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Abstract:

The Ibragimov Hasminskii model postulates observing X1, . . . , Xm inde-
pendent, identically distributed according to an unknown distribution G and
Y1, . . . , Yn independent and identically distributed according to

∫
k(·, y)dG(y)

where k is known, for example, Y is obtained from X by convolution with
a Gaussian density. We exhibit sieve type estimates of G which are efficient
under minimal conditions which include those of Vardi and Zhang (1992) for
the special case, G on [0,∞], k(x, y) = 1

y
1(x ≤ y).
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1 Introduction

Let (U, Y ) be U×Y valued random elements on a probability space (Ω,A,P)
with U ∼ G unknown and Y ∼ Q where Q has density (with respect to some
known measure µ on the induced σ field on Y) given by

q(y) =
∫

q(y|u)dG(u), (1.1)

and the kernel q(·|·) is known. Let ∆ be a third variable independent of U
and Y such that ∆ ∈ {0, 1}, and P (∆ = 1) = λ ∈ (0, 1). Suppose we observe
a random sample of size n from (X, ∆), X ≡ ∆U + (1−∆)Y . Let m be the
number of observations such that ∆i = 1 and let λn = m/n. Our task is the
efficient estimation of G.

These models appear to have first formally been introduced and stud-
ied by Ibragimov and Hasminskii (1983), and we shall refer to them as (IH)
models. These authors, in fact, considered q(y|v) ≡ q(y|u, θ) where q is
smoothly parametrized by the Euclidean parameter θ. They obtained infor-
mation bounds for estimating θ in the presence of completely unknown G
and exhibited an efficient estimate of θ.

A convenient way of thinking about these models is that we have n in-
dependent pairs (Ui, Yi) where Ui ∼ G and Yi given Ui = u has density
q(·|u) and Xi = ∆iUi + (1 − ∆i)Yi. Ui is sufficient for G in (Ui, Yi) but
∆i = 0 creates a missing Ui so that we must use Yi. If there are no direct
observations on G (λ = 0) these models have been investigated under the
name of mixture models by many authors including Jewell (1982), Lindsay
(1983a,b,c), and Pfanzagl (1990). Typically, identifiable pieces of θ are es-
timable at rate n−1/2 but G can only be estimated poorly. A prototypical
example is the components of variance model considered by Neyman and
Scott (1948) where Yi = (Yi1, Yi2), Yij = Ui +σεij and the εij are independent
N(0, 1). σ2 is efficiently estimated by 1

2n

∑n
i=1(Yi1− Yi2)

2 but the problem of
estimating G is equivalent to the normal deconvolution problem which per-
mits best rates of (log n)−1/2 – see Fan (1991) for example. In the IH models
both G and θ can be estimated at rate n−1/2.

Recently, Vardi and Zhang (1992) focused on the special IH model (with
θ known) where U > 0 and q(y|u) = u−11(y ≤ u), that is, Y = V U where
V is nonnegative and U is a U(0, 1) random variable independent of V .
They showed, without further conditions that the nonparametric maximum
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likelihood estimate (NPMLE) of G is efficient. In Bickel, Klaassen, Ritov,
Wellner (1993) (BKRW) we show how to construct information bounds for
estimation of “smooth” functions of G and exhibit readily calculable effi-
cient estimates for (U, Y ) ∈ R2, under very strong conditions on the kernel
q(·|·) and the smoothness and support of G. Our estimate Ĝ maximizes
λn

∫
log g(u)p∗1n(u) + (1− λn)

∫
log q(y)p∗2n(y)dy where p∗1n, p∗2n are estimates

of the densities g, q based on the “good” and “bad” observations respectively.
Recently, van der Vaart (1992) showed that the NPMLE of G is efficient

in IH models under conditions similar but weaker than those of BKRW.
However, it is not hard to give examples of such models where the NPMLE
does not exist or is inconsistent. For instance, suppose U = (U ′, U ′′) ∈ R×R+

and the conditional distribution of Y given U is N(U ′, U ′′). In that case the
NPMLE will be the empirical distribution of the U sample plus the empirical
distribution of the (Yi, 0). (The “maximum” of the likelihood will be achieved
if we assume that all of the Y ’s came from U ′ = Y and U ′′ = 0.)

As a second example, consider the case where given U , Y = U with
probability α and, with probability 1− α, Y follows some distribution with
Lebesgue density q(·|U). In that case we get that the NPMLE is the joint em-
pirical distribution of the Y ’s and the U ’s, which, of course, isn’t consistent.
(Again, the likelihood will be maximized if we assume that all the Y sample
came from its empirical distribution, and nothing came from

∫
q(·|u)dG(u).)

Our goal in this paper is to construct computable efficient estimates of G
under minimal assumptions. We do so by,

(i) Limiting ourselves to distributions concentrating on the observed “good”
sample (U ’s). This is not true of the NPMLE.

(ii) Binning the “bad” sample (Y ’s),

and then applying maximum likelihood or a variant thereof. Specifically, let
Yn1, . . . ,YnJn be partitions of the range of Y , where Y is the range of Y and
Jn is o(n1/3) and

limn min
j

JnQ(Ynj) > 0. (1.2)

Let Gbn(A) = m−1 ∑
i(1 + bi)1(ui ∈ A) for any set A ∈ supp(G) and vector

b ∈ Rm. Our estimator will be written in that form and hence our object
of estimation is the vector b. Let Q̃(A) = (n −m)−1 ∑

i 1(∆i = 0, Yi ∈ A),
Qnj(·) ≡ Q(Ynj|·), Q∗(Ynj) = m−1 ∑

i Qnj(ui). More generally, for b ∈ Rm
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let Q∗(Ynj|b) = Q∗(Ynj) + m−1 ∑
i biQnj(ui), where the ui’s are the set of

“good” observations.

Convention Without loss of generality we take {i : ∆i = 1} = {1, . . . , m},
{i : ∆i = 0} = {m + 1, . . . , n}. Unless specified otherwise

∑
i =

∑m
i=1.

If we maximize the likelihood of {U1, . . . , Um, 1(Yi ∈ Ynj) 1 ≤ i ≤ n−m,
1 ≤ j ≤ Jn} over Gbn as above we obtain the self consistency equation.

p̂i =
1

n


1 +

∑

j

(n−m)Q̃(Ynj)
p̂iQnj(ui)∑
k pkQnj(ui)


 . (1.3)

where p̂i ≡ m−1(1 + b̂i). In section 2 we will show that this equation has a
unique solution. Rewrite (1.3) as

mpi = λn + m(1− λn)
∑

j

Q̃(Ynj)
piQnj(ui)∑
k pkQnj(ui)

(1.4)

or

0 = λn − λnmpi + mpi(1− λn)
∑

j

[
Q̃(Ynj)∑

k pkQnj(ui)
− 1

]
Qnj(ui). (1.5)

Substitute pi = m−1(1 + bi) in (1.5) and divide by 1 + bi to obtain that b̂ is
the solution of the LI (b) = 0 where

LI n(b)i ≡ λn
bi

1 + bi

− (1− λn)
∑

j

[
Q̃(Ynj)

Q(Ynj|b) − 1

]
Qnj(ui). (1.6)

Since asymptotically the values of the bi’s would be small we can ignore
terms of smaller order and obtain the estimating equation WWn(b) = 0 where
WWn : Rm → Rm is defined by

WWn(b)i = λnbi − (1− λn)
∑

j

[
Q̃(Ynj)

Q(Ynj|b) − 1

]
Qnj(ui). (1.7)

It will be more convenient to analyze first the solution b̃ of WWn(b) = 0. We
will show that it is efficient. The efficiency of the solution of LI n(b) will be
shown to follow from that.
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In fact neither b̂ nor b̃ are proper estimates since condition (1.2) makes
the choice of the partition depend on the unknown G. To avoid this we
have to make the partition data determined. For instance, if Y ∈ R we can
take Ynj = [y(jkn), y((j+1)kn)), 1 ≤ j ≤ Jn − 2, Yn0 = (−∞, y(kn)], YnJn−1 =
[y((Jn−1)kn),∞) where

y(1) < y(2) . . . < y(n−m)

are the order statistics of Yi, and knJn(n − m)−1 ≥ δ > 0. We sketch a
more general version of this construction and the appropriate theorem for
the resulting estimates b̂∗, b̃∗ in section 2.

This paper is organized as follows. In section 2 we review necessary and
sufficient conditions for efficiency in these models as discussed in BKRW and
state our main results. In section 4 we state and prove the lemmas needed
to prove theorem 1 of section 2 and complete the proof of the theorem.
We also discuss models in which the conditional distributions of Y |U are not
dominated and observation are missing at random (MAR) in the terminology
of Little and Rubin (1987), as well as the situation considered by Ibragimov
and Hasminskii.

2 Main Results

We will need the following assumptions in addition to (1.2).
R0: λn ≥ ε > 0 for all n.
R1: (1.2) holds and Jn = o(n1/5)
R2: maxj{Q(Ynj) : Ynj not an atom } → 0

Existence and computation of b̂
We begin by establishing the existence of b̂ and exhibiting an algorithm for

its computation which converges for data in a set whose probability converges
to 1. The same arguments serve for existence and computation of b̃ and the

estimates ˜̃b,
ˆ̂
b defined later in this in section.

Define on Rm the inner product

〈x, z〉 ≡ 1

m

∑

i

xizi. (2.1)
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Then the matrix derivative Ẇn(b) of Wn is defined by

〈x, ẆW n(b)z〉
=

1

m
λn

∑

i

xizi

+(1− λn)
∑

j

Q̃(Ynj)

Q2(Ynj|b)

(
1

m

∑

i

Qnj(ui)xi

)

(
1

m

∑

i

Qnj(ui)zi

)
. (2.2)

It follows that, for all x,

〈x, Ẇn(b)x〉 ≥ λn‖x‖2. (2.3)

From (2.3) we deduce that Wn is the gradient of a strictly convex function
which tends to ∞ as ‖b‖ → ∞. We deduce,

Proposition 1. b̃ exists and is unique.
It also follows from (2.3) that Ẇn is invertible and, in fact, for all b.

‖W−1
n (b)‖ ≤ λ−1

n (2.4)

where ‖ · ‖ is the operator norm induced by 〈·, ·〉. Let b(0) = 0 and solve
iteratively for

b(k+1) = b(k) − ẆW
−1

n0 WWn(b(k)), k = 0, 1, . . . (2.5)

where ẆW n0 = ẆW n(0).

Remark. The Newton-Raphson iteration is the modification of the RHS of

(2.5) given by b(k) − ẆW
−1

n WWn(b(k)). The algorithm (2.5) is easier to analyse.

Proposition 2. Under R1, R2,

P [b(k) → b(∞)] → 1,

where b(∞) = b̃.
The proof is given in section 4.
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Asymptotic theory of estimates of linear functionals of G
For h ∈ L2(G), it is natural to consider

∫
hdGb̂n and

∫
hdGb̃n as estimates

of θh ≡
∫

hdG.
If h ∈ L2(G) we shall find that the influence function of these estimates

is given by Ψh defined as follows. For functions a ∈ L2(Q) and b ∈ L2(G),
let EU , EY be the conditional expectation operators given U , Y respectively.
That is,

EU(a)(U) =
∫

a(y)q(y|U)dµ(y),

EY (b)(Y ) =

∫
b(u)q(Y |u)dG(u)∫

q(Y |u)dG(u),

almost surely.
Note that the operator EUEY : L2(G) – L2(G) is self adjoint and Her-

mitian. That is, for any two functions a, b ∈ L2(G), 〈a,EUEY b〉 = 〈a,EY b〉
= 〈EY a, EY b〉 = 〈EY a, b〉 = 〈EUEY a, b〉, where the inner product is that
of L2(P ). Hence λnI + (1 − λ)EUEY is selfadjoint, with all eigenvalues not
smaller than λn and hence boundedly invertible, (Kantorovich and Akilov
(1982)). Let fh = (λnI + (1− λn)EUEY )−1h ∈ L2(G) and

Ψh(X) = ∆fh(U) + (1−∆)EY (fh)(Y ). (2.6)

It may be shown, see BKRW section 6.5 for example, that Ψh − θh is the ef-
ficient influence function for estimation of θh. Thus, the asymptotic variance
of any regular estimator of θh is no smaller than

Var(Ψh) = λn〈fh, fh〉+ (1− λn)〈EY fh, EY fh〉 (2.7)

= λn〈fh, fh〉+ (1− λn)〈fh, EUEY fh〉
= 〈fh, (λnI + (1− λn)EUEY )fh〉
= 〈fh, h〉
= E{fh(U)h(U)}. (2.8)

Define further, E
(n)
Y h ≡ E{h|1(Y ∈ Ynj), 1 ≤ j ≤ Jn}, f

(n)
h = (λnI + (1 −

λn)EUE
(n)
Y )−1h and Ψ

(n)
h = ∆f

(n)
h + (1−∆)E

(n)
Y (f

(n)
h )(Y ).

Define
Ṽn(h) = n1/2(

∫
hdĜb̃n − θh)
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and V̂n correspondingly for b̂. We also want to study weak convergence of
Ṽn, Vn viewed as processes on sets H ⊂ L2(G). We say that H is regular
if the following conditions hold. Let ∆H = {h1 − h2 : hj ∈ H, 1 ≤ j ≤
2}. Let Dn(x, δ) be the largest k such that there exist h1, . . . , hk ∈ ∆H,
x2 ≤ 1

m

∑
i h

2
j(ui) ≤ δ2 and define Dn(x) similarly with H replacing ∆H and

δ2 = δ2
n ≡ supH

1
m

∑
h2(ui). We require that,

δn = OP (1)

∫ δn

0

√
log Dn(x)dx = OP (1) (2.9)

lim
n

P [sup{ 1

m

∑

i

h2(ui) : h ∈ ∆H, ‖h‖G ≤ δ} ≥ 2δ] = 0

and

lim
δ→0

lim supnP [
∫ δ

0

√
log Dn(x, δ)dx ≥ ε] = 0 (2.10)

for every ε > 0.
Note that any finite subset of L2(G) is regular.

Theorem 1: Suppose R0 and R1 hold.
(i) Then, ∫

hdGb̃n = n−1
∑

i

Ψ
(n)
h (Xi) + op(n

−1/2) (2.11)

and ∫
hdGb̂n = n−1

∑

i

Ψ
(n)
h (Xi) + op(n

−1/2) (2.12)

(ii) Suppose that R2 holds also. Then

E(Ψh(X)−Ψ
(n)
h (X))2 → 0, (2.13)

so that Ψ
(n)
h may be replaced by Ψh in (2.11), (2.12).

(iii) If H is regular (2.11) and (2.12) hold uniformly for h ⊂ H and W̃n,
Ŵn converge weakly (in the sense of Dudley-Pollard) to a mean 0 Gaussian
process on H with covariance given by

c(h1, h2) = cov(Ψh1(X1), Ψh2(X1)).
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Loosely, weak convergence holds for W̃n, Ŵn if it holds for the empirical
processes based on u1, . . . , um.

We, then, immediately obtain from Theorem 1 (iii),

Corollary 1: If U ∈ R, Gb̃n, G refer to distribution functions and R0-R2
hold then Ṽn(t) ≡ n1/2(Gb̃n(t)−G(t)) converges weakly on D[−∞,∞].

The same claim holds for Gb̂n. In particular, Gb̂n has the same behaviour
as the NPMLE in the Vardi-Zhang model.

The proof of theorem 1 is involved and depends on a number of lemmas
stated and proved in section 4. Here is its structure.
1. We establish Lemma 4.1 permitting us to replace Q∗

n, Q̃n by Q when
needed.
2. We show that Wn(0) is of order Jnn−1/2 (Lemma 4.2) and that Ẇn(b) '
Ẇn(0) in Jnn−1/2 neighbourhoods of 0 (Lemma 4.3). From this,
3. We deduce that b̃(1) = −Ẇ−1

n0 Wn(0) is of order Jnn
−1/2 and

b̃ = b̃(1) + op(n
−1/2) (2.14)

in ‖ · ‖. (Lemma 4.4).
4. We approximate Wn(0) by W̄n(0), an average of independent random
vectors. (Lemma 4.5), so that,

b̃ = −Ẇ−1
n0 W̄n(0) + op(n

−1/2). (2.15)

5. We approximate Ẇn0 by a deterministic operator τnẆn0 where Ẇn0

maps a lifting of L2(G) onto itself and τn is the evaluation map τh ≡
(h(u1), . . . , h(um)). This approximation is made uniformly in H. (Lemmas
4.6 and 4.7).

Then (2.15) becomes

b̃ = −τnẆ−1
n0 W̄n(0) + op(n

−1/2). (2.16)

Finally, we show that (2.16) implies (2.11) (uniformly on H).
6. We show that ‖b̃‖∞ ≡ maxj |b̃j| = op(1) (Lemma 4.8) and hence deduce

that ‖b̂‖∞ = op(1) (Lemma 4.9). An analysis of b̂ analogous to 1. to 5.
above now yields (2.12) See BKRW section 7.6 for a general presentation of
the structure of such proofs.
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7. Finally we show that Ṽn, V̂n are tight for regular H (Lemmas 3.10, 3.11).
Since uniformity in (2.11) and (2.12) has already been shown, part (iii) of
Theorem 1 follows.

The estimates b̂ and b̃ are unsatisfactory insofar as, through condition
R1, the partition defining them depends on knowledge of Q. It is natural to
define, if k = 1, n−m

Jn
is an integer r and y(0) < . . . < y(n−m−1) are the ordered

y′’s,
Ynj = [y(r(j−1)), y(rj))

for j = 1, . . . , Jn. (We make the natural minor changes in definition if n−m
Jn

is
not an integer or Q is not continuous.) If k > 1 we can proceed lexicograph-
ically. First, if jk

n = Jn, r ≡ n−m
jn

, divide according to the rj, j = 1, . . . , jn

order statistics of the first coordinate of y. Then subdivide each k dimen-
sional strip according to the r order statistics of the second coordinate and
then continue in this fashion until jk

n boxes each containing approximately
n−m
Jn

observations are obtained as the Ynj. It is not hard to show that if

Ẇ−1
n0 h is bounded, where Ẇn0 is the operator which depends on the random

partition {Ynj}, then theorem 1 carries over. For a clean general result, we
resort to sample splitting although this is clearly just a technical device. Use
the construction given above to determine {Ynj} but base it on the order

statistics of the first `n y’s where `n = o(n). Then, base b̃, b̂ on the m
observed u’s and the last n−m− `n observed y’s. We state,

Theorem 2: If Y ≡ Rk is Euclidean and
ˆ̂
b, ˜̃b are determined by data deter-

mined partitions as given above conclusions (i) - (iii) of theorem 1 apply to
ˆ̂
b and ˜̃b.

The same type of argument as that given for theorem 1 applies save that
everything is done conditionally on the {Ynj}.

3 Extensions, open problems

Estimation of the variance of θ̂h

To set confidence bounds on θh or to do more general inference we need
an estimate of the asymptotic variance of

√
nθ̂h, viz Var(Ψh(X)). Here is a
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simple estimate which can be shown to work. Define

Ψ̂h = ∆h + (1−∆)Ê
(n)
Y f̂h

where

Ê
(n)
Y g(U) ≡ ∑

j

1(Y ∈ Ynj)
∫

Ynj

g(u)q(y|u)dGb̂n(u)/Q∗(Ynj|b̂) (3.1)

f̂h = (λnI + (1− λn)EU Ê
(n)
Y )−1h (3.2)

and

σ̂2
h =

1

n

n∑

i=1

(Ψ̂h(Xi)− θ̂h)
2. (3.3)

Then it is easy to see that under our conditions σ̂2
h

p→ Var(Ψh(X))

Inference in semiparametric IH models
If q(y|u) = q(y|u, θ), θ ∈ R, say, it is natural to consider estimating

equations for θ of the form

1

n−m

n∑

i=m+1

ψ(Yi, θ, Ĝθ) = 0 (3.4)

where Ĝθ is the estimate Gb̂n for q = q(·|·, θ) and

∫
ψ(y, θ, G)q(y|u, θ)dG(u)dµ(y) = 0.

For efficiency one needs to use

ψ(y, θ,G) = E(θ,G){ ∂

∂θ
log q(Y |U, θ)|Y },

Simpler estimating equations can be constructed by replacing, in (4.1), Ĝθ

by G0n, the empirical of the ui but ψ needs to be chosen properly to obtain
efficiency. We would need to take ψ to be the efficient score function for
θ rather than merely the score function for G known as in (3.2). This is
essentially the approach of Ibragimov and Has’minskii (1983). See BKRW
Section 7.7 for a discussion of these issues and the kind of conditions which
need to be checked for these appraoches to work.
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The undominated case
Nothing in our discussion actually uses the fact that the family {Q(·|u)}

is dominated by µ since our estimates are based on G0n, Q̃, Q∗ which are
still well defined. Examples of such models are those for which Y ≡ Y (U). A
subclass of these models for which G is identifiable are those in which observa-
tions are missing at random (MAR) in the sense of Little and Rubin (1986),
that is, P [∆ = 1|U ] = p(Y (u)). Let G0n be the empirical of u1, . . . , un,

N
(1)
j =

∑m
i=1 1(Yi ∈ Ynj), Nj =

∑n
i=1 1(Yi ∈ Ynj), and j(u) be defined by

u ∈ Ynj(u). Then an explicit efficient estimate of G which concentrates on
{u1, . . . , um} is given by

dĜ(u) =
m

n
dG0n(u)

Nj(u)

N
(1)
j(u)

(3.5)

This is the maximum likelihood estimate if U is discrete. It is not hard to
show that this estimate is efficient.

What happens if λn → 0 with n?
This situation is of some interest since the fraction of good observations

may be very small. We give a heuristic discussion of this situation. Rigorous
treatment remains an open problem. If λn ≡ 0 we know by BKRW section
6.5 that typically only θh such that

h(u) = E(v(Y )|U) (3.6)

can be estimated at rate n−1/2 by the obvious efficient estimate θ̂n ≡ n−1 ∑n
i=1 v(Yi).

In general the following heuristics suggest that the n(1 − λn) “bad” ob-
servations may still be of some use in estimation of θh for h not obeying
(3.6). Let Ψh be the efficient influence function for θh given by (2.6) with
λn → λ ∈ (0, 1]. Note that EUEY is a Hermitian operator on L2(G). By the
spectral theorem,

EUEY =
∫ ∞

0
σI(σ)dν(σ)

where I(σ)dν(σ) is the spectral measure (e.g. Kantorovich and Akilov (1982))
and I(σ) is a projection on some subspace. Then, by (2.11)

Var(Ψh) = ((λI + (1− λ)EUEY )−1(h), h)G

=
∫ ‖I(σ)h‖2

G

λ + (1− λ)σ
dν(σ) (3.7)
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where ‖ · ‖G, (·, ·)G are the norm and inner product in L2(G). Then

λVar(Ψh) → ‖I(0)h‖2dν(0) as λ → 0. (3.8)

This suggests that if ‖I(0)h‖G > 0 then estimation of θh can only be achieved
at rate m−1/2. On the other hand, if I(0)h = 0, we may be able to obtain a
better rate than m−1/2!

However, in general, the
√

n rate cannot be saved. By (3.7), limλ→0 Var(Ψh) <
∞ iff

I(0)hdν(0) = 0 (3.9)

and ∫

σ>0

‖I(σ)h‖2
G

σ
dν(σ) < ∞. (3.10)

It may be shown using Proposition A.1.6, part B, of BKRW that (3.9) and
(3.10) hold iff there exists v(Y ) ∈ L2(P ) such that h = EUv(Y ). But this
of course means that θh is estimable at rate n−1/2 using the Y ’s only, by
(n−m)−1 ∑

v(Yj)(1−∆j).

The choice of {Ynj}, {Jn}
The choice of partition is a matter of convenience. However, selecting

Jn can, to some extent, be made data dependent, for instance, by cross
validation. Choose Jn which minimizes

∑
(θ̂−iJ − θ̄J)2 where θ̂−iJ is the

estimate of θh based on the partition {Ynj : 1 ≤ j ≤ J} and Xk, k 6= i

θ̄J = 1
n

∑n
k=1 θ̂−iJ . Whether such a choice can be made which is consistent

with (1.2) and works well is an open problem. Jin (1990) successfully carried
through such a program for estimation of location and regression.

4 Lemmas for and proofs of theorems of sec-

tion 2

The first lemma establishes the control which using coarse partition gives us.

Lemma 4.1. For any partitions satisfying (1.2),

max
j
|Q̃(Ynj)

Q(Ynj)
− 1| = OP (n−1/2J1/2

n log(Jn)) (4.1)
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max
j
|Q

∗(Ynj)

Q(Ynj)
− 1| = OP (n−1/2J1/2

n log(Jn)) (4.2)

Proof. Both Q̃n and Q∗
n are averages of i.i.d. variables bounded by 1 and

Var(Q̃n) = n−1Q(1−Q) ≥ Var(Q∗
n). A standard argument with Hoeffding’s

(1962) inequality completes the proof. 2

Lemma 4.2. Under R1,

‖Wn(0)‖ = OP (J1/2
n n−1/2). (4.3)

Proof. We compute,

‖Wn(0)‖2 =
1

m

m∑

i=1

{
Jn∑

j=1

(Q̃(Ynj)−Q∗(Ynj))

Q∗(Ynj)
Qnj(ui)}2. (4.4)

It is enough to show that,

I ≡ 1

m

m∑

i=1

{
Jn∑

j=1

(Q̃(Ynj)−Q(Ynj))

Q(Ynj)
Qnj(ui)}2

= OP (n−1Jn) (4.5)

II ≡ 1

m

m∑

i=1

{
Jn∑

j=1

(Q̃∗(Ynj)−Q(Ynj))

Q(Ynj)
Qnj(ui)}2

= OP (n−1Jn) (4.6)

and

III ≡ 1

m

m∑

i=1

{
Jn∑

j=1

{
(Q̃(Ynj)−Q(Ynj))(Q

∗(Ynj)−Q(Ynj)

Q(Ynj)Q∗(Ynj)

}
Qnj(ui)}2

= OP (n−1Jn). (4.7)

14



Now, after some algebra,

E(I) = E{
Jn∑

j=1

(n−m)−1
n−m∑

t=1

(1(Yt ∈ Ynj)−Q(Ynj))

Q(Ynj)
Q2

nj(u1)}2

= (n−m)−1E(
Jn∑

j=1

(1(y1 ∈ Ynj)−Q(Ynj))
Q2

nj(u1)

Q(Ynj)
)2

≤ (n−m)−1
Jn∑

j=1

EQ2
nj(u1)

Q(Ynj)
(4.8)

Since EQ2
nj(u1) ≤ Q(Ynj), (4.5) follows. Similarly,

E(II) = E{
Jn∑

j=1

1

m

m∑

k=1

(Qnj(ui)−Q(Ynj))

Q(Ynj)
Q2

nj(u1)}2

=
2

m2
[E{

Jn∑

j=1

(Q2
nj(u1)−Q(Ynj))

Q2
nj(u1)

Q(Ynj)
}2

+(m− 1)E{
Jn∑

j=1

(Qnj(u2)−Q(Ynj))

Q(Ynj)
Qnj(u1)}2]

=
1

m2
(A + B) (say). (4.9)

Now

A ≤ E{
Jn∑

j=1

Q2
nj(u1)

Q(Ynj)
}2 + 1

= O(min
j

Q−2(Ynj) + 1)

= O(J2
n), (4.10)

by (1.2). On the other hand,

B = (m− 1)E{
Jn∑

j=1

Qnj(u2)Qnj(u1)

Q(Ynj)
− 1}2

= (m− 1)E{
Jn∑

j=1

Qnj(u2)Qnj(u1)

Q(Ynj)
}2 − (m− 1)
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≤ (m− 1)
Jn∑

j=1

Jn∑

k=1

{E(Qnj(u1)Qnk(u1)}2

Q(Ynj)Q(Ynk)

≤ (m− 1)
Jn∑

j=1

Jn∑

k=1

EQnj(u1)E(Qnj(u1)Q
2
nk(u1))

Q(Ynj)Q(Ynk)

= (m− 1)
Jn∑

k=1

EQnk(u1)

Q(Ynk)

≤ (m− 1)Jn (4.11)

and (4.6) follows. Finally, by lemma 4.1,

III = OP ((max
j
|Q

∗
n(Ynj)

Q(Ynj)
− 1|2 max

j
|Q̃n(Ynj)

Q(Ynj)
− 1|2) = OP (n−2J2

n log4 Jn)

= OP (n−1Jn) (4.12)

and (4.7) follows. The lemma follows from (4.5)-(4.7). 2

Lemma 4.3. For all M < ∞,

P (inf{Q(Ynj|b)
Q(Ynj)

: ‖b‖ < MJ1/2
n n−1/2} <

1

2
) = o(1) (4.13)

and

sup{‖Ẇn(b)− Ẇn0‖ : ‖b‖ < MJ1/2
n n−1/2} = OP (J1/2

n n−1/2) (4.14)

Proof. First note that if ‖b‖ < J1/2
n Mn−1/2 then

1

m

∑

i

Qnj(ui)bi ≤
(
‖b‖2 1

m

∑

i

Q2
nj(ui)

)1/2

≤ MJnn−1/2Q∗1/2(Ynj)

= Q(Ynj)OP (J1/2
n n−1/2) (4.15)

and (4.13) follows.
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For any vector x ∈ Rm:

〈x, (ẆW n(b)− ẆW (0))x〉 (4.16)

=
∑

j

Q̃(Ynj)

(
1

Q2(Ynj|b) −
1

Q2(Ynj|0)

) (
1

m

∑

i

Qnj(ui)xi

)2

= −2
∑

j

Q̃(Ynj)
m−1 ∑

i Qnj(ui)bi

Q3(Ynj|b∗)

(
1

m

∑

i

Qnj(ui)xi

)2

where b∗ = tb for some t ∈ [0, 1]. Then, from (2.2) and lemma 4.1,

|〈x, (ẆW n(b)− ẆW (0))x〉|

≤ (
∑

j

Q̃(Ynj)‖b‖
(

1

m

∑

i

Q2
nj(ui)

)1/2

Q−1(Ynj|b))
(

1

mQ∗(Ynj)

∑

i

Qnj(ui)xi

)2

(1 + o(1))

≤ ∑

j

Q̃(Ynj)‖b‖Q∗−1/2(Ynj)
1

mQ∗(Ynj)

∑

i

Qnj(ui)x
2

= OP (J3/2
n ‖b‖‖x‖2). (4.17)

by R1. Therefore, we conclude that

sup{‖Ẇn(b)− Ẇn(0)‖ : ‖b‖ ≤ MJ1/2
n n−1/2}

= OP (J2
nn−1/2)

under R1, and the lemma follows. 2

Let
T (b) = b− Ẇ−1

n0 Wn(b). (4.18)

Lemma 4.4. Under R0, R1, for all M < ∞, P [T is a contraction on
{b : ‖b‖ ≤ MJ1/2

n n−1/2}] → 1. Further,

sup
k
‖b(k)‖ = OP (J1/2

n n−1/2) (4.19)
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sup
k≥2

‖b(k) − b(1)‖ = op(n
−1/2) (4.20)

Note that, since b(k+1) = T (b(k)) by definition, (2.6) and the claim that T
is a contraction with probability tending to 1 establish proposition 2.

Proof. Write

Ṫ (b) = I − Ẇ−1
n0 Ẇn(b)

= Ẇ−1
n0 (Ẇn0 − Ẇn(b)). (4.21)

It follows from (2.4) and lemma 4.3 that for all M ,

ζn ≡ sup{‖Ṫ (b)‖ : ‖b‖ ≤ MJ1/2
n n−1/2} = OP (J2n−1/2). (4.22)

Further, by definition,

‖b(1)‖ ≤ ‖Ẇ−1
n0 ‖‖Wn(0)‖

= Op(J
1/2
n n−1/2) (4.23)

by lemma 4.2. By the usual induction argument

‖b(k)‖ ≤ (1− ξn)−1‖b(1)‖

and
‖b(k+1) − b(k)‖ ≤ ξk

n‖b(1)‖.
Then, the lemma follows from (4.22) and (4.23). 2

Define,

W̄n(0)i ≡ −(1− λn)
∑

j

(Q̃(Ynj)−Q∗(Ynj))

Q(Ynj)
Qnj(ui) (4.24)

and the evaluation map τn : L2(G) → Rm by,

τnh = (h(u), . . . , h(um))

(where we suppose that a representative h has been chosen in each equiva-
lence class belonging to L2(G), a “lifting”).
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Lemma 4.5. Under R0, R1

‖Wn(0)− W̄n(0)‖ = op(n
−1/2). (4.25)

Proof. By definition
‖Wn(0)− W̄n(0)‖2 =

m−1
∑

i

(1− λn)2{∑
j

(Q̃(Ynj)−Q∗(Ynj))
(Q(Ynj)−Q∗(Ynj))

Q(Ynj)Q∗(Ynj)
Qnj(ui)}2.

(4.26)
By lemma 4.1, (4.26) is OP (n−2J2

n log4 Jn) = op(n
−1). 2

Define the operator Ẇn0 : L2(G) → L2(G) by

(h2, Ẇn0h1) = λn

∫
h1(u)h2(u)dG(u)

+(1− λn)
∑

j

1

Q(Ynj)

∫
Qnj(u)h2(u)dG(u)

∫
Qnj(u)h1(u)dG(u) (4.27)

where (·, ·)G is the inner product on L2(G). Note that Ẇn0 is invertible and,
‖Ẇ−1

n0 ‖G ≤ λ−1
n . Let b̃n = Ẇ−1

n0 h. For v ∈ L2(G) let vc ≡ v − Ev.

Lemma 4.6. Under R0, R1, R3,

sup
H

∑

j

(
1

n

∑

i

(Qnjh̃n)c(ui))
2 = OP (Jn log(Jn)n−1). (4.28)

Proof. Let vn1, . . . , vnJn be an orthonormal basis for Vk ≡ span{Qnj(·),
j = 1, . . . , Jn}. For any h ∈ L2(G) let h = h1 +h2 where h1 ∈ Vn and h2⊥Vn.
Accordingly let h̃n1 = Ẇ−1

n h1 and h̃n2 = Ẇ−1
n h2.

Now, ‖h̃n1‖G ≤ λ−1
n ‖h1‖G ≤ c ≡ suph∈H ‖h‖G, and h̃n1 ∈ Vn. Then

E sup
H

∑

j

(
1

m

∑

i

(Qnjh̃n1)c(ui))
2 ≤
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≤ E sup{∑
j

(
∑

`

d`
1

m

∑

i

(Qnjvn`)c(ui))
2 :

∑

`

d2
` ≤ d2}

≤ d2E
∑

j

∑

`

(
1

m

m∑

i=1

(Qnjvn`)c(ui))
2

≤ d2

m

∑

j

∑

`

EQ2
njv

2
n`(u1)

≤ d2

m

∑

`

Ev2
n`(u1) =

d2Jn

m
. (4.29)

On the other hand, by the spectral theorem since EUE
(n)
Y is a compact Her-

mitian operator h̃n2 =
∫ 1

γ
dE(γ) (h) where λn ≤ γ ≤ 1 and Eγ is a projection

on a finite dimensional subspace of the range of E
(n)
U EY (which is contained

in Vn). Therefore, h̃n2 = λ−1
n h2. If H satisfies R3 so does each of the sets

Hj ≡ {λ−1
n Qnjh(·): h ∈ H}. Therefore we can apply theorem (3.5) in Pollard

(1990) to obtain,

P [sup
H
| 1
m

∑

i

(Qnjh̃n2)c(ui)| ≥ M(
log Jn

n
)1/2]

≤ K1J
−λ(M)
n

where λ(M) →∞ as M →∞. Hence

P [max
j

sup
H
| 1
m

∑

i

(Qnjh̃n2)c(ui)| ≥ Mn−1/2] = o(1). (4.30)

Combining (4.29) and (4.30) the lemma follows.

Lemma 4.7. If (1.2), R0, R1 hold and H is regular,

sup
H
‖Ẇ−1

n0 τnh− τnẆ−1
n0 h‖ = OP (J2

n log(Jn)n−1/2). (4.31)

Proof. For any v ∈ Rm,

〈v, (Ẇ−1
n0 τn − τnẆ−1

n0 )h〉
= 〈v, Ẇ−1

n0 (τnẆn0 − Ẇn0τn)Ẇ−1
n0 h〉

= 〈Ẇ−1
n0 v, (τnẆn0 − Ẇn0τn)Ẇ−1

n0 h〉. (4.32)
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Since further ‖Ẇ−1
n0 ‖ ≤ λn, it is enough to show,

sup
H
‖(τnẆn0 − Ẇn0τn)Ẇ−1

n0 h‖ = OP (J2
n log Jnn−1/2). (4.33)

For any v ∈ Rm,
〈v, (τnẆn0 − Ẇn0τn)h̃n〉

=
∑

j

1

Q(Ynj)
(
∫

Qnj(u)h̃n(u)dG(u))(
1

m

∑

i

Qnj(ui)vi)

−∑

j

Q̃(Ynj)

[Q∗]2(Ynj)
(

1

m

∑

i

Qnj(ui)h̃n(ui))(
1

m

∑

i

Qnj(ui)vi)

=
∑

j

(
1

Q(Ynj)
− Q̃(Ynj)

[Q∗]2(Ynj)
)(

∫
Qnj(u)h̃n(u)dG(u))(

1

m

∑

i

Qnj(ui)vi)

−∑

j

Q̃(Ynj)

[Q∗]2(Ynj)
(

1

m

∑

i

Qnj(ui)vi)(
1

m

∑

i

(Qnjh̃n(ui)−
∫

Qnj(u)h̃n(u)dG(u))

= A1(v)− A2(v) (say) (4.34)

By lemma 4.1,

max
j
| 1

Q(Ynj)
− Q̃(Ynj)

Q∗2(Ynj)
| = OP (Q−1(Ynj)n

−1/2J1/2
n log(Jn)). (4.35)

Further, by Cauchy-Schwartz,

| 1
m

∑

i

Qnj(ui)vi| ≤ ‖v‖( 1

m

∑

i

Q2
nj(ui))

1/2‖v‖Q∗1/2(Ynj). (4.36)

Thus, by (1.2)

sup
v

|A1(v)

‖v‖ = OP (Jnn−1/2 log(Jn))(
∫

h̃2
n(u)dG(u))1/2). (4.37)

On the other hand

|A2(v)| ≤ (
∑

j

Q̃2(Ynj)

[Q∗(Ynj)]4
(

1

m

∑

i

Qnj(ui)vi)
2)1/2(

∑

j

(
1

m

∑

i

(Qnjh̃n)c(ui))
2)

(4.38)
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The first term in (4.38) is OP (Jn‖v‖) by lemma 4.1 and (4.35), while the
second is OP (J1/2

n log Jnn
−1/2) by lemma 4.5.

Therefore,

sup
v

|A2(v)|
‖v‖ = OP (J3/2

n log Jnn−1/2). (4.39)

Combining (4.37) and (4.39) we obtain the lemma. 2

Proof of (2.11): We prove (2.11) as extended in Theorem 1 (iii). Note that
by lemma 4.4,

〈τnh, b̃〉 = 〈τnh, b(1)〉+ op(n
−1/2)

= −〈τnh, Ẇ−1
n0 Wn(0)〉+ op(n

−1/2). (4.40)

uniformly on H since sup ‖τnh‖ = OP (1) by regularity of H. Further, lemma
4.5 and ‖Ẇ−1

n ‖ ≤ λ−1
n imply

−〈τnh, Ẇ−1
n0 Wn(0)〉 = −〈Ẇ−1

n0 τnh, W̄n(0)〉+ op(n
−1/2) (4.41)

uniformly in H. Apply lemmas 4.2, 4.5 and 4.7 to get from (4.40) and (4.41).

〈τnh, b̃〉 = −〈τnh̃n, W̄n(0)〉+ OP (J2
n log Jnn−1)

= (1− λn)
∑

j

(Q̃(Ynj)−Q∗(Ynj))

Q(Ynj)

1

m

∑

i

Qnj(ui)h̃n(ui) + op(n
−1/2) (4.42)

uniformly in H. Further, by lemma 4.6

∑

j

(Q̃(Ynj)−Q∗(Ynj))

Q(Ynj)

1

m

∑

i

Qnj(ui)h̃n(ui)

=
∑

j

(Q̃(Ynj)−Q∗(Ynj))

Q(Ynj)

∫
Qnj(u)h̃n(u)dG(u)

+OP


(

∑

j

(Q̃(Ynj)−Q∗(Ynj))
2

Q2(Ynj)
)1/2(

∑

j

(
1

m

∑

i

(Qnj(u)h̃n)c(ui))
2)1/2




= −∑

j

(Q̃(Ynj)−Q∗(Ynj))

Q(Ynj)

∫
Qnj(u)h̃n(u)dG(u)
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+OP (n−1J3/2
n log(Jn)), (4.43)

uniformly on H, by lemmas 4.1 and 4.6.
Note that

Ẇn0 = λnI + (1− λn)EUE
(n)
Y

so that
h− λnh̃n = (1− λn)EUE

(n)
Y h̃n (4.44)

Therefore, by definition,

(1− λn)
∑

j

Q∗(Ynj)

Q(Ynj)

∫
Qnj(u)f

(n)
h (u)dG(u)

=
1− λn

m

∑

i

Qnj(ui)
1

Q(Ynj)

∫
Qnj(u)f

(n)
h (u)dG(u)

=
(1− λn)

m

∑

i

EUE
(n)
Y (f

(n)
h )(ui)

=
1

m

∑

i

(h(ui)− λnf
(n)
h (ui)), by (4.44)

=
1

m

∑

i

h(ui)− 1

n

m∑

i=1

f
(n)
h (ui). (4.45)

On the other hand:

(1− λn)
∑

j

Q̃n(Ynj)

Q(Ynj)

∫
Qnj(u)f

(n)
h (u)dG(u)

=
1

n

n∑

i=m+1

E
(n)
Y (h̃n(ui)|yi).

Combine (4.42), (4.43), (4.44), (4.45) to conclude that

∫
h(u)dGb̃n(u) =

1

n

∑

i

Ψ
(n)
h (Xi) + op(n

−1/2)

uniformly on H. 2

Lemma 4.8: Under R0, R1

‖b̃‖∞ = OP (Jnn
−1/2) = op(1), (4.46)
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where ‖x‖∞ ≡ maxi |xi|.

Proof. By definition (1.7),

b̃i =
(1− λn)

λn

∑

j

[
Q̃(Ynj)

Q∗(Ynj|b̃)
− 1]Qnj(ui). (4.47)

Now,

|Q(Ynj|b̃)−Q∗(Ynj)|
≤ ‖b̃‖[ 1

m

∑

i

Q2(Ynj|ui)]
1/2

≤ ‖b̃‖Q∗1/2(Ynj). (4.48)

Thus,

max
j
|Q(Ynj|b̃)
Q∗(Ynj)

− 1| = OP (Jnn−1/2) (4.49)

by lemmas 4.4 and 4.1. Hence,

‖b̃‖∞ ≤ (1− λn)

λn

max
j
| Q̃(Ynj)

Q∗(Ynj|b̃)
− 1|

= OP (Jnn−1/2). 2

Lemma 4.9: Under R0, R1

‖b̂‖∞ = OP (J3/2
n n−1/2). (4.50)

Proof. We show first that ‖b̂‖∞ = op(1) or equivalently, for all c > 0,

P [b̂− b̃ ∈ Lc] → 1 (4.51)

where Lc ≡ {∆ : ‖∆‖∞ ≤ c}. Since Ln is the gradient of a convex function,
to establish (4.51) it is enough to show that, for c > 0 sufficiently small,

P [inf{〈Ln(b̃ + ∆), ∆〉 : ‖∆‖∞ = c}
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> 0] → 1. (4.52)

Now,

〈∆, Ln(b̃+∆)〉 = 〈∆,Wn(b̃+∆)−Wn(b̃)〉+〈∆, Ln(b̃+∆)−Wn(b̃+∆)〉. (4.53)

Since Ẇn(b) is well defined for ‖b‖∞ < 1 and has minimal eigenvalue ≥ λn

we deduce, from (4.53), that

〈∆, Ln(b̃ + ∆)〉 ≥ λn〈∆, ∆〉

−λnm
−1

m∑

i=1

∆i(b̃i + ∆i)
2(1 + b̃i + ∆i)

−1. (4.54)

Now, if ‖∆‖∞ = c < 1
5

say,

∆2
i − ∆i(b̃i + ∆i)

2(1 + b̃i + ∆i)
−1

= ∆2
i

(1− b̃i)

(1 + b̃i + ∆i)
− b̃2

i ∆i

1 + b̃i + ∆i

≥ α∆2
i − 2βb̃2

i |∆i|
≥ −α−1β2b̃4

i (4.55)

for some α, β > 0 independent of ∆, b̃. Since ‖∆‖∞ = c we deduce that,

〈∆,mLn(b̃ + ∆)〉 ≥ λn{αc2 − 2βb̃2
i c− α−1β2

∑

i

b̃4
i }. (4.56)

By lemmas 4.4 and 4.8, under R1, ‖b̃‖∞ = op(1) and
∑

i b̃
4
i = op(1). Then,

(4.52) and (4.51) follow. Next we note that by (1.6),

b̂i

1 + b̂i

=
1− λn

λn

∑

j

[
Q̃(Ynj)

Q∗(Ynj|b̂)
− 1]Qnj(ui). (4.57)

But if ‖b̂‖∞ = op(1)

max
i
| b̂i

1 + b̂i

| = ‖b̂‖∞(1 + o(1)).

The argument of lemma 4.8 now yields (4.50). 2
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Proof of (2.12): Again, we prove the uniform extension given in (iii). Since,

Ln(0) = Wn(0)

L̇n(0) = Ẇn(0)

we can evidently prove (2.13) by the same argument as (2.11) once we have
established the analogue of (4.14):

sup{‖L̇n(b)− L̇n(0)‖ : ‖b‖ < MJnn
−1/2, ‖b‖∞ ≤ MJnn

−1/2} = OP (J2
nn−1/2).

(4.58)
But,

‖L̇n(b)− L̇n(0)‖ ≤ ‖Ẇn(b)− Ẇn(0)‖+ max
i
| 1

(1 + bi)2
− 1|

≤ ‖Ẇn(b)− Ẇn(0)‖+ 2(1 + o(1))‖b‖∞. (4.59)

Thus, (4.55) follows from (4.14), (4.56) and lemma 4.7. The proof of theo-
rem 1 (i) (uniformly on H) is complete. 2

Let ÊU , Ê
(n)
Y be the conditional expectation operators with respect to U

and σ(Y1n, . . .YJnn) respectively, when U ∼ G0n, the empirical distribution

of the ui and, given U = u, Y ∼ Q(·|u). Let Ẇ ∗
n0 = λnI + (1 − λn)ÊUE

(n)
Y .

It is easy to see that Ẇ ∗
n0 can be viewed as an m×m matrix and

〈x, Ẇ ∗
n0z〉 = λn〈x, z〉+ (1− λn)

Jn∑

j=1

〈z, Qjn(·)〉〈x,Qjn(·)〉
Q∗(Yjn)

. (4.60)

where Qjn(·) ≡ (Qjn(u1), . . . , Qjn(um)).

Lemma 4.9: If H is regular and ∆(H) ≡ {h1 − h2 : hj ∈ H, j = 1, 2} then

lim
δ→0

lim supnP [sup{n1/2|〈[Ẇ ∗
n0]

−1τnh, W̄n(0)〉| : h ∈ ∆(H), ‖h‖ ≤ δ} ≥ ε] = 0.

Proof. If a ∈ Rm,

n1/2〈a, W̄n(0)〉 = n1/2
Jn∑

j=1

cj(a)(Q̃n(Ynj)−Q(Ynj)) (4.61)
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where

cj(a) ≡ 1

m

∑

i

a(ui)
Qj(ui)

Q(Ynj)
.

If we condition on u1, . . . , um we can write

n1/2〈a, W̄n(0)〉 =
n1/2

n−m

∑

k

h(Yk, a) (4.62)

where h(y, a) =
∑

j(cj − c̄)(a)1(y ∈ Ynj), c̄ =
∑

j cjQ(Ynj). Now, uniformly
in a,

1

n−m

∑

k

h2(Yk, a) =
∑

j

(cj − c̄)2Q̃(Ynj)

= {∑
j

(cj − c̄)2Q(Ynj)}(1 + op(1))

≤ {∑
j

c2
jQ(Ynj)}(1 + op(1))

= {∑
j

(
1

m

∑

i

a(ui)Qnj(ui))
2/Q(Ynj)}(1 + op(1))

≤ {∑
j

(
1

m

∑

i

a2(ui)Qnj(ui))Q
∗(Ynj)/Q(Ynj)}(1 + op(1))

= ‖a‖2(1 + op(1)). (4.63)

We use the notation of Pollard (1990). If A ⊂ Rm δ(A) = supA ‖a‖ and

∫ δ(A)

0

√
log D(x,A)dx ≤ M (4.64)

then from lemma 3.4 of Pollard (1990)

√
m sup

A
〈a, σ〉 ≤ 9M (4.65)

where σ = (σ1, . . . , σm) and the σi are independent ±1 with probability 1
2
.

By (4.63), if

B = {(h(Y1, a), . . . , h(Yn−m, a)) : a ∈ A} ⊂ Rn−m
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then with probability tending to 1,

∫ δ(B)

0

√
log D(x,B)dx ≤

∫ 2δ(A)

0

√
log D(x,A)dx ≤ 2M. (4.66)

Finally, since ‖[W ∗
n0]

−1‖ ≤ λ−1
n , if (4.64) holds and

Γ = {[W ∗
n0]

−1a : a ∈ A} (4.67)

then ∫ δ(Γ)

0

√
log D(x, Γ)dx ≤ λ−1

n M. (4.68)

Since H is regular (4.64) and (4.68) imply (by standard arguments from
(4.65)) that if A = {τnh : h ∈ ∆H, ‖τnh‖ ≤ δ} and Γ is defined by (4.67)
then

lim supnP [sup{n1/2|〈γ, W̄n(0)〉| : γ ∈ Γ} ≥ ε] ≤ C(δ, ε) (4.69)

where C(δ, ε) → 0 as δ → 0.
Again by regularity,

lim
n

P [‖τnh‖ > 2δ, ‖h‖G ≤ δ, h ∈ ∆H] = 0. (4.70)

By combining (4.69) and (4.70) we obtain the lemma. 2

Proof of theorem 1(iii). It is easy to argue as for lemma 4.7 that

sup
H
‖[Ẇ ∗

n0]
−1τnh− Ẇ−1

n0 τnh‖ = OP (n−1/2J1/2
n log(Jn)). (4.71)

In view of (4.40), to prove theorem 1 (iii) it is enough to show that

lim
δ→0

lim supnP [sup{|n1/2〈Ẇ−1
n0 τnh, W̄n(0)〉| : h ∈ ∆(H), ‖h‖ ≤ δ} ≥ ε] = 0

(4.72)
for all ε > 0. By (4.71) we can replace Ẇ−1

n0 τnh by [Ẇ ∗
n0]

−1τnh in (4.72) and
the theorem is now a consequence of lemma 4.9. 2
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