SEMIPARAMETRIC SHIFT ESTIMATION FOR ALIGNMENT OF ECG DATA
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ABSTRACT

In this paper we try to address the problem of curve align-
ment with a semiparametric framework, that is without any
knowledge of the shape. This study stems from a biological
issue, in which we are interested in the estimation of the av-
erage heart cycle signal, but wish to estimate it without any
knowledge of the pulse shape, which may differ from one pa-
tient to another. We suggest in this paper an estimator based
on a smoothed functional of the periodogram. Results show
better performances than the state-of-the-art method, as well
as its robustness to the noise level.

1. INTRODUCTION

The aim of this work is to address a specific curve alignment
problem. We pay attention to the issue of estimating either
a set of shift parameters {6;, j = 1... M}, either its distribu-
tion, when this sample is not observed directly but through its
image by an unknown operator s. More precisely we observe
a collection of curves

yk)l:s(tk—el)—konk’l,k:O...m—l, I=1..M, (1)

where the n; ; are independent standard normal random vari-

ables with common variance o2, independent of 8, #; is the
observation time and M denotes the total number of curves.
Such problems appear commonly in practice, for instance in
functional data analysis (FDA). In this framework, a com-
mon problem is to align curves obtained in a series of ex-
periments before extracting their common features; we re-
fer to [1] for an in-depth discussion on the problem of curve
alignment in functional data analysis applications. Several
papers (e.g. [2]) focus on this specific model for many differ-
ent signal processing applications.

In this contribution we focus on the analysis of ECG sig-
nals. In recordings of the heart electrical activity, at each
cycle of contraction and release of the heart muscle, we get
a characteristic P-wave, which depicts the depolarization of
the atria, followed by a QRS-complex stemming from the de-
polarization of the ventricles and a T-wave corresponding to
the repolarization of the heart muscle. We refer to [3, Chapter
12] for an in-depth description of the heart cycle. A typical
ECG signal is shown in Figure 1. Positioning of the record-
ing leads, as well as some malfunctions of the heart can alter
the recorded signal. We aim at situations where the heart
electrical activity is cyclic enough, so that after prior seg-
mentation of our recording, the above model still holds. This
step can be done, for example, by taking segments around the
easily identified maxima of the QRS-complex; such method
is presented in [4].

It is therefore of interest to estimate the 6; in (1). These
estimates can be used afterwards for a more accurate esti-
mation of the distribution of the heart rate. In regular cases,
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Figure 1: ECG signal from an healthy subject (arbitrary
units). This signal is recorded with additional measurement
noise, so that FDA alignment methods give poor results.

such estimation can be done accurately by using the common
FDA method (e.g. by using only the above prior segmenta-
tions). However, when the activity of the heart is more irreg-
ular, a more precise alignment can be helpful. This happens
for example in cases of cardiac arrythmias, whose identifica-
tion can be more effective is the heart cycles are accurately
aligned.

Another measurement often used by cardiologists is the
mean ECG signal. Indeed, slightly improperly aligned sig-
nals can yield an average on which the characteristics of the
heart cycle are lost. The proposed method leads to an esti-
mation of the mean cycle by averaging the segments after an
alignment according to an estimated 6;. Additional benefits
from a more proper alignment can be found in many other
measurements done by cardiologists.

The paper is organized as follows. Section 2 describes
the assumptions made and the method to derive the estimator
of the shifts, and proposes an estimate for their distribution.
Some theoretical results are presented about the settings re-
lated to this method. In Section 3, we present results on sim-
ulations and real datasets and compare them to the standard
method described in [1]. We also comment more precisely
the role of the parameters used in our estimator.

2. SEMIPARAMETRIC ESTIMATION OF THE
SHIFT DISTRIBUTION

In this section, we present a method for the semiparametric
curve alignment. This method can be used as a first step for
a nonparametric estimation of the shift density, by following



the methodology described in [5]: first provide an estimate
for the shifts, and then plug the obtained values into a stan-
dard kernel estimate. We propose an M-estimator to retrieve
the shifts, in which the shape information is considered as a
nuisance parameter and the shifts are estimated jointly.

2.1 Assumptions

We assume that we always observe the full noisy curve in
each sample, which can be formalized by the two following
assumptions:

1. The distribution of 8 and the shape s both have finite sup-

port, respectively [0, 7] and [0, Ty].

2. Tg+ T, <T.

3. s L*([0,Ty]).
Assumptions 1 and 2 imply that we observe a sequence of
similar curves with additional noise, so that the spectral in-
formation is the same for all curve. This makes sense for
some neuroscience applications, e.g. in which the Hodgkin-
Huxley model is used. For the case of ECG data, those
assumptions are less realistic, since the QRS-complex of a
heart cycle has indeed some observable variability. However,
it shall be noted that the low-frequency information remains
approximately invariant, thus Assumptions 1 and 2 hold in
that sense. Assumption 3 is a standard regularity assumption
made on the studied signal. We also denote by f the proba-
bility density function associated to the random variable 0.

2.2 Description of the shift estimation procedure

We first estimate the sequence {6;, j=0...M} using an M-
estimation procedure, that is by minimizing a cost criterion.
In order to define this criterion, we choose to split the set of
observed curves in N blocks of K + 1 curves as represented
in Figure 2, and to estimate jointly the sequence of vectors
{@®,, n=1...N}, where for all n

k). @)

One important difference, compared to the previously cited
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Figure 2: Description of the dataset split into blocks of
curves

works, is that we choose to estimate jointly blocks of param-
eters instead of one at a time. The estimation of {6,, n =

1...N} is done by minimizing a cost function, which is now
described.

Let us denote by S, the squared modulus of the Discrete
Fourier Transform of a given signal y. We define, for all

n=1...N, the mean of curves shifted by some correction
terms (O, _1)K415- -+ Ok ):
— def
It X 1)k 415+ -+ Olnk) =
1 ( f
—— | Ayo(?) + w(t+og) ), 3)
K+2 k=(n—1)K+1

where A is a tuning parameter in [0;K]. We introduce the
following cost criterion to be minimized in order to align all
curves into the n-th block:
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Note that C,, attains its minimum if the curves in a block are

well aligned. The M-estimator of ®,, is therefore given by

6, ¥ Argmin C,(x1,...xx) . (5)
x;€[0:T]

When we are interested in the distribution of the shifts rather
than their values, the estimator of f, denoted by f is naturally
computed by plugging the estimated values of the shifts in a
regular kernel density estimator, that is for all real x in [0; T]:

P - 1 M x—ék
f(X)_A/[hkl‘P< h )a (6)

where W is a kernel function integrating to 1 and % the clas-
sical tuning parameter of the kernel.

2.3 Properties and settings of the shift estimator
2.3.1 Choice of the number of curves K

Since we observe noisy curves and did not assume any
knowledge on the spectral information in (4), it has to be
estimated first. A well known nonparametric estimator is the
periodogram, which has been extensively studied (see e.g. [6]
and references therein). However, the periodogram provides
an estimate of the PSD of a process with many irregularities,
regardless of the regularity of the true PSD. A good way to
reduce the variance of this estimator is given by the averaged
periodogram, based on the mean of several periodogram esti-
mators, thus the necessity of splitting the dataset. This allows
to get a “smooth” function C,, whose optimization leads to an
estimate close to the actual values of the shifts. Thus, in the
case of noisy curves, the parameter K should be chosen big
enough to make the noise term vanish. It can be shown in [7]
that a cost function of a given block C, can be decomposed

in C, = D,, + R,,, where
Dn(a(nfl)KJrlr"?aﬂK)
def =] 2iknoy=6)) 2 ’
= Z ).+Z -1 @
k=0
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Figure 3: Results for K=200 and 62 =0.1; (a) two curves before alignment. (b) comparison between estimated against actual
values (blue dots) of the shifts for A = 50: good estimates must be close of the identity line (red curve). (c) comparison

between estimated and actual values of the shifts for A = 10.

is the deterministic part of C,,, whose minimum is attained if
and only if oy = 6, forall/ = (n— 1)K+ 1...nK. Moreover,
we get the following result on the random part of the cost
function:

Proposition 2.1 Denote by R, the random part associated
to the cost function C,.Thus, as K tends to infinity, we get for
all B € (0,1) that

2

O L op(k 1P
m

Ry

Proposition 2.1 indicates that, provided K is large enough,
the cost function C, is close to D, + 62 /m, thus validating
the optimization procedure.

It can also be noticed that all blocks of K+ 1 curves have
one curve yg in common. We chose to build the blocks of
curves as described in order to address the problem of iden-
tifiability. Without this precaution, replacing the solution
of (5) by @ + ¢ +2kx, k € Z and s by s(- — ¢) would let the
cost criterion invariant. Adding curve yq as a referential al-
lows to estimate 8 — 0y, thus avoiding the unidentifiability of
the model.

2.3.2 Choice of the weight parameter A

We now briefly discuss the choice of the tuning parameter A.
In the estimator (5), A is chosen to give more importance to
the curve yg, thus forcing the other curves to align accord-
ingly. Indeed, if we take A = 1 (that is, all curves have the
same weights), the following proposition holds:

Proposition 2.2 Let {n(K), K > 0} be a sequence such that
N(K) — 0 as K — +oo. Assume that

(K—li-l)<1+ Z exp(Zi;rk(Gl—a,)>>

1<I<K
then there exists three constants ¢, ¥ and Ko such that, for
K > Ky, the number of curves whose alignment error is far
from ¢, denoted by #{k : |c — o+ 6| > nN(K)*} is bounded
as follows:

>1-n(K),

#k : |c— o — 6] > n(K)¥} < %Kn(K)l_zo‘.

Proofs of Propositions 2.1 and 2.2 can be found in [7]. Propo-
sition 2.2 illustrates that, as the number of curves increases
in each block, the curves all tend in practice to align around
the same value, ¢, which is not necessarily equal to 0. Thus,
giving more weight to the reference curve yq allows to align
the curves accordingly to yg. Previous considerations implies
the existence of a trade-off for the tuning parameters K and
A: indeed, Propositions 2.2 and 2.1 indicates that K should
be chosen big in order to well align the curves, but this goes
with larger computational time for the optimization proce-
dure. A practical method is therefore to choose A from the
beginning, and make K increase until the average of the pe-
riodograms does not vary much, that is

y
) S)

where € is a threshold chosen by the user. Such a method
guarantees in practice that the cost function to optimize is
smooth enough.
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3. APPLICATIONS

We present in this section results based on simulations and
on real ECG data. We compare our method to the one de-
scribed in [1] which is often used by practitioners, that is a
measure of fit based on the squared distance between the av-
erage pulse and the shifted pulses leading to a standard Least
Square Estimate of the shifts.

In the case of simulations, we study the influence of
the parameter K and A empirically by providing the Mean
Squared Integrated Error (MISE) error for different values of
K, 2 and 02, with N = 20.

3.1 Results on simulations
3.1.1 Experimental protocol

Simulated data are created accordingly to the discrete
model 1, and we compute the estimators for different values
of the parameters K, A and o2, For each curve, we sam-

ple in order to get 512 points equally spaced on the interval
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Figure 4: Shift estimation using Least Square Estimate
(see [1]) for one block.

K\o? 10°° 102 10T
2 4451073 [ 5.001073 | 5.15107°
20 [ 5.031073 | 4951077 | 5.091073
50 | 4.951073 | 5.241073 | 4.921073
100 [ 5.011073 [ 4901073 | 5.15107°
200 | 4.801073 [ 5.851073 | 5.641073

Table 1: Estimated MISE values for different block sizes K
and noise variances o2.

[0;27]. We make the experiment with s simulated according
to the Hodgkin-Huxley model, in order to simulate a neu-
ral response. The shifts are drawn accordingly to a uniform
distribution % (1207/256,3257/256), and 6y = 7.

3.1.2 Results

We present in Figure 3 results obtained in the alignment pro-
cedure, in the case of high noise level (2 = 0.1). We also
compare our estimations with those obtained with an existing
method, namely curve alignment according to the compari-
son between each curve to the mean curve [1]. Results for
landmark alignment are displayed in Figure 4. We observe
that this shift estimation procedure is less efficient. An ex-
ample of density estimation is displayed in Figure 5, using
a uniform kernel. We retrieve the uniform distribution of 6.
Table 1 shows the estimated Mean Integrated Squared Error
(MISE), with different values of K and 6% and A = K.

3.2 Results on real data

We now wish to compare our method to the state-of-the-art
for the alignment of heart cycles, in order to estimate the av-
erage signal. We provide the study of the signal presented in
Figure 1, which was obtained from the Hadassah Ein-Karem
hospital, and is a recorded signal stemming from a healthy
heart.

3.2.1 Experimental protocol

In order to obtain a series of heart cycles, we first make a
preliminary segmentation using the method of [4], namely
alignment according to the local maxima of the heart cycle.
We then apply our method, and compare it to the alignment
obtained by comparing the mean curve to a shifted curve one
at a time. We took in this example K = 30 and A = 10.
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Figure 5: Probability density estimation for N =20, K = 200
and 62 =0.1.

3.2.2 Results

Results on real data are presented in Figure 6. It can be no-
ticed that the semiparametric method outperforms the stan-
dard method, by comparing Figures 6(d) and 6(c). More-
over, when computing the average of the reshifted heart cy-
cle, we observe that our method allows to separate more effi-
ciently the different parts of the heart cycle; indeed, the sepa-
ration between the P-wave, the QRS-complex and the T-wave
are much more visible, as it can be seen by comparing Fig-
ure 6(a) and Figure 6(b).

3.3 Discussion

Figure 3(c) is a good illustration of Proposition 2.2. In this
graph, we observe that in each block the curves are well
aligned, since we get for each block that the estimated shifts
are distributed according to a line with slope 1, but that they
do not align with respect to the location of the reference
curve, due to a weighting parameter A to small. Taking a
larger A allows to address this problem, as it may be seen in
Figure 3(b). We thus observe that if K and A are well chosen,
the shift estimation procedure performs well even if the noise
level is high. The method from [1] is less performant when
the noise level is too high. Indeed, since the average can be
very flat in the case of low SNR, this leads to estimation er-
rors possibly important. On the other hand, the averages of
periodograms remain relatively robust to the noise level in
all cases, since the noise variance introduces only a constant
term, which can be omitted in the optimization procedure.
We observe on Table 1 that the parameter K must be cho-
sen carefully: indeed, if K is large, the noise terms vanishes,
thus making the cost functions C, regular enough, but make
the optimization problem more difficult to solve. These two
considerations induce to find a trade-off in practice.

From the theoretical point of view, the study of another
M-estimate proposed in [8] for curve alignment gives further
insight in the comparison with the state-of-the-art method.
Indeed, [8, Theorem 2.1] shows that a statistically consis-
tent alignment can be obtained only when filtering the curves
and aligning the low-frequency information. Therefore, an
approach based on the spectral information is more suscepti-
ble to achieve good alignment by comparison to the method
of [1].
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(a) Aligned heart cycles and average signal (black dotted curve)
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(c) Aligned heart cycles using the standard method, zoom for
the first 30 curves
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(b) Aligned heart cycles and average signal (black dotted curve)
using the proposed method
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(d) Aligned heart cycles using the proposed method, zoom for
the first 30 curves

Figure 6: Comparison between the state-of-the-art and the proposed method for the alignment of heart cycles (arbitrary units).
A semiparametric approach appears more appealing to align cycles according to their starting point, and allows to separate

more efficiently to P-wave, the QRS complex and the T-wave.

4. CONCLUSION

We proposed in this paper a method for curve alignment and
density estimation which showed good performances on sim-
ulations, even when the noise variance is high. On real ECG
data, the proposed method outperforms the functional data
analysis method, thus leading to a more significant average
signal. The theoretical study of the proposed estimator, in
terms of consistency and rates of convergence, will appear in
a future contribution.
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