + vn, n ≥ 1,

Yn = bXn + wn,

where |a| < 1 and b �= 0 are constants and v = (vn)n≥1 and w = (wn)n≥1 are independent se-
quences of i.i.d. random variables with

X0, vn ∼ fv(x) ∝ e−|x|2+δ

and wn ∼ fw(x) ∝ e−x2(1+c|x|δ′ )

for some δ ≥ 0 and δ′ ≥ 0, c ≥ 0.

Theorem 3.1. The limit in (1.2) exists P-a.s.
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Proof. To keep the notation simple, we shall prove the convergence in (1.2) for m = 1, that is,
the limit limn→∞ X̂n

1 exists P-a.s. As will be clear from the proof below, the same arguments
imply convergence of limn→∞ X̂n

i for any i ≤ m and hence of (1.2) for any fixed m ≥ 1.

To check limn→∞ X̂n
1 , P-a.s., we shall show that on a set of probability one, the series

X̂n
1 = X̂1

1 +
n∑

i=2

(X̂k
1 − X̂k−1

1 )

is convergent. The proof hinges on the system of inequalities (3.6) and (3.7), which stem from
the log-concavity properties assumed in (a1)–(a3). A pigeonhole principle type of argument
(Lemma A.1) shows that a sequence satisfying such inequalities must decay at least polyno-
mially backward in time, which, in turn, yields the desired conclusion.

To this end, introduce6

hn(x1 : n) := − logLn(x1 : n,Y1 : n)
(3.2)

= − logμ(x1) + γ (x1, Y1) +
n∑

m=2

(
α(xm−1, xm) + γ (xm,Ym)

)
.

By assumptions (a1)–(a3), limR→∞ inf‖x1 : n‖=R hn(x1 : n) → ∞ and, for any n ≥ 1, the function

x1 : n �→ hn(x1 : n) + α(xn,u) (3.3)

attains its global minimum at

X̃n
1 : n(u) := argmin

x1 : n

(
hn(x1 : n) + α(xn,u)

)
, u ∈ R.

The Hessian matrix of the function defined in (3.3) is positive definite uniformly over x1 : n ∈ R
n

and hence the minimum is unique and X̃n
1 : n(u) is the solution of

grad
(
hn(x1 : n) + α(xn,u)

) = 0.

The Jacobian matrix of the function on the left-hand side of this equation with respect to the
vector x1 : n coincides with the aforementioned Hessian matrix and hence is invertible at any
u ∈ R. Thus, by the implicit function theorem, u �→ X̃n

1 : n(u) is continuously differentiable on R.
The usual dynamical programming argument yields the following chain rules:

X̃n
j (x) = X̃m

j (X̃n
m+1(x)), x ∈ R, j < n,m = j, . . . , n,

(3.4)
X̂n

j = X̃m
j (X̂n

m+1).

6For k > �,
∑�

i=k · · · = 0 is understood.
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Hence, for j < n, and j ≤ m < n,

X̂n+1
j − X̂n

j = X̃m
j (X̂n+1

m+1) − X̃m
j (X̂n

m+1)
(3.5)

= (X̂n+1
m+1 − X̂n

m+1)

∫ 1

0

∂

∂s
X̃m

j

(
sX̂n+1

m+1 + (1 − s)X̂n
m+1

)
ds.

The following lemma is the key to a bound on the integrand in (3.5).

Lemma 3.1. Assume (a1)–(a3). Then, for j = 1, . . . , n − 1,∥∥∥∥ ∂

∂x
X̃n

1:j (x)

∥∥∥∥
2

≤ 2

κ

∣∣∣∣D12α(X̃n
j (x), X̃n

j+1(x))
∂

∂x
X̃n

j+1(x)
∂

∂x
X̃n

j (x)

∣∣∣∣ (3.6)

and ∥∥∥∥ ∂

∂x
X̃n

1 : n(x)

∥∥∥∥
2

≤ 2

κ

∣∣∣∣D12α(X̃n
n(x), x)

∂

∂x
X̃n

n(x)

∣∣∣∣, (3.7)

where D12α(x, y) := ∂2

∂x ∂y
α(x, y) and κ is as in assumption (a3).

Proof. Recall that the function (3.3) is strongly convex and the spectral norm of its Hessian is
lower bounded by κ . Hence, for any 1 ≤ j < n and u,v ∈ R, by (3.1),

κ

2
‖X̃j

1:j (v) − X̃
j

1:j (u)‖2 ≤ hj (X̃
j

1:j (v)) + α(X̃
j
j (v), u) − hj (X̃

j

1:j (u)) − α(X̃
j
j (u),u)

since, by definition, the minimum of hj (x1:j )+α(xj , u) over x1:j is attained at X̃
j

1:j (u). Further,
by the definition of X̃

j

1:j (v),

hj (X̃
j

1:j (v)) + α(X̃
j
j (v), v) ≤ hj (X̃

j

1:j (u)) + α(X̃
j
j (u), v),

which gives

κ

2
‖X̃j

1:j (v) − X̃
j

1:j (u)‖2 ≤ −α(X̃
j
j (v), v) + α(X̃

j
j (u), v) + α(X̃

j
j (v), u) − α(X̃

j
j (u),u). (3.8)

Plugging v := X̃n
j+1(x +h) and u := X̃n

j+1(x) into this with x ∈ R and using the chain rule (3.4),
we get

κ

2
‖X̃n

1:j (x + h) − X̃n
1:j (x)‖2 ≤ −α

(
X̃n

j (x + h), X̃n
j+1(x + h)

) + α
(
X̃n

j (x), X̃n
j+1(x + h)

)
+ α

(
X̃n

j (x + h), X̃n
j+1(x)

) − α(X̃n
j (x), X̃n

j+1(x)).

Since all of the functions appearing in the latter inequality are twice continuously differentiable,
dividing by h2 and taking h → 0 gives the bound (3.6). Similarly, with j := n, v := x + h and
u := x, (3.8) yields (3.7). �
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By assumption (a4),

�′ :=
{

lim
n→∞

1

n

n∑
j=2

(
α(Xj−1,Xj ) + γ (Xj ,Yj )

) ≤ C

}

is an event of full probability and hence it is enough to verify the claimed convergence for all
ω ∈ �′. Clearly, for an ω ∈ �′,

− logμ(X1) + γ (X1, Y1) +
n∑

j=2

(
α(Xj−1,Xj ) + γ (Xj ,Yj )

) ≤ 2Cn ∀n ≥ N(ω)

for an integer N(ω) < ∞. Then, X̂n
1 : n, being a minimizer, a fortiori satisfies

− logμ(X̂n
1 ) + γ (X̂n

1 , Y1) +
n∑

j=2

(
α(X̂n

j−1, X̂
n
j ) + γ (X̂n

j , Yj )
) ≤ 2Cn ∀n ≥ N. (3.9)

Hence, for a large fixed constant M > 4C and any n ≥ N ,

#{j :α(X̂n
j−1, X̂

n
j ) + γ (X̂n

j , Yj ) > M} ≤ 2Cn

M
=: ρn.

Similarly,

#{j :α(X̂n+1
j−1, X̂

n+1
j ) + γ (X̂n+1

j , Yj ) > M} ≤ 2C(n + 1)

M
= ρ(n + 1).

There is then an index m ∈ [n − 2ρn,n] such that

α(X̂n
m−1, X̂

n
m) + γ (X̂n

m,Ym) ≤ M and α(X̂n+1
m−1, X̂

n+1
m ) + γ (X̂n+1

m ,Ym) ≤ M,

and, by the assumption (a3),

|X̂n+1
m − X̂n

m| ≤
∣∣∣X̂n+1

m − argmin
x∈R

γ (x,Ym)

∣∣∣ +
∣∣∣X̂n

m − argmin
x∈R

γ (x,Ym)

∣∣∣
≤

√
2

κ

(
γ (X̂n+1

m ,Ym) − γ∗(Ym)
)1/2 +

√
2

κ

(
γ (X̂n

m,Ym) − γ∗(Ym)
)1/2

≤
√

2

κ
γ (X̂n

m,Ym) +
√

2

κ
γ (X̂n+1

m ,Ym) ≤
√

8M

κ
.

Plugging this estimate into (3.5), we get (for j := 1)

|X̂n+1
1 − X̂n

1 | ≤
√

8M

κ

∫ 1

0

∣∣∣∣ ∂

∂s
X̃m−1

1

(
sX̂n+1

m + (1 − s)X̂n
m

)∣∣∣∣ds. (3.10)
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Introduce

X̌m
m(s) := sX̂n+1

m + (1 − s)X̂n
m,

X̌m
j (s) := X̃m−1

j (X̌m
m(s)), j = 1, . . . ,m − 1,

and define

cj (s) := 2

κ
|D12α(X̌m

j (s), X̌m
j+1(s))|, j < m,

bj (s) :=
∣∣∣∣ ∂

∂x
X̃m−1

j (X̌m
m(x))

∣∣∣
x:=s

∣∣∣∣.
Then, from (3.6) and (3.7) (the dependence on s is now omitted for brevity),

j∑
i=1

b2
i ≤ cj bjbj+1, j < m − 1, (3.11)

m−1∑
i=1

b2
i ≤ cm−1bm−1 (3.12)

and (3.10) reads

|X̂n+1
1 − X̂n

1 | ≤
√

8M

κ

∫ 1

0
b1(s)ds. (3.13)

Lemma 3.2. For any s ∈ [0,1], x > 0 and g(·) as in (a5),

#

{
j < m : cj (s) >

2

κ
g(x)

}
≤ 4C

x(1 − 2ρ)
m. (3.14)

Proof. The function u �→ minx1 : n
(hn(x1 : n) + α(xn,u)) is convex and hence

m∑
j=2

α(X̌m
j−1, X̌

m
j ) ≤ hm−1(X̌

m
1:m−1) + α(X̌m

m−1, X̌
m
m)

= min
x1:m−1

(
hm−1(x1:m−1) + α

(
xm−1, sX̂

n+1
m + (1 − s)X̂n

m

))
≤ s min

x1:m−1

(
hm−1(x1:m−1) + α(xm−1, X̂

n+1
m )

)
+ (1 − s) min

x1:m−1

(
hm−1(x1:m−1) + α(xm−1, X̂

n
m)

)
= s

(
hm−1(X̂

n+1
1:m−1) + α(X̂n+1

m−1, X̂
n+1
m )

)
+ (1 − s)

(
hm−1(X̂

n
1:m−1) + α(X̂n

m−1, X̂
n
m)

)
≤ 2C(n + 1),
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where the latter inequality follows from (3.9). Hence,

#{j ≤ m :α(X̌m
j−1, X̌

m
j ) > x} ≤ 2C(n + 1)

x

and, since m ≥ (1 − 2ρ)n, (3.14) follows from the assumption (a5). �

Now, by Corollary A.1 in the Appendix, applied to (3.11)–(3.12) and (3.14), for any β > 1,
there is a constant Cβ such that

b1 ≤ Cβm−β ≤ Cβ(1 − 2ρ)−βn−β (3.15)

for all sufficiently large n and, thus, by (3.13), the sequence |X̂n+1
1 − X̂n

1 |, n ≥ 1, is summable,
which verifies the existence of the limit (1.2). �

Remark 3.2. When the hidden state process is a Gaussian autoregression, that is, when α(x, y) =
1
2 (y − bx)2 with a constant b �= 0, |D12α(x, y)| ≡ b and Lemma A.1(1) implies the exponential
bound in (3.15), confirming the results deducible from Kalman linear filtering theory.

4. Concluding remarks

As indicated by the examples of Section 2 and the partial results of Theorem 3.1, the convergence
in (1.2) appears to be a non-trivial issue. Analogous problems have been discussed in the engi-
neering literature. In fact, the MAP path estimation can be viewed as an optimal control problem,
in which one is required to minimize the cost functional hn(x1 : n) defined in (3.2), where the term
α(xm−1, xm) is interpreted as the cost incurred by the control effort (needed to move from xm−1
to xm) and γ (xm,Ym) is the cost paid for the deviation of the state from Ym. This setting appears
in [1], Chapter I, Section 1.7, as the “smoothing” problem and, in the control literature, is often
referred to as the tracking problem. From the control theory perspective, the existence of the limit
in (1.2) means that the optimal control and the corresponding optimal trajectory cease to depend
on the future values of the exogenous signal Y .

Among other related questions, the convergence (1.2) of the optimal trajectory is part of the
“asymptotic control theory” program initiated by R. Kalman, R. Bellman and R. Bucy, at the
dawn of modern control theory. In the linear state/quadratic cost (LQ) setting of R. Kalman, the
control problem admits an elegant closed-form solution for each fixed horizon n and the study of
the limit (1.2) reduces to the stability analysis of the associated Riccati equation (a comprehen-
sive treatment of the LQ problem can be found in, e.g., [11]).

To the best of our knowledge, asymptotic analysis beyond the LQ case has been carried out
only for a limited number of nonlinear models. Bellman and Bucy [2] found a remarkable ex-
plicit solution to a quite general scalar continuous-time control problem, amenable to asymptotic
analysis. A vector control problem with linear state dynamics and convex costs was studied in [3].

While much progress has been made in the optimal control theory on the infinite horizon
(see, e.g., [7,15]), we were not able to track any results directly applicable to the question under
consideration.
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Another possible connection, remaining elusive at the moment, is to the stability theory of
nonlinear filtering equations, developed during the last decade (see, e.g., the survey [8]).

Appendix: A supporting lemma

Lemma A.1. Consider the system of inequalities

j∑
i=1

b2
i ≤ bjbj+1cj , j = 1, . . . , n − 1,

(A.1)
n∑

i=1

b2
i ≤ bncn,

where bi and ci , i = 1, . . . , n, are non-negative real numbers, and let θ and θ ′ be arbitrary
positive constants:

(1) If ci ≤ θ , i = 1, . . . , n, then

b1 ≤ √
θe exp

(
− n

2e(θ2 ∨ θ)

)
for n ≥ θ2e. (A.2)

(2) If, for a non-decreasing non-negative function g : R+ �→ R+,

#{i ≤ n : ci ≥ g(x)} ≤ θn

x
∀x > 0, (A.3)

and cn ≤ θ ′, then, for any p ∈ (0,1) and � > θ ,

b1 ≤ √
g(�)n−p�/(4θ) for n >

(
�(θ ′2 ∨ g(�))

θ

)1/(1−p)

. (A.4)

(3) If only (A.3) holds, then, for any p ∈ (0,1) and � > θ ,

b1 ≤ g(2θn)
√

g(�)n−p�/(4θ) for n >

(
�(1 ∨ g(�))

θ

)1/(1−p)

. (A.5)

Proof. (1) The second inequality in (A.1) and cn ≤ θ together imply that b2
n ≤ bnθ and, in turn,

that b2
1 + · · · + b2

n ≤ θ2. Fix a constant η ∈ (0,1) and let m1 := �θ2/η�. Then, at most half of the
bi ’s with i ∈ [n− 2m1, n] are greater than

√
η and hence there is an index k1 ∈ [n− 2m1, n] such

that bk1 ≤ √
η and bk1+1 ≤ √

η. The inequality corresponding to j := k1 in (A.1) then gives the
bound b2

1 + · · · + b2
k1

≤ bk1bk1+1ck1 ≤ ηθ .
Similarly, let m2 := �θ/η�. There is then an index k2 ∈ [k1 − 2m2 : k1] such that bk2 ≤ η and

bk2+1 ≤ η and, again applying (A.1), b2
1 + · · · + b2

k2
≤ bk2bk2+1ck2 ≤ η2θ . This argument can be
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iterated at least ⌊
n

2(m1 ∨ m2)

⌋
=

⌊
ηn

2(θ2 ∨ θ)

⌋

times and thus

b2
1 ≤ θη�1/2ηn/(θ2∨θ)� ≤ θ

η

(
(ηη)1/2/(θ2∨θ)

)n
.

The best rate is obtained at η := e−1, which yields the bound (A.2).
(2) For a fixed � ≥ θ , by (A.3),

#{i ≤ n : ci ≥ g(�)} ≤ θn

�
:= rn (A.6)

and thus at least half of the ci ’s with i ∈ [n−2rn,n] do not exceed g(�). Fix a constant p ∈ (0,1)

and let η := n−p/2. Suppose that for all i ∈ [n − 2rn,n] such that ci ≤ g(�), either bi ≥ η or
bi+1 ≥ η, or both. Then,

#{i ∈ [n − 2rn :n] :bi ≥ η} ≥ rn.

But, on the other hand, by the second inequality in (A.1) and as cn ≤ θ ′, b2
n ≤ bnθ

′ and b2
1 +· · ·+

b2
n ≤ θ ′2, we have

#{i ∈ [n − 2rn :n] :bi ≥ η} ≤ θ ′2

η2
= θ ′2np.

This contradicts the previous estimate if n is large enough, namely, if n > (�θ ′2/θ)1/(1−p). Thus,
for such n, there is an index m1 ∈ [n − 2rn :n] such that bm1 ≤ η, bm1+1 ≤ η and cm1 ≤ g(�).

Now, by the inequality in (A.1) corresponding to j := m1,

b2
1 + · · · + b2

m1
≤ bm1bm1+1cm1 ≤ η2g(�) (A.7)

for which the above consideration can be repeated. Namely, by (A.6), there are at least rn indices
i ∈ [m1 −2rn,m1] for which ci ≤ g(�). Suppose that, for all of them, either bi ≥ η2 or bi+1 ≥ η2,
or both. Then

#{i ∈ [m1 − 2rn :m1] :bi ≥ η2} ≥ rn,

while (A.7) implies that

#{i ∈ [m1 − 2rn :m1] :bi ≥ η2} ≤ η2g(�)

η4
= npg(�),

which is a contradiction for n large enough, that is, for n > (�g(�)/θ)1/(1−p). Hence, there is an
m2 ∈ [m1 − 2rn :m1] such that bm2 ≤ η2, bm2+1 ≤ η2 and cm2 ≤ g(�), and thus, by (A.1), we
have

b2
1 + · · · + b2

m2
≤ η4g(�).
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This argument can be iterated at least �1/(2r)� times, which yields the bound

b2
1 ≤ g(�)(η1/2r )2 = g(�)n−p�/2θ .

(3) Note that b′
i := bi/g(2θn), i = 1, . . . , n, satisfy the inequalities (A.1) with the ci ’s replaced

by c′
i := ci , i = 1, . . . , n − 1, and c′

n := cn/g(2θn). By (A.3),

#{i ≤ n : ci ≥ g(2θn)} ≤ θn

2θn
= 1/2,

that is, all ci ’s are less than g(2θn) and, in particular, cn ≤ g(2θn), that is, c′
n ≤ 1. Moreover,

assuming that g(2θn) ≥ 1, we have

#{i ≤ n : c′
i ≥ g(x)} ≤ #{i ≤ n : ci ≥ g(x)} ≤ θn

x
∀x > 0.

Hence, by (A.4), we have

b′
1 ≤ √

g(�)n−p�/(2θ) for n >

(
�(1 ∨ g(�))

θ

)1/(1−p)

,

which, in turn, gives (A.5). �

Corollary A.1. Under the assumption (A.3) with g(·) growing to +∞ not faster than a polyno-
mial, for any β > 1, there is a constant Cβ , such that

b1 ≤ Cβn−β

for all sufficiently large n.

Proof. This follows from (3) of Lemma A.1. �
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