
Theoretical analysis of LLE based on its
weighting step

Yair Goldberg and Ya’acov Ritov∗

Department of Statistics and
The Center for the Study of Rationality

The Hebrew University

March 29, 2011

Abstract

The local linear embedding algorithm (LLE) is a widely used nonlinear dimension-reducing
algorithm. However, its large sample properties are still not well understood. In this paper
we present new theoretical results for LLE based on the way that LLE computes its weight
vectors. We show that LLE’s weight vectors are computed from the high-dimensional neigh-
borhoods and are thus highly sensitive to noise. We also demonstrate that in some cases
LLE’s output converges to a linear projection of the high-dimensional input. We prove that
for a version of LLE that uses the low-dimensional neighborhood representation (LDR-LLE),
the weights are robust against noise. We also prove that for conformally embedded manifold,
the pre-image of the input points achieves a low value of the LDR-LLE objective function,
and that close-by points in the input are mapped to close-by points in the output. Finally, we
prove that asymptotically LDR-LLE preserves the order of the points of a one-dimensional
manifold. The Matlab code and and all data sets in the presented examples are available
online.

Keywords: Locally Linear Embedding (LLE), dimension reduction , manifold learning, LDR-LLE

1 Introduction

The locally linear embedding algorithm (LLE) (Roweis and Saul 2000) belongs to a class of recently

developed nonlinear dimension-reducing algorithms that include Isomap (Tenenbaum et al. 2000),
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mous reviewers of early versions of this manuscript for their helpful suggestions. Helpful discussions with Alon
Zakai and Jacob Goldberger are gratefully acknowledged.
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Laplacian Eigenmap (Belkin and Niyogi 2003), Hessian Eigenmap (Donoho and Grimes 2004),

LTSA (Zhang and Zha 2004), and MVU (Weinberger and Saul 2006). The underlying assumption

when using this group of algorithms is that the data is sitting on, or next to, an embedded manifold

of low dimension within the original high-dimensional space. The goal of the algorithms is to find

an embedding that maps the input points to the lower-dimensional space. Here a manifold is

defined as a topological space that is locally equivalent to a Euclidean space. LLE was found to

be useful in data visualization (Roweis and Saul 2000 Xu et al. 2008) and in image processing

applications such as image denoising (Shi et al. 2005) and human face detection (Chen et al. 2007).

It is also applied in different fields of science, such as chemistry (L’Heureux et al. 2004), biology

(Wang et al. 2005), and astrophysics (Xu et al. 2006).

LLE attempts to recover the domain structure of the input data set in three steps. First,

LLE assigns neighbors to each input point. Second, for each input point LLE computes weight

vectors that best linearly reconstruct the input point from its neighbors. Finally, LLE finds a

set of low-dimensional output points that minimize the sum of reconstruction errors, under some

normalization constraints.

Saul and Roweis (2003, Section 5.4) suggested a modification of LLE that computes the weight

vectors found in the second step of LLE by first finding the best low-dimensional representa-

tion for the neighborhood of each point, and then computing the weights with respect to these

low-dimensional neighborhoods. We refer to this version of LLE as LLE with low-dimensional

neighborhood representation (LDR-LLE). Numerical comparisons between these two versions of

neighborhood representation were presented by Saul and Roweis (2003), and later in extended

form by Goldberg and Ritov (2008).

In the following we present a theoretical analysis of LLE based on the way that the weight

vectors are computed in the second step of LLE. The analysis is divided into two parts. First

we study LLE with the usual weighting scheme. We show that LLE’s neighborhood description

captures the structure of the high-dimensional space, and not that of the low -dimensional domain.

We show two main consequences of this observation. First, the weight vectors are highly sensitive

to noise. This implies that a small perturbation of the input may yield an entirely different

embedding. Second, we explain why this can cause LLE to converge to a linear projection of

the high-dimensional input (see also Wu and Hu 2006). Numerical results that demonstrate our
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claims are provided.

We then move to analysis of LLE with low-dimensional neighborhood representation (LDR-

LLE). We prove a number of theoretical results. We first prove that the weights computed by

LDR-LLE are robust against noise. We then prove that when LDR-LLE is used on input points

sampled from a manifold that is conformally embedded, the pre-image of the input points achieves

a low value of the objective function. We also prove that embedding of LDR-LLE converges to

a continuous map of the input, that is, LDR-LLE maps close-by points in the input to close-by

points in the output. Finally, we prove that for a large enough sample, LDR-LLE preserves the

order of the points of a one-dimensional manifold. Note that this is not true for LLE (see for

example Fig. 1C and the explanation there).

The paper is organized as follows. The description of LLE is presented in Section 2. LDR-LLE

is described in Section 3. The results for LLE appear in Section 4. Theoretical results regarding

LDR-LLE appear in Section 5. Section 6 summarizes the main results. Detailed proofs appear in

the Supplemental Materials.

2 Description of LLE

The input data X = {x1, . . . , xn}, xi ∈ RD for LLE is assumed to be sitting on or next to a

d-dimensional manifold M. We refer to X as an n × D matrix, where each row stands for an

input point. The goal of LLE is to recover the underlying d-dimensional structure of the input

data X. LLE attempts to do so in three steps.

First, LLE assigns neighbors to each input point xi. This can be done, for example, by choosing

the input point’s K-nearest neighbors based on the Euclidian distances in the high-dimensional

space. Let the neighborhood matrix of xi be denoted by Xi, where Xi is the K ×D matrix with

rows ηj − xi and ηj is the j-th neighbor of xi.

Second, LLE computes weights wi = (wij)j that best linearly reconstruct xi from its neighbors.

These weights minimize the reconstruction error function

ϕi(wi) = ‖xi −
∑
j

wijxj‖2 , (1)

where wij = 0 if xj is not a neighbor of xi, and
∑

j wij = 1. With some abuse of notation, we will

also refer to wi as a K × 1 vector, where we omit the entries of wi for non-neighbor points. Using
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this notation, we may write ϕi(wi) = w′iXiX
′
iwi.

Finally, given the weights found above, LLE finds a set of low-dimensional output points

Y = {y1, . . . , yn} ∈ Rd that minimize the sum of reconstruction errors

Φ(Y ) =
n∑
i=1

‖yi −
∑
j

wijyj‖2 , (2)

under the normalization constraints Y ′1 = 0 and n−1Y ′Y = I, where 1 is vector of ones. These

constraints force a unique minimum of the function Φ.

The function Φ(Y ) can be minimized by finding the d-bottom non-zero eigenvectors of the

sparse matrix (I −W )′(I −W ), where W is the matrix of weights. Note that the p-th coordinate

(p = 1, . . . , d), found simultaneously for all output points yi, is equal to the eigenvector with

the p-smallest non-zero eigenvalue. This means that the first p coordinates of the LLE solution

in q dimensions, p < q, are exactly the LLE solution in p dimensions (Roweis and Saul 2000).

Equivalently, if an LLE output of dimension q exists, then a solution for dimension p, p < q, is

merely a linear projection of the q-dimensional solution on the first p dimensions.

When the number of neighbors K is greater than the dimension of the input D, each data

point can be reconstructed perfectly from its neighbors, and the local reconstruction weights are

no longer uniquely defined. In this case, regularization is needed and one needs to minimize

ϕreg
i (wi) = ‖xi −

∑
j

wijxj‖2 + δ‖wi‖2 , (3)

where δ is a small constant. Saul and Roweis (2003) suggested δ = ∆
K

trace(XiX
′
i) with ∆ � 1.

Regularization can be problematic for the following reasons. When the regularization constant

is not small enough, it was shown by Zhang and Wang (2007) that the correct weight vectors

cannot be well approximated by the minimizer of ϕreg
i (wi). Moreover, when the regularization

constant is relatively high, it produces weight vectors that tend towards the uniform vectors

wi = (1/K, . . . , 1/K). Consequently, the solution for LLE with a large regularization constant

is close to that of the Laplacian Eigenmap algorithm (see Belkin and Niyogi 2003, Section 5).

In addition, Lee and Verleysen (2007) demonstrated that the regularization parameter must be

tuned carefully, since LLE can yield completely different embeddings for different values of this

parameter.
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3 Description of LDR-LLE

In this section we present the modification of LLE that computes the low-dimensional structure of

the input points’ neighborhoods suggested by Saul and Roweis (2003, Section 5.4). This is done

by finding the best representation of rank d (in the l2 sense) for the neighborhood of each point,

and then computing the weights with respect to these d-dimensional neighborhoods.

We begin by finding a rank-d representation for each local neighborhood. Recall that Xi is

the K ×D neighborhood matrix of xi, whose j-th row is ηj − xi, where ηj is the j-th neighbor of

xi. We assume that the number of neighbors K is greater than d, since otherwise xi cannot (in

general) be reconstructed by its neighbors. We say that XP
i is the best rank-d representation of

Xi, if XP
i minimizes ‖Xi − Y ‖2 over all the K ×D matrices Y of rank d. Let ULV ′ be the SVD

of Xi, where U and V are orthogonal matrices of size K ×K and D×D, respectively, and L is a

K ×D matrix, where Ljj = λj are the singular values of Xi for j = min(K,D), ordered from the

largest to the lowest, and Lij = 0 for i 6= j. We denote

U =
(
U1, U2

)
; L =

 L1, 0

0, L2

 ; V =
(
V1, V2

)
(4)

where U1 = (u1, . . . , ud) and V1 = (v1, . . . , vd) are the first d columns of U and V , respectively,

U2 and V2 are the last K − d and D − d columns of U and V , respectively, and L1 and L2 are of

dimension d× d and (K − d)× (D− d), respectively. Then by Corollary 2.3-3 of Golub and Loan

(1983), XP
i can be written as U1L1V

′
1 .

For LLE, the weight vectors are found by minimizing (1). For XP
i , the solution for this mini-

mization problem is not unique, since by the construction all the vectors spanned by ud+1, . . . , uK

zero this function. Thus, one can choose the weight vector in the span of ud+1, . . . , uK that has

the smallest l2 norm (Saul and Roweis 2003, Section 5). In other words, the weight vector can be

found as

argmin
wi∈span{ud+1,...,uK}

w′
i1=1

‖wi‖2 . (5)

Note that it is assumed that 1 /∈ span{u1, . . . , ud}. This is true whenever the neighborhood

points are in general position, i.e., no d+1 of them lie in a (d−1)-dimensional plane. To understand

this, note that if 1 ∈ span{u1, . . . , ud}, then (I − 1
K
11′)XP

i = (I − 1
K
11′)U1L1V

′
1 is of rank d− 1.

Since (I− 1
K
11′)XP

i is the projected neighborhood after centering, we obtained that the dimension
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of the centered projected neighborhood is of dimension d−1, and not d as assumed, and therefore

the points are not in general position. See also Assumption (A2) in Section 5 and the discussion

that follows.

The following lemma shows how to compute the vector wi that minimizes (5).

Lemma 3.1. Assume that the points of XP
i are in general position. Then the vector wi that

minimizes (5) is given by

wi =
U2U2

′1

1′U2U2
′1
. (6)

Using Lemma 3.1, we can write LDR-LLE as follows. First, LDR-LLE assigns neighbors to

each input point xi, as in LLE, obtaining the matrix Xi. Second, the weight vectors are computed

as follows. Write Xi = ULV ′ and U2 = (ud+1 . . . , uK). The weights are given by

wi =
U2U2

′1

1′U2U2
′1
.

Finally, the d-dimensional embedding is found by minimizing Φ(Y ) (see (2)), as in LLE.

Note that the difference between LDR-LLE and LLE is in the second step. LDR-LLE computes

the low -dimensional neighborhood representation of each neighborhood and obtains its weight

vector, while LLE computes the weight vector for the original high-dimensional neighborhoods.

One consequence of this approach is that the weight vectors wi of LDR-LLE are less sensitive to

perturbation, as shown in Theorem 5.1.

4 Preservation of high-dimensional neighborhood struc-

ture by LLE

In this section we focus on the computation of the weight vectors, which is performed in the

second step of LLE. We first show that LLE characterizes the high-dimensional structure of the

neighborhood. We explain how this can lead to the failure of LLE to find a meaningful embedding

of the input. Two additional consequences of preservation of the high-dimensional neighborhood

structure are discussed. First, LLE’s weight vectors are sensitive to noise. Second, LLE’s output

may tends toward a linear projection of the input data when the number of input points tends to

infinity. These claims are demonstrated using numerical examples.
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Figure 1: The input for LLE is the 16-point open ring that appears in (A). The two-dimensional

output of LLE is given in (B). LLE finds and preserves the two-dimensional structure of each of

the local neighborhoods. The one-dimensional output of LLE appears in (C). Note that LLE fails

to unfold the ring (compare to Fig. 5). The computation was performed using 4-nearest-neighbors,

and regularization constant ∆ = 10−9.

We begin by showing that LLE preserves the high-dimensional neighborhood structure. We

use the example that appears in Fig. 1. The input is a sample from an open ring which is a

one-dimensional manifold embedded in R2. For each point on the ring, we define its neighborhood

using its 4 nearest neighbors. Note that its high-dimensional (D = 2) neighborhood structure

is curved, while the low -dimensional structure (d = 1) is a straight line. The two-dimensional

output of LLE (see Fig. 1) is essentially a reconstruction of the input. In other words, LLE’s

weight vectors preserve the curved shape of each neighborhood.

The one-dimensional output of the open ring is presented in Fig. 1C. Recall that the one-

dimensional solution is a linear projection of the two-dimensional solution, as explained in Sec-

tion 2. In the open-ring example, LLE clearly fails to find an appropriate one-dimensional em-

bedding, because it preserves the two-dimensional curved neighborhood structure. We shall now

show that this holds true in some additional cases.

The swissroll output in Fig. 2B shows that the overall three-dimensional structure of the

swissroll is preserved in the three-dimensional embedding. The two-dimensional output of LLE

appears in Fig. 2C. It can be seen that LLE does not succeed in finding a meaningful embedding

in this case. Fig. 3 presents the ‘S’ curve, with similar results.

We performed LLE, here and in all other examples, using the LLE Matlab code as it appears
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Figure 2: (A) LLE’s input, a 2000-point swissroll. (B) The three-dimensional output of LLE.

It can be seen that LLE finds the overall three-dimensional structure of the input. (C) The

two-dimensional output of LLE. Note that LLE fails to unfold the swissroll.

on the LLE website 1. The code that produced the input data for the swissroll (Fig. 2A) was

also taken from the LLE website. We used the default values of 2000 sample points and K = 12

nearest neighbors, with ∆ = 10−9 as the regularization constant. It should be noted that using a

large regularization constant improved the results. However, weight vectors produced with large

regularization constant do not approximate the neighborhood and tend toward a uniform vector.

The ‘S’ curve data (Fig 3A) was obtained by embedding the 2000-point sample produced using

the code taken from the LLE website in RD, with D = 15. This embedding was obtained by

adding a normal random vector with zero mean and 10−6I variance matrix to each point. We

used K = 12 in the computation. Note that since K < D, no regularization is needed. The

failure to find the low-dimensional embedding is, therefore, inherent and is not due to the choice

of regularization constant. It should be noted that roughly the same result was obtained when

using the original three-dimensional ‘S’ curve with ∆ = 10−9. The open ring, swissroll, and ‘S’

curve data sets can be found online (see Section A).

We now discuss the sensitivity of LLE’s weight vectors {wi} to noise. Figure 4 shows that

an arbitrarily small change in the neighborhood can cause a large change in the weight vectors.

This result can be understood by noting how the vector wi is obtained. It can be shown (Saul

and Roweis 2003) that wi equals (XiX
′
i)
−11, up to normalization. Sensitivity to noise is therefore

expected when the condition number of XiX
′
i is large (see Golub and Loan 1983, Section 2).

1http://www.cs.toronto.edu/~roweis/lle/. The changes in the Matlab function eigs were taken into ac-

count.
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Figure 3: (A) The first three dimensions of LLE’s input, a 2000-point ‘S’ curve embedded in

R15. (B) The three-dimensional output of LLE. It can be seen that LLE finds the overall three-

dimensional structure of the input. (C) The two-dimensional output of LLE. Note that LLE fails

to unfold the ‘S’ curve.

One way to solve this problem is to enforce regularization, with its associated problems (see

Section 2). We note that the sensitivity of LLE’s weights to noise means that two similar inputs

can result in widely varying outputs. This is clearly an undesirable property, since the parametric

representation of two similar inputs is expected to be similar.

One more implication of the fact that LLE preserves the high-dimensional neighborhood struc-

ture is that LLE’s output may tend to a linear projection of the input data. Wu and Hu (2006)

proved for a finite data set that when the reconstruction errors are exactly zero for each of the

neighborhoods, and under some dimensionality constraint, the output of LLE must be a linear

projection of the input data. Here, we present a simple argument that explains why LLE’s output

tends to a linear projection when the number of input points tends to infinity, and show numerical

examples that strengthen this claim. For simplicity, we assume that the input data is normalized.

Our argument is based on two claims. First, note that LLE’s output for dimension d is a linear

projection of LLE’s output for dimension D (see Section 2). Second, note that by definition,

the LLE output is a set of points Y that minimizes the sum of reconstruction errors Φ(Y ). For

normalized input X of dimension D, when the number of input points tends to infinity, each

point is well reconstructed by its neighboring points. Therefore the reconstruction error ϕi(w)

tends to zero for each point xi. This means that the input data X tends to minimize the sum of

reconstruction errors Φ(Y ). Hence, the output points Y of LLE for output of dimension D tend to

the input points (up to a rotation). The result of these two claims is that when the neighborhoods
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Figure 4: The effect of a small perturbation on the weight vector computed by LLE. All three pan-

els show the same unperturbed neighborhood, consisting of a point and its four nearest-neighbors

(black points), all sitting in the two-dimensional plane. Each panel shows a different small pertur-

bation of the original neighborhood (gray points). All perturbations are in the direction orthogonal

to the plane of the original neighborhood. (A) and (C): Both perturbations are in the same di-

rection. (B) Perturbations are of equal size, in opposite directions. The unique weight vector for

the center point is denoted for each case. These three different weight vectors vary widely, even

though the different perturbations can be arbitrarily small.

are reconstructed well, any requested solution of dimension d < D tends to a linear projection of

the D-dimensional solution, i.e., a linear projection of the input data.

The result that LLE tends to a linear projection is of an asymptotical nature. However,

numerical examples show that this phenomenon can occur even when the number of points is

relatively small. This is indeed the case for the outputs of LLE shown in Figs. 1C, 2C, and 3C,

for the open ring, the swissroll, and the ‘S’ curve, respectively.

Note that the linear projection does not occur to LDR-LLE. This is due to the fact that the d-

dimensional output of LDR-LLE is not a projection of the embedding in dimension q, q > d. This

is because the weight vectors wi are computed differently for different values of output dimension

d. In particular, the input data no longer minimize Φ when d < D, and therefore the linear

projection problem does not arise (see Fig 5 for numerical example).

5 Theoretical results for LDR-LLE

In this section we prove theoretical results regarding the computation of LDR-LLE. We first show

that a small perturbation of the neighborhood has a small effect on the weight vector. Then
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Figure 5: The outputs of LLE and LDR-LLE for the open ring (Fig. 1A) appear in (A) and (B)

respectively

.

we show that the set of original points in the low-dimensional domain, that is the pre-image

of the input points, achieves a low value of the objective function Φ. We also show that that

close-by points in the input are mapped to close-by points in the output. Finally, we prove that

asymptotically LDR-LLE preserves the order of the points of a one-dimensional manifold.

We start with some definitions. Let Ω ⊂ Rd be a compact set and let f : Ω → RD be a

smooth conformal mapping. This means that the inner products on the tangent bundle at each

point are preserved up to a scalar c that may change continuously from point to point. Note that

the class of isometric embeddings is included in the class of conformal embeddings. Let M be

the d-dimensional image of Ω in RD. Assume that the input X = {x1, . . . , xn} is a sample taken

from M. For each point xi, define the neighborhood Xi and its low-dimensional representation

XP
i as in Section 3. Let Xi = ULV ′ and XP

i = U1L1V1
′ be the SVDs of the i-th neighborhood

and its projection, respectively. Denote the singular values of Xi by λi1 ≥ . . . ≥ λiK , where λij = 0

if D < j ≤ K. Denote the mean vector of the projected i-th neighborhood by µi = 1
K
1′XP

i .

For the proofs of the theorems we require that the local high-dimensional neighborhoods satisfy

the following two assumptions:

(A1) For each i, λid+1 � λid.

(A2) There is an α < 1 such that for all i, 1
K
1′U1U1

′1 < α.

The first assumption states that for each i, the neighborhood Xi is essentially d-dimensional. For
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our purposes it enough to demand λid+1 < min
{

(λid)
2,

λid
72

}
. The second assumption is equivalent to

the requirement that points in each projected neighborhood be in general position (see discussion

in Section 4). We now show that this is equivalent to the requirement that the variance-covariance

matrix of the projected neighborhood is not degenerate. Denote S = 1
K
XP
i
′
XP
i = 1

K
V1L

2
1V1
′; then

1

K
1′U1U1

′1 =
1

K
1′(U1L1V1

′)(V1L
−2
1 V1

′)V1L1U1
′1 = µ′S−1µ .

Note that since S − µµ′ is positive definite, so is I − S−1/2µµ′S−1/2. Since the only eigenvalues of

I − S−1/2µµ′S−1/2 are 1 and 1− µ′S−1µ, we obtain that µ′S−1µ < 1.

Theorem 5.1. Let Ei be a K×D matrix such that ‖Ei‖F = 1. Let X̃i = Xi+εEi be a perturbation

of the i-th neighborhood. Assume (A1) and (A2) and ε < min
(

(λid)4

72
,

(λid)2(1−α)

72

)
and that λi1 < 1.

Let wi and w̃i be the weight vectors computed by LDR-LLE for Xi and X̃i, respectively, as defined

by (5). Then

‖wi − w̃i‖ <
20ε

(λid)
2(1− α)

.

See proof in the Supplemental Materials.

Note that the assumption that λi1 < 1 can always be fulfilled by rescaling the matrix Xi since

rescaling the input matrix X has no influence on the value of wi.

Fig. 4 demonstrates why no bound similar to Theorem 5.1 exists for the weights computed by

LLE. In the example we see a point on the grid with its 4-nearest neighbors, where some noise

was added. Although λ1 ≈ λ2 ≈ 1− α ≈ 1, and ε is arbitrarily small, the distance between each

pair of vectors is at least 1
2
. Conversely, the bound of Theorem 5.1 states that for ε = 10−2, 10−4,

and 10−6 the upper bound on the distance when using the LDR-LLE is 20 · 10−2, 20 · 10−4, and

20 · 10−6, respectively. The empirical results shown in Fig. 6 are even lower.

For the second theoretical result we require some additional definitions.

The minimum radius of curvature r0 = r0(M) is defined to be:

1

r0

= max
γ,t
{‖γ̈(t)‖} ,

where γ varies over all unit-speed geodesics inM and t is in a domain of γ. The minimum branch

separation s0 = s0(M) is defined as the largest positive number for which ‖x− x̃‖ < s0 implies

that dM(x, x̃) ≤ πr0, where x, x̃ ∈ M, and dM(x, x̃) are the geodesic distance between x and x̃

(for both definitions, see Bernstein et al. 2000).
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Figure 6: The effect of neighborhood perturbation on the weight vectors of LLE and of LDR-

LLE. The original neighborhood consists of a point on the two-dimensional grid and its 4-nearest

neighbors, as in Fig. 4. A 6-dimensional noise matrix εE where ‖E‖F = 1 was added to the

neighborhood for ε = 10−2, 10−4, and 10−6, with 1000 repetitions for each value of ε. Note

that no regularization is needed since K < D. The graphs show the distance between the vector

w =
(

1
4
, 1

4
, 1

4
, 1

4

)
and the vectors computed by LLE (top graph, in green) and by LDR-LLE (bottom

graph, in blue). Note the log scale in the y axis.

Define the radius r(i) of neighborhood i to be

r(i) = max
j∈{1,...,K}

‖ηj − xi‖

where ηj is the j-th neighbor of xi. Finally, define rmax to be the maximum over r(i) .

We say that the sample is dense with respect to the chosen neighborhoods if rmax < s0.

Note that this condition depends on the manifold structure, the given sample, and the choice

of neighborhoods. However, for a given compact manifold, if the distribution that produces the

sample is supported throughout the entire manifold, then this condition is valid with probability

increasing towards 1 as the size of the sample is increased and the radius of the neighborhoods is

decreased.

Theorem 5.2. Let Ω be a compact convex set in Rd which is equal to the closure of its interior.

Let f : Ω → RD be a smooth conformal mapping. Let X be an n-point sample taken from f(Ω),

and let Z = f−1(X), i.e., zi = f−1(xi). Assume that the sample X is dense with respect to the

choice of neighborhoods and that assumptions (A1)and (A2) hold. Then, if the weight vectors are

chosen according to LDR-LLE,

Φ(Z)

n
= max

i
λid+1O

(
r2

max

)
. (7)
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See proof in the Supplemental Materials.

The theorem states that the pre-image Z has a small value of Φ and thus is a reasonable

embedding, although not necessarily the minimizer (see Goldberg et al. 2008). This observation

is not trivial for two reasons. First, it is not known apriori that {f−1(ηj)}, the pre-image of

the neighbors of xi, are also neighbors of zi = f−1(xi). When short circuits occur, this need

not be true (see Balasubramanian et al. 2002). Second, the weight vectors {wi} characterize the

projected neighborhood, which is only an approximation to the true neighborhood. Nevertheless,

the theorem shows that Z has a low Φ value.

The above discussion raises the question of assessing the quality of the embedding Y obtained

by the algorithm. While there is no single accepted measure for quality of embedding (see, for

example,Venna and Kaski (2006);Chen (2006);Goldberg and Ritov (2009)), a reasonable demand

is that close-by points in the pre-image Z = f−1(X) should be mapped to close-by points in the

embedding Y . In the following we prove that when the number of points in the sample tends to

infinity, close-by points in Z are indeed mapped to close-by points in Y with probability tends to

one, at least for inner points.

Before we state this result we need to discuss the size of the neighborhoods. Let X =

{x1, . . . , xn}, xi ∈ RD be the input data. Consider a neighborhood graph of the input matrix

X with n vertices, and an edge between vertices i and j if xi is in the neighborhood of xj or vice

versa. Note that if K remains bounded as n grows to infinity, the graph is likely to be unconnected

when the observations are taken from a random sample from a positive density on the manifold.

For example, for d = 1, the gaps are asymptotically exponentially distributed (locally i.i.d.). The

number of cliques is approximately n times the (positive) probability that an exponential random

variable will be larger than two independent Gamma random variables with K − 1 degrees of

freedom. But when the graph is not connected, the mapping of the cliques is arbitrary, and the

resulting mapping will not resemble the original manifold. We need, therefore, to ensure enough

overlapping between the adjacent neighborhoods.

In the following we take the radii of the neighborhoods to zero while ensuring that the number

of observations within each neighborhood grows to infinity. More specifically we assume the

following:

(A3) The input sample is taken from a continuous density on f(Ω) that is bounded away from
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zero and infinity. Moreover, there is an εo > 0 such that for all x ∈ f(Ω), and 0 < r ≤ εo, the

probability of B(x, r) is greater than δrd, where δ > 0 is some constant and B(x, r) ⊂ RD is

the ball of radius r around x.

Note that since the radii tend to zero, we obtain that sample is dense for all n large enough.

As before let f : Ω→ RD be a conformal mapping. For each z ∈ Ω, let J(z) be the Jacobian of f

at z. Since f is conformal, there is a continuous function c : Ω→ R+ such that J(z)′J(z) = c(z)I,

where I is the d × d identity matrix. Without loss of generality, we assume that c(z) ≥ π/2,

since we can always multiply f by 1/min(c(z)). Let ∂Ω = Ω/Ωo be the boundary of Ω and let

dist(z, ∂Ω) = minz′∈∂Ω ‖z − z′‖ denote the distance of the point z from the boundary.

We are now ready to state the theorem. To simplify the proof, the following theorem is

expressed in terms of balls and not K-neighborhoods.

Theorem 5.3. Let f : Ω → RD as in Theorem 5.2 and let X = Xn be an n-size sample taken

from f(Ω). Assume that (A1)-(A3) hold. Let the neighborhoods be defined by balls with radius r,

where r = rn → 0 while nrd →∞. Let ρ = ρn be such that ρ/r → 0 but nρd →∞. Then

1

n

∑
{i:dist(zi,∂Ω)>2r+ρ}

max
{j:‖zi−zj‖<ρ}

‖yi − yj‖2 ≤ Op(ρ/r). (8)

Furthermore, if nrd(d+1+η) →∞ for some η > 0, then for any ε > 0 with probability converging to

1

max
{i:dist(zi,∂Ω)>2r}

max
{j:‖zi−zj‖<rd+1+η}

‖yi − yj‖2 ≤ ε. (9)

The proof is given in the Supplemental Materials.

Theorem 5.3 proves that close-by points are mapped to close-by points. However, are far points

mapped to far points? The following theorem argues that this is the case at least for d = 1. We

show that for d = 1, Y retains the order of Z, at least if the neighborhood size is selected with

care.

Theorem 5.4. Consider the setup of the previous theorems. Suppose d = 1 and the curve has

a bounded curvature. Suppose the the points are taken from a bounded density on an interval

which is bounded away from 0. Let the i-th neighborhood be the K points proceeding and the K

points following xi on the curve. Suppose K/n → 0, but K9/7/n → ∞. Suppose, with out loss of
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generality, that the pre-image is z1 < · · · < zn. Then there are positive εn, δn → 0, such that for

all i, j, ` > 0 such that εnn < i < j < j + ` < (1− εn)n we have yi+` − yi = yj+` − yj + Op(δn).

In other words, the theorem states that all non-negligible differences between any two ordered

inner points have the same sign, thus order is preserved. Note that when the sample size is large

enough, with probability that tends to 1, one can choose the neighborhoods structure used in this

theorem.

The proof is given in the Supplemental Materials.

6 Summary

In this work we study theoretical properties of the algorithm LLE. We demonstrated two limita-

tions of LLE. First, we showed that the weight vectors computed by LLE are highly sensitive to

noise. Second, we showed that LLE may converge to a linear projection of the high-dimensional

input when the number of input points tends to infinity. We showed that this is a result of

the fact that LLE captures the high-dimensional structure of the neighborhoods, and not the

low-dimensional manifold structure.

As opposed to LLE, the LDR-LLE version of LLE finds the best low-dimensional representation

for the neighborhood of each point. We proved that the weights computed by LDR-LLE are

robust against noise. We also proved that when LDR-LLE is used on input points sampled from

a conformally embedded manifold, the pre-image of the input points achieves a low value of the

objective function. In addition we proved that close-by points in the input are mapped to close-by

points in the output. Finally, we proved that asymptotically LDR-LLE preserves the order of the

points of a one-dimensional manifold.

We believe that the results presented here are only the first step in the understanding of the

theoretical properties of LLE. Many other questions are still open: The theoretical properties

of LLE for isometrically embedded manifolds are not known, and it is not clear under which

conditions LLE succeeds to find the underlying structure of the manifold. We hope that the

theoretical tools derived in this paper will be of service in future studies of LLE and other manifold-

learning techniques.
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A Supplemental Materials

Supplementary Proofs Detailed proofs for Lemma 3.1 and Theorems 5.1-5.4.

Code and data sets The archive file LDR LLE.zip contains the MATLAB code and all data

sets used in this work, as well as a readme.pdf file that describes all of the other files in the

archive.
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