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Asymptotic Efficiency of Simple Decisions

for the Compound Decision Problem

Eitan Greenshtein1,∗ and Ya’acov Ritov2,∗

Duke University and Jerusalem, Israel

Abstract: We consider the compound decision problem of estimating a vector
of n parameters, known up to a permutation, corresponding to n independent
observations, and discuss the difference between two symmetric classes of es-
timators. The first and larger class is restricted to the set of all permutation
invariant estimators. The second class is restricted further to simple symmet-
ric procedures. That is, estimators such that each parameter is estimated by
a function of the corresponding observation alone. We show that under mild
conditions, the minimal total squared error risks over these two classes are
asymptotically equivalent up to essentially O(1) difference.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
2 Basic Lemma and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 269
3 Two Valued Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
4 Dense μ’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
5 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

1. Introduction

Let F = {Fμ : μ ∈ M } be a parameterized family of distributions. Let Y1, Y2 . . . be
a sequence of independent random variables, where Yi takes value in some space Y ,
and Yi ∼ Fμi , i = 1, 2, . . . . For each n, we suppose that the sequence μ1:n is known
up to a permutation, where for any sequence x = (x1, x2, . . . ) we denote the sub-
sequence xs, . . . , xt by xs:t. We denote by μ = μn the set {μ1, . . . , μn}, i.e., μ is μ1:n

without any order information. We consider in this note the problem of estimating
μ1:n by μ̂1:n under the loss

∑n
i=1(μ̂i − μi)2, where μ̂1:n = Δ(Y1:n). We assume

that the family F is dominated by a measure ν, and denote the corresponding
densities simply by fi = fμi , i = 1, . . . , n. The important example is, as usual,
Fμi = N(μi, 1).

Let DS = DS
n be the set of all simple symmetric decision functions Δ, that is, all

Δ such that Δ(Y1:n) = (δ(Y1), . . . , δ(Yn)), for some function δ : Y → M. In partic-
ular, the best simple symmetric function is denoted by ΔS

μ = (δS
μ(Y1), . . . , δS

μ(Yn)):

ΔS
μ = arg min

Δ∈DS
n

E | |Δ − μ1:n| |2,
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and denote
rS
n = E | |ΔS

μ(Y1:n) − μ1:n| |2,

where, as usual, ‖a1:n‖2 =
∑n

i=1 a2
i .

The class of simple rules may be considered too restrictive. Since the μs are
known up to a permutation, the problem seems to be of matching the Y s to the μs.
Thus, if Yi ∼ N(μi, 1), and n = 2, a reasonable decision would make μ̂1 closer to
μ1 ∧ μ2 as Y2 gets larger. The simple rule clearly remains inefficient if the μs are well
separated, and generally speaking, a bigger class of decision rules may be needed
to obtain efficiency. However, given the natural invariance of the problem, it makes
sense to be restricted to the class DPI = DPI

n of all permutation invariant decision
functions, i.e, functions Δ that satisfy for any permutation π and any (Y1, . . . , Yn):

Δ(Y1, . . . , Yn) = (μ̂1, . . . , μ̂n) ⇐⇒ Δ(Yπ(1), . . . , Yπ(n)) = (μ̂π(1), . . . , μ̂π(n)).

Let
ΔPI

μ = arg min
Δ∈DP I

E | |Δ(Y n) − μ1:n| |2

be the optimal permutation invariant rule under μ, and denote its risk by

rPI
n = E| |ΔPI

μ (Y1:n) − μ1:n| |2.

Obviously DS ⊂ DPI , and whence rS
n ≥ rPI

n . Still, ‘folklore’, theorems in the
spirit of De Finetti, and results like Hannan and Robbins [5], imply that asymptoti-
cally (as n → ∞) ΔPI

μn and ΔS
μn will have ‘similar’ mean risks: rS

n − rPI
n = o(n). Our

main result establishes conditions that imply the stronger claim, rS
n − rPI

n = O(1).
To repeat, μ is assumed known in this note. In the general decision theory frame-

work the unknown parameter is the order of its member to correspond with Y1:n,
and the parameter space, therefore, corresponds to the set of all the permutations
of 1, . . . , n.

An asymptotic equivalence as above implies, that when we confine ourselves to
the class of permutation invariant procedures, we may further restrict ourselves to
the class of simple symmetric procedures, as is usually done in the standard analysis
of compound decision problems. The later class is smaller and simpler.

The motivation for this paper stems from the way the notion of oracle is used in
some sparse estimation problems. Consider two oracles, both know the value of μ.
Oracle I is restricted to use only a procedure from the class DPI , while Oracle II is
further restricted to use procedures from DS . Obviously Oracle I has an advantage,
our results quantify this advantage and show that it is asymptotically negligible.
Furthermore, starting with Robbins [7] various oracle-inequalities were obtained
showing that one can achieve nearly the risk of Oracle II, by a ‘legitimate’ statistical
procedure. See, e.g., the survey Zhang [10], for oracle-inequalities regarding the
difference in risks. See also Brown and Greenshtein [2], and Wenuha and Zhang
[11] for oracle inequalities regarding the ratio of the risks. However, Oracle II is
limited, and hence, these claims may seem to be too weak. Our equivalence results,
extend many of those oracle inequalities to be valid also with respect to Oracle I. We
needed a stronger result than the usual objective that the mean risks are equal up to
o(1) difference. Many of the above mentioned recent applications of the compound
decision notion are about sparse situations when most of the μs are in fact 0, the
mean risk is o(1), and the only interest is in total risk.
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Let μ1, . . . , μn be some arbitrary ordering of μ. Consider now the Bayesian
model under which (π, Y1:n), π a random permutation, have a distribution given by

π is uniformly distributed over P (1 : n);(1.1)
Given π, Y1:n are independent, Yi ∼ Fμπ(i)

, i = 1, . . . , n,(1.2)

where for every s < t, P (s : t) is the set of all permutations of s, . . . , t. The
above description induces a joint distribution of (M1, . . . , Mn, Y1, . . . , Yn), where
Mi ≡ μπ(i), for a random permutation π.

The first part of the following proposition is a simple special case of general
theorems representing the best invariant procedure under certain groups as the
Bayesian decision with respect to the appropriate Haar measure; for background
see, e.g., Berger [1], Chapter 6. The second part of the proposition was derived in
various papers starting with Robbins [7].

In the following proposition and proof, Eμ1:n is the expectation under the model
in which the observations are independent, Yi ∼ Fμi , and Eμ is the expectation
under the above joint distribution of Y1:n and M1:n. Note that under the latter
model, for any i = 1, . . . , n, marginally Mi ∼ Gn, the empirical measure defined by
the vector μ, and conditional on Mi = m, Yi ∼ Fm.

Proposition 1.1. The best simple and permutation invariant rules are given by

(i) ΔPI
μ (Y1:n) = Eμ(M1:n|Y1:n).

(ii) ΔS
μ(Y1:n) = (Eμ(M1|Y1), . . . , Eμ(Mn|Yn).

(iii) rS
n = rPI

n + Eμ ‖ΔS
μ − ΔPI

μ ‖2.

Proof. We need only to give the standard proof of the third part. First, note that
by invariance ΔPI

μ is an equalizer (over all the permutations of μ), and hence
Eμ1:n(ΔPI

μ − μ1:n)2 = Eμ(ΔPI
μ − M1:n)2. Also Eμ1:n(ΔS

μ − μ1:n)2 = Eμ(ΔS
μ − M1:n)2.

Then, given the above joint distribution,

rS
n = Eμ ‖ΔS

μ − M1:n‖2

= Eμ Eμ{ ‖ΔS
μ − M1:n‖2|Y1:n}

= Eμ Eμ{ ‖ΔS
μ − ΔPI

μ ‖2 + ‖ΔPI
μ − M1:n‖2|Y1:n}

= rPI
n + Eμ ‖ΔS

μ − ΔPI
μ ‖2.

We now briefly review some related literature and problems. On simple symmet-
ric functions, compound decision and its relation to empirical Bayes, see Samuel
[9], Copas [3], Robbins [8], Zhang [10], among many other papers.

Hannan and Robbins [5] formulated essentially the same equivalence problem in
testing problems, see their Section 6. They show for a special case an equivalence
up to o(n) difference in the ‘total risk’ (i.e., non-averaged risk). Our results for
estimation under squared loss are stated in terms of the total risk and we obtain
O(1) difference.

Our results have a strong conceptual connection to De Finetti’s Theorem. The
exchangeability induced on M1, . . . , Mn, by the Haar measure, implies ‘asymptotic
independence’ as in De Finetti’s theorem, and consequently asymptotic indepen-
dence of Y1, . . . , Yn. Thus we expect E(M1|Y1) to be asymptotically similar to
E(M1|Y1, . . . , Yn). Quantifying this similarity as n grows, has to do with the rate of
convergence in De Finetti’s theorem. Such rates were established by Diaconis and
Freedman [4], but are not directly applicable to obtain our results.
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After quoting a simple result in the following section, we consider in Section 3
the special important, but simple, case of two-valued parameter. In Section 4 we
obtain a strong result under strong conditions. Finally, the main result is given in
Section 5, it covers the two preceding cases, but with some price to pay for the
generality.

2. Basic Lemma and Notation

The following lemma is standard in comparison of experiments theory; for back-
ground on comparison of experiments in testing see Lehmann [6], p. 86. The proof
follows a simple application of Jensen’s inequality.

Lemma 2.1. Consider two pairs of distributions, {G0, G1} and {G̃0, G̃1}, such that
the first pair represents a weaker experiment in the sense that there is a Markov
kernel K, and Gi(·) =

∫
K(y, ·) dG̃i(y), i = 1, 2. Then

EG0 ψ

(
dG1

dG0

)
≤ EG̃0

ψ

(
dG̃1

dG̃0

)

for any convex function ψ.

For simplicity denote fi(·) = fμi(·), and for any random variable X, we may write
X ∼ g if g is its density with respect to a certain dominating measure. Finally, for
simplicity we use the notation y−i to denote the sequence y1, . . . , yn without its i
member, and similarly μ−i = {μ1, . . . , μn} \ {μi}. Finally f−i(Y−j) is the marginal
density of Y−j under the model (1.1) conditional on Mj = μi.

3. Two Valued Parameter

We suppose in this section that μ can get one of two values which we denote by
{0, 1}. To simplify notation we denote the two densities by f0 and f1.

Theorem 3.1. Suppose that either of the following two conditions holds:

(i) f1−μ(Y1)/fμ(Y1) has a finite variance under both μ ∈ {0, 1}.
(ii)

∑n
i=1 μi/n → γ ∈ (0, 1), and f1−μ(Y1)/fμ(Y1) has a finite variance under one

of μ ∈ {0, 1}.

Then Eμ ‖μ̂S − μ̂PI ‖2 = O(1).

Proof. Suppose condition (i) holds. Let K =
∑n

i=1 μi, and suppose, WLOG, that
K ≤ n/2. Consider the Bayes model of (1.1). By Bayes Theorem

P (M1 = 1|Y1) =
Kf1(Y1)

Kf1(Y1) + (n − K)f0(Y1)
.
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On the other hand

P (M1 = 1|Y1:n)

=
Kf1(Y1)fK−1(Y2:n)

Kf1(Y1)fK−1(Y2:n) + (n − K)f0(Y1)fK(Y2:n)

=
Kf1(Y1)

Kf1(Y1) + (n − K)f0(Y1)

×
(

1 +
(n − K)f0(Y1)

Kf1(Y1) + (n − K)f0(Y1)

(
fK

fK−1
(Y2:n) − 1

))−1

= P (M1 = 1|Y1)
(

1 + γ

(
fK

fK−1
(Y2:n) − 1

))−1

,

where, with some abuse of notation fk(Y2:n) is the joint density of Y2:n condi-
tional on

∑n
j=2 μj = k, and the random variable γ is in [0, 1]. We prove now that

fK/fK−1(Y2:n) converges to 1 in the mean square.
We use Lemma 2.1 (with ψ the square) to compare the testing of fK(Y2:k) vs.

fK−1(Y2:k) to an easier problem, from which the original problem can be obtained
by adding a random permutation. Suppose for simplicity and WLOG that in fact
Y2:K are i.i.d. under f1, while YK+1:n are i.i.d. under f0. Then we compare

gK−1(Y2:n) =
K∏

j=2

f1(Yj)
n∏

j=K+1

f0(Yj),

the true distribution, to the mixture

gK(Y2:n) = gK−1(Y2:n)
1

n − K

n∑
j=K+1

f1

f0
(Yj).

However, the likelihood ratio between gK and gK−1 is a sum of n − K terms, each
with mean 1 (under gK−1) and finite variance. The ratio between the gs is, therefore,
1+Op(n−1/2) in the mean square. By Lemma 2.1, this applies also to the fs’ ratio.

Consider now the second condition. By assumption, K is of the same order as
n, and we can assume, WLOG, that the f1/f0 has a finite variance under f0. With
this understanding, the above proof holds for the second condition.

The condition of the theorem is clearly satisfied in the normal shift model: Fi =
N(μi, 1), i = 1, 2. It is satisfied for the normal scale model, Fi = N(0, σ2

i ), i = 1, 2,
if K is of the same order as n, or if σ2

0/2 < σ2
1 < 2σ2

0 .

4. Dense μ’s

We consider now another simple case in which μ can be ordered μ(1), . . . , μ(n) such
that the difference μ(i+1) − μ(i) is uniformly small. This will happen if, for example,
μ is in fact a random sample from a distribution with density with respect to
Lebesgue measure, which is bounded away from 0 on its support, or more generally,
if it is sampled from a distribution with short tails. Denote by Y(1), . . . , Y(n) and
f(1), . . . , f(n) the Y s and fs ordered according to the μs.

We assume in this section
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(B1) For some constants An and Vn which are bounded by a slowly converging to
infinite sequence:

max
i,j

|μi − μj | = An,

Var
(

f(j+1)

f(j)
(Y(j))

)
≤ Vn

n2
.

Note that condition (B1) holds for both the normal shift model and the normal
scale model, if μ behaves like a sample from a distribution with a density as above.

Theorem 4.1. If Assumption (B1) holds then

n∑
i=1

|μ̂PI
i − μ̂S

i |2 = Op(A2
nV 2

n /n).

Proof. By definition

μ̂S
1 =

∑n
i=1 μifi(Yi)∑n

i=1 fi(Yi)
,

μ̂PI
1 =

∑n
i=1 μifi(Y1)f−i(Y2:n)∑n

i=1 fi(Y1)f−i(Y2:n)
,

where f−i is the density of Y2:n under μ−i:

f−i(y2:m) =
1

(n − 1)!

∑
π∈P(2:n)

n∏
j=2

fπ(j)(yj)
f1

fi
(yi).

The result will follow if we argue that

(4.1) |μPI
1 − μS

1 | ≤ max
i,j

|μi − μj |
(

max
i,j

f−i

f−j
(Y2:n) − 1

)
= Op(AnVn/n).

That is, maxi |f−i(Y2:n)/f−1(Y2:n) − 1| = Op(Vn/n). In fact we will establish a
slightly stronger claim that ‖f−i − f−1‖TV = Op(Vn/n), where ‖ · ‖TV denotes the
total variation norm.

We will bound this distance by the distance between two other densities. Let
g−1(y2:n) =

∏n
j=2 fj(yj), the true distribution of Y2:n. We define now a similar

analog of f−i. Let rj and y(rj) be defined by fj = f(rj) and y(rj) = yj , j = 1, . . . , n.
Suppose, for simplicity, that ri < r1. Let

g−i(y2:n) = g−1(y2:n)
r1−1∏
j=ri

f(j+1)

f(j)
(y(j)).

The case r1 < ri is defined similarly. Note that g−i depends only on μ−i. Moreover,
if Ỹ2:n ∼ g−j , then one can obtain Y2:n ∼ f−j by the Markov kernel that takes Ỹ2:n

to a random permutation of itself. It follows from Lemma 2.1

‖f−i − f−1‖TV ≤ ‖g−i − g−1‖TV

= Eμ2:n

∣∣∣ g−i

g−1
(Y2:n) − 1

∣∣∣
= Eμ2:n

∣∣∣∣∣
r1−1∏
j=k

f(j+1)

f(j)
(Y(j)) − 1

∣∣∣∣∣.
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But, by assumption

Rk =
r1−1∏
j=k

f(j+1)

f(j)
(Y(j))

is a reversed L2 martingale, and it follows from Assumption (B1) that

max
k<r1

|Rk − 1| = Op(AnVn/n).

Similar argument applies to i, ri > r1, yielding

max
i

‖f−i − f−1‖TV = Op(AnVn/n).

We established (4.1). The theorem follows.

5. Main Result

We assume:

(G1) For some C < ∞: maxi∈{1,...,n} |μi| < C,
and maxi,j∈1,...,n Eμi(fμj (Y1)/fμi(Y1))2 < C. Also, there is γ > 0 such that
mini,j∈1,...,n Pμi(fμj (Y1)/fμi(Y1) > γ) ≥ 1/2.

(G2) The random variables

pj(Yi) =
fj(Yi)∑n

k=1 fk(Yi)
, i, j = 1, . . . , n,

are bounded in expectation by

E
n∑

i=1

n∑
j=1

(
pj(Yi)

)2
< C,

n∑
i=1

E
1

nminj pj(Yi)
< Cn,

E
n∑

i=1

∑n
j=1

(
pj(Yi)

)2

nminj pj(Yi)
< C.

Both assumptions describe a situation where the μs do not “separate”. They
cannot be too far one from another, geometrically or statistically (Assumption
(G1)), and they are dense in the sense that each Y can be explained by many of
the μs (Assumption (G2)). The conditions hold for the normal shift model if μn

are uniformly bounded: Suppose the common variance is 1 and |μj | < An. Then

E
n∑

j=1

(
fj(Y1)∑n

k=1 fk(Y1)

)2

= E

∑n
j=1 f2

j (Y1)
(
∑n

k=1 fk(Y1))2

≤ E
ne−Y 2

1 +2An |Y1|−A2
n

(ne−(Y 2
1 −2An |Y1|+A2

n)/2)2

=
1
n

E e4An |Y1|

=
1
n

(
e8A2

n+4Anμ1 + e8A2
n −4Anμ1

)
≤ 2

n
e12A2

n

and the first part of (G2) hold. The other parts follow a similar calculations.
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Theorem 5.1. Assume that (G1) and (G2) hold. Then

E ‖ΔS
μ − ΔPI

μ ‖2 = O(1),(i)

rS
n − rPI

n = O(1).(ii)

Corollary 5.2. Suppose F = {N(μ, 1) : |μ| < c} for some c < ∞, then the
conclusions of the theorem follow.

Proof. It was mentioned already in the introduction that when we are restricted to
permutation invariant procedure we can consider the Bayesian model under which
(π, Y1:n), π a random permutation, have a distribution given by (1.1). Fix now
i ∈ {1, . . . , n}. Under this model we want to compare

μS
i = E(μπ(i)|Yi), i = 1, . . . , n

to
μPI

i = E(μπ(i)|Y1:n), i = 1, . . . , n.

More explicitly:

μS
i =

∑n
j=1 μjfj(Yi)∑n

j=1 fj(Yi)

=
n∑

j=1

μjpj(Yi), i = 1, . . . , n,

(5.1)
μPI

i =

∑n
j=1 μjfj(Yi)f−j(Y−i)∑n

j=1 fj(Yi)f−j(Y−i)

=
n∑

j=1

μjpj(Yi)Wj(Y−i, Yi), i = 1, . . . , n,

where for all i, j = 1, . . . , n, fj(Yi) was defined in Section 2, and

pj(Yi) =
fj(Yi)∑n

k=1 fk(Yi)
,

Wj(Y−i, Yi) =
f−j(Y−i)∑n

k=1 pk(Yi)f−k(Y−i)
.

Note that
∑n

k=1 pk(Yi) = 1, and Wj(Y−i, Yi) is the likelihood ratio between two
(conditional on Yi) densities of Y−i, say gj0 and g1. Consider two other densities
(again, conditional on Yi):

g̃j0(Y−i|Yi) = fi(Yj)
∏

m �=i,j

fm(Ym),

g̃j1(Y−i|Yi) = g̃j0(Y−i|Yi)
( ∑

k �=i,j

pk(Yi)
fj

fk
(Yk) + pi(Yi)

fj

fi
(Yj) + pj(Yi)

)
.

Note that gj0 = g̃j0 ◦ K and g1 = g̃j1 ◦ K, where K is the Markov kernel that takes
Y−i to a random permutation of itself. It follows from Lemma 2.1 that

E
(

|Wj(Y−i, Yi) − 1|2
∣∣Yi

)
≤ Eg̃j1

( g̃j0

g̃j1
− 1

)2

(5.2)
= Eg̃j0

( g̃j0

g̃j1
− 2 +

g̃j1

g̃j0

)
.
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This expectation does not depend on i except for the value of Yi. Hence, to simplify
notation, we take WLOG i = j. Denote

L =
g̃j1

g̃j0
= pj(Yj) +

∑
k �=i

pk(Yj)
fj

fk
(Yk),

V =
n

4
γ min

k
pk(Yj),

where γ is as in (G1). Then by (5.2)

E
(

|Wj(Y−j , Yj) − 1|2
∣∣Yj

)
≤ Eg̃j0

( 1
L

− 2 + L
)

= Eg̃j0

(L − 1)2

L(5.3)
≤ 1

V
Eg̃j0(L − 1)21I(L > V ) + Eg̃j0

1I(L ≤ V )
L

≤ Eg̃j0

1I(L ≤ V )
L

+
1
V

n∑
k=1

p2
k(Yj),

by G1. Bound

L ≥ γ min
k

pk(Yj)
n∑

k=1

1I
(

fj

fk
(Yk) > γ

)
≥ γ min

k
pk(Yj)(1 + U),

where U ∼ B(n − 1, 1/2) (the 1 is for the ith summand). Hence

Eg̃j0

1I(L ≤ V )
L

≤ 1
γ mink pk(Yj)

�n/4�∑
k=0

1
k + 1

(
n − 1

k

)
2−n+1

=
1

γnmink pk(Yj)

�n/4�∑
k=0

(
n

k + 1

)
2−n+1(5.4)

= O(e−n)
1

γnmink pk(Yj)

by large deviation.
From (G1), (G2), (5.1), (5.3), and (5.4):

E E
(
(μS

i − μPI
i )2

∣∣Yi

)
= E E

((
n∑

j=1

μjpj(Yi)
(
Wj(Y−i, Yi) − 1

))2∣∣∣Yi

)

≤ max
j

|μj |2E
((

n∑
j=1

pj(Yi)E
(
Wj(Y−i, Yi) − 1

)2

)∣∣∣Yi

)

≤ κC3/n,

for some κ large enough. Claim (i) of the theorem follows. Claim (ii) follows (i) by
Proposition 1.1.
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