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Abstract

We present a new exponential inequality for degenerate U-statistics.

The bound of the log of the hazard is quadratic for small to medium

values of the deviation and linear for larger value. We apply this bound

to a family of test statistics and provide the key step in a optimality

result for adaptive tests (Bickel and Ritov, 1992).
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1 Introduction and statement of the main

result

Let h(· , · ) be a kernel such that h(x, y) = h(y, x) for all x and y. Let

X, X1, . . . , Xn be iid U(0, 1) random variables. We assume that the

kernel satisfies the following conditions

Eh(· , X) = 0, ‖h‖∞ = b,

for some b < ∞, where ‖h‖∞ =
∑

x,y |h(x, y)|. We prove here an

exponential bound on the deviations of the U-statistics

Un = n−1
n∑

i=2

i−1∑

j=1

h(Xi, Xj).

It is well known (cf. Serfling (1980)) that the asymptotic distribu-

tion of Un is the same as the distribution of
∑∞

m=1 γm(Z2
m − 1) where

Z1, Z2, . . . are iid standard normal random variables and γ1, γ2, . . . , are

the eigenvalues (including multiplicities) of h considered as an operator

L2[0, 1] → L2[0, 1] given by hf(·) =
∫ 1

0
h(· , x)f(x) dx. In particular,

if γm = k−1/2, m = 1, 2, . . . , k and 0 otherwise, we obtain that the

asymptotic distribution is, up to scale and location, χ2
k. One could

like to have a bound on the tail probabilities of Un which is of the

same order as the tail probabilities of the asymptotic distribution. In

particular, one would like − log P(Un > y) to be quadratic for y ≤
√

k

and linear for larger deviations. We will establish such bounds (Corol-
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lary 1) under a condition on the relative magnitude of h in two norms.

Let ‖g‖∗ = esssupx(
∫ 1

0
g2(x, y) dy)1/2. Since h(· , · ) is bounded and

symmetric it has a spectral decomposition,

h(x, y) = ‖h‖∗
∞∑

i=1

νmφm(x)φm(y),

where φm, νm, m = 1, 2, . . . are all real. Since
∫ 1

0
φi(x)φj(x) dx = δij ,

we obtain that
∑∞

i=1 ν2
m = ‖h‖2

2
/‖h‖2∗ ≤ 1. Let ρ(h) = maxm |νm|.

Theorem 1.1 Define αε by αε exp(αε) = 3ε. For any y, β, and dn

such that y > 0, ρ−1 ≥ β > 0, and αε
√

n(e−βρ‖h‖∞/‖h‖∗ + β)−1 >

dn > 0. Then

P


 1

n

n∑

i=2

i−1∑

j=1

h(Xi, Xj) > y




≤ exp

{
−βe−βρ

‖h‖∗ y +
1
2
β2 +

1
2
C1ne−1/4(1−ε)d2

n +
1

n1/2

(
β2(1 + βe)

2n1/2
+ dnβ

)3
}

+ 3n exp
{
−1

4
(1− ε)d2

n

}
,

where C1 = βe−βρ‖h‖∞/‖h‖∗ + β2.

The next corollary gives a more useful result.

Corollary 1.1 Suppose that ‖h‖∞/‖h‖∗ < n1/2−η for 0 < η < 1/14

then for every ξ > 0, c > 2(e/2)3, and ζ > 1 there is n0, n0 depends

only on η, ξ, c, and ζ:

P(Un > y)
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≤





ζ exp
{
− e−2y2

2(1+cξ7)‖h‖2∗

}
+ an

e−1y
(1+cξ7)‖h‖∗ ≤ ρ−1(h)

∧
ξn2/7

ζ exp
{
− e−1y

2‖h‖∗

(
1

ρ(h)

∧
n2/7

)}
+ an otherwise

.

for every y and n > n0 where an = 3n exp{− 1
4 (1− ε)n2η}.

Proof Take dn = nη,

β = min{ρ−1,
e−1y

(1 + cξ7)‖h‖∗ , ξn2/7}.

and note that for β < ξn2/7

1
n1/2

(
β2(1 + βe)

2n1/2
+ dnβ

)3

≤ β2

(
e

2
ξ7/3 +

ξ4/3

n2/7
+

ξ1/3

n1/14−η

)3

≤ 1
2cξ

7β2, n > n0

for n0 large enough.

2

A weaker bound for weaker conditions is given by the next corollary.

Corollary 1.2 Suppose that for some η > 0: y/‖h‖∗ ≤ ηn1/6/ log(n),

y/‖h‖∗ ≤ 1/ρ(h), and ‖h‖∞/‖h‖∗ < η
√

n/ log(n). Then for all γ > 0

there are n0, and ξ which are functions of η and γ only such that for

all n > n0

P (Un > y) ≤ (1 + ξ) exp
{
−λ (y/‖h‖∗)2

}
+ ξn−γ .
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Proof Take again dn = c1 log(n) and β = y/‖h‖∗.

2

Many empirical process type of results for the U -statistics appeared

recently beginning with Nolan and Pollard (1987, 1988). De La Pena

(1992) proved an important decoupling and Khintchines inequality. A

large deviation principle for U-statistics was proved by Eichelsbacher

and Löwe (1993). Our result appears to give a different information.

The proof of the theorem is given in the next section. The appli-

cation to testing is given in the third section.

2 Proof of Theorem 1

Let F i = σ(X1, X2, . . . , Xi) and W̃ =
∑i−1

j=1 h(Xi, Xj), i = 1, . . . , n.

Note that E(W̃i | F i−1) = 0 and hence Ui =
∑i

j=2 W̃i is a martingale

with respect to the filtration {F i}. The W̃i’s themselves, being a

sum of bounded iid random variables can easily be bounded. So, it

is possible to use methods useful for bounding the sum of martingale

differences sequences. We give its proof since the main result uses an

extension of the same idea.

Lemma 2.1
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i. For any random variable X such that P(|X|) > b) = 0,

E eX ≤ exp
{

E X +
1
2

Var(X) +
1
6

Var(X)eb

}
.

ii. Let Y1, Y2, . . . , Yn be a martingale difference sequence and let F i be

the minimal σ-field such that Y1, Y2, . . . , Yi are measurable F i.

Assume that Var(Yi | F i−1) = vi ( vi non-random), P(|YI | ≤

b | F i−1 = 1 for all i = 1, 2, . . . , n, and n−1
∑n

i=1 vi ≤ v. Then,

for all 0 < ε < 1,

P

(
n∑

i=1

Yi ≥ y

)
≤





exp
{
−(1− ε) y2

2nv

}
y ∈ [0, αεnv

b ]

exp
{−αε

b

(
y − (1 + ε)αεnv

2b

)}
y ∈ [αεnv

b , nb]

0 y ∈ [nb,∞)

Proof Let Ψi(·) be the log of the moment generating function of the

conditional distribution (given F i) of Yi. Then, for all t > 0,

Ψi(t) = E(Yi | F i−1) + 1
2 Var(Yi | F i−1)t2 +

1
6
Ψ(3)(λtt)t3 (2.1)

for some 0 ≤ λt ≤ 1. But, since E eλttYi ≥ 1,

|Ψ(3)(λt)| ≤ E(Y 3
i eλtYi | F i−1)

E(eλtYi | F i−1)
(2.2)

≤ etb E(|Yi|3 | F i−1)

≤ bvie
tb.
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Conditioning on F i−1 clearly plays no role here so combining (2.1) and

(2.2) we obtain part i). To prove part ii) note that we have,

Ψi(t) ≤ Ψ̄i(t) ≡ 1
2
vit

2 +
1
6
bvie

tb.

Hence, for any t > 0,

P

(
n∑

i=1

Yi > y

)
≤ e−ty E

(
et

∑n

i=1
Yi

)

= e−ty E
(
et

∑n−1

i=1
Yi E

(
etYn | Fn−1

))

≤ e−ty+Ψ̄n(t) E
(
et

∑n−1

i=1
Yi

)
.

Continue by induction to obtain.

P

(
n∑

i=1

Yi > y

)
≤ e−tye

∑n

i=1
Ψi(t)

≤ e−ty+mvt2/2+mbvebtt3/6.

Now, if 0 ≤ y ≤ αεnv/b take t = y/(nv) and note

y3b

6n2r2
eby/nv ≤ y2

6nv
αεe

αε

=
εY 2

2nv
.

Therefore, in this range,

log P

(
n∑

i=1

Yi ≥ y

)
≤ − y2

2nv
+

y3b

6n2v2
eyb/nv

≤ −1
2
(1− ε)

y2

nv
.

To obtain the result for the range αεnv/b < y ≤ nb take t = αε/b.

2
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The proof of the theorem also uses the fact that W̃1, W̃2, . . . , W̃n

is a martingale difference sequence. There are, however, two main

differences between the two proofs. The first is that W̃i is trivially

bounded only by O (i) which is too large be useful. But given Xi,

W̃i itself is a sum of i − 1 iid random variables and hence is actually

of order
√

i. We will use lemma 2.1 to claim that with high enough

probability W̃i = O
(√

i
)

uniformly in i. Secondly, the proof of the

lemma was quite simple since the conditional variance of Yi is non-

stochastic. This is not true for the W̃i sequence:

Var(W̃i | F i−1) = Var




i−1∑

j=1

h(Xi, Xj) | F i−1




=
i−1∑

j=1

i−1∑

k=1

∫ 1

0

h(x,Xj)h(x,Xk) dx,

which is itself a U-statistic. This means that, in the proof, after taking

care of the i-th term, we have to consider the characteristic function of

a new U- statistic defined similarly but with a different kernel which

is a function of X1, X2, . . . , Xi−1 only. Here is the formal proof.

Proof of Theorem 1.1 Consider the analogue to step (2.1) of Lemma

2.1. By (2.2)

E
(

e
t
∑n−1

j=1
h(Xn,Xj) | Fn−1

)

≤ exp





1
2
t2

n−1∑

j=1

n−1∑

k=1

∫ 1

0

h(x,Xj)h(x,Xk) dx + an



 ,
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where an is some bound derived from the bound on the sum. Hence

E
(

e
t
∑n

i=2

∑i−1

j=1
h(Xi,Xj)

)

≤ E
(

e
t
∑n−1

i=2

∑n−1

j=1

(
h(Xi,Xj)+

∫
h(x,Xi)h(x,Xj) dx

)
+ t2

2

∑n−1

i=1
h2(x,Xi) dx+an

)
.

The first step in the proof is to define these new kernels that ap-

pear in the induction step and establish some of their properties. Let

g0(x, y) = βe−βρ(n‖h‖∗)−1h(x, y) for some 0 < β ≤ ρ−1 be a nor-

malized version of the original kernel. Let f0(· ) = 0 and define the

functions ḡi(· , · ), gi(· , · ), and fi(· ), i = 1, 2, . . . , n, recursively as fol-

lows.

ḡi(x, y) ≡ E (gi(x,X)gi(y, X)) ,

gi+1(· , · ) ≡ gi(· , · ) + ḡi(· , · )

fi+1(·) ≡ fi(·) + E(gi(· , X)fi(X)) + 1
2 E(g2

i (· , X)). (2.3)

Note that for all i = 0, 1, . . . , n, gi(· , · ) is a symmetric kernel and

E gi(X, ·) = 0. (2.4)

We are now going to bound these functions. Let t = βe−βρ/n. Since

ḡ0(x, y) = t2
∫ 1

0

( ∞∑
m=1

νmφm(x)φm(t)

) ( ∞∑
m=1

νmφm(y)φm(t)

)
dt

= t2
∞∑

m=1

ν2
mφm(x)φm(y),

we obtain that g1(x, y) =
∑∞

m=1(tνm + t2ν2
m)φm(x)φm(y). A recursive
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argument yields

gi(x, y) =
∞∑

m=1

νi,mφm(x)φm(y), i = 0, 1, . . . , n,

where ν0,m = βe−βρn−1νm, m = 1, 2, . . . and

νi+1,m = νi,m + ν2
i,m, i = 0, 1, . . . , n− 1, m = 1, 2, . . . .

We prove now that

|νi,m| ≤ |ν0,m|eβρi/n, i = 0, 1, . . . , n, m = 1, 2, . . . . (2.5)

That (2.5) holds for i = 0 is trivial. We proceed to show, by induction,

that it holds for 1 ≤ i ≤ n. Suppose that (2.5) holds for some i,

0 ≤ i < n, then for any m

|νi+1,m| ≤ |νi,m|+ ν2
i,m

≤ |ν0,m|eβρi/n(1 + |ν0,m|eβρ).

But,

|ν0,m| = t|νm| ≤ βe−βρn−1ρ. (2.6)

Hence

|νi+1,m| ≤ |ν0,m|eβρi/n(1 + βρi/n)

≤ |ν0,m|eβρ(i+1)/n.

Equation (2.5) follows. Now, (2.5) implies that

‖gi‖2∗ = sup
x

∫ 1

0

g2
i (x, y) dy
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= sup
x

∞∑
m=1

ν2
i,mφ2

i (x)

≤ e2βρi/n sup
x

∞∑
m=1

ν2
0,mφ2

m(x)

= e2βρi/n‖g0‖∗,

or,

‖gi‖∗ ≤ β

n
e−βρ(n−i)/n, i = 0, 1, . . . , n− 1. (2.7)

Moreover,

‖gi+1‖∞ ≤ ‖gi‖∞ + ‖ḡi‖∞

≤ ‖gi‖∞ + ‖gi‖2∗

≤ ‖g0‖∞ +
β2

n2

i−1∑

j=0

e−2βρ(n−i)/n.

Hence

‖gi‖∞ ≤ βe−βρ‖h‖∞
n‖h‖∗ +

β2e−2βρ(e2βρi/n − 1
n2(e2βρ/n − 1)

(2.8)

≤ βe−βρ‖h‖∞
n‖h‖∗ +

β2

n
, i = 0, 1, . . . , n− 1.

It follows from (2.3) that E fi(X) is an increasing sequence and

E(fi−1(X)) ≤ E(fi(X)) + 1
2‖gi‖∗,

and hence |E(fi−1(X))| ≤ |E(fi(X))| + 1
2‖gi‖∗. An argument similar

to (2.8) yields

|E(f(Xi))| ≤ β2

2n
. (2.9)
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Next we bound the L2 norm of fi. For that write fi =
∑∞

m=1 ζi,mφm

and
∫ 1

0
g2

i (x, y) dy =
∑∞

m=1 ωmφm(x). Note that

( ∞∑
m=1

ω2
m

) 1
2

≤ ‖gi‖2∗ (2.10)

Now, multiply both sides of (2.3) by φm and integrate to obtain

ζi+1,m = ζi,m + νi,mζi,m + 1
2ωm, i = 0, 1, . . . , n− 1, m = 1, 2, . . . ,

so

|ζi+1,m| ≤ (1 + |νm,i|)|ζi,m|+ 1
2 |ωm|. (2.11)

It follows from (2.5), (2.6), (2.7), (2.10), and (2.11) that

‖fi+1‖2 ≤
(

1 +
βρ

n

)
‖fi‖2 +

β2

2n2

≤ β2

2n2

i−1∑

j=0

(
1 +

βρ

n

)j

≤ β2(eβρi/n − 1)
2nβρ

.

Finally bound ‖fi‖∞ . We use the above bound on the L2 norm together

with (2.7) to obtain:

‖fi+1‖∞ ≤ ‖fi‖∞ + 1
2‖fi‖2‖gi‖∗ + ‖gi‖2∗ (2.12)

≤ ‖fi‖∞ +
β2(eβρ − 1)

2nβρ

β

n
e−βρ(n−i)/n +

β2

2n2
e−2βρ(n−i)/n

≤ β3(eβρi/n − 1)
2n2(eβρ/n − 1)

+
β2e−2βρ(e2βρi/n − 1)

2n2(e2βρ/n − 1)

≤ β2(1 + βeβρ)

2n
.
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Let Wi =
∑i−1

j=1 gn−i(Xi, Xj), i = 1, . . . , n. These random variables

are the “modified” U-statistics which were mentioned in the introduc-

tion to the main body of the proof. We give a uniform bound on their

values. We obtain from Lemma 2.1, (2.4), (2.7), and (2.8) that

P(|Wi| > dnβ/
√

n) ≤ 2e
1
2 (1−ε)d2

n . (2.13)

It follows from Markov’s inequality that

P
{

P(|Wi| > dnβ/
√

n | F i−1) ≤ 2e−
1
4 (1−ε)d2

n

}
≤ e−

1
4 (1−ε)d2

n . (2.14)

Define now

W̃i =





Wi

|Wi| ≤ dnβ/
√

n, and

P(|Wi| ≥ dnβ/
√

n | F i−1) > exp{− 1
4 (1− ε)d2

n}

0 otherwise

.

Let Ai be the indicator of the event {W̃j = Wj : j ≤ i}. We obtain

from (2.13) and (2.14) that

P




n∑

i=2

Ai

i−1∑

j=1

h(Xi, Xj) 6=
n∑

i=2

i−1∑

j=1

h(Xi, Xj)


 ≤ 3ne−

1
4 (1−ε)d2

n .(2.15)

Now, since by (2.4) and (2.7) E(Wi) = 0 and |Wi| ≤ i‖gi‖∞ ≤ iC1/n,

we obtain that

|E(W̃i | F i−1)| ≤ C1in
−1 exp{− 1

4 (1− ε)d2
n}, (2.16)

and by (2.12) and (2.15)

E(|fn−i(Xi) + W̃i|3efn−i(Xi)+W̃i | F i−1)

E(efn−i(Xi)+W̃i | F i−1)
≤

(
β2(1 + βe)

2n
+

dnβ√
n

)3

.
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Since Ai−1 = 0 implies that Ai = 0,

Var(Ai(fn−i(Xi) + W 2
i ) | F i−1) (2.17)

≤ Ai−1 E
(
(fn−i(Xi) + Wi)2 | F i−1

)

= Ai−1

(
‖fn−i‖22 + 2

i−1∑

j=1

∫ 1

0

fn−i(x)gn−i(x,Xj) dx

+ 2
i−1∑

j=2

j−1∑

k=1

ḡi(Xj , Xk) dx +
i−1∑

j=1

∫ 1

0

g2
i (Xj , x) dx

)
.

We obtain from 2.1, (2.9), (2.12), and (2.16)–(2.17) that

E
(
eAifn−i(Xi)+W̃i | F i−1

)

≤ exp

{
β2

2n
+

C1ie
− 1

4 (1−ε)d2
n

n
+

1
6

(
β2(1 + βe)

2n
+

dnβ√
n

)3

+
1
2
Ai−1


‖fn−i‖2 + 2

i−1∑

j=1

∫ 1

0

fn−i(x)gn−i(x,Xj) dx

+ 2
i−1∑

j=2

j−1∑

k=1

ḡi(Xj , Xk) dx +
i−1∑

j=1

∫ 1

0

g2
i (Xj , x) dx




}
.

Recall that A1 ≥ A2 ≥ · · · ≥ An. We obtain

E


exp





i∑

j=2

Aj

(
fn−i(Xj) +

j−1∑

k=1

gn−i(Xj , Xk)

)

 | F i−1


(2.18)

≤ exp
{

β2

2n

C1ie
− 1

4 (1−ε)d2
n

n
+

(
β2(1 + βe)

2n
+

dnβ√
n

)3

+
i−1∑

j=2

Aj

(
fn−i+1(Xj) +

j−1∑

k=1

gn−i+1(Xj , Xk)

)}

Use (2.18) beginning with i = n and go back to obtain that

E


exp





n∑

i=2

Ai

i−1∑

j=1

g0(Xi, Xj)








≤ exp

{
1
2β

2 + 1
2C1(n− 1)e− 1

4 (1−ε)d2
n +

1
6
n−

1
2

(
β2(1 + βe)

2
√

n
+ dnβ

)3
}

.
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Recall that g0 = βe−βρ‖h‖−1
∗ h and use Markov’s inequality to obtain

that

P


n−1

n∑

i=2

Ai

i∑

j=1

h(Xi, Xj) > y


 (2.19)

≤ exp

{
−βe−βρ

‖h‖∗ y + 1
2β

2 + 1
2C1(n− 1)e− 1

4 (1−ε)d2
n + n−

1
2

(
β2(1 + βe)

2
√

n
+ dnβ

)3
}

The theorem follows from (2.15) and (2.19).

2

3 Application for testing.

We apply the main result, Theorem 1.1 to a family of test statistics

that are useful for testing goodness of fit to the uniform distribution.

We descrie this application in detail in Bickel and Ritov (1992).

Let hω(· , · ), ω ∈ Ω be a family of kernels satisfying the following

assumptions:

(K1) hω(x, y) ≡ hω(y, x) and
∫ 1

0
hω(· , y) dy = 0.

(K2) ‖hω‖∞ = O (w), ‖hω‖∗ = Ω(
√

w), and ρ(hω) = O (
√

w). where

an = Ω(bn) denotes that an = O (bn) and bn = O (an).

(K3) Ω = {1, 2, . . .} or Ω = [ω0,∞). In the latter case, ‖ω−1
1 hω1 −

ω−1
2 hω2‖∞ ≤ c1|ω1 − ω2|/ω1, ‖ω−1

1 hω1 − ω−1
2 hω2‖∗ ≤ c2|ω1 −

ω2|/ω
3/2
1 , ‖ω−1

1 hω1−ω−1
2 hω2‖∗ ≥ c3|ω1−ω2|/ω

3/2
1 , and ρ(ω−1

1 hω1−
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ω−1
2 hω2) ≤ c4|ω1 − ω2|/ω2

1 , for all ω2 > ω1 > ω0 and ω2 − ω1 < 1

and some positive constants c1, . . . c4.

We consider the following family of statistics:

Tω =
1
n

n∑

i=2

i−1∑

j=1

hω(Xi, Xj), ω ∈ Ω.

(Tω depends, of course, explicitly on n.)

Such a class of test statistics can be derived using a maximum like-

lihood idea. We can consider F the family of all continues alternatives

to the uniform distribution as a parametric sieve of submodels. That

is, F0 ⊂ F1 ⊂ · · · ⊂ F where F0 is the uniform distribution and Fj are

regular j dimensional parametric sub-models and
⋃

j Fj = F and the

closure is take in (say) the Hellinger metric. We can parameterize each

Fj by ϑ[j] ≡ (ϑ1, . . . ϑj) such that if the densities corresponding to Fj

are {f(· , ϑ[j] : ϑ[j] ∈ Rj} and

lj(X) ≡ ∂

∂ϑj
log f(X,ϑ[j])|ϑ[j]=0

then {1, l1, l2, . . . , } is an orthonormal basis to L2[0, 1]. Let

Tjn =
j∑

m=1

(
n−1/2

n∑

i=1

lm(Xi)

)2

− j.

Then the tests which reject for large values of Tjn are asymptotically

maxmin for testing F0 vs. {F : F ∈ Fj ,H(F, F0) ≤ c} where H is the

Hellinger distance. Tjn is the Neyman smooth test for this problem,

Neyman (1942). The χ2 family of tests is an important example.
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Mann and Wald (1942) argued for using the standard χ2 statistics

with kn = Ω(n1/5) but this prescription seems unsatisfactory — see

Kallenberg, Oosterhoff, and Schriever (1985). Rayner and Best(1989)

considered this type of tests, and propose to reject when Tjn ≥ ajn

for some j and suitable selected sequences ajn ↗∞. Bickel and Ritov

(1992) considered this family further and proved that it has a weak

kind of efficiency. If lj are uniformly bounded then these statistics

satisfy conditions (K1)–(K3) with hj(x, y) ≡ ∑j
m=1 lm(x)lm(y). In

particular, ‖hj‖∞ ≥ ∑j
m=1 ‖lm‖2∞ , ‖hj‖2∗ = supx

∑j
m=1 l2m(x), and

ρ(hj) = ‖hj‖−1
∗ .

We also consider a more general class of test statistics. Let f̃ =

n−1
∑

i Kω(x,Xi) be an estimator of the density. The kernel Kω sat-

isfies, naturally,
∫ 1

0
K(x, · ) dx ≡ ∫ 1

0
K(· , y) dy ≡ 1. Then a possible

χ2-type statistic for testing uniformity is
∫

(f̃(x) − 1)2 dx, which is

equivalent to Tω with

hω(x, y) ≡
∫ 1

0

Kω(z, x)Kω(z, y) dz − 1.

Note that the standard χ2 statistic which is based on dividing the

interval [0, 1] into k subintervals of equal length has this structure with

ω = k and hω(x, y) = ω1I([x/ω] = [y/ω])− 1, where 1I is the indicator

function and [x] denotes the larger integer not greater than x. In other

cases, Kω ∼ ωK(ω(y − x)) (with some modification to take the finite

support into account) For example we can take to modify the family

17



described above by

Kω(x, y) = ω (f(w(x− y)) + f(w(x + y)) + f(w(2− x− y))) ,

where f is a probability density function with finite support and sym-

metric about 0. Conditions (K1)– (K3) are natural in this situation.

Proposition 1 below is useful for verifying condition(K2). A similar

results holds for condition (K3).

Proposition 3.1 Suppose

ωK(ω(x− y)) ≤ Kω(x, y) ≤ ωK̄(w(x− y))

for x, y ∈ (0, 1), and some positive bounded functions K, K̄. Then hω

satisfies (K2).

Proof First note that ωK∗2(ω(x− y))− 1 ≤ hω(x, y) ≤ ωK̄∗2(ω(x−

y))−1, where K∗2 is the convolution of K with itself. Hence ‖hω‖∞ =

O(ω) and ‖hω‖∗ = Ω(
√

ω). Next, fix x0 ∈ (0, 1) and let aω =

ω2
∫ 1

0
(K∗2(ω(x0 − y)) dy = ω(ω). Finally, let {(νωm, φωm), m =

1, 2, . . . be the orthonormal eigen system of ‖h‖−1
∗ hω. Extend φm to

the all real line to be 0 outside [0, 1]. Then

νm = ‖hω‖−1
∗

∫ 1

0

∫ 1

0

hω(x, y)φm(x)φm(y) dx dy

≤ ‖hω‖−1
∗

∫ 1

−1

∫ 1

0

|hω(x, x + t)| |φm(x)| |φm(x + t)| dx dt

≤ ‖hω‖−1
∗

∫ 1

−1

sup
x

hω(x, x + t) dt

18



≤ ‖hω‖−1
∗

∫ 1

0

(ωK̄(ωt) + 1) dt

= O
(
ω−1/2

)
.

2

The following theorem establishes the uniformity behavior under

H0 which is needed for the optimality result in Bickel and Ritov (1992).

Theorem 3.1 Suppose that hω satisfies conditions (K1)–(K3) and

X1, X2, . . . , Xn are uniform. Then for any η ∈ (0, 1):

lim
M→∞

limn→∞ P

(
sup

ω0<ω<n1−η

Tω√
ω log ω

> M

)
= 0.

Proof We begin with ω = {1, 2, . . .}. Fix any M > 0. It follows from

(K1)–(K3) that the condition of Corollary 1.1 are satisfied and hence

P
(

max
ω<n1−η

Tω√
ω log ω

> M

)
≤

[n1−η]∑
ω=1

P(|Tω| > M(ω log ω)1/2)

≤
[n1−η]∑
ω=1

(
a1e

−a2M2 log ω + a3ne−a4nη
)

→ 0,

as n,M →∞, where a1, . . . a4 are some positive finite constants. The

theorem follows. Consider now the case of Ω an interval. Use the
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previous argument to bound

max
ω=1,2,...,ω<

c1n

log n

Tω

(w log(w))1/2
.

Now

P
(

max
ω∈(k,k+1)

Tω

(ω log ω)1/2
> M

)
≤ P

(
max

ω∈(k,k+1)
ω−1Tω > M

√
log k

k

)

Consider now maxk maxt∈(0,1) |(k+t)−1Tk+t−k−1Tk|. For any ω1, ω2 ∈

(k, k +1), |ω2−ω1| = 4−m, we obtain from corollary 1.1 and condition

(K3) that

P

(
|ω−1

2 Tω2 − ω−1
1 Tω2 | > M2−m

√
log k

k

)
≤ e−a5M2mk

√
log k.(3.1)

Use now (3.1) and a chaining argument to verify that :

P
(

max
ω

Tω

(ω log ω)1/2
> 2M

)

≤ P
(

max
k

Tk

(k log k)1/2
> M

)

+
∑

k

∑
m

4m max
ω∈[k,k+1)

P

(∣∣∣∣
Tω+4−m

ω + 4−m
− Tω

ω

∣∣∣∣ > M2−m

√
log k

k

)

→ 0

as M →∞.

2
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