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And through the palpable obscure find out / His uncouth way.
J. Milton, Paradise Lost.

Jiang, Lugosi and Vayatis, and Zhang in part explicitly and in part
implicitly, have done a great deal in explaining the nature of boosting from
a statistical point of view.

The problem all consider is that of finding classifiers that approximate
the Bayes classifier using only a training sample (Xi, Yi), i = 1, . . . , n,
(Xi, Yi) ∼ (X,Y ), with Y = ±1 (for simplicity). The Bayes classifier is
described as sgn (Fp(X)), where Fp(X) = q ◦ log

(
p[Y = 1

∣∣ X]/P [Y =
−1

∣∣ X]
)
, for any strictly increasing function q with q(0) = 0.

The methods of approximation discussed by these and previous authors
cited in their papers have the common setting that the approximating values
are sgn (F̂ (X)), where F̂ ∈ F̃ ≡ ⋃∞

k=1Fk, Fk =
{∑k

j=1 λjhj : h1, . . . , hk ∈
H, λ1, . . . , λk ∈ R

}
and H is a set of base classifiers, h : X → {−1, 1}.

All methods are based on the following two observations:

(i) Given W convex, W = R → R+, then, at least formally, if F̃ is rich
enough and P denotes expectation, then Fp = arg minPW

(
Y F (X)

)
as above. The validity of this identity is studied extensively by Zhang
who relates it to minimizing the Bregman divergence between F and
Fp. The function W (t) = et correspond to classical ADAboost, while
W (t) = −2t + t2 is “L2 boosting”, See Bühlmann and Yu (2001),
Friedman et al. (2000).

(ii) One “optimizes” PnW
(
Y F (X)

)
over F̃ where Pn is the empirical dis-

tribution of (Xi, Yi), i = 1, . . . , n in the same way to obtain F̂ . The
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classical prescription of Breiman (2000) is to optimize greedily start-
ing at F0 ≡ 1 using the Gauss-Southwell approach moving from Fm to
Fm+1 on the mth step.

Unfortunately, as is made fairly explicit in these papers, unless P is
discrete, infF∈F̃ PnW (Y F (X)) =0, and optimizing to the bitter end
leads to overfitting.

Jiang shows for classical ADAboost that that, under some conditions,
given convergence of the population algorithm, it is possible to stop the sam-
ple algorithm early and achieve consistency, i.e., convergence to the Bayes
classifier. Lugosi and Vayatis and Zhang separately show that by regulariz-
ing, effectively changing what is being optimized, convergence to the Bayes
classifier is possible quite generally and obtain rates for their procedures.
Such approaches via sieves have already been considered by Baraud (2002)
for “L2 boosting”.

We see four distinct questions:

(i) When are greedy algorithms consistent in the population case?

(ii) When does early stopping in the sample case lead to a consistent pro-
cedure?

(iii) How can early stopping be implemented by cross-validation?

(iv) How can one directly modify the greedy algorithm retaining its sim-
ple sequential structure and yet achieve optimal rate upon stopping
suitably?

In our remark we address points (i) and (ii). Point (ii) is treated sep-
arately by Bickel and Ritov (2003), Yu and Zhang (2003) and Bühlmann
(2002) and (iv) is in progress.

1 Weak consistency

Here is a very general framework.
Let Θ1 ⊂ Θ2 ⊂ . . . be a sequence of sets contained in a separable metric

space with metric ρ, Θ = ∪Θm where denotes closure. Let K be a target
function, and ϑ∞ = arg minΘ K(ϑ). Let Πm : Θm+1 → Θm. Finally, let Kn

be a sample based approximation of K. We assume:

A1: For any m,ϑ0 : M , Θm ∩{ϑ : ρ(ϑ, ϑ0) < M} is compact. Let K : Θ →
R and assume that ϑ∞ = arg minϑ∈Θ K(ϑ) is unique.

2



A2: K is strictly convex and K(ϑ) ≤ K(ϑ′) ⇒ ρ(ϑ, ϑ∞) ≤ Aρ(ϑ′, ϑ∞) for
some A < ∞.

A3: If ρ(ϑm, ϑ0) →∞ for some, and hence all ϑ0, then K(ϑm) →∞.

Let Πm : Θm → 2Θm+1 be a sequence of point to set ρ-continuous map-
pings, where distance between sets is defined as ρ(A, B) is the Hausdorff
distance between the closures of A and B, and define the following algo-
rithm generating a sequence ϑ̄m ∈ Θm, m = 1, 2, . . . given an initial point
ϑ0:

(i) ϑ̄m+1 ∈ Πm(ϑ̄m).

(ii) K(ϑ̄m+1) = infϑ∈Πm(ϑ̄m) K(ϑ).

Suppose:

A4: if {ϑm} is defined as above with any initial ϑ0, then ρ(ϑm, ϑ∞) → 0.

In boosting, given P , Θ = {F (X), F ∈ F̃}, ρ is a metric of convergence
in probability, Θm = {∑m

j=1 λjhj , hj ∈ H} and Πm(F ) = {F + λh, λ ∈
R, h ∈ H}. Moreover, K(F ) = EW (Y F (X)).

Now suppose Kn(·) is a sequence of random functions on Θ such that,

A5: Kn is convex and sup{|Kn(ϑ)−K(ϑ)| : ϑ ∈ Θm, ρ(ϑ, ϑm) < M} p−→ 0
for all finite m, M , ϑ0.

In boosting, Kn(F ) = n−1
∑n

i=1 W (YiF (Xi)) and A5 corresponds to
requiring that {W (Y F (X)) : F ∈ Θm, ρ(F, F0) ≤ M} is uniformity class
for LLN for P , for instance, a VC class. Bühlmann (2003), Zhang and
Yu (2003) and Bickel and Ritov (2003) discuss such conditions in different
degrees of generality.

The sequence {ϑ̄m} is the golden chain we try to follow using the obscure
information in the sample. Define ϑ̂m,n by:

(i) ϑ̂m+1,n ∈ Πm(ϑ̂m,n).

(ii) If ϑ′ ∈ Πm(ϑ̂m,n), then Kn(ϑ̂m+1,n) ≤ Kn(ϑ′) and, in case of equal-
ity, also ρ∗(ϑm+1,n, ϑ0) ≤ ρ∗(ϑ′, ϑ0) for some metric ρ∗ such that
ρ(ϑm, ϑ0) →∞ ⇒ ρ∗(ϑm, ϑ0) →∞.

The purpose of introducing ρ∗ is to avoid an unnecessarily large norm of the
estimate. In boosting ρ∗ can be any metric like the L2(µ) metric where µ
has fatter tails than P .
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Theorem 1.1 Under A1–A5 there exists a sequence {mn} such that
ρ(ϑmm,n, ϑ∞)

p−→ 0.

Proof. Consider ϑ̂1,n. By definition

Kn(ϑ̂1,n) ≤ min
{
Kn(ϑ0),Kn(ϑ̄1)

}
. (1)

However, for large enough M , we get from A3 that infϑ∈Θ1,ρ(ϑ,ϑ0)=M K(ϑ) >
K(ϑ0). By A5 we obtain that also

P
(

inf
ϑ∈Θ1

ρ(ϑ,ϑ0)=M

Kn(ϑ) > K(ϑ0)
)
→ 1. (2)

Convexity of Kn, (1) and (2) imply that ρ(ϑ̂1,n) is bounded. But then strict
convexity of K and uniform convergence imply that

ρ(ϑ̂1,n, ϑ̄1)
p−→ 0. (3)

We continue now to ϑ̂2,n. Since K is continuous, (3) implies that
infϑ∈Π1(ϑ̂1) K(ϑ)

p−→ K(ϑ̄2). Applying the same argument as for ϑ̂1,n, we get

ρ(ϑ̂2,n, ϑ̄2) is bounded, and since K is continuous and strictly convex, we get
again that ρ(ϑ̂2,n, ϑ̂2)

p−→ 0. By induction, we obtain that ρ(ϑ̂m,n, ϑ̄m)
p−→ 0

for every m.
Let mn = sup{m : P

(
ρ(ϑ̂m,n, ϑ̄m) < m−1

)
< m−1}. Then mn →∞ and

ρ(ϑ̂mn,n, ϑ̄mn)
p−→ 0. Apply A4 to conclude the proof.

¤
Results based on this theorem cannot give an estimate of the speed

of convergence of ϑ̂mn,n to ϑ ∞, since the {mn} are not known. As we
have mentioned, regularization can yield such rates but in all cases we are
left with a sequence {ϑ̂1,n, ϑ̂2,n, . . . } of procedures for which we need to
select a stopping time τ on the basis of the data such that ϑ̂τ,n behaves
well. A natural comparison is to the oracle stopping time W such that
EK(ϑ̂W,n) = minm EK(ϑ̂m,n). In the next section we give a general result
guaranteeing that K(ϑ̂τ,n) ≈ EK(ϑ̂W,n) in the context of classification. We
shall show how this result may be applied to the regularized variants of
boosting elsewhere.

2 The beauty of the test-bed

The boosting algorithm can be stopped appropriately if there are available
good data driven bounds on the sample error. However, it is more practical
to use some type of cross-validation. Here is a general result.
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Assume that the observations are i.i.d. from Z = (Y, X1, X2, . . . ) =
(Y,X), where Y ∈ {−1, 1}. The task is to find a function ϑ(X), such that
P (Y ϑ(X) > 0) is maximized. The sample is divided into a main sample,
Z1, . . . , Zn, and a test-bed ZT

1 , . . . , ZT
k . The main sample is used to derive

a sequence of classifiers ϑ̂1, ϑ̂2, . . . . The test data is used to pick ϑ̂τ as the
classifier to be used, where

τ = arg min
m<M

k∑

j=1

1(Y T
j ϑ̂m(XT

j ) > 0).

An oracle constrained to use rules of the form sgn (Y T ϑ̂m(XT )) would use

W = arg min
m<M

P
(
Y T ϑ̂m(X) > 0

∣∣ ϑ̂i

)
.

Let ηm = P
(
Y T ϑ̂m(X) > 0

∣∣ ϑ̂m(·)
)
, m = 1, 2, . . . . The following assump-

tion will be used:

S: Similarity of the good classifiers With probability converging to 1,
one of the following holds for every m < K, :

1. (log M)−1
√

k(ηm − ηW ) > bn, for some bn →∞.

2. P
(
ϑ̂m(X)ϑ̂W (X) < 0

∣∣ ϑ̂m(·), ϑ̂W (·)
)

< an, for some
an → 0. Moreover, there is a monotone non-decreasing function
Ψ(·), Ψ(0) = 0 such that

E
(
Y

(
1(ϑ̂W (X) > 0)− 1(ϑ̂m(X) > 0)

) ∣∣ ϑ̂m(·), ϑ̂W (·)
)

≤ Ψ
(E

(
Y

(
1(ϑ̂W (X) > 0)− 1(ϑ̂m(X) > 0)

) ∣∣ ϑ̂m(·), ϑ̂W (·)
)

√
P (ϑ̂m(X)ϑ̂W (X) > 0

∣∣ ϑ̂m(·), ϑ̂W (·))

)

We essentially require that all procedures with close to optimal performance
are similar.

Theorem 2.1 Let Assumption S hold. Then ητ = ηW + op(Ψ(
√

log M/k))

Proof. Let the two sets of indexes postulated in Assumption S be S1 and
S2 respectively. Since the estimates k−1

∑k
j=1 1(Y T

j ϑm(XT
j ) > 0), m =
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1, . . . ,M have a uniform error bound of log(M)/
√

k, we have τ 6∈ S1. Hence,
with probability converging to 1, the test-bed stopping time is minimizing

Um = k−1
k∑

j=1

(
1(Y T

j ϑW (XT
j ) > 0)−1(Y T

j ϑm(XT
j ) > 0)

)
(4)

over m ∈ S2. But the sum in (4) is of {−1, 0, 1} i.i.d. random variables,
which are 0 with high probability. Let pm and qm be the conditional prob-
abilities (conditioned on the main sample) that a given term in the sum is
1 or −1 respectively. Then

EUm = pm − qm

VarUm = (1 + o(1))(pm + qm)/k.

Hence, with probability converging to 1,

ηW − ητ = max
{

pm − qm : m ∈ S2,

√
k

log M

pm − qm√
pm + qm

< 1
}

≤ max
{
Ψ(

pm − qm√
pm + qm

) : m ∈ S2,Ψ(
pm − qm√
pm + qm

) < Ψ
(√ log M

k

)}

≤ Ψ
(√

log M

k

)

¤
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