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Summary High-dimensional non-stationary time series, which reveal both complex trends
and stochastic behaviour, occur in many scientific fields, e.g. macroeconomics, finance,
neuroeconomics, etc. To model these, we propose a generalized dynamic semi-parametric
factor model with a two-step estimation procedure. After choosing smoothed functional
principal components as space functions (factor loadings), we extract various temporal trends
by employing variable selection techniques for the time basis (common factors). Then, we
establish this estimator’s non-asymptotic statistical properties under the dependent scenario
(β-mixing and m-dependent) with the weakly cross-correlated error term. At the second step,
we obtain a detrended low-dimensional stochastic process that exhibits the dynamics of the
original high-dimensional (stochastic) objects and we further justify statistical inference based
on this. We present an analysis of temperature dynamics in China, which is crucial for pricing
weather derivatives, in order to illustrate the performance of our method. We also present a
simulation study designed to mimic it.

Keywords: Asymptotic inference, Factor model, Group Lasso, Periodic, Seasonality, Semi-
parametric model, Spectral analysis, Weather.

1. INTRODUCTION

Q1

Q2

Over the past few decades, high-dimensional data analysis has attracted increasing attention in
various fields. We often face a high-dimensional vector of observations evolving in time (a very
large interrelated time process), which is also possibly controlled by an exogenous covariate.
For example, in macroeconomic forecasting, people use very large dimensional economic and
financial time series (Stock and Watson, 2005b). In meteorology and agricultural economics,
one of the primary interests is to study the fluctuations of temperatures at different nearby
locations; for a recent summary, see Gleick et al. (2010). Such an analysis is also essential
for pricing weather derivatives and hedging weather risks in finance (Odening et al., 2008). In
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2 S. Song, W. K. Härdle and Y. Ritov

neuroeconomics, high-dimensional functional magnetic resonance imaging (fMRI) data are used
to analyse the brain’s response to certain risk-related stimuli, as well as to identify its activation
area (Worsley et al., 2002). In financial engineering, the dynamics of the implied volatility
surface (IVS) are studied for risk management, calibration and pricing purposes (Fengler et al.,Q3
2007). Other examples include mortality analysis (Lee and Carter, 1992), bond portfolio risk
management or derivative pricing (Nelson and Siegel, 1987, and Diebold and Li, 2006), limit
order book dynamics (Hall and Hautsch, 2006), yield curves (Bowsher and Meeks, 2006), and
so on.

Empirical studies in economics and finance often involve non-stationary variables, such
as real consumer price index, individual consumption, exchange rates, real gross domestic
product, etc. For example, the large panel macroeconomic data, provided by Stock and Watson
(2005a), contain some complex non-stationary behaviour, such as normal seasonality, large
economic cycle and upward trend representing economic growth, etc. However, some studies
have produced counterintuitive and contradictory results; see Campbell and Yogo (2006), Cai
et al. (2009), Xiao (2009) and Wang and Phillips (2009a, b). This might partly be attributed
to the use of methods that cannot capture non-stationarity or non-linear structural relations. In
fact, in the econometrics literature, the study of such non-stationary time series is dominated by
linear or, at most, parametric models, restricting non-stationarity to the unit root or long-memory
autoregressive fractionally integrated moving average (ARFIMA) types of non-stationarity and
restricting structural relations to linear or parametric types of cointegration models. General
processes can be characterized by certain recurrence properties. These processes contain
stationary, long-memory and unit-root type or nearly integrated processes as subclasses, and
are more general than the class of locally stationary processes. As pointed out in the recent
econometrics literature, when some covariates are non-stationary, conventional statistical tests
are invalid, even though the predictive power in a non-parametric regression model can be
improved if some covariates are non-stationary. While some asymptotic results for general
non-parametric estimation methods for low-dimensional non-stationary time series have been
obtained, semi-parametric modelling has hardly been investigated so far, especially for high-
dimensional non-stationary time series. For the i.i.d. case, there have been many studies in the
literature, including but not limited to Horowitz and Lee (2005), Horowitz et al. (2006) and
Horowitz (2006) for the moderate-dimension case and Horowitz and Huang (2012) and Huang
et al. (2010) for the high-dimension case.

In such situations, if we still use either high-dimensional static methods, which are initially
designed for independent data or low-dimensional multivariate time series techniques (on a few
concentrated series through naı̈ve aggregation), we might lose potentially relevant information,
such as the time dynamics or the space dependence structure. This might produce suboptimal
forecasts and would be extremely inefficient. In macroeconomics studies, this potentially creates
an omitted variable bias with adverse consequences for both structural analysis and forecasting.
Christiano et al. (1999) has pointed out that the positive reaction of prices in response to a
monetary tightening, the so-called price puzzle, is an artefact resulting from the omission of
forward-looking variables, such as the commodity price index. The more scattered and dynamic
the information is, the more severe this loss will be. To this end, an integrated solution addressing
both issues is appealing. We need to analyse jointly time and space dynamics by simultaneously
fitting a time series evolution and by fine tuning the factors involved. The solution we are seeking
helps us to understand the spatial pattern, to gain strength from the different time points and, at
the same time, to analyse the non-stationary temporal behaviour of the value at each spatial point.
In this paper, we present and investigate the so-called generalized dynamic semi-parametric

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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Generalized dynamic semi-parametric factor models 3

factor model (GDSFM), together with its corresponding panel version, in order to address this
problem.

Panel data have attracted much attention in econometrics; see, e.g. Baltagi (2005), Frees
(2004) and Hsiao (1986). To address the above challenges in a large panel of economic and
financial time series, some recent studies have proposed ways to impose restrictions on the
covariance structure in order to limit the number of parameters to be estimated. Dynamic factor
models introduced by Forni et al. (2000) and Stock and Watson (2002a, b), also discussed by
Forni et al. (2005) and Giannone et al. (2005), have drawn upon the idea that the intertemporal
dynamics can be explained and represented by a few common factors (low-dimensional time
series). Another approach in this field has been presented by Park et al. (2009), where a
latent L-dimensional process, Z1, . . . , ZT , is introduced, and the J -dimensional random process
Yt = (Yt,1, . . . , Yt,J )�, t = 1, . . . , T , is represented as

Yt,j = Zt,1m1,j + · · · + Zt,LmL,j + εt,j , j = 1, . . . , J, t = 1, . . . , T . (1.1)

Here, Zt,l are the common factors depending on time, εt,j are errors or specific factors, and
the coefficients ml,j are factor loadings. The index t = 1, . . . , T reflects the time evolution,
{Zt }Tt=1 (Zt = (Zt,1, . . . , Zt,L)�) is assumed to be a stationary random process, and ml =
(ml,1, . . . , ml,J )� captures the spatial dependency structure. The study of the time behaviour
of the high-dimensional Yt is then simplified to the modelling of Zt , which is more feasible
when L � J . Model (1.1) reduces to a special case of the generalized dynamic factor model
(approximate factor model) considered by Forni et al. (2000, 2005) and Hallin and Liska
(2007), when Zt,l = al,1(B)Ut,1 + · · · + al,q (B)Ut,q . Here, the q-dimensional vector process
Ut = (Ut,1, . . . , Ut,q)� is an orthonormal white noise and B denotes the lag operator. In
this case, model (1.1) is expressed as Yt,j = m0,j +∑q

k=1 bk,j (B)Ut,k + εt,j , where bk,j (B) =∑L
l=1 al,k(B)ml,j . Less general models in the literature include the static factor models proposed

by Stock and Watson (2002a, b) and the exact factor models suggested by Sargent and Sims
(1977) and Geweke (1977).

Our goal of modelling high-dimensional non-stationary time series is achieved by using a
sparse representation approach to regression. In fact, we combine spatio-temporal modelling
with group Lasso (Yuan and Lin, 2006). We approximate both the temporal common factors
and spatial factor loadings by a linear combination of series terms. Because the temporal
non-stationarity behaviour might result from different sources, the choice of basis functions is
important. We start by introducing an overparametrized model, which can capture (almost) any
type of temporal behaviour, such as cyclic behaviour plus linear or quadratic trends, by utilizing
series basis, such as powers, trigonometrics, local polynomials, periodic functions and B-splines.
Then, we select a sparse submodel, using penalizing-Lasso and group-Lasso techniques.

In practice, there might be multiple subjects, each of which by itself corresponds to a set of
high-dimensional time series. For example, in international economies, industrial organizations
or financial studies, there are data for many countries, firms or assets, all of which are high-
dimensional. Thus, we also need to provide a panel version of the high-dimensional time series Q4
model to address this issue. Compared with previous studies in the literature, the novelty of this
paper lies in the following aspects.

1. When the time process is not stationary (i.e. the process has a non-linear, non-parametric
temporal structure in time), using a skilful selection of time basis, we can handle such
complex time series. To achieve a successful selection, the key assumption is that the
initially proposed time basis should not be too dependent, even though the number can

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.



ectj12024 W3G-ectj.cls March 13, 2014 5:42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

UNCORRECTED
PROOF

4 S. Song, W. K. Härdle and Y. Ritov

be large (i.e. we should include as many orthogonal time basis functions as possible for
the automatic selection). From the point of view of large panel time series modelling, we
incorporate non-stationarity and non-linearity (complex trends) into time dynamics. We
deviate from most of the current body of literature that still requires Zt to be stationary
and still needs a large number of observations (relative to dimensionality) to establish
asymptotic properties.

2. The contribution lies in the way the time dynamics is introduced for variable selection
and regularization methods. Under the assumption that the product of the time basis,
space basis and error term has a bounded second moment, and the error term εt is only
weakly cross-correlated, the non-asymptotic theoretical properties of existing methods are
established under the scenario of independence. We extend it to a dependent scenario
(β-mixing and m-dependent process) with the weakly cross-correlated error term (the
details are specified in Assumption 3.2), and we derive oracle sparsity inequalities (non-
asymptotic risk bounds). The key assumption is that the temporal dependence level of the
error term is controlled within some level. Also, this result is not built upon any specific
forms of time and space basis.

3. When the space structure of ml is complex, the low-dimensional parametrizations do not
capture it properly. We employ a data-driven semi-parametric method, introduced by Hall
et al. (2006), to capture the spatial dependence structure.

4. For the case that there might be multiple subjects, each of which corresponds to a
set of high-dimensional time series, we provide a panel version of the model with a
corresponding estimation method.

In a variety of applications, we have explanatory variables Xt,j ∈ R
d at hand, e.g. the

geo coordinates of weather stations, the voxels (volume elements, representing values on
regular grids) of fMRI, or the moneyness and time-to-maturity variables for implied volatility
modelling, which can influence the factor loadings ml . An important refinement of model
(1.1) is to incorporate the existence of observable covariates Xt,j from Park et al. (2009).
The factor loadings are then generalized to functions of Xt,j . In the following, we write
Xt = (Xt,1, . . . , Xt,J )� and consider the generalization of (1.1),

Yt,j = ZT
t m(Xt,j ) + εt,j , t = 1, . . . , T , (1.2)

where Ytj , εtj ∈ R, Xtj ∈ R
d , m : R

d → R
L and Zt ∈ R

1×L.
Our motivating example is from temperature analysis for pricing weather derivatives.

The data set is taken from the Climatic Data Center (CDC) of the China Meteorological
Administration (CMA). It contains daily observations from 159 weather stations across China
from 1 January 1957 to 31 December 2009. We would not only like to address the question
of whether there is a change in time, but also to permit a different trend in time, in different
climate types, as shown by Figure 1 (left), which shows a map of the network of China’s weather
stations. Besides the well-known seasonality effect, we can expect a trend related to climate
change. In Figure 1 (right), we show the moving average (of 730 nearby days) of temperatures in
China from 1 January 1957 to 31 December 2009, which is (159 × 730)−1∑+365

s=−354

∑159
j=1 Yt+s,j ,

where Yt,j is the temperature of the j th weather station at time t . From this figure, we can
see that there is a large period (around 10 years) between peaks and an upward trend for
China’s temperatures. Besides these trends, there is also stochasticity inherent in the remainingQ5
time dynamics, which is essential for pricing weather derivatives and hedging weather risks.
By simultaneously studying the dynamics of temperatures in various places w.r.t. Xt,j = Xj

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.



ectj12024 W3G-ectj.cls March 13, 2014 5:42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

UNCORRECTED
PROOF

Generalized dynamic semi-parametric factor models 5

Figure 1. Map of China’s weather stations and moving averages of temperature.

(the three-dimensional geographical information of the j th weather station), we will be able to
estimate, forecast and price temperatures in time and space.

Q6

The rest of the paper is organized as follows. In the next section, we present details of
the GDSFM, together with the corresponding basis selection and panel model. We present
the estimator’s properties under various scenarios in Section 3. In Section 4, we apply the
method to the motivating problem: the dynamic behaviour of temperatures. In Section 5, we
present the results of simulation studies that mimic the previous empirical example. Section 6
contains concluding remarks. The estimation procedure and all technical proofs are sketched in
Appendices A and B, respectively.

2. GENERALIZED DYNAMIC SEMI-PARAMETRIC FACTOR MODELS

We observe (Xt,j , Yt,j ) for j = 1, . . . , J and t = 1, . . . , T , Ytj ∈ R,Xtj ∈ R
d , εtj ∈ R generated

by

Y�
tj = Z�

t A
∗�(Xtj ) + ε′

tj = (
U�
t �

∗ + Z�
0,t

)
A∗�(Xtj ) + ε′

tj ,

where A∗ and �∗ are the L×K and R × L (unknown) underlying coefficient matrices and
Zt has two components �∗TUt and Z0,t . Let Yt = (Yt,1, . . . , Yt,J )�, Xt = (Xt,1, . . . , Xt,J )�,
ε′
t = (ε′

t,1, . . . , ε
′
t,J )� and �(Xt ) = (�(Xt1), . . . , �(XtJ )) (abbreviated as �t ). We rewrite this

in compact form as

Y�
t = (

U�
t �

∗ + Z�
0,t

)
A∗�(Xt ) + ε′�

t

= U�
t �

∗A∗�(Xt ) + Z�
0,tA

∗�t + ε′�
t . (2.1)

Again, by introducing β∗T = �∗A∗ (the R ×K unknown underlying coefficient matrices
consisting of βrk) and εt = ZT

0,tA
∗�t + ε′

t , we could further simplify this as

Y�
t

def= U�
t β

∗��t + ε�
t . (2.2)

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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6 S. Song, W. K. Härdle and Y. Ritov

Note the following.

(1) Time evolution/common factors. Zt = (Zt,1, . . . , Zt,L)� is an unobservable L-
dimensional process consisting of both a deterministic portion, �∗�Ut , and a stochastic
portion, Z0,t . Here, {Z0,t }Tt=1 is a stationary process (to be detailed later). A key difference
between our method and that of Park et al. (2009) is this additional non-stationary
component �∗�Ut .

(2) Factor loading functions and error terms. m(Xtj ) = A∗�(Xtj ) is an L-tuple (m1, . . . , mL)
of unknown real-valued functions ml defined on a subset of R

d and ε′
t = (ε′

t,1, . . . , ε
′
t,J )�

are the errors. Throughout the paper, we assume that the covariates Xt,j have support
[0, 1]d . The error terms εt and ε′

t only need to satisfy some mild condition (details specified
in Assumptions 3.2 and 3.3(c)), which allows them to be weakly dependent (over time) and
cross-correlated (over space).

(3) Time and space basis. We use a series expansion to capture the time trend and the
space-dependent structure. Let U�

t = (u1(t), . . . , uR(t)) be the 1 × R vector of time basis
functions (polynomial and trigonometric functions, etc.), which are selected and weighted
by the matrix �∗. For the space basis, we take �t = (ψ1(Xt ), . . . , ψK (Xt ))� (K × J

matrix). For every β matrix, we introduce βr = (βkr , 1 ≤ k ≤ K), which is the column
vector formed by the coefficients corresponding to the rth time basis. Additionally, we

define the mixed (2, 1) norm ‖β‖2,1 = ∑R
r=1

√∑K
k=1 β

2
rk . Finally, we set R(β) = {r :

βr �= 0} and M(β) = |R(β)|, where |R(β)| denotes the cardinality of set R(β). For the
sake of simplicity and convenience, we use | · | to denote the L1 norm for vectors and ‖ · ‖
to denote the L2 norm for vectors or the mixed (2, 1) norm for matrices.

Because the non-stationary behaviour might be very complex, to ensure that all the trends
causing the non-stationarity are considered, the dimension R of the initially included time
basis might be large. For example, in the temperature analysis, because we never know the
exact frequency (frequencies) of the period(s), at the beginning, we include all the basis
functions. We think that this might be useful for capturing the non-stationary behaviour, e.g. 16
trigonometric functions w.r.t. different frequencies and 53 × 3 (year by year) cubic polynomial
basis. Consequently, we end up with R = 175. However, to avoid overfitting, variable selection
with regularization techniques is necessary. A popular variable selection method is the Lasso
(Tibshirani, 1996). An extension for factor-structured models is the group Lasso (Yuan and Lin,
2006), in which the penalty term is a mixed (2, 1) norm of the coefficient matrix. Here, we assume
that the vectors βr are not only sparse, but also have the same sparsity pattern across different
factors. We study the estimator’s theoretical sparsity properties related to the time basis selection,
and we take (2.1) to be the true model. Because group LASSO permits overparametrization, this
is a mild assumption. We would also like to emphasize that our non-asymptotic sparse oracle
inequality results are independent of specifications of time and space basis. They apply equally
to local polynomials, periodic functions, such as sin and cos, and B-splines, etc., while we just
assume that there is no additional approximation error for obtaining the space basis at this non-
asymptotic analysis step.

2.1. A panel version with multiple individuals

Here, we just present a panel version of (2.1) based on assumptions closely related to the fMRI
neuroeconomics study (Mohr et al., 2010). It is reasonable to assume that different subjects have

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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Generalized dynamic semi-parametric factor models 7

different patterns of brain activation (to the external stimuli) represented by the time seriesZt , but
they (and all human beings) share essentially the same spatial structure of the brain represented
by the space functionA∗�t . With a panel of I subjects, we formulate the following generalization
of (2.1) and (2.2),

Y it,j =
L∑
l=1

(Zi0,t,l + U�
t �

i
l )ml(Xt,j ) + εit,j , 1 ≤ j ≤ Jt , 1 ≤ t ≤ T , 1 ≤ i ≤ I, (2.3)

where the fixed effects Zi0,t,l and �il are the individual effects on functions ml for subject i at
time point t . For identification purposes, assume

E

[
I∑
i=1

L∑
l=1

Zi0,t,l ml(Xt,j )|Xt,j
]

= 0.

For this data structure, we use Y t,j to denote the average of Y it,j across different subjects i. Thus,
from (2.3), we have

Y t,j =
L∑
l=1

(
U�
t �l

)
ml(Xt,j ) + εt,j 1 ≤ j ≤ J.

The two-step estimation procedure for the panel version model is as follows.

STEP 1. Take the average of Y it,j across different subjects i, and estimate the common basis
function in space m̂l as in the original approach; see Appendix A for more details.

STEP 2. Given the common m̂l , estimate subject-specific time factors Zit,l :

Y it,j =
L∑
l=1

(
Zi0,t,l + U�

t �
i
l

)
m̂l(Xt,j ) + εit,j .

Next, we discuss the choice of time basis Ut , space basis�t and the estimation procedure for
(2.2).

2.2. Choice of time basis

To capture the global trend in time, we can use any orthogonal polynomial basis, e.g.
u1(t) = 1/C1, u2(t) = t/C2, u3(t) = (3t2 − 1)/C3, . . . (where Ci are generic constants with
T −1∑T

t=1 u
2
r (t)/C

2
r = 1). We can also use the fact that there are natural frequencies in the

data, and thus start with a few trigonometric functions. In the temperature example, the
yearly cycle and a large period are two clear phenomena. To capture these periodic variations,
we can use trigonometric functions, u4(t) = sin(2πt/p)/C4, u5(t) = cos(2πt/p)/C5, u6(t) =
sin(2πt/(p/2))/C6, u7(t) = cos(2πt/(p/2))/C7, . . ., with the given period p: 365 and 10 for the
yearly cycle and large period, respectively. In the fMRI application of Myšičková et al. (2013),
the basic experiment is repeated every 29.5 seconds, and we have the period p = 11.8 (there
is a fMRI scan every 2.5 seconds). In general, to adopt various types of non-linearities, various
basis functions could be employed, such as powers, trigonometrics, local polynomials, periodic
functions, B-splines, etc. The theory to be presented later for selecting the significant time basis
selection is actually independent of their specific forms, and thus is very useful in practice.

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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8 S. Song, W. K. Härdle and Y. Ritov

2.3. Choice of space basis

There are various choices for space basis. Park et al. (2009) have proposed a multidimensional
B-spline basis. Alternatively, functional principal component analysis (PCA; Hall et al., 2006)
can be employed, which combines smoothing techniques with ideas related to functional PCA.
The basic steps are as follows.

STEP 1. Calculate the covariance operator (in a functional sense). DenoteXtj = (X1
tj , . . . , X

d
tj ),

u = (u1, . . . , ud ) and v = (v1, . . . , vd ) (as for b, b̂, b1, b̂1, b2 and b̂2). Given u ∈ [0, 1]d ,
and bandwidths hμ and hφ , define (̂a, b̂) to minimize

min
a,b

T∑
t=1

Jt∑
j=1

(
Ytj − a − bT(u−Xtj )

)2
K

(
Xtj − u

hμ

)
,

and take μ̂(u) = â. Then, given u, v ∈ [0, 1]d , choose (̂a0, b̂1, b̂2) to minimize

T∑
t=1

∑
1�j �=k�Jt

(
YtjYtk − a0 − bT

1(u−Xtj ) − bT
2(v −Xtk)

)2
K
(Xtj − u

hφ

)
K
(Xtj − v

hφ

)
.

Denote â0 by φ̂(u, v) and construct μ̂(v) similarly to μ̂(u). The estimate of the
covariance operator is then

ψ̂(u, v) = φ̂(u, v) − μ̂(u)μ̂(v). (2.4)

STEP 2. Compute the principal space basis. Obtain from (2.4) the largest K eigenvalues
and corresponding orthonormal eigenfunctions as the basis ψ̂1(x), . . . , ψ̂K (x). For
computational methods and practical considerations, we refer to Section 8.4 of Ramsay
and Silverman (2005).

As remarked by Hall et al. (2006), the operator defined by (2.4) is not necessarily positive
semi-definite, but it is assured to have real eigenvalues. Theorem 1 of Hall et al. (2006) provides
theoretical foundations that the bandwidths hμ and hφ should be chosen as O(T −1/5) to minimize
the distance between the estimates ψ̂ and the corresponding true ψ̂ . In Section 4 (details
presented later), we find that the performance of β̂ is very robust to the choice of the smoothing
parameter.

We would like to emphasize that the space basis function �̂t is only an estimator of the true
(unobservable) �t . However, in proving the properties of the time basis selection, as in Theorem
3.2 and Corollary 3.1, we assume that this space basis estimation does not affect the study of
selecting the temporal basis, because, otherwise, the non-asymptotic theoretical deviation will
be too complex. If we still stick to the B-spline basis as in Park et al. (2009), all the proofs
afterwards do not need to be modified. For simplicity of notation, we continue to use �t to
denote this estimate of space basis from now.

We apply this method to the implied volatility modelling problem, which has been discussed
in detail by Park et al. (2009). Figure 2 displays the space basis modelling using the functional
PCA approach, which could capture the special ‘smiling’ effect well, while the spline basis
modelling cannot.Q7
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Generalized dynamic semi-parametric factor models 9

Figure 2. Space basis using the functional PCA approach for IVS modelling.

3. PROPERTIES OF ESTIMATES

In this section, we study sparse oracle inequalities for the estimate β̂ defined in (A.1), assuming
that the errors εt are dependent (β-mixing in Theorem 3.2 and m-dependent in Corollary 3.1).
This work extends those of Lounici et al. (2009), Bickel et al. (2009) and Lounici (2008)
concerning upper bounds on the prediction error and the distance between the estimator and
the true matrix β∗.

For the second step of the estimation procedure, an important question arises: is it justified,
from an inferential point of view, to base further statistical inference on the detrended stochastic
time series? Theorem 3.4 shows that the difference between the inference based on the estimated
time series and true unobserved time series is asymptotically negligible.

Before stating the first theorem, we make the following assumption.

ASSUMPTION 3.1. There exists a positive number κ = κ(s) such that

min

⎛⎜⎝
√∑

t ‖��
t 
Ut‖2

√
T ‖ 
R ‖ : |R| � s,
 ∈ R

K×R\{0},

‖ 
Rc ‖2,1� 3 ‖ 
R ‖2,1

⎞⎟⎠ � κ,

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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10 S. Song, W. K. Härdle and Y. Ritov

where Rc denotes the complement of the set of indices R and 
R denotes the matrix formed by
stacking the rows of matrix 
 w.r.t. row index set R.

Assumption 3.1 is essentially a restriction on the eigenvalues of
∑T

t=1 UtU
�
t as a function of

sparsity s. In fact, it requires that the initially involved time basis is not too dependent, which is
naturally satisfied by orthogonal polynomials and trigonometric functions. Low sparsity means
that s is big and therefore κ is small. Thus, κ(s) is a decreasing function of s; see also Lemma
4.1 of Bickel et al. (2009) for more details and related discussions.

THEOREM 3.1 (DETERMINISTIC PART). Consider the model (2.2). Assume that �t��
t = IK

(orthonormalized space basis), T −1∑T
t=1 U

�
t Ut/R = 1, and the number of true non-zero time

basis M(β∗) � s. If the random event

A =
⎛⎝2T −1 max

1�r�R

T∑
t=1

K∑
k=1

J∑
j=1

��
tkj εtjUtr � λ

⎞⎠ (3.1)

holds for some λ > 0 and Assumption 3.1 is satisfied, then, for any solution β̂ of (A.1), we have

T −1
T∑
t=1

‖ ��
t (β̂ − β∗)Ut ‖2 � 16sλ2κ−2, (3.2)

K−1/2‖ β̂ − β∗ ‖2,1 � 16sλK−1/2κ−2, (3.3)

M(β̂) � 64φ2
maxsκ

−2. (3.4)

Note that Theorem 3.1 is valid for any J,R, T and any type of distribution of εt , and yields
non-asymptotic bounds.

Because the standard assumption that εt is independent is often unsatisfied in practice, it
is important to understand how the estimator behaves in a more general situation (i.e. with
dependent error terms). As far as we know, our result is one of the first attempts to deal with
dependent error terms for (group) Lasso variable selection techniques. We build it w.r.t. β-
mixing, which is an important measure of dependence between σ -fields (for time series). A
detailed definition can be found in Appendix A. A very natural question to ask is, to what extentQ8
the degree of dependence (in terms of β-mixing coefficients) is allowed, while we can still obtain
certain sparse oracle inequalities (i.e. to study the relationship among high dimensionality R,
moderate sample size T and β-mixing coefficients β).

We use the following mild technical assumption similar to the typical bounded second-
moment requirement for i.i.d. data.

ASSUMPTION 3.2. The matrices �t and Ut and random variables εt are such that for

Vt
def= K−1/2∑K

k=1

∑J
j=1�tkj εtjUtr , ∃σ 2 such that ∀n,m, m−1E[Vn + . . .+ Vn+m]2 � σ 2 and

∀t , |Vt | � C ′′, ∀ r and some constants σ 2, C ′′ > 0, t = 1, . . . , T .

Note that because Vt (as a function of εtj ) is defined as a sum over j , it also indicates that the
error term εt could be weakly cross-correlated. We can now state our main result.

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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Generalized dynamic semi-parametric factor models 11

THEOREM 3.2 (β-MIXING). Consider the model (2.2). Assume the sequence {Vt }Tt=1 satisfies
Assumption 3.2 and the β-mixing condition with the β-mixing coefficients

β
((

(3/8)σε2T 1/2(1 − ε)1/2C ′′−1 logR−(1+δ′)/2
)

− 1
)

�
(

24σ (1 − ε)1/2(R1+δ′√logR1+δ′T C ′′)−1
)
,

for any ε > 0, some δ′ > 0 and λ defined below. �t��
t = IK , T −1∑T

t=1 U
�
t Ut/R = 1, and

M(β∗) � s. Furthermore, let κ be defined as in Assumption 3.1 and let φmax be the maximum
eigenvalue of the matrix

∑T
t=1 UtU

�
t /T . Let

λ =
√

16 logR1+δ′Kσ 2

T (1 − ε)
.

Then, with a probability of at least 1 − 3R−δ′ , for any solution β̂ of (A.1), we have

T −1
T∑
t=1

‖ ��
t (β̂ − β∗)Ut ‖2 � 256s

(
logR1+δ′Kσ 2

T (1 − ε)

)
κ−2, (3.5)

K−1/2‖ β̂ − β∗ ‖2,1 � 96s

√
logR1+δ′σ 2

T (1 − ε)
κ−2, (3.6)

M(β̂) � 64φ2
maxsκ

−2. (3.7)

REMARK 3.1. Before explaining the results, as also mentioned in Song and Bickel (2011),
we would first like to discuss some related results. For technical simplicities, we consider the
following simplest linear regression model with R → ∞:

et = xt1θ1 + . . . , xtRθR + εt = x�
t θ + εt , (3.8)

with the regressors (xt1, . . . , xtR) = x�
t , the coefficients (θ1, . . . , θR) = θ� and the error term εt .

Suppose x in (3.8) has full rank R and εt is N (0, σ 2). Consider the least-squares estimate (R �
T ) θ̂OLS = (xx�)−1xe. Then, from standard least-squares theory, we know that the prediction
error ‖x�(θ̂OLS − θ∗)‖2

2/σ
2 is χ2

R-distributed, i.e.

E

[
‖x�(θ̂OLS − θ∗)‖2

2

T

]
= σ 2

T
R. (3.9)

In the sparse situation, if εt is N (0, σ 2) (different from our case), Corollary 6.2 of Bühlmann and
van de Geer (2011) shows that the Lasso estimate obeys the following oracle inequality:

‖x�(θ̂Lasso − θ∗)‖2
2

T
� C0

σ 2 logR

T
M(θ∗), (3.10)

with a large probability and some constant C0. The additional logR factor here could be seen as
the price to pay for not knowing the set {θ∗

p, θ
∗
p �= 0} (Donoho and Johnstone, 1994). Similar to

the i.i.d. Gaussian situation discussed above, the term (logR)1+δ′ in (3.5) could be interpreted as

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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12 S. Song, W. K. Härdle and Y. Ritov

the price to pay for not knowing the set {β∗
r , θ

∗
r �= 0}. Here, we have (logR)1+δ′ instead of logR

because we deviate from the typical i.i.d. Gaussian situation and establish the results under the
more general Assumption 3.2, which can be thought of as the finite second-moment condition.
Also, the δ′ term is the price to pay for this deviation.

REMARK 3.2. Because

β
((

(3/8)σε2T 1/2(1 − ε)1/2C ′′−1 logR−(1+δ′)/2
)

− 1
)

�
(

24σ (1 − ε)1/2(R1+δ′√logR1+δ′T C ′′)−1
)

is required, when dimensionality R increases, the allowed dependence level reflected by the β-
mixing coefficients must decrease fast enough so that we still achieve similar risk bounds as
in the independent case. Intuitively, this makes sense because if the dependence level inherent
in Z0,t (or εt equivalently) is too strong (i.e. β exceeds some level), then the amount of
information provided by these observations is less, and therefore the estimate does not perform
well. However, strong dependence in Z0,t might be caused by some trend, which should be
included in U�

t �, but is not, which results in the increased dependence. This tells us that at the
beginning, we should include a large enough numberR of pre-specified time basis functions such
that it could include most of the deterministic (even though it could be segment by segment) time
evolution and the remaining dependence level in Z0,t is controlled.

COROLLARY 3.1 (m-DEPENDENT). Consider the model (2.2). Assume that the sequence {Vt }Tt=1
is an m-dependent process with order k (k � 1) and satisfies the following conditions for some
constants σ 2

0 , C
′′ > 0, t = 1, . . . , T : (a) ∀t , E[V 2

t ] � σ 2
0 , |Vt | � C ′′; (b) ((3/8)σε2T 1/2(1 −

ε)1/2C ′′−1 logR−(1+δ′)/2) − 1 � k + 1 for any ε > 0 and some δ′ > 0. Also, �t��
t = IK ,

T −1∑T
t=1 U

�
t Ut/R = 1, andM(β∗) � s. Furthermore, let κ be defined as in Assumption 3.1, let

φmax be the maximum eigenvalue of the matrix
∑T

t=1 UtU
�
t /T and let λ be defined as in Theorem

3.2. Then, with a probability of at least 1 − 3R−δ′ , for any solution β̂ of (A.1), we have

T −1
T∑
t=1

‖ ��
t (β̂ − β∗)Ut ‖2 � 512s

(
logR1+δ′Kkσ 2

0

T (1 − ε)

)
κ−2, (3.11)

K−1/2‖ β̂ − β∗ ‖2,1 � 96
√

2s

√
logR1+δ′kσ 2

0

T (1 − ε)
κ−2, (3.12)

M(β̂) � 64φ2
maxsκ

−2. (3.13)

REMARK 3.3. We can see that when k increases (i.e. the dependence in {Vt }Tt=1 beco-
mes stronger and stronger), the risk bounds become larger and larger. To ensure
((3/8)σε2T 1/2(1 − ε)1/2C ′′−1) − 1 � k + 1, approximately we need T 1/2 logR−(1+δ′)/2 �
((3/4)σ0ε

2
√

(1 − ε))−1C ′′√k, which gives the requirement on the sample size T (relative to
the high dimensionality) and the amount of information from the data. Similar results could also
be separately obtained for the generalized m-dependent process based on fractional cover theory
and the (extended) McDiarmid inequality; see Theorem 2.1 of Janson (2004). At the second
step, Z0,t is estimated based on β̂ instead of β∗, so we need to show that the influence of this

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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Generalized dynamic semi-parametric factor models 13

plug-in estimate is negligible. Our result relies on the following assumptions, which are similar
to Assumptions (A1)–(A8) in Park et al. (2009).

ASSUMPTION 3.3. (a) The sets of variables (X1,1, . . . , XT,J ), (ε′
1,1, . . . , ε

′
T ,J ) and (Z0,1,

. . . , Z0,T ) are independent of each other; (b) for t = 1, . . . , T , the variables Xt,1, . . . , Xt,J
are identically distributed, have support [0, 1]d and a density ft that is bounded from below
and above on [0, 1]d , uniformly over t = 1, . . . , T ; (c) we assume that E[ε′

t,j ] = 0 for 1 ≤ t ≤
T , 1 ≤ j ≤ J , and for c > 0 small enough, sup1≤t≤T ,1≤j≤J E[exp(c(ε′

t,j )
2)] < ∞; (d) the vector

of functions m = (m1, . . . , mL)� can be approximated by �k , i.e.

δK
def= sup

x∈[0,1]d
inf

A∈RL×K
‖m(x) − A�(x)‖ → 0

as K → ∞, and we denote A that fulfils supx∈[0,1]d ‖m(x) − A�(x)‖ ≤ 2δK by A∗; (e) there

exist constants 0 < CL < CU < ∞ such that all eigenvalues of the matrix T −1∑T
t=1 Z0,tZ

�
0,t lie

in the interval [CL,CU ] with probability tending to one; (f) for all β and A (β� = �A) in (A.1),
with probability tending to one, we have

sup
x∈[0,1]d

max
1�t�T

∥∥Z�
0,tA�(x)

∥∥ � MT ,

where the constant MT satisfies max1�t�T ‖Z0,t‖ � MT /Cm for a constant Cm such that
supx∈[0,1]d ‖m(x)‖ < Cm; (g) it holds that ρ2 = (K + T )M2

T log(JTMT )/(JT ) → 0, and the
dimension L is fixed.

Assumption 3.3 (f) and the additional bound MT in the minimization are introduced purely
for technical reasons. They are similar to the assumption that Vt is upper bounded in Assumption
3.2 by noticing Vt = K−1/2∑K

k=1

∑J
j=1�tkj εtjUtr and εt = ZT

0,tA
∗�t + ε′

t . Recall that given β,
the number of parameters still needing to be estimated equalsKT ({Z0,t }Tt=1) andKL (A) (given
β, if A is fixed, � is also fixed). Because L is fixed, Assumption 3.3(g) basically requires that,
neglecting the factors M2

T log(JTMT ), the number of parameters grows slower than the number
of observations JT .

THEOREM 3.3. Suppose that model (2.1), all assumptions in Theorem 3.2 and Assumption 3.3
hold. Then, we have

1

T

∑
1≤t≤T

∥∥Ẑ�
0, t Â− Z�

0,tA
∗∥∥2 = OP

(
ρ2 + δ2

K

)
. (3.14)

In the following, we discuss how statistical analysis differs if the inference of stochasticity
on Z0,t is based on Ẑ0,t instead of using the (unobserved) process Z0,t . We establish theoretical
properties under a strong mixing condition, which is more general than the β-mixing considered
in Theorem 3.2. For the statement of the theorem, we need the following assumptions, which are
similar to Assumptions (A9)–(A11) in Park et al. (2009).

ASSUMPTION 3.4. (a) (i) Z0,t is a strictly stationary sequence withE[Z0,t ] = 0, E[‖Z0,t‖γ ]<
∞ for some γ > 2; (ii) it is α-mixing with

∑∞
i=1 α(i)(γ−2)/γ < ∞; (iii) the matrix E[Z0,tZ0,t ]�

has full rank; (iv) the process Z0,t is independent of X11, . . . , XT J , ε
′
11, . . . ,ε

′
T J . (b) It holds that

(log(KT )2((KMT /J )1/2 + T 1/2M4
T J

−2 +K3/2J−1 +K4/3J−2/3T −1/6) +1)T 1/2(ρ2 + δ2
K ) =

O(1).

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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14 S. Song, W. K. Härdle and Y. Ritov

Assumption 3.4(b) imposes a very weak condition on the growth of J , K and T . Suppose,
for example, that MT is of logarithmic order and that K is of order (JT )1/5, then the condition
requires that T/J 2 times a logarithmic factor converges to zero. As remarked by Doukhan (1994),
if a stochastic process is β-mixing, then it is also α-mixing with 2α(A,B) � β(A,B). If the
requirement on the β-mixing coefficient in Theorem 3.2 is satisfied, then the requirement on the
α-mixing coefficient in Assumption 3.4(a) is usually satisfied.

Furthermore, note that the minimization problem (A.1) only has a unique solution in β,
but not in � and A. If (Ẑ0,t , Â) is a minimizer, then so is (B�Ẑ0,t , B

−1A), where B is an
arbitrary invertible matrix. With the choice B = (

∑T
t=1 Z0,t Ẑ

�
0,t )

−1∑T
t=1 Z0,tZ

�
0,t , we obtain∑T

t=1 Z0,t (Z̃0,t − Z0,t )� = 0, where Z̃0,t
def= B�Ẑ0,t and Ã

def= B−1A. Without loss of generality,
we can assume T −1∑T

s=1 Ẑ0,s = T −1∑T
s=1 Z0,s = 0. Additionally, we define

Z̃n,t =
(
T −1

T∑
s=1

Z̃0,s Z̃
�
0,s

)−1/2

Z̃0,t ,

Zn,t =
(
T −1

T∑
s=1

Z0,sZ
�
0,s

)−1/2

Z0,t .

THEOREM 3.4. Suppose that model (2.1) holds. Besides all assumptions in Theorem 3.2, also
let Assumptions 3.3 and 3.4 be satisfied. Then, there exists a random matrix B specified above
such that, for h ≥ 0,

T −1
T−h∑
t=1

Z̃0,t
(
Z̃0,t+h − Z̃0,t

)� − Z0,t
(
Z0,t+h − Z0,t

)� = OP (T −1/2)

and

T −1
T−h∑
t=1

Z̃n,t Z̃
�
n,t+h − Zn,tZ

�
n,t+h = OP (T −1/2).

In Theorem 3.4, we consider the autocovariances of the estimated stochastic process Ẑ0,t and
the (unobserved) process Z0,t , and we show that these estimators differ only by second-order
terms. Thus, the statistical analysis based on Ẑ0,t is equivalent to that based on the (unobserved)
process Z0,t .

4. DYNAMICS OF TEMPERATURE ANALYSIS

Since the first transaction in the weather derivatives market in 1971, the market has expanded
rapidly. Many companies, who faced the possibility of significant declines in earnings because
of abnormal weather fluctuations, decided to hedge their seasonal weather risk. Thus, weather
derivative contracts have become particularly attractive. One essential task is to model the
fluctuations of temperatures at many different weather stations. Thus, in this section, we
present the application to the analysis of temperature dynamics by fitting the daily temperature
observations provided by the CDC of the CMA; see Figure 1. To capture the upward trend,
seasonal and large-period effects, similar to Racsko et al. (1991), Parton and Logan (1981) and
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Generalized dynamic semi-parametric factor models 15

Table 1. Initial choice of 53 × 3 + 16 = 175 time basis.

Factors Factors

Trend (year by year) 1 Large period sin 2πt/(365 × 15)

t cos 2πt/(365 × 15)

3t2 − 1 sin 2πt/(365 × 10)

Seasonal effect sin 2πt/365 cos 2πt/(365 × 10)

cos 2πt/365 sin 2πt/(365 × 5)

. . . cos 2πt/(365 × 5)

cos 10πt/365

Hedin (1991), we propose the following initial choice of time basis (rescaling factors omitted) in
Table 1.

For the space basis, when we consider the relative proportion of variance explained by the first
K basis (eigenvalues of the smoothed covariance operator) and the five climate types of China,
as shown in Figure 3, the number of space basis K = 5 is appealing. As we discuss in Appendix
A, the choice of tuning parameter λ is crucial here. Figure 4 presents the solution path of four
different selection criteria, Cp, GCV, AIC and BIC, evaluated on 500 equally spaced values of λ,
where the minimizer is marked as the red dot. As we can see, the minimizers ofCp, GCV and AIC
are significantly smaller than that of BIC, which confirms previous discussions in the literature
that the AIC-type criterion (including GCV and Cp) tends to overestimate the model size and
thus overfits. Our estimate also involves the smoothing bandwidth in the smoothed functional
PCA step, which, by Theorem 1 of Hall et al. (2006), should be chosen as O(T −1/5) in order to
minimize the distance between the estimates of the ψ̂ eigenfunctions and the corresponding true
ones. Figure 5 presents the BIC solution path w.r.t. four different (by a constant factor) values of
the smoothing parameter for the same 500 values of λ as above. As we can see, the solution path
is very stable w.r.t. the choice of the smoothing parameter.

Figure 6 displays the estimated coefficients of the first factor with respect to the 54 × 3
yearly polynomial time basis w.r.t. k = 1 under the optimal choice of λ selected by the BIC
criterion. The coefficients of constant, linear and quadratic terms are displayed as solid, dashed
and dotted lines, respectively, and they are also coupled with the corresponding 90% confidence
intervals (based on year-by-year ordinary least-squares (OLS) estimates) represented by the thin
lines (with the same colour and style). The fact that all these coefficients are non-negative
indicates that over the past 50 years, there might have been a warming effect across China.
The confidence intervals are computed using OLS polynomial fitting to the year-by-year time
series after removing the normal seasonality and large-period effects. We observe an unusual
large positive (w.r.t. the linear term) and negative (w.r.t. the quadratic term) variation for the
OLS estimates at the end of the 1960s, caused by the extreme temperatures in China at that
time. By employing shrinkage techniques, we can remove this disadvantage and produce stabler
estimates. The estimated coefficients of the five factors w.r.t. the 16 trigonometric functions time Q9
basis corresponding to the optimal λ are displayed in Table 2. It clearly indicates that the 15-year
period effect, as some meteorologists claim, is related to solar activity.

Because the eigenvalues of β̂β̂� are (10140, 208, 118, 44, 14, 0, 0, . . .) (with the first five
being non-zero and the rest being zero), we choose L = 5 and obtain the remaining five-
dimensional random process Ẑ0,t , which could be further modelled by using multivariate time

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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(a)

(b)

Figure 3. Relative proportion of variance and China’s climate types.

series techniques. For example, if we use a VAR(1) process, Ẑ0,t = SẐ0,t−1 + ε0,t , where ε0,t is
a random vector, then the estimated coefficient matrix is⎛⎜⎜⎜⎜⎝

0.7703 0.0103 0.0007 0.0015 0.0005
−0.0552 0.1449 −0.1841 −0.0285 0.0003
−0.3047 −0.3419 0.3877 −0.0436 −0.0020

0.2078 −0.1717 −0.1337 0.8431 0.0071
0.6345 −0.0484 −0.0447 0.0184 0.8338

⎞⎟⎟⎟⎟⎠ .
C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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Figure 4. Comparison of Cp , GCV, AIC and BIC.

Figure 5. BIC solution path.

Compared with the existing temperature modelling (pricing weather derivatives) techniques (e.g.
Benth and Benth, 2005), our approach possesses the following advantages. First, based on high-
dimensional time series data, it offers integrated analysis considering space (high dimensionality)
and time (dynamics) parts simultaneously, while forecasting at different places other than the
existing weather stations is also possible because the space basis is actually a function of the
geographical location information. Second, it extracts the trend more clearly. Third, it provides
theoretical justification for further inferential analysis of Ẑ0,t instead of Z0,t .

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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Figure 6. Estimated coefficients of the 54 × 3 yearly polynomial time basis.

Table 2. Estimated coefficients of the five factors.

Basis Estimates

sin 2πt/365 −25.4922 1.1059 2.4129 −2.6985 1.2320

cos 2πt/365 −87.3303 1.8228 5.3358 −5.0823 1.6284

sin 4πt/365 0.0000 0.0000 0.0000 0.0000 0.0000

cos 4πt/365 −4.5532 0.8761 0.6752 −0.6709 0.9163

. . . 0.0000 . . .

cos 10πt/365 0.0000 . . .

sin 2πt/(365 × 15) 11.7818 −0.0053 −1.4026 0.4743 −0.0214

cos 2πt/(365 × 15) 0.0000 . . .

. . . 0.0000 . . .

cos 2πt/(365 × 5) 0.0000 . . .

5. SIMULATION STUDY

Because the simulation results about the performance of the group-Lasso estimator have been
well illustrated in the literature, to evaluate the overall fitting performance of the GDSFM, we
conduct a Monte Carlo experiment designed to mimic the previous empirical example.

We generate random variables β1, . . . , β175 ∈ R
4 such that all coordinates are i.i.d. standard

normal random variables. We randomly pick 80% of the βr coefficients from β1, . . . , β175 andQ10
assign them to be 0 ∈ R

4. We choose the same time basis as in Table 1 with p = 365 and T =
19345. For the space part, inspired by Park et al. (2009), we consider d = 2 and the following

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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Table 3. Average values of 1 − R2.

Independent Weakly dependent Strongly dependent

1 − R2 5.30% 5.32% 5.40%

tuples of two-dimensional functions:

m1(x1, x2) = 1, m2(x1, x2) = 3.46 (x1 − 0.5),

m3(x1, x2) = 9.45
(
(x1 − 0.5)2 + (x2 − 0.5)2

)− 1.6,

m4(x1, x2) = 1.41 sin(2πx2).

These functions are chosen to be close to orthogonal. The design points Xt,j are independently
generated from a uniform distribution on the unit square. We generate Y�

t = U�
t β

��t + εt ,

t = 1, . . . , T with the following three types of error distributions:

(1) all coordinates of ε1, . . . , εT are i.i.d. N (0, 0.05) random variables;
(2) εt are generated from a centred VAR(1) process εt = Sεt−1 + ηt , where S is a diagonal

matrix with all diagonal entries equal to 0.4 and all entries of ηt are N (0, 0.84 × 0.05)
random variables (such that Var(εt ) is still the same as that of the independent case);

(3) the same as above except that all diagonal entries of S equal 0.8 (i.e. a stronger dependence
level and ηt are N (0, 0.36 × 0.05) random variables).

The algorithm presented in (B.3) converges fast (with a tolerance of 10−3). The values of
β are estimated by the group-Lasso technique as in (A.1) with tuning parameter λ selected by
the BIC-type criterion, as in (A.2). After obtaining β̂, we further estimate the stochastic process
Z0,t by a VAR(1) model. We take the remaining variation (1 − R2) as a measure of the fitting
performance, where

1 − R2 =
∑T

t=1

∥∥Y�
t − (

U�
t �̂ + Ẑ�

0,t

)
Â�̂t

∥∥2
2∑T

t=1

∥∥Y�
t −∑T

t=1

∑J
j=1 Yt,j /JT

∥∥2
2

(5.1)

is the proportion of the remaining variation not explained by the model among total variation.
We repeat this experiment 100 times and present the average values of 1 − R2 in Table 3 for
the independent, weakly dependent and strongly dependent cases. As we can see, when the
dependence level (in εt ) increases, even though the remaining variation slightly increases because
of the worse estimates of β, overall it is still relatively good.

6. CONCLUDING REMARKS

In this paper, we provide an integrated and yet flexible model for high-dimensional non-
stationary time series that reveals both complex trends and stochastic components. When
applying GDSFMs, we employ a non-parametric series expansion for both temporal and spatial
components. After choosing smoothed (non-parametric) functional principal components as a
space basis and extracting temporal trends utilizing time basis function selection techniques,
the estimate’s properties are investigated under the dependent scenario, together with the weakly

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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cross-correlated error term. This is not built upon any specific forms of time and space basis. This
enables us to explore the interplay among the degree of time dependence, high dimensionality
and moderate sample size (relative to dimensionality). The presented theory is an extension to
the current regularization techniques. We further justify statistical inference, e.g. estimation and
classification based on the detrended low-dimensional stochastic process. Applications to the
dynamic behaviour analysis of temperatures confirm its power.
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APPENDIX A: ESTIMATION PROCEDURE

First, we present the estimation method.

Step 1. Given the pre-specified time and space basis, find significantly loaded time basis functions (i.e.
coefficients β) utilizing the group-Lasso technique by minimizing

minβT
−1

T∑
t=1

(
Y�
t − U�

t β
��t

)(
Y�
t − U�

t β
��t

)�
+ 2λ‖β‖2,1. (A.1)
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Here, we use T −1 instead of (JT )−1 because the space basis has been orthonormalized (�̂t �̂
�
t =

IK ).
Step 2. Split the joint matrix β̂ into two separate coefficient matrices �̂ and Â by taking �̂ as the L

eigenvectors of β̂β̂� (w.r.t. the L largest eigenvalues) and Â = �̂�β̂. Given Y�
t − U�

t β̂
��t and

Â,�t , estimate Z0,t by the OLS method.

It is worth noting that both � (and Z0,t , respectively) and A are unidentifiable in model (2.1), because
trivially �∗A∗ = (�∗B)(B−1A∗). However, if we concentrate on prediction, the identification of β (as a
product of � and A, as in (A.1)) is enough. Additionally, we show that for any version of {Z0,t }, there exists
a version of {Ẑ0,t } whose lagged covariances are asymptotically the same as those of {Z0,t }.

The group-Lasso estimates depend on the tuning parameter λ. We implement an easily computable BIC-
type criterion. The solution path is computed by evaluating some criteria on equally spaced λ’s between 0
and λmax = maxr ‖ ∑t �tYtUtr ‖. We select the λ that minimizes

BIC(λ) = log

(∑
t

‖ Y�
t − U�

t β̂
��t ‖2/T

)
+ log T · df/T , (A.2)

df =
∑
r

1
(

‖ β̂r ‖> 0
)

+
∑
r

‖ β̂r ‖
‖ β̂OLS ‖ (K − 1).

For reference purposes, we also list the formulae of the Cp , GCV and AIC criteria:

Cp(λ) =
∑
t

‖ Y�
t − U�

t β̂
��t ‖2/σ̃ 2 − T + 2df ;

σ̃ 2 =
∑
t

‖ Y�
t − U�

t β̂
�
OLS�t ‖2/(T − df );

GCV(λ) =
∑
t

‖ Y�
t − U�

t β̂
��t ‖2/(1 − df/T )2;

AIC(λ) = log

(∑
t

‖ Y�
t − U�

t β̂
��t ‖2 /T

)
+ 2df/T .

As pointed out by Yuan and Lin (2006) (for i.i.d. data), the performance of this approximate information
criterion is generally comparable with that of the computationally much more expensive (especially for
the massive data) fivefold cross-validation. More importantly, because the data here are observed in time,
the order of observations is significant, and hence a simple cross-validation procedure is inappropriate in a
time series context. Besides BIC, there are other parameter selection criteria, such as Cp , GCV and AIC. In
terms of variable selection, Wang and Leng (2008) have found that BIC is superior to Cp . The reason for
this is that when there exists a true model, AIC-type criteria (including GCV and Cp) tend to overestimate
the model size; see, e.g. Leng et al. (2006), Wang et al. (2007a) and Wang et al. (2007b). Subsequently,
estimation accuracy using Cp can suffer. Wang et al. (2007b) have given a theoretical justification showing
that GCV overfits the smoothly clipped absolute deviation (SCAD) method (Fan and Li, 2001). Analogous
arguments also apply to the Cp methods.

APPENDIX B: TECHNICAL PROOFS

In order to study the statistical properties of this estimator, it is useful to derive some optimality conditions
for a solution of (A.1). Our implementation of group-Lasso-type estimator comes from Yuan and Lin (2006),
which is an extension of the shooting algorithm of Fu (1998). As a direct consequence of the Karush–Kuhn–

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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Tucker conditions, we have a necessary and sufficient condition for β̂ to be a solution of (A.1):

T −1
T∑
t=1

(�t (Yt −��
t β̂Ut )U

�
t )r = λ

β̂r

‖β̂r‖
, if β̂r �= 0; (B.1)

T −1‖
T∑
t=1

(�t (Yt −��
t β̂Ut )U

�
t )r‖ � λ, if β̂r = 0. (B.2)

Recall that �t�
�
t = IK . It can be easily verified that the solution to (B.1) and (B.2) is

β̂r = (1 − λ/‖Sr‖)+Sr, (B.3)

where Sr = ∑T

t=1(�t (Yt −��
t β̂−rUt )U�

t )r with β̂−r = (β̂1, . . . , β̂r−1, 0, β̂r+1, . . . , β̂R). The solution to
expression (A.1) can therefore be obtained by applying (B.3) to r = 1, . . . , R iteratively.

LEMMA B.1. Consider model (2.2). Assume that �t�
�
t = IK , T −1

∑T

t=1 U
�
t Ut/R = 1, and M(β∗) � s.

If the random event

A =
⎛⎝2T −1 max

1�r�R

T∑
t=1

K∑
k=1

J∑
j=1

��
tkj εtjUtr � λ

⎞⎠ (B.4)

holds with high probability for some λ > 0. Then, for any solution β̂ of problem (A.1) and ∀β, we have

T −1
T∑
t=1

‖ ��
t (β̂ − β∗)Ut ‖2 + λ‖β̂ − β‖2,1

� T −1
T∑
t=1

‖ ��
t (β − β∗)Ut ‖2 + 4λ

∑
r∈R(β)

‖β̂r − βr‖, (B.5)

T −1 max
1�r�R

‖
T∑
t=1

(
�t�

�
t (β̂ − β∗)UtU

�
t

)
r
‖ � 3λ/2, (B.6)

M(β̂) � 4φ2
max

λ−2T −2

T∑
t=1

‖ (β̂ − β∗)Ut ‖2
2, (B.7)

where φmax is the maximum eigenvalue of the matrix
∑T

t=1 UtU
�
t /T .

Proof: The proof involves similar thoughts given in Lemma 3.1 of Lounici et al. (2009). By the definition
of β̂ as a minimizer of (A.1), ∀β we have

T −1
T∑
t=1

‖ ��
t β̂Ut − Yt ‖2 + 2λ

R∑
r=1

‖β̂r‖

� T −1
T∑
t=1

‖ ��
t βUt − Yt ‖2 + 2λ

R∑
r=1

‖βr‖, (B.8)

which, using Yt = ��
t β

∗Ut + εt , is equivalent to

T −1
T∑
t=1

‖ ��
t (β̂ − β∗)Ut ‖2 � T −1

T∑
t=1

‖ ��
t (β − β∗)Ut ‖2

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.
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+2T −1
T∑
t=1

ε�
t �

�
t (β̂ − β)Ut + 2λ

R∑
r=1

(‖βr‖ − ‖β̂r‖). (B.9)

Using the Hölder inequality, we have

2T −1
T∑
t=1

ε�
t �

�
t (β̂ − β)Ut � 2T −1

T∑
t=1

‖�tεtU
�
t ‖2,∞‖β̂ − β‖2,1, (B.10)

where ‖∑T

t=1 �tεtU
�
t ‖2,∞ � max1�r�R

∑T

t=1

∑K

k=1

∑J

j=1 �
�
tkj εtjUtr .

If the random event

A =
⎛⎝2T −1 max

1�r�R

T∑
t=1

K∑
k=1

J∑
j=1

��
tkj εtjUtr � λ

⎞⎠ (B.11)

holds with high probability for some λ > 0, which we specify afterwards, then it follows from (B.9) and
(B.10), on the event A, that

T −1
T∑
t=1

‖��
t

(
β̂ − β∗)Ut‖2 + λ

R∑
r=1

‖β̂r − βr‖

� T −1
T∑
t=1

‖��
t (β − β∗)Ut‖2 + 2λ

R∑
r=1

(‖β̂r − βr‖ + ‖βr‖ − ‖β̂r‖)

� T −1
T∑
t=1

‖��
t (β − β∗)Ut‖2 + 2λ

∑
r∈R(β)

(‖β̂r − βr‖ + ‖βr‖ − ‖β̂r‖)

+2λ
∑

r∈Rc (β)

(‖β̂r − βr‖ + ‖βr‖ − ‖β̂r‖)

� T −1
T∑
t=1

‖��
t (β − β∗)Ut‖2 + 4λ

∑
r∈R(β)

‖β̂r − βr‖. (B.12)

This proves (B.5).
To prove (B.4), we use (B.1) and (B.2), which yield the inequality

T −1 max
1�r�R

∥∥∥∥∥
T∑
t=1

(
�t (Yt −��

t β̂Ut )U
�
t

)
r

∥∥∥∥∥ � λ. (B.13)

Then

T −1

∥∥∥∥∥
T∑
t=1

(
�t�

�
t (β̂ − β∗)UtU

�
t

)
r

∥∥∥∥∥
� T −1

∥∥∥∥∥
T∑
t=1

(
�t (�

�
t β̂Ut − Yt )U

�
t

)
r

∥∥∥∥∥+ T −1

∥∥∥∥∥
T∑
t=1

(
�tεtU

�
t

)
r

∥∥∥∥∥ , (B.14)

where we use Yt = ��
t β

∗Ut + εt and the triangle inequality. Then, the bound (B.4) follows by combining
(B.14) with (B.13) and using the definition of the event A.

C© 2014 The Author(s). The Econometrics Journal C© 2014 Royal Economic Society.



ectj12024 W3G-ectj.cls March 13, 2014 5:42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

UNCORRECTED
PROOF

26 S. Song, W. K. Härdle and Y. Ritov

Finally, we show (B.7). First, observe that

T∑
t=1

�t

(
Yt −��

t β
∗Ut
)
U�
t =

T∑
t=1

�t�
�
t (β̂ − β∗)UtU

�
t +

T∑
t=1

�tεtU
�
t .

On the event A, utilizing (B.1) and the triangle inequality, we have

T −1

∥∥∥∥∥
T∑
t=1

(
�t�

�
t (β̂ − β∗)UtU

�
t

)
r

∥∥∥∥∥ � λ/2, if β̂r �= 0.

The following arguments yield the bound (B.7) on the number of non-zero rows of β̂�
r :

M(β̂) � 4

λ2T 2

∑
r∈R(β̂)

∥∥∥∥∥
T∑
t=1

(
�t�

�
t (β̂ − β∗)UtU

�
t

)
r

∥∥∥∥∥
2

� 4

λ2T 2

R∑
r=1

∥∥∥∥∥
T∑
t=1

(
�t�

�
t (β̂ − β∗)UtU

�
t

)
r

∥∥∥∥∥
2

= 4

λ2T 2

∥∥∥∥∥
T∑
t=1

(
�t�

�
t (β̂ − β∗)UtU

�
t

)∥∥∥∥∥
2

2

� 4φ2
max

λ2T

T∑
t=1

∥∥(β̂ − β∗)Ut
∥∥2

2
.

Here, we use the fact that �t�
�
t = IK and φmax is the maximum eigenvalue of the matrix

∑T

t=1 UtU
�
t /T .

�

Proof of Theorem 3.1: We proceed along the lines of Theorem 6.2 of Bickel et al. (2009) and Theorem
3.1 of Lounici et al. (2009). Let R = R(β∗) = {r : β∗

r �= 0}.
Using inequality (B.5) in Lemma B.1 with β = β∗, on the event A defined in (3.1), we have

T −1
T∑
t=1

‖��
t (β̂ − β∗)Ut‖2 � 4λ

∑
r∈R

‖β̂r − β∗
r ‖ � 4λ

√
s‖(β̂ − β∗)R‖. (B.15)

Moreover, by the same inequality, on the event A, we have
∑R

r=1 ‖β̂r − β∗
r ‖ � 4

∑
r∈R ‖β̂r − β∗

r ‖, which
implies that

∑
r∈Rc ‖β̂r − β∗

r ‖ � 3
∑

r∈R ‖β̂r − β∗
r ‖. Thus, by Assumption 3.1 with 
 = (β̂ − β∗),Q12

‖(β̂ − β∗)R‖2 �
T∑
t=1

‖��
t (β̂ − β∗)Ut‖2/(κ2T ). (B.16)

Now, T −1
∑T

t=1 ‖��
t (β̂ − β∗)Ut‖2 � 16sλ2κ−2 (3.2) follows from (B.15) and (B.16).

Inequality (3.3) follows by noting that

K−1/2
R∑
r=1

‖β̂r − β∗
r ‖ � 4K−1/2

∑
r∈R

‖β̂r − β∗
r ‖ � 4K−1/2√s‖(β̂ − β∗)R‖ � 16sλκ−2K−1/2, (B.17)

and then using (3.2). Inequality (3.4) follows from (B.7) and (3.2). �
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Definition of β-mixing: Following Doukhan (1994), let (�,F, P ) be a probability space and let A and B
be two sub-σ algebras of F . Various measures of dependence between A and B have been defined as

β(A,B) = sup
1

2

I∑
i=1

J∑
j=1

|P (Ai
⋂
Bj ) − P (Ai)P (Bj )|, (B.18)

α(A,B) = sup |P (A
⋂
B) − P (A)P (B)|, A ∈ A, B ∈ B, (B.19)

where the supremum is taken over all pairs of (finite) partitions {A1, . . . , AI } and {B1, . . . , BJ } of � such
thatAi ∈ A for each i andBj ∈ B for each j . Now suppose {Vt }t∈T is a (not necessarily stationary) sequence
of random variables. For −∞ � i � j � ∞, define the σ -field σ ji = σ (Vt , i � t � j, t ∈ T ). For each
a � 1, define the following dependence coefficients:

β(a) = sup
t∈T

β(σ t−∞, σ
∞
t+a), α(a) = sup

t∈T
α(σ t−∞, σ

∞
t+a).

In the special case where the sequence {Vt }t∈T is strictly stationary, they simply become

β(a) = β(σ t−∞, σ
∞
t+a), α(a) = α(σ t−∞, σ

∞
t+a).

A stochastic process is said to be β-mixing (or α-mixing) if β(a) → 0 (or α(a) → 0) as a → ∞. By
definition, when σ t−∞ and σ∞

t+a are independent of each other, β(a) = 0; the closer β(a) gets to 0, the more
independent the time series is.

Proof of Theorem 3.2: The proofs of this theorem are similar to those of Theorem 3.1 up to a specification
of the bound on P (Ac) in Lemma B.1. Consider the event

A =
⎛⎝2T −1 max

1�r�R

T∑
t=1

K∑
k=1

J∑
j=1

��
tkj εtjUtr � λ

⎞⎠ .
Observe that

P (Ac) � RP

⎛⎝ T∑
t=1

K∑
k=1

J∑
j=1

�tkj εtjUtrK
−1/2 > 2−1λTK−1/2

⎞⎠
def= RP

(
T∑
t=1

Vt > 2−1λTK−1/2

)
.

Because Assumption 3.2 holds, applying the Bernstein-type inequality for β-mixing random variables
{Vt }Tt=1 (Theorem 4 of Doukhan, 1994, p. 36) yields that ∀ε > 0 and ∀ 0 < q � 1,

P

(
T∑
t=1

Vt � 2−1λTK−1/2

)
� 2 exp

(
− (1 − ε)3(1 + ε2/4)λ2TK−1

4(6(1 + ε2/4)σ 2 + qC ′′λTK−1/2)

)
︸ ︷︷ ︸

def=T1

+
(1 + ε2/4)β

(
(qT ε2/(4 + ε2)) − 1

)
q︸ ︷︷ ︸

def=T2

.
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To make T1 � R−(1+δ′), δ′ > 0 and T2 � R−(1+δ′), we choose

λ =
√

16 logR1+δ′Kσ 2

T (1 − ε)
, qC ′′λTK−1/2 = 6(1 + ε2/4)σ 2

and

β
(

(qT ε2/(4 + ε2)) − 1
)

� qR−(1+δ′)/(1 + ε2/4) =
(

24σ (1 − ε)1/2(R1+δ′
√

logR1+δ′T C ′′)−1
)
,

with qT ε2/(4 + ε2) = (3/8)σε2T 1/2(1 − ε)1/2C ′′−1 logR−(1+δ′)/2. Then, we have

P (Ac) � RP

(
T∑
t=1

Vt > λT/K

)
� 3R−δ′ .

�

Proof of Corollary 3.1: To prove this corollary, we need to show that Assumption 3.2 is satisfied, i.e. for
an m-dependent process with order k, σ 2 in Assumption 3.2 is equal to 2kσ 2

0 . For simplicity, we assume
that n = 1 and that m is divisible by 2k. Then,

E

[
m∑
i=1

Vi

]2

= E

[
k∑
i=1

Vi +
2k∑

i=k+1

Vi + . . .+
m∑

i=m−k
Vi

]2

= E

⎡⎢⎢⎢⎢⎢⎢⎣
m/2k−1∑
j=0

2jk+k∑
i=2jk+1

Vi︸ ︷︷ ︸
def=C

+
m/2k−1∑
j=0

2(j+1)k+k∑
i=2jk+k+1

Vi︸ ︷︷ ︸
def=D

⎤⎥⎥⎥⎥⎥⎥⎦

2

� 2E[C2] + 2E[D2].

Because for j = 0, . . . , m/2k − 1,
∑2jk+k

i=2jk+1 Vi are independent of each other by the definition of Vt and

the same argument holds for
∑2(j+1)k+k

i=2jk+k+1 Vi , we have

2E[C2] + 2E[D2] = 2
m/2k−1∑
j=0

E

⎡⎣ 2jk+k∑
i=2jk+1

Vi

⎤⎦2

+ 2
m/2k−1∑
j=0

E

⎡⎣ 2(j+1)k+k∑
i=2jk+k+1

Vi

⎤⎦2

� m/kk2σ 2
0 +m/kk2σ 2

0 = 2mkσ 2
0 .

�

Proof of Theorem 3.3: Similar to ̂̃Y�
t

def= Y�
t − U�

t β̂�t , define Ỹ�
t

def= Y�
t − U�

t β
∗�t with the

corresponding estimate Z̃0,t . Thus,

1

T

∑
1≤t≤T

∥∥∥Ẑ�
0,t Â− Z�

0,tA
∗
∥∥∥2

� 1

T

∑
1≤t≤T

∥∥∥Ẑ�
0,t Â− Z̃�

0,t Â

∥∥∥2
+ 1

T

∑
1≤t≤T

∥∥∥Z̃�
0,t Â− Z�

0,tA
∗
∥∥∥2
,

where the second term is bounded by OP (ρ2 + δ2
K ) by Theorem 2 of Park et al. (2009). For the first term,

because

Ẑ0,t = (
Â�t�

�
t Â

�)−1
Â�t

̂̃Yt ,
Z̃0,t = (

Â�t�
�
t Â

�)−1
Â�t Ỹt ,
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Z̃0,t − Ẑ0,t = (
Â�t�

�
t Â

�)−1
Â�t

(
��
t (β̂ − β∗)Ut

)
,

Theorem 3.2 tells us that T −1
∑T

t=1 ‖ ��
t (β̂ − β∗)Ut ‖2

is bounded by O(T −1). From the definitions of ρ2

and δK , we know that the first term is dominated by the second term. �
Proof of Theorem 3.4: The proof shares ideas with Park et al. (2009). We prove the first equation of
the theorem for h �= 0. The second equation follows from the first. We start by proving that the matrix
T −1

∑T

t=1 Z0,t Ẑ
�
0,t is invertible. Suppose that the assertion is not true, then we can choose a random vector

e such that ‖e‖ = 1 and e�∑T

t=1 Z0,t Ẑ
�
0,t = 0. Note that

‖T −1
T∑
t=1

Z0,t Ẑ
�
0,t Â− T −1

T∑
t=1

Z0,tZ
�
0,tA

∗‖

� T −1
T∑
t=1

‖Z0,t (Ẑ
�
0,t Â− Z�

0,tA
∗)‖

� (T −1
T∑
t=1

‖Z0,t‖2)1/2(T −1
T∑
t=1

‖Ẑ�
0,t Â− Z�

0,tA
∗‖2)1/2

= OP (ρ + δK ), (B.20)

because of Assumption 3.3(e) and Theorem 3.3. Thus, with f = T −1
∑T

t=1 Z0,tZ
�
0,t e, we obtain

‖f �m‖ = ‖f �(A∗�)‖ + OP (δK )

= ‖e�T −1
T∑
t=1

Z0,tZ
�
t Â�‖ + OP (ρ + δK )

= OP (ρ + δK ).

This implies that m1, . . . , mL are linearly dependent, contradicting the construction that all space basis are
independent.

Note that Z̃0,t = B�Ẑ0,t and Ã = B−1A. With (B.20) this gives

‖Ã− A∗‖ = ‖T −1
T∑
t=1

Z0,tZ
�
t (Ã− A∗)‖OP (1)

= ‖T −1
T∑
t=1

Z0,t Z̃
�
0,t Ã− T −1

T∑
t=1

Z0,tZ
�
0,tA

∗‖OP (1)

= OP (ρ + δK ). (B.21)

From Assumptions 3.3(d), (B.21) and Theorem 3.3, we obtain

T −1
T∑
t=1

‖Z̃�
t − Z0,t‖2 (B.22)

= T −1
T∑
t=1

‖Z̃�
t (m1, . . . , mL)� − Z�

0,t (m1, . . . , mL)�‖2OP (1)

= T −1
T∑
t=1

‖Z̃�
t A

∗ − Z̃�
t Ã‖2OP (1)
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+T −1
T∑
t=1

‖Z̃�
t Ã− Z�

0,tA
∗‖2OP (1) + OP (δ2

K )

� T −1
T∑
t=1

‖Z̃0,t − Z0,t‖2‖Ã− A∗‖2OP (1)

+T −1
T∑
t=1

‖Z0,t‖2‖Ã− A∗‖2OP (1)

+T −1
T∑
t=1

‖Z̃�
t Ã− Z�

0,tA
∗‖2OP (1) + OP (δ2

K )

= OP (ρ2 + δ2
K ). (B.23)

We show that for h �= 0,

T −1
T∑

t=h+1

(
(Z̃0,t+h − Z0,t+h) − (Z̃0,t − Z0,t )

)
Z�

0,t = OP (T −1/2). (B.24)

This implies the first statement of Theorem 3.4 because by (B.23),

T −1
T∑

t=−h+1

(Z̃0,t − Z0,t )(Z̃0,t+h − Z0,t+h) = OP (b2) = OP (T −1/2).

To prove (B.24), define

S̃t,Z = J−1
J∑
j=1

Ã�(Xt,j )�(Xt,j )
�Ã�,

St,Z = A∗E
[
�(Xt,j )�(Xt,j )

�]A∗�,

S̃α = (JT )−1
T∑
t=1

J∑
j=1

(�(Xt,j ) ⊗ Z̃0,t )(�(Xt,j ) ⊗ Z̃0,t )
�,

Sα = T −1
T∑
t=1

E
[
(�(Xt,j ) ⊗ Z0,t )(�(Xt,j ) ⊗ Z0,t )

�
∣∣∣Z0,t

]
,

S = J−1A∗
(
�(Xt,j )�(Xt,j )

�e − E[�(Xtj )�(Xtj )
�e]
)
,

where e ∈ R
K with ‖e‖ = 1. Let ã be the stack form of Ã. It can be verified that

Z̃0,t = S̃−1
t,ZJ

−1
J∑
j=1

(
Yt,jA�(Xt,j )

)
, (B.25)

ã = S̃−1
α (JT )−1

T∑
t=1

J∑
j=1

(
�(Xt,j ) ⊗ Z̃0,t

)
Yt,j . (B.26)
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Let γ = T −1/2/b. We argue that

sup
1≤t≤T

‖S̃t,Z − St,Z‖ = OP (γ ), ‖S̃α − Sα‖ = OP (γ ). (B.27)

We show the first part of (B.27), and the second part can be obtained analogously. Because

Ã�t�
�
t Ã

� = (Ã− A∗ + A∗)(�t�
�
t − E[�t�

�
t ] + E[�t�

�
t ])(Ã− A∗ + A∗)�,

in order to prove the first part, it suffices to show that, uniformly for 1 � t � T ,

J−1
J∑
j=1

A∗
(
�(Xt,j )�(Xt,j )

� − E[�(Xt,j )�(Xt,j )
�]
)

(Ã− A∗)� = OP (γ ), (B.28)

J−1
J∑
j=1

(Ã− A∗)
(
�(Xt,j )�(Xt,j )

� − E[�(Xt,j )�(Xt,j )
�]
)

(Ã− A∗)� = OP (γ ), (B.29)

J−1
J∑
j=1

A∗
(
�(Xt,j )�(Xt,j )

� − E[�(Xt,j )�(Xt,j )
�]
)
A∗� = OP (γ ), (B.30)

J−1
J∑
j=1

A∗E[�(Xt,j )�(Xt,j )
�](Ã− A∗)� = OP (γ ), (B.31)

J−1
J∑
j=1

(Ã− A∗)E[�(Xt,j )�(Xt,j )
T ](Ã− A∗)� = OP (γ ). (B.32)

The proof of (B.28)–(B.30) follows by simple arguments. We now show (B.31). Claim (B.32) can be shown
similarly. To prove (B.31), we use the Bernstein inequality for the following sum:

P
(
|

J∑
j=1

Wj | > x
)

� 2 exp

(
− 1

2

x2

V +Mx/3

)
. (B.33)

For t with 1 ≤ t ≤ T , the random variable Wj is an element of the L× 1-matrix S =
J−1A∗

(
�(Xt,j )�(Xt,j )�e − E[�(Xtj )�(Xtj )�e]

)
, where e ∈ R

K with ‖e‖ = 1. In (B.33), V is an upper

bound for the variance of
∑J

j=1 Wj , and M is a bound for the absolute values of Wj (i.e. |Wj | ≤ M for
1 ≤ j ≤ J , a.s.). With some constants C1 and C2 that do not depend on t and the row number, we obtain
V ≤ C1J

−1 and M ≤ C2K
1/2J−1. The application of the Bernstein inequality gives that, uniformly for

1 ≤ t ≤ T and e ∈ R
K with ‖e‖ = 1, all L elements of S are of order OP (γ ). This completes the proof of

claim (B.28).
From (B.21), (B.25) and (B.25)–(B.27), it follows that uniformly for 1 � t � T ,

Z̃0,t − Z0,t = S−1
t,ZJ

−1
J∑
j=1

ε′
t,jA

∗�(Xt,j )

+S−1
t,ZJ

−1
J∑
j=1

ε′
t,j (Ã− A∗)�(Xt,j ) + OP (T −1/2)

def= 
t,1,Z +
t,2,Z + OP (T −1/2). (B.34)
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To prove the theorem, it remains to show that for 1 � j � 2,

T −1
T∑

t=−h+1

(
t+h,j,Z −
t,j,Z)Z�
0,t = OP (T −1/2). (B.35)

This can be checked easily for j = 1. For j = 2, it follows from ‖Ã− A∗‖ = OP (ρ + δK ) and

E[‖(JT )−1
T∑
t=1

J∑
j=1

ε′
t,j S

−1
t,ZM�(Xt,j )‖2] = O(K(JT )−1), (B.36)

for any L×K matrix M with ‖M‖ = 1. �
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Q2 Author: Some editorial/grammatical changes have been
made, so please read through your paper carefully to
check that the meaning has not been unintentionally
altered.

Q3 Author: Please check that the full meaning of the
abbreviation ‘IVS’ used later in the paper has been
correctly identified here.

Q4 Author: The sentence ‘For example, in international...’
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meaning is correct.

Q5 Author: Please confirm that inherent (rather than
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Q6 Author: Please note that figure and table captions need
to be short.Where necessary, some details from the
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Q7 Author: The sentence ‘Figure 2 displays the...’ has been
amended for clarity; please confirm that the meaning is
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Q8 Author: Please check that Appendix A is the correct
appendix to cite here.

Q9 Author: Please check the number ‘16’, because in the
original table caption the number ‘20’ was used.

Q10 Author: The abbreviation ‘r.v.s’ has been given in full
as ‘random variables’ throughout the paper; please
check that this is correct.

Q11 Author: Can you provide any updated details for Stock
and Watson (2005a)?

Q12 Author: Please note that equation (B.16) has been
amended slightly to avoid the use of a large \sqrt \dots
; please confirm that this is okay.
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