
Statistica Sinica (2011): Preprint 1

COMPOUND DECISION IN THE PRESENCE

OF PROXIES

Noam Cohen, Eitan Greenshtein and Ya’acov Ritov

Israeli CBS and The Hebrew University

Abstract: We study the problem of incorporating covariates in a compound decision

setup. It is desired to estimate the means of n response variables, which are indepen-

dent and normally distributed, and each is accompanied by a vector of covariates.

We suggest a method that involves non-parametric empirical Bayes techniques and

may be viewed as a generalization of the celebrated Fay-Herriot (1979) method.

Some optimality properties of our method are proved. We also compare it numeri-

cally with Fay-Herriot and other methods, in a real data situation, where the goal

is to estimate certain proportions in many small areas (Statistical-Areas). We also

demonstrate our approach through the baseball data set, originally analayzed by

Brown(2010).
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1 Introduction

The main purpose of this paper is to study and demonstrate how to incorporate compound

decision techniques (CD), or almost equivalently, empirical Bayes (EB) methods, in the presence

of explanatory variables. The ideas of CD/EB were developed in the 1950’s by Robbins (1951,

1955, 1964), see the review papers by Copas (1969) and Zhang (2003). Compound decision (or

Empirical Bayes) procedures, were shown to produce very efficient estimators in the simple setup

where we have independent observations, Y1, . . . , Yn, Yi ∼ Fµi , and it is desired to estimate µi,

i = 1, . . . , n. A major case, on which we will concentrate, is when Fµi = N(µi, 1).

We will focus on two types of EB procedures. One type is Parametric Empirical Bayes

(PEB) procedure, where µi, i = 1, . . . , n are assumed to be realizations of independent random

variables Mi, i = 1, . . . , n, Mi ∼ G, G = N(0, τ2), where τ2 is unknown and should be

estimated from the data. When n is large, the corresponding estimator (note, the exact variant

of the corresponding estimator, depends on the method of estimating τ2), resembles the James-

Stein estimator, see e.g., Efron and Morris (1973). The other type is the Non-Parametric

Empirical Bayes (NPEB) procedure, where the above distribution G is a member of a large non

parametric family G of distributions. Two recent NPEB methods and approaches are Brown

and Greenshtein (2009) and Jiang and Zhang (2009).
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The advantage of EB procedures, relative to more elementary (e.g., mle) procedures, oc-

cures as n grows, and may become very significant in high dimensional problems when n is large

(e.g., n ≥ 3 is needed for “Stein’s paradox” to hold). A special advantage of NPEB procedures

is expected in situations where the vector µ = (µ1, . . . , µn)
′ is sparse, see e.g., Greenshtein,

Park and Ritov (2008), Brown and Greenshtein (2009).

Since modern statistical problems often involve high dimensional and sparse estimation

problems, EB techniques should be embraced for such purposes, see, e.g., Efron (2003). However,

apart from literature in small area estimation, e.g., Rao (2003), which follows the seminal paper

of Fay and Herriot (1979), EB is hardly used in modern data analysis. A recent additional

approach, which is very much related to ours is Jiang and Zhang (2010). We became aware of

this later approach after completing most of this paper, we will elaborate on it in the sequel. One

important assumption in most theoretical discussions of EB is that of the exchangeability of the

sample. This assumption does not hold in most applied problems. Typically, each observation

Yi is accompanied by some explanatory variables Xi1, . . . , Xip, thus the observations are not

exchangeable any more and simple symmetric decision procedures have no appeal. We elaborate

in the following.

In our motivating example Yi ∼ B(mi, pi), the binomial distribution, and we need to esti-

mate p1, . . . , pn, certain proportions, in n (small) areas. The values of p1, . . . , pn are unknown

constants to be estimated. In addition to the sample Y1, . . . , Yn, we have a set of variables

X1, . . . ,Xn (fixed or random, but independent of Y1, . . . , Yn ) and hopefully Xi can serve as

proxies to pi, i = 1, . . . , n. For example one dimensional covariates Xi ∼ B(ki, p̃i) where p̃i

are “typically” close to pi; alternatively Xi may be a vector of known parameters of area i,

that might be “relevant” to the parameter of interest pi, for example the socio-economic level

of the region, its size, or mean age. We emphasize two elements. First, because of the prox-

ies, Y1, . . . , Yn cannot be considered as “permutation invariants” or “exchangeable”. Second,

we do not believe that the observations follow standard regression models. The covariates

are considered as proxies to pi, but they are statistically independent of the Y ’s (whose only

stochastic aspect comes from the binomial sampling), and may be only a rough approximation

to p1, . . . , pn.

Simple symmetric and permutation invariant procedures. In cases of total ignorance re-

garding the parameters of the variables in relation to their identity, e.g., a situation where

Yi ∼ N(µi, 1) and there is an exchangeable multivariate prior on (µ1, . . . , µn), procedures which

are permutation invariant have a special appeal. Permutation invariant procedures ∆ are such

that for every permutation π,

∆(Y1, . . . , Yn) = (a1, . . . , an) ⇐⇒ ∆(Yπ(1), . . . , Yπ(n)) = (aπ(1), . . . , aπ(n));

here ai ∈ A, where A is the ( abstract) action space. A simple class of exchangeable priors is

where µi are realizations of i.i.d Mi ∼ G, i = 1, . . . , n. The optimal procedures then belong to

the class of ‘simple symmetric decision functions’, i.e., procedures ∆ which are of the form:

∆(Y1, . . . , Yn) = (δ(Y1), . . . , δ(Yn)),



COMPOUND DECISION 3

for a given δ. For natural losses, given G, the optimal δ corresponds to the one dimensional

Bayes procedure. On the relation and asymptotic equivalence between the above two classes,

see Greenshtein and Ritov (2009). Given a loss function, consider an ‘oracle’ who knows the

values of µ1, . . . , µn, but is required to use a permutation invariant procedure. EB and CD

procedures may be viewed as an attempt to immitate the (unknown) procedure that an oracle

would use. This is a very natural goal under ‘total ignorance’ or ‘exchangeability’.

The appeal in using permutation invariant procedures and consequently EB procedures,

is lost when exchangeability is lost, as in cases where there are explanatory variables. Assume

n = n1 + n2 and it is known that the first n1 observations (say, hormone measurements), were

taken from men, while the last n2 were taken from women. Applying a permutation invariant

procedure is equivalent to ignoring this potentially important information/explanatory-variable.

However not all is lost, one may still apply EB procedure seperately on the first n1 observations

and on the last n2 observations. The idea is that after accounting for the explanatory variable

in this trivial manner, we arrive into (two groups of) exchangeable variables and applying

EB procedures seperately on each group becomes appealing. In a similar manner, we will

account for the information in the explanatory variables and then, after the information from

the explanatory variables is accounted for and the “accounted observations” are closer to being

exchangeable, we apply an EB procedure.

EB and CD are closely related notions and approaches. Under an EB formulation the

parameters µi, i = 1, . . . , n are independent realizations from an unknown distribution G and

the aim is to approximate the corresponding Bayes rule; under a CD formulation the aim is

to approximate the best decision rule within a class of procedures (e.g., simple-symmetric,

permutation invariant), for the given µ = (µ1, . . . , µn)
′. In this paper we emphasize the CD

approach. However, we will often use the more familiar EB notion, motivation and terminology.

Applying a (variant of) PEB method after accounting for the covariates, is in the spirit

of the paper of Fay and Herriot, as shown in sub-section 2.2; it is currently the most common

practice. Another approach for inference in the presence of explanatory variables is that of

Lindley and Smith (1972), it is a parametric empirical Bayes approach, though different than

that of Fay and Herriot.

In Section 2, we will suggest how EB could naturally be incorporated in problems with

explanatory variables. We extend the Fay-Herriot approach and present its PEB and NPEB

versions. We show asymptotic optimality of NPEB.

In section 3, we demonstrate the application of our suggested methods. We will model

sampling in the small statistical areas of the city of Tel-Aviv, Israel as considered in the recent

Israeli census, and evaluate the performance of the different estimators. We will also introduce

results under some perturbations of the model. The application involves estimation of certain

population’s proportions in small areas (Statistical Areas). The explanatory variables available

when estimating the proportion pi in statistical area i, are ‘Spatial’ and ‘Temporal’, based on

historical data, and data from neighboring statistical areas. We elaborate on comparing PEB

procedures, versus the more recent NPEB procedure, suggested by Brown and Greenshtein
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(2009). In Section 4 we demonstrate the performance of our method on the baseball data

studied by Brown (2009) and by Jiang and Zhang (2010).

Our ideas and techniques are meaningful in a genreral setup where Yi ∼ Fµi , but will be

presented for the case Fµi ≡ N(µi, 1), i = 1, . . . , n. In fact, as mentioned we will apply our

method for estimating proportions in the setup where Yi ∼ B(mi, pi), but applying an arcsin

transformation will bring us to the normal setup.

2 Collections of estimators induced by affine trans-

formations

The setup we consider is where we observe vectors V i = (Yi, Xi1, . . . , Xip), i = 1, . . . , n, where

Yi ∼ N(µi, 1) are independent response variables, andXij are explanatory variables independent

of Yi, i = 1, . . . , n, j = 1, . . . , p. Denote by Xn×p the matrix of the explanatory variables.

Denote, Y ′ = (Y1, . . . , Yn). The goal is to find a ‘good’ estimator µ̂ = µ̂(V 1, . . . ,V n), under

the risk

E||µ̂− µ||22.

In a nutshell the motivation and approach are as follows. Ideally it could be desired to

approximate the Bayes procedure, assuming (at leat tactically) that (V i, µi), i = 1, . . . , n, are

independent random vectors sampled from an unknown distribution Γ that belongs to a large

non-parametric family of distributions G. Then, the goal is to approximate the Bayes decision

δ∗ = argminδ EΓ||δ(Vi)−µi||2 by δ̂∗, and let µ̂ = (δ̂∗(V1), . . . , δ̂
∗(Vn)). However, this goal may

be too ambitious for p+ 1 dimensional observations V i when n is moderate due to the “curse

of dimensionality”. A possible approach, in the spirit of Lindley and Smith (1972), is to assume

that Γ belongs to a convenient parametric family, and this way the“curse of dimensionality”

and other difficulties are circumvented. The approach of Fay and Herriot (1979) may also be

interpreted this way. We, on the other hand, aim for the best permutational invariant estimator

with respect to Z1, . . . , Zn, where Zi are one dimensional random variables which are obtained

by a suitable transformation of (V 1, . . . ,V n). This transformation is estimated from the data.

2.1 preliminaries and definitions

We start from a general point of view, where initially there are no covariates. We observe

independent Yi ∼ N(µi, 1), i = 1, . . . , n. Let {T} be a collection of affine transformations

T (Y ) = TA,B(Y ) = AY − B, where A is an orthonormal matrix and B is a vector. Then

Z = T (Y ) is distributed as a multivariate normal with mean vector denoted ν, ν = Aµ −B,

and covariance matrix the identity. Let ∆ = ∆(Y ) be a fixed estimator of the vector µ, which

is not invariant under the group of affine transformations, i.e., ∆(T (Y )) ̸= T (∆(Y )). Then,

the pair ∆ and {T} defines a (non-trivial) class of decision functions {∆T }, T ∈ {T},

∆T (Y ) = T−1(∆(T (Y )).
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Let

T opt = argmin
T∈{T}

Eµ||∆T (Y )− µ||22 ≡ argmin
T∈{T}

R(T,µ);

here

R(T,µ) = Eµ||∆T (Y )− µ||22.

Our goal is to approximate T opt, and then estimate µ by an approximation of ∆Topt(Y ).

For every T ∈ {T}, suppose we have a good estimator R̂(T,µ) for R(T,µ). Let T̂ =

argminT∈{T} R̂(T,µ). The usual approach, which we will follow, is to use the estimator µ̂ =

∆T̂ (Y ). When the class {T} is not too large, we expect only a minor affect of over-fitting, i.e.,

R(T̂ ,µ) ≈ R(T opt,µ).

Example 1 (Wavelet transfrom) The above formulation describes many standard techniques.

In fact any harmonic analysis of the data that starts with transforming the data by a stan-

dard transformation (e.g., Fourier transform) follows this outline. A special case is when

T (Y ) = AY , where A is the matrix which transforms Y to a certain wavelet representa-

tion, then, typically, the mean of the transformed vector is estimated and transformed back,

see Donoho and Johnstone (1994). Suppose that, {T} = {A} is a collection of matrices that

correspond to a collection of wavelet bases/“dictionaries”. The problem of finding the most ap-

propriate basis/transformation, is related to that of basis-pursuit, see e.g., Chen, et.al. (2001).

The permutational invariant and non-linear decision functions ∆ in those studies is soft/hard-

thresolds, Lasso, etc. As mentioned, procedures of a special interest for us are parametric and

non-parametric EB.

Example 2 (Regression) Suppose that in addition to Y there is a fixed (deterministic!) ma-

trix X ∈ Rn×p. Consider the class of transformations T (Y ) = Y −B, B ∈ {B}, where {B}
is the collection of all vectors of the form B = Xβ, β ∈ Rp. Note, in particular, that our

transformations are non-random.

Remark 1 The formulation for a random set {T}, which is independent of Y is just the same.

In the last example when Xn×p is random, we condition on the explanatory variables and arrive

to a conditional inference version of the developement in the sequel. From a Bayesian perspec-

tive, assuming a joint distribution Γ as above, conditional independence of the random set {T}
and Y , conditional on the covariates, follows when we assume that Y and Xn×p are independent

conditional on µ. We will remark later on the case where the random set of transformations is

‘weakly dependent’ on Y .

The following fact is useful. Let Z = T (Y ). Then Zi ∼ N(νi, 1) where ν = T (µ), and

R(T,µ) = Eµ||∆T (Y )− µ||22 = Eν ||∆(Z)− ν||22 = R(I,ν). (1)

In the last equality I represents the identity transformation. When there is no real danger of

confusion, the dependence on T is suppressed. We will use equation (1) later to establish an

estimator R̂(T,µ) for R(T,µ).
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The following general three steps method, for estimating µ, suggests itself.

Step I: For every T , estimate R(T,µ) by R̂(T,µ).

Step II: Find T̂ = argminT R̂(T,µ).

Step III: Get the estimator: µ̂ = T̂−1(∆(T̂ (Y ))) ≡ ∆T̂ (Y ).

Note, T̂ may depend on Y .

We summarize. The idea in this subsection is that by an appropriate affine transformation,

that may depend on explanatory variables, we will arrive to a problem which is ‘easier’ for the

procedure ∆ to handle. For example, by choosing an appropriate wavelet basis we will arrive

to a sparse ν, which, roughly, is easier to handle/estimate the sparser it is. More generally, in

a rough sense, good permutaion invariant procedures ∆, “prefer” to estimate sparse vectors ν,

hence transforming the original problem to a sparse problem is useful. Indeed accounting for

the explanatory variables in a ‘good’ way, often brings us to a correponding sparse ν. More-

over, by accounting for explanatory variables in a good way through a suitable transformation,

the transformed variables may become (nearly) exchangeable; whence, applying a permutation

invariant procedure ∆ on the transformed variables becomes natural and appealing.

2.2 The case where ∆ is parametric empirical Bayes and the

Fay-Herriot procedure.

The purpose of this subsection is to provide motivation to the nonparametric approach, and

to give a unified treatment and presentation to the more classical Fay-Herriot approach and to

the nonparametric approach. We study the case where ∆ is a parametric empirical Bayes that

corresponds to the prior N(0, τ2), where τ2 is unknown. When τ2 is known the corresponding

Bayes estimator for µi is µ̂i =
τ2

τ2+1
Yi, and its risk is τ2

τ2+1
. When τ2 is unknown, we replace

τ2 by its estimate. For our level of asymptotics all consistent estimators τ̂2 induce equivalent

estimators µ̂i = τ̂2

τ̂2+1
Yi, and the corresponding estimators are asymptotically equivalent to

James-Stein estimator up to o(n), see Efron and Morris (1973). By working in this level of

asymptotic, the considerations in this subsection are valid for a wide class of PEB procedures,

corresponding to various consistent methods of estimating τ2, including the J-S procedure. In

particular, the risk in estimating a (deterministic) vector µ by PEB (or James-stein’s) method

equals:
n||µ||22

||µ||22 + n
+ o(n).

We now examine our three steps estimation scheme, adapted for parametric Empirical

Bayes (or, for a James-Stein estimator ∆). Note that, for every T and the corresponding ν and

Zi we have: R(I, ν) =
n||ν||22
||ν||22+n

+ o(n). Hence a plausible estimator for R(T,µ) is

R̂(T,µ) = R̂(I,ν) = max
{
0,

n(
∑

Z2
i − n)

(
∑

Z2
i − n) + n

}
= max

{
0,

n(
∑

Z2
i − n)∑
Z2

i

}
(2)

Our three steps scheme adapted for parametric empirical Bayes ∆ is the following.
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Step I: For every T estimate R(T,µ) by (2).

Step II: Find T̂ = argminT R̂(T,µ).

Step III: Get the estimator: µ̂ = T̂−1(∆(T̂ (Y ))) ≡ ∆T̂ (Y ).

Remark 2 In the case where {T} corresponds to {B = Xβ : β ∈ Rp}, the optimization step

II is trivial. We want to minimize the residuals
∑

Z2
i . This is achieved for B̃ which is the

projection of Y on the span of the columns of X, i.e., for T̂ (Y ) = Y − Xβ̂, where β̂ is the

ordinary least squares estimator. Upon realizing the last fact, it is easy to see that our above

suggested method is the method of Fay and Herriot.

2.3 A nonparametric empirical Bayes ∆

The statements and development in this sub-section are for nonparametric empirical Bayes

procedure ∆, as in Brown Greenshtein (2009), see appendix. A recent study in which the NPEB

procedure that was suggested by Jiang and Zhang (2009) is extended to handle covariates, is

Jiang and Zhang (2010).

Let Zi ∼ N(νi, 1) be independent. Denote by R(ν), the Bayes risk that corresponds to

the prior which is defined by the empirical distribution of ν. Let fν = 1
n

∑
ϕ(z − νi), where ϕ

is the density of a standard normal distribution. Then

R(ν) = 1−
∫

(f ′
ν(z))

2

fν(z)
dz = 1− Eν

(f ′
ν(Z))2

(fν(Z))2
, (3)

see Bickel and Collins (1983).

The following theorem follows from Brown and Greenshtein (2009). It is stated for a

triangular array set up, in order to cover situations of sparse ν ≡ νn. At stage n, Yi ∼
N(µn

i , 1) are independent and for any corresponding sequence Tn, Tn ∈ {Tn}, Zi ∼ N(νn
i , 1)

are independent, i = 1, . . . , n.

Assumption 1 For every α > 0 and every sequence Tn and the corresponding νn we have

maxi(ν
n
i )−mini(ν

n
i ) = o(nα).

Assumption 2 For some α0 > 0, n(1−α0)R(νn) → ∞ for every Tn and corresponding νn.

Theorem 1 Under Assumptions 1 and 2, for every sequence Tn,

R(I,νn) = Eνn ||∆(Z)− νn||22 = (1 + o(1))nR(νn) (4)

As explained in the appendix, the procedure ∆ in Brown and Greenshtein requires a bandwidth

h = hn, which approaches slowly to zero. The rate that implies the result in Theorem 1 is

hn

√
log(n) → ∞.
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Given Yi ∼ N(µi, 1), and a transformation T , T ∈ {T}. Let Zi be the i′th coordinate

of Z = T (Y ). The last theorem, and equations (1) and (3) suggest the following estimator

R̂(T,µ) for R(T,µ),

R̂(T,µ) = n−
∑

[
(f̂ ′

ν(Zi))

f̂ν(Zi)
]2, (5)

where the density fν and its derivative are estimated, for example, by appropriate kernel esti-

mates.

Only step I of our general three steps procedure should be adapted, and replaced by:

Step I: For every T and corresponding ν = ν(T ), estimate R(T,µ) by (5).

Remark 3 Step II could be computationally very complicated when the set {T} is large. In the

case where {T} corresponds to {B = Xβ : β ∈ Rp}, a plausible choice, which is computationally

convenient is to use the least-squares residuals for T̂ (Y ), as in the PEB case. This choice could

be far from optimal as will be demonstrated in the following Examples 3 and 4 and in the

simulations section.

Note, minimizing R(I,ν) with respect to ν = ν(T ) is equivalent to finding the “most

favorable” prior, rather than the more conventional task of finding the least favorable prior.

The above method is reasonable when the class {T} is not too large (in a VC dimension

sense) and the overfit affect is not significant, otherwise regularization may be required. Those

considerations are beyond the scope of our paper.

Choosing the least squares residuals, as mentioned in the remarks above, may be very

inefficient, since it might cause “smoothing” of the empirical distribution and low values of

(f ′
ν̃)

2, which by (3) implies high risk. This could be caused, e.g., by transforming a sparse

structure into a non-sparse one, as in the following Example 3, or by transforming a structure

with well separated groups into a mixed structure, as in the Example 4.

Example 3 Yi ∼ N(1, 1), i = 1, . . . , 2m, 2m = n. Suppose we have only one (useless) ex-

planatory variable Xi = 1 if i ≤ m and 0 otherwise. Projecting Y on X, we get B̃ ≈
(1, . . . , 1, 0, . . . , 0)′ and ν = µ− B̃ ≈ (0, . . . , 0,−1, . . . ,−1)′, which is much worst for empirical

Bayes estimation than the original µ: It is easy to see that nR(ν̃) = O(n), while nR(µ) = 0.

From Theorem 1 we conclude that as n → ∞ the advantage of the latter (trivial) transformation

compared to the least squares residuals in terms of the risk is o(n) compared to O(n).

Example 4 Let Yi ∼ N(µi, 1) are independent, where µi = µ1 for i = 1, . . . ,m and µi = −µ1

for i = m+1, . . . , 2m = n. Suppose Xi = (µi+Wi) ∼ N(µi, 1), independent of Yi, i = 1, . . . , n.

Let ν̃ = µ − B̃ where B̃ is the projection of Y on the (random) vector X = (X1, . . . , Xn)
′. It

easy to check that ν̃i → µi/(µ
2
1 + 1)− µ2

1Wi/(µ
2
1 + 1) as n → ∞. When µ1 → ∞, the empirical

distribution of ν̃ ≡ νn converges to that of a standard normal. The corresponding Bayes risk

R(ν̃n) converges to 0.5. Obviously the Bayes risk that corresponds to the trivial transformation,

for which νn = µn, converges to zero.
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2.4 Optimality of NPEB ∆.

Until this point the treatment was for a concrete procedure ∆ and a class {T} of transformations.

The purpose of this section is to advocate the choice of a non-parametric empirical Bayes ∆,

which is denoted ∆NP .

However, as noted, the optimization step (Step II) in the non-parametric approach may

be computationally intensive, so such dominance result might not be enough to persuade that

the non-parametric approach might be a good alternative to the parametric approach and to

the Fay Herriot procedure. In Theorem 2 below we show that for every two sequences µn and

Tn, the sequence of estimators, that is obtained by coupling Tn with ∆NP , asymptotically

dominates the sequence which is obtained when coupling the same Tn with any other sequence

of permutation invariant procedures ∆n.

Given a procedure ∆, a transformation T , and a mean vector µ, the corresponding risk

is denoted for simplicity as R∆(T,µ) ≡ R(T,µ) as before; for the case of nonparametric EB

procedure ∆NP , the corresponding risk is denoted RNP (T,µ). Similarly to the previous sub-

section our asymptotic analysis is of a triangular array setup.

Theorem 2 Let µn, ∆n and Tn be arbitrary sequences. Assume that for each n the procedure

∆n is simple symmetric. Further assume Assumptions 1,2. Then:

lim sup
RNP (T

n,µn)

R∆n(Tn,µn)
≤ 1.

Proof: Follows from Brown and Greenshtein (2009) and Theorem 1. Note that, the risk of the

optimal simple symmetric procedure equals nR(νn).

Conjecture: It seems that in Theorem 2, the condition that ∆n are simple symmetric for

every n, may be replaced by the weaker condition, that ∆n are permutation invariant for every

n. This should follow by an equivalence result in the spirit of Greenshtein and Ritov (2009),

though stronger. Note, the equivalence result in Greenshtein and Ritov (2009) would suffice

under the assumption that maxi(ν
n
i )−mini(ν

n
i ) = O(1); however, Assumption 1 allows a higher

order.

2.5 Remark

The following remark is for the case in which we are mainly interested, where {T} corresponds

to {B = Xβ}. Denote B = (B1, . . . , Bn)
′. In the application we have in mind the set {T} may

be random since Xij could be random. When the random set of transformations is independent

of Y , our above treatment applies by conditioning on the explanatory variables. We will be

interested in situations where the random set {T} may depend on Y , however we will require

that Yi is independent of Xi1, . . . , Xip for each i. Then the conditional distribution of Zi

conditional on Xi1, . . . , Xip is N(νi, 1), where (ν1, . . . , νn)
′ = ν = Aµ − B as before. When

the dependence of Yi on Xj1, . . . , Xjp, j ̸= i is not too heavy, a natural goal is still to try to
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approximate the best decision function for estimating νi among the decision functions which

are simple symmetric with respect to Z1, . . . , Zn. The conditional marginal distribution of Zi,

i = 1, . . . , n is still N(νi, 1) (i.e., the conditional distribution of Zi = Yi − Bi conditional upon

(Xi1, . . . , Xip)); however, we may not treat them as independent observations. Thus, the rates

of estimating fν and its derivative may become slower, and for heavy dependence, Theorems 1

and 2 might not hold. Similarly, rates of estimation of τ2
n, in order to apply the PEB procedure,

could be slow. However, when the dependence is not “too heavy” we may expect Theorems 1

and 2 to hold under the assumption that Yi is independent of Xi1 , . . . , Xip for each i.

2.6 Intermidiate Discussion and Summary

In this subsection we will summarize and compare the various approaches, elaborating on the

approach of Fay and Herriot and of Jiang and Zhang, in addition to our suggested approach.

We will take the liberty to follow those approaches just in “spirit” in this subsection. From

a compound decision (non-Bayesian) perspective all the approaches assume that Y is a mul-

tivariate normal random vector with mean vector µ, i.e., Y = µ + ϵ, where ϵ is multivariate

normal with mean zero. Given a matrix X of explanatory variables let ξ′ be the projection of

µ on the linear space spanned by the collumns of X. Then we may write µ = ξ′ + ξ, where

ξ′ is orthogonal to ξ. Assume for convenience that X is non-singular, then there is a unique β

that satisfy:

Y = Xβ + ξ + ϵ.

Under a Bayesian formulation the vector ξ is consisted of i.i.d. sampled variables ξi ∼ G, often

G is assumed normal. Under Fay-Herriot approach, which is especially appealing when G is

assumed normal, we estimate β, using least square estimator β̂; then we estimate the mean

E(Y − Xβ̂) ≈ ξ of the ‘nearly’ multivariate normal vector (Y − Xβ̂) by a variant of the

James-Stein estimator, finally we transform back to obtain an estimator for µ. The approach

of Jiang and Zhang is similar, only they prefer to estimate the mean of Y − Xβ̂ by a non-

parametric mle as in Jiand and Zhang (2009). The later method is is appropriate for a general

distribution G under a Bayesian approach, or for a general vector ξ under a compound decision

approach. Our approach differ from that of Jiang and Zhang by suggesting to estimate the

mean of the transformed vector by the NPEB estimator that was suggested by Brown and

Greenshtein (2009), however this is not our main ”message” since both procedures have similar

performance. As demonstrated in Examples 3 and 4 if we use NPEB or a non parametric mle

procedure ∆, it is not clear that it is at all useful to transform the problem and estimate the

mean of Y −Xβ̂; estimating the mean of Y −Xβ̃, for β̃ ̸= β̂ could be far better.

Finding the appropriate alternative β̃, could be complicated especially computationally.

However, there are examples and applications where we could find such a better transformation

by intelligent guessing. A general scenario is the following. Suppose that we have a plausible

linear model with a certain β0, which works fine for most cases, but does not work for a few

outliers that behave differently than most cases. Applying a transformation with β̃ = β0,
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would bring us to a situation where the mean of Y −Xβ̃ is a sparse vector with many ”nearly”

zero components and a few components that are very different than zero; such a sparse mean

vector is often “easier to estimate” compared to estimation of the mean vector of Y − Xβ̂,

which could be far from sparse due to “oversmoothing”. In the example presented in Section

3, of estimating the vector of current proportions of registered people in various areas, a useful

explanatory variable is the corresponding vector of proportions from the previous year. A linear

relation with β0 = 1 is appropriate for most areas, excluding areas that went through a rapid

development in the last year. Indeed in our study of the census example in Section 3, we tried

in addition to β̂ a few more candidates that were chosen through an “intelligent guess”, and

not through a numerical search.

3 Census Example

3.1 Preliminaries

The city of Tel Aviv, Israel, is divided into 161 small areas called “statistical areas”, each

area belongs to a sub-quarter that includes about four additional statistical areas. The recent

Israeli census was based on administrative records corrected by samples. Thus the proportion

pi of people who are registered in area i among those who live in area i, , i = 1, . . . 161, were

of interest. The estimated pi, i = 1, . . . , n are used in order to adjust the administrative-

registration counts and get population estimates for each area. In the following example we

use the parametric bootstrap concept to evaluate the performance of various estimators. In

our parametric bootstrap we use for the parameters p1, . . . , pn, their values as estimated in the

recent census (where about 20% of the population was sampled). The mean of pi, i = 1, . . . , 161,

is 0.75 and their standard deviation is 0.13, their histogram is roughly bell shaped.

We will present a bootstrap study in which pi, i = 1, . . . , 161 are estimated based on

samples of size mi and corresponding simulated independent Ỹi, Ỹi ∼ B(mi, pi). Here Ỹi is the

number of people in the sample from area i, which are registered to area i.

In addition we will simulate covariates in our parametric bootstrap. We will simulate

temporal variables that correspond to historical data from each area i, and spatial covariates,

that correspond to samples from the neighboring areas of each area i. In the following we will

explore scenarios for the cases of: only temporal covariates, only spatial covariates, and both

temporal and spatial covariates. We will compare the performance of PEB, NPEB and other

methods. In all the analyzed situations, we will simulate binomial observations with sample

size mi ≡ m, for m = 25, 50, 100.

In order to reduce this setup to the above normal case, we apply an arcsin transformation

on our binomial observations Ỹi, i = 1, . . . , n, as in Brown (2008). Specifically, let

Yi =
√
4m arcsin

(√ Ỹi + 0.25

m+ 0.5

)
. (6)

Then, Yi are distributed approximately as N(
√
4m arcsin(

√
pi), 1). We estimate µi = E(Yi),
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by µ̂i, i = 1, . . . , n, as explained in sub-sections 2.3 and 2.3, and then let the estimate of pi,

i = 1, . . . , 161 equal,

p̂i = (sin(
µ̂i√
4m

))2. (7)

Let p = (p1, . . . , pn) and p̂ = (p̂1, . . . , p̂n)). We evaluate the performance of an estimator

according to the risk

Ep||p̂− p||22.

The risk is approximated through 1000 simulations for each entry in the tables in the sequel.

A different parametric EB approach for estimating proportions in small areas, that involves a

logistic regression model, may be found in Farell, et.al.

3.2 Temporal Covariates

We introduce now simulated scenarios with only Temporal covariates. We think of a process

where each year a sample of size m is taken from each area. Suppose we use the records of the

previous three years as covariates. Let T̃i be the number of people among the 3m that were

sampled in the previous three years from area i, which were registered to the area. Although T̃i

might be better modeled as a binomial mixture, we will model T̃i as B(3m, pit) for simplicity.

In order to (hopefully) have a linear relation between the response and explanatory variable,

we define our temporal covariates as:

Ti =
√
4m arcsin

(√ T̃i + 0.25

3m+ 0.5

)
. (8)

Note, if there is hardly any change from the previous three years to the current year in area i,

we will have pi ≈ pit and E(Ti) ≈ E(Yi).

In the following we will simulate two scenarios. One scenario is of no-change where pit = pi,

i = 1, . . . , 161. The other scenario is of a few abrupt changes; specifically, pi = pit, i =

17, . . . , 161, however pit = 0.3 < pi for i = 1, . . . , 16. Such abrupt changes could occur in areas

that went in previous years through a lot of building, internal immigration and other changes.

Since the empirical distribution of E(Yi) is roughly bell-shaped it is expected that the PEB

method will work well in the no-change scenario. Under the few abrupt changes, an advantage

of the NPEB procedure will be observed.

As mentioned in Section 2, the optimization step of the NPEB procedure is difficult.

We will try two candidate transformations Y − Bi, i = 1, 2, coupled with the NPEB, the

corresponding methods are denoted NPEB1 and NPEB2. NPEB1 corresponds to the least-

squares/Fay-Herriot transformation, while NPEB2 corresponds to the transformation Zi =

Yi − Ti (i.e., B2 = (T1, . . . , Tn)
′ ). The later transformation, although still sub-optimal when

coupled with a NPEB ∆, could occasionally perform better than the former, as also indicated by

Examples 3 and 4. In addition to comparing the risks of the PEB and NPEBi, i = 1, 2 methods,

we will also compare the the risk of the naive estimator, and of the regression estimator. The

regression estimator estimates µ̂i through the least squares predictor (i.e., µ̂ = Xβ̂), however
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Table 1:

Naive Reg NPEB1 NPEB2 PEB

m = 25 1.12 0.33 0.35 0.37 0.27

m = 50 0.56 0.17 0.18 0.18 0.14

m = 100 0.28 0.092 0.093 0.093 0.073

Table 2:

Naive Reg NPEB1 NPEB2 PEB

m = 25 1.12 1.66 0.75 0.49 0.68

m = 50 0.56 1.64 0.46 0.22 0.42

m = 100 0.28 1.62 0.26 0.11 0.24

it does not apply an additional PEB or NPEB stage. The Naive estimator simply estimates pi

by the corresponding sample proportion.

The no-change scenario is presented in Table 1. Each entry is based on 1000 simulated

realizations. Under no-change the temporal covariate is very helpful, and even the regression-

estimate, i.e. least squares linear predictor is doing very well. Over all, the Naive estimator is

the worst, NPEB1, NPEB2 and Regression are about the same, while the PEB is moderately

better than the other methods.

Next we consider the scenario of a few abrupt changes. In this scenario the regression

by itself is performing the worst, however an additional EB step is helpful. Here the NPEB2

procedure is the best, see Table 2.

3.3 Spatial Covariates

In this section we simulate a scenario with spatial covariates. Tel-Aviv is divided into sub-

quarters, where a few statistical areas define a sub-quarter. Each sub-quarter is defined by

about 5 statistical areas. For every i = 1, . . . , 161, we define the neighborhood of area i”, as all

the statistical areas other than area i, that belong to the same sub-quarter as area i.
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Table 3:

Naive Reg NPEB1 NPEB2 PEB

m = 25 1.12 1.41 0.72 0.75 0.64

m = 50 0.56 1.34 0.44 0.44 0.40

m = 100 0.28 1.31 0.26 0.28 0.23

Based on the census we have good estimates for pis- the proportion of people living in the

neighborhood of area i, who are registered to their areas. Those estimates are treated as the

“real” values in our simulations. The correlation between pi and pis, i = 1, . . . , 161 is 0.62.

For simplicity we will assume that for each i, the size of the sample from the neighborhood

of area i is 4m. Let S̃i be the number of people sampled from the neighborhood of i, who are

registered to their area. Although S̃i might be better modeled as a binomial mixture, we will

model S̃i as S̃i ∼ B(4m, pis) for simplicity. As in the case of Temporal covariates we define the

Spatial covariate for area i as:

Si =
√
4m arcsin

(√ T̃i + 0.25

4m+ 0.5

)
. (9)

As in the temporal case we will consider two NPEB estimates, corresponding to the projection/Fay-

Herriot and to the Zi = Yi−Si transformations. The results of our simulations are summarized

in Table 3. The advantage of the EB procedures is more noticeable for small m = 25. The

explanation is the following. Since the temporal covariate is not very strong, ν-the mean of the

transformed variables is not too sparse. When m is large, under the scale which is induced by

the variance of Zi, the points νi, i = 1, . . . , n, may be viewed as isolated (i.e., extremely non

sparse) and the smoothing of the EB is hardly effective. Hence the EB methods behave roughly

like the Naive estimator.

One could wonder whether the spatial covariates are helpful at all, for the non parametric

empirical Bayes, i.e, may be it is better not to transform the data at all and to apply ∆NP on

the original data taking T = I and ν = µ. However this option is slightly worst than the above

ones. The simulated risks that correspond to m = 25, 50, 100 are 0.84 , 0.5 and 0.28.

3.4 Spatial and Temporal Covariates.

In this sub-section we study the performances of our estimators when both the temporal and

spatial variables are introduced. As before we will apply the projection transformation for the

NPEB estimator. However, we will also try the transformations Zi = Yi − (αSi + (1 − α)Ti),
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Table 4:

Naive Reg NPEB1 NPEB2 NPEB3 NPEB4 PEB

m = 25 1.12 1.13 0.65 0.49 0.54 0.55 0.58

m = 50 0.56 1.06 0.4 0.22 0.28 0.38 0.37

m = 100 0.28 1.03 0.24 0.11 0.15 0.22 0.22

for α = 0, 0.3, 0.6. The corresponding estimators are denoted: NPEB1 (for the projection),

NPEB2, NPEB3 and NPEB4 correspondingly. For the temporal covariates we simulate the

scenario of 16 abrupt changes, the spatial covariates are as before. As may be expected, since

the spatial covariate is weak relative to the temporal, accounting for it causes extra unnecessary

smoothing. For the non-parametric EB procedure, indeed NPEB2 that corresponds to α = 0

has the best performance, which is also the optimal among all the seven methods.

4 Baseball Example

In this section we will analyze the Baseball data set, originally analyzed by Brown (2009) and

later by Jiang and Zhang (2010). Our analysis resambles that of Jiang and Zhang. The data

is consisted of batting records of each Major league player in 2005. For each player i, denote

by N1i and H1i the number of at bats and the number of hits he had in the first half of the

season; similarly N2i and H2i are the corresponding quantities for the second half. In addition,

for every player it is known whether he is a pitcher or a batter. For j = 1, 2 denote

Rji =
Hji

Nji
.

Note, in the example of the previous section the ”number of trials” or ”sample size” was

denoted mi, we use the notation Nji in order to keep notations close to those of Brown and of

Jiang and Zhang.

Our purpose is to predict the value of R2i for player i, based on the data from the first

half.

A reasonable model for the data is that conditional on Nji i = 1, ..., n, j = 1, 2, Hji ∼
Bin(Nji, pi), where pi is the (fixed in time) probability of a successful hit by player i. Thus a

reasonable approach is to estimate pi by p̂i and let our predictor for the value of R2i be R̂2i = p̂i,

i = 1, ..., n. So, similarly to our previous example we should estimate the proportions pi.

Denote Sj = {i|Nji ≥ 11}. The estimation of pi will be done only for players i, such that
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i ∈ S1. Validation of the prediction p̂i will be made only for players i such that i ∈ S2. The

size of S1 is 567, while the size of S1 ∩ S2 is 499.

The criterion for the performance of a predictor R̂2i, i = 1, ..., 499 , is based on the following

estimator of E
∑

i∈S1∩S2
(R̂2i −R2i)

2, denoted ˆTSER,

ˆTSER =
∑

i∈S1∩S2

(R̂2i −R2i)
2 −R2i(1−R2i)/N2i.

As a benchmark for the performance of R̂ we take the performance of the naive estimator

R̂2i = R1i, specifically the value ˆTSE0 =
∑

i∈S1∩S2
(R1i − R2i)

2 − R2i(1 − R2i)/N2i. We will

report the results of an estimator R̂2i, i = 1, ..., 499, through:

ˆTSER∗ =
ˆTSER

ˆTSE0

.

4.1 Covariates and transformations

We consider a few ”linear models” with the following covariates. One covariate for player i is

the number of trials N1i he had. Note, N1i corresponds to mi in the previous section. The

additional covariate is indicator of the event that the player is not a pitcher.

The value of N1i is potentially a useful covariate, since that a high value of N1i indicates

that the coach percieve player i as a good batter.

Our response variable for player i is:

Yi =
√
4 ∗N1iarcsin(

√
H1i + 0.25

N1i + 0.5
).

Note, in the above we transformed the variables and obtained a homoscedastic model.

Both Brown (2010) and JIang and Zhang (2010), worked in a heteroscedastic setup with the

variables Y ∗
i , where Y ∗

i = arcsin(
√

H1i+0.25
N1i+0.5

).

Jiand and Zhang (2010) considered the following linear models all include intercept. Using

their notations we denote the covariate N1i, the number of At Bat of player i, by AB. The

models they considered with respect to y∗
i are: i) AB ii) Pitcher iii) Pitcher+AB iv) Pitcher

+AB + Pitcher*AB. In the above we used the standard notations, where the last model includes

interaction of the variables AB and Pitcher. The corresponding models in terms of our response

variable Yi are: i) AB0.5+AB1.5 ii) AB0.5+AB0.5∗Pitcher iii) AB0.5+AB0.5∗Pitcher+AB1.5

iv)AB0.5+AB0.5∗Pitcher+AB1.5+AB1.5∗Pitcher. Note, the intercept variable is transformed

to AB0.5 when modelling with respect to Yi.

Again!, since we do not have a special insight/“intelligent guess” or an efficient computation

and searching algorithm, in each case we chose the transformation that corresponds to the least

squares β̂.
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4.2 Numerical Study.

We will report the results of the above estimator on the baseball data. The results are slightly

inferior compared to those achieved by the method WGMLEB of Jiang and Zhang, yet the

computation of our estimator seems significantly easier.

We will consider three ”models”. The explanatory variable N1i of the number At Bat

is denoted by AB in Jiang and Zhang. The models are PITCHER, AB, and PITCHER+AB.

We report on the performane of the following three methods. The variant of NPEB described

above, Strict Regression without a second stage of NPEB, and WGMLEB (weighted general

maximum likelihood empirical Bayes). The WGMLEB method had the best performance in

the study of Jiang and Zhang (2010).

Model i)

The corresponding ˆTSE
∗
R for WGMLEB, NPEB and REGRESSION are: 0.291, 0.353, 0.526

Model: ii)

The corresponding ˆTSE
∗
R for WGMLEB, NPEB and REGRESSION are: 0.204, 0.234, 0.343

Model iii)

The corresponding ˆTSE
∗
R for WGMLEB, NPEB and REGRESSION are: 0.175, 0.186, 0.214

Model iv)

The corresponding ˆTSE
∗
R for WGMLEB, NPEB and REGRESSION are: 0.167, 0.162, 0.200

In the analysis made by Brown (2009), the covariate AB was used implicitly, through the

estimation of the density f and its derivative ( see appendix) in his variant of NPEB. The

density at a point yi was estimated based on observations yk, with N1k ”close” to N1i. This

implicit use yielded ˆTSE
∗
R = 0.509 of the corresponding NPEB. The more direct approach we

took seems beneficial.

5 Discussion and Summary

In this paper we studied the problem of extending Empirical Bayes methods so they may be

naturally applied in situations where there are explanatory variables.

We suggested a general perspective in which the method of Fay and Herriot and our

newly proposed ”NPEB with covariates” method are special cases. We demonstrated through

Examples 3,4, and more generally through Theorem 2 that asymptotically the NPEB method

is advantageous over the method of Fay and Herriot and over a larger class of other methods.

We demonstrated it also in a real data example, where it may be seen that our newly proposed

method could be occasionally a good alternative to the method of Fay and Herriot in practical

situations.

Some computational aspects of our newly proposed method should be further studied, but

we showed that even sub-optimal (simpler to compute) versions of the method are advantageous.
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6 Appendix

NPEB procedure. We will follow the approach of Brown and Greenshtein (2009), see that

paper for further details.

Assume Zi ∼ N(νi, σ
2), i = 1, . . . , n, where νi ∼ G.

Let

f(z) =

∫
1

σ
φ(

z − ν

σ
)dG(ν).

It may be shown that the normal Bayes procedure denoted δGN , satisfies:

δGN (z) = z + σ2 f ′(z)

f(z)
. (10)

The procedure studied in Brown and Greenshtein (2009), involves an estimation of δGN , by

replacing f and f ′ in (10) by their kernel estimators which are derived through a normal kernel

with bandwidth h. Denote the kernel estimates by f̂h and f̂ ′
h we obtain the decision function,

(Z1, . . . , Zn)× z 7→ R:

δN,h(z) = z + σ2 f̂ ′
h(z)

f̂h(z)
. (11)

A suitable (straightforward) truncation is applied when estimating the corresponding mean

of points Zi for which f̂(Zi) is too close to zero and consequently |δN,h(Zi)−Zi| > 2 log(n). We

did not apply such truncation in our simulations in this paper. The default choice for the band-

width h ≡ hn, suggested by Brown and Greenshtein is 1/
√

log(n). See also, a cross-validation

method for choosing h, suggested by Brown, et.al., (2010), together with some suggested im-

provements of the above procedure. In our numerical study for both examples, we chose h = 0.4.

The procedure is not too sensitive to the choice of h.

References

Bickel, P. J. and Collins, J.R. (1983). Minimizing Fisher information over mixtures of

distributions. Sankhya Vol 45, No. 1, p 1-19.

Brown, L. D. (2008). In-Season Prediction of Bating Averages: A field test of Simple

Empirical Bayes and Bayes Methodologies. Ann. of App. Stat. 2 113-152.

Brown, L.D. and Greenshtein, E. (2009). Non parametric empirical Bayes and compound

decision approaches to estimation of high dimensional vector of normal means. Ann. Stat.

37, No 4, 1685-1704.

Brown, L.D, Greenshtein, E. and Ritov, Y. (2010). The Poisson compound decision problem

revisited. Manuscript.

Chen, S.S, Donoho, D.L., Saunders, M. A (2001). Atomic decomposition by basis pursuit.

SIAM Rev. Vol 43, Issue 1, 129-159.



COMPOUND DECISION 19

Copas, J.B. (1969). Compound decisions and empirical Bayes (with discussion). JRSSB 31

397-425.

Donoho, D.L. and Johnstone, I.M (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika 81 No. 3, 425-455.

Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors- an Empirical

Bayes approach. JASA 68 117-130.

Efron, B. (2003). Robbins, Empirical Bayes, and Microarrays (invited paper). Ann.Stat 31,

No. 2, 364-378.

Fay, R.E. and Herriot, R. (1979). Estimates of income for small places: An application of

James-Stein procedure to census data. JASA, 74, No. 366, 269-277.

Farrell, P.J., MacGibbon, B., Tomberlin, T.J. (1997). Empirical Bayes estimators of small

area proportions in multistage designs. Stat. Sinica 7 1065-1083.

Greenshtein, E., Park, J., Ritov, Y. (2008). Estimating the mean of high valued observations

in high dimensions. Journal of Stat. theory and pract. 2 No.3, 407-418.

Greenshtein, E. and Ritov, Y. (2009). Asymptotic efficiency of simple decisions for the com-

pound decision problem. The 3’rd Lehmann Symposium. IMS Lecture Notes Monograph

Series, J.Rojo, editor.

Jiang, W. and Zhang, C.-H. (2009). General maximum likelihood empirical Bayes estimation

of normal means. Ann. Stat. 37, No 4, 1647-1684.

Jiang, W. and Zhang, C.-H. (2010). Empirical Bayes in-season prediction of baseball bat-

ting averages. Borrowing Strength: Theory Powering Applications-A festschrift for L.D.

Brown. J.O. Berger, T.T. Cai I.M. Johnstone, eds. IMS collections Vol 6, 263-273.

Lindley, D.V. and Smith, A.F.M. (1972). Bayes estimates for the linear model. JRSSB 34,

No.1, 1-41.

Rao, J.N.K. (2003). Small area estimation. Wiley & Sons, New Jersey.

Robbins, H. (1951). Asymptotically subminimax solutions of compound decision problems.

Proc. Second Berkeley Symp. 131-148.

Robbins, H. (1955). An Empirical Bayes approach to statistics. Proc. Third Berkeley Symp.

157-164.

Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann.Math.Stat.

35, 1-20.



20 N. COHEN, E. GREENSHTEIN AND Y. RITOV

Zhang, C.-H.(2003). Compound decision theory and empirical Bayes methods.(invited pa-

per). Ann. Stat. 31 379-390.

Central Bureau of Statistics, Jerusalem, Israel

E-mail: noamc@cbs.gov.il

Central Bureau of Statistics, Jerusalem, Israel

E-mail: eitan.greenshtein@gmail.com

The Hebrew University of Jerusalem, Israel

E-mail: yaacov.ritov@gmail.com


