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Abstract: Let Yi ∼ N(µi, 1), i = 1, ..., n, be independent random variables. We
study the problem of estimating the quantity S =

∑
{i|C<Yi} µi. We emphasize the

case where n is large, the vector (µ1, ..., µn) is sparse, and the value of C is large.
Our approach is nonparametric empirical Bayes, where µi are assumed i.i.d from an
unknown G. The performance of our suggested estimator is studied both theoreti-
cally and through simulations. We also obtain some results related to the local false
discovery rates corresponding to high valued points Yi.
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1 Introduction

A standard semiparametric problem starts with a family P of distributions, a param-
eter ϑ : P → Rd, and a simple random sample Y n = Y1, . . . , Yn from P ∈ P . The
statistical challenge is identifying an estimator ϑ̂(Pn) of ϑ(P ), where Pn is the empiri-
cal distribution of Y n. Many times, ϑ̂(Pn) = ϑ(Pn). Cf. Bickel and Lehmann (1975).
In this paper we consider an estimator of a parameter which is a function of P , but
also of the sample Y n itself, ϑ = ϑ(Pn, P ). In fact, many standard estimators are
‘second order’ statistics, and hence are naturally written in the above form. Thus, the
sample variance is estimating ϑ(Pn, P ) = EP (Y −EPn Y )2. It should be noted that this
expression, although a function of the sample, is not an estimator, since it involves
the unknown underlined distribution P . The sample variance depends both on P and
Pn. However, the dependency on the latter disappears when the asymptotic influence
function is considered, and the estimator of the sample variance is equivalent with
op(n

−1/2) term to ϑ∗(P ) = EP (Y − EP Y )2 which is estimated non-parametrically by
ϑ∗(Pn). However, there are situations where the parameter of interest are bone-fide
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of the type ϑ = ϑ(Pn, P ). Such a parameter was considered in Skinner and Shlomo
(2006) in the context of identification risk in data disclosure where the parameter of
interest is a function of the number of subjects in a given cell both in the population
as well as in sample. Our paper deals with another situation. See below.

Let Y be an observed random variable from a real distribution F = G ∗ N(0, 1)
where G is some an underlined distribution. The deconvolution of F , or the estimate
of G under standard conditions was investigated by many. Cf. Fan (1991). A different
description of the same problem is the following. Suppose (µ1, Y1), . . . , (µn, Yn) are
i.i.d. pairs, with common distribution P given by µi ∼ G and Yi | µi ∼ N(µi, 1).
Assume that only Y1, . . . , Yn are observed. The µis are unobserved, and in fact their
existence in only stipulated by the observers. That is, we observe only Y1, . . . , Yn, an
i.i.d. sample from F as above. One can consider instead of estimating G directly,
estimating the equivalent function EP (µ | Y ). This type of an estimator appears in
many semiparametric mixture model, see Bickel, Klaassen, Ritov, and Wellner (1993),
for example. As a concrete example, this function appears explicitly in the errors in
variables model with normal noise. See Bickel and Ritov (1987).

A similar problem was investigated earlier from an empirical Bayes point of view,
or as a compound decision problem. In this case we observe n independent observa-
tions, Yi ∼ N(µi, 1), i = 1, ..., n. That is, unlike the previous model, the µis are now
the unknown parameters of the problem. The Yis are considered to be exchangeable,
that is, their order doesn’t carry any particular information. The purpose now is to
estimate µ1, . . . , µn with some average loss function. It is known that the solution of
the compound decision problem is asymptotically equivalent to a Bayesian problem
where the µi are i.i.d.. Thus this problem with quadratic loss function is equivalent
to the deconvolution problem mentioned above.

We consider a special variant of this model. We assume that the vector µ =
(µ1, . . . , µn) is sparse, in the sense that most of the µi’s are 0. A few of the Yis
are selected for a further investigation, and they should correspond to those with
relatively large value of µi. Without any auxiliary information, the natural (and in
fact the only conceivable) selection procedure is selecting those items with large value
of Yi. We want to investigate the total amount of signal in the selected lot. Formally,
we study the estimation of

SC =
∑

µi1I(Yi > C), (1.1)

for some given fixed C.
Our estimation problem is a special case of the more general problem of estimating∑n

i=1 U(Xi, θ), for observed Xi, Xi ∼ Fθi
, θi ∈ Θ, where θi is unknown, and a given

function U . Note, this is not a standard estimation problem since the above quantity
is random. See Zhang (2005), for various examples and applications and further
references. See also Robbins and Zhang (1988). Our suggested technique, for the
concrete estimation problem (1), is not studied in the fore mentioned papers, yet, the
Empirical Bayes approach is common to our paper and to those papers.
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We give now some motivation for estimating (1.1). Suppose candidates are selected
according to their achievement value Yi in a screening test. Let S = {i : Yi > C}
the sub-sample of the selected items. They are tested again after treatment to yield
the value Ỹ ∗

i . A naive approach would compare ȲS to Ȳ ∗
S , the mean of those in S

before and after the treatment. However, a standard regression to the mean argument
shows that ȲS is stochastically larger than Ȳ ∗

S . Hence we need a fair estimator of the
before treatment value S. See, the motorist example described in Zhang (2005),
where drivers with especially bad driving record are trained and the effectiveness of
the training should be estimated. An amusing related example, which demonstrates
the consequence of ignoring the regression to the mean effect, is by Herbert Robbins;
it is about a “successful” training of coins, where their ability to land on tail is
“improved”.

More generally, consider now a case where n is large and the vector µ = (µ1, ..., µn)
is sparse. Such a situation occurs when there are many variables involved in a study,
but only a few are expected to be meaningful, i.e., only a few of the coordinates µi

do not equal (nearly) zero. This is the typical situation /in the analysis of fMRI
and gene arrays. Cf. Erickson and Sabatti (2005), and is typical to many data
mining applications. A few hopefully“Meaningful” variables are selected. One may
be interested in S, with the interpretation of the “overall amount of signal” one was
able to capture. Large µis count more than small ones, even if both of them are
different form 0. This question may be more interesting than just how many of µis
are different from 0. A question answered by, for example, the FDR (False Discovery
Rate) methodology, see Benjamini and Hochberg (1995). However, under the sparse
setup that we study, there are simple implications to the Local False Discovery Rate,
denoted fdr, which was suggested by Efron, et al. (2002), see also Storey (2003).
The density estimation technique that we use in Section 2, together with the sparsity
assumptions and Empirical Bayes interpretation, suggest a Bayesian ranking of the
large valued observations/‘discoveries’ through a consistent estimator of the fdr. The
ranking is in terms of the strength of evidence against H i

0 : µi = 0.
In Section 2 we treat the estimation of (1.1). The treatment involves Empirical

Bayes considerations and density estimation. In Section 3 we present some simulation
results. In Section 4 we study the concept of Local False Discovery Rate.

2 Estimation

We take an Empirical Bayes approach where µi are modeled as independent obser-
vations from an unknown distribution G. We emphasize the case where most of the
mass of G is near zero, that is, the vector µ is sparse. This assumption is expressed
through equations (2.10) and (2.11) below. However, we stress that the method we
develop is general, and it covers non-sparse cases.
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Let µi, i = 1, . . . , n, be i.i.d. G, and given them, let Y1, . . . , Yn be independent,
Yi ∼ N(µi, 1). Recall (1.1), SC =

∑n
i=1 µiI(Yi > C). Then:

η ≡ E(SC) =
n∑

i=1

E(µiI(Yi > C))

=
n∑

i=1

E(µi|Yi > C)P (Yi > C)

= np E(µi|Yi > C)

where p = P (Yi > C). By equation (1.2.2) in Brown(1971),

E(µi|Yi = y) = y +
f ′(y)

f(y)
(2.2)

where f(·) is the marginal density of Y , q f(y) =
∫

ϕ(y − µ)dG(µ), where ϕ is
the standard normal probability density function. Note that this equation is valid
only under the assumption of normality. However, the assumption that the Yis are
independent can be relaxed considerably. Hence

E(µi|Yi > C) =

∫ ∞

C

E(µi|Yi = y)
f(y)

p
dy

=

∫ ∞

C

(
y +

f ′(y)

f(y)

)
f(y)

p
dy

=
1

p

∫ ∞

C

yf(y)dy +
1

p

∫ ∞

C

f ′(y)dy

=
1

p

∫ ∞

C

yf(y)dy − 1

p
f(C).

Therefore,

η = npE(µi|Yi > C) = n

(∫ ∞

C

yf(y)dx− f(C)

)
(2.3)

The estimator ŜC for SC , which is suggested in the following, is motivated through
EŜC ≈ η = ESC . It is of the form:

ŜC = n

(
̂∫ ∞

C

yf(y)dx− f̂(C)

)

which will be made explicit in the sequel. Zhang (2005), treats formally the issue of
estimating η versus estimating SC .

First we estimate
∫∞

C
yf(y)dy by the natural estimator, denoted M ,

M =
1

n

∑

{i:Yi>C}
Yi. (2.4)
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It remains to estimate f(C). We describe now one of the many possibilities, a standard
kernel density estimator. Let

f̂h(C) =
1

nh

n∑
i=1

K(
C − Yi

h
), (2.5)

where K = ϕ is a Gaussian kernel.
The choice of the bandwidth h is discussed in the following. The slightly non-

standard part of this discussion of the bandwidth choice, is that we are interested in
estimating the density f(C) for a large C, i.e., deep in the tail. Consider the mean
square error (MSE) of f̂(C):

MSE(f̂h) = Bias(f̂h)
2 + var(f̂h).

Standard calculations in kernel estimation, see, e.g., Silverman (1992), imply that:

Bias(f̂h(C)) w f
′′
(C)h2, (2.6)

while

var(f̂h(C)) w 1

nh
f(C). (2.7)

Here, we use the notation w to imply equality up to a bounded factor for h → 0.
As in the standard case, the optimal bandwidth h approaches 0 as n → ∞. Thus,
again as in the standard development, by equating the squared bias and the variance
we approximate the optimal bandwidth, denoted hopt and its corresponding squared
error risk. The resulting quantities are:

hopt w
[

f(C)

n(f ′′(C))2

] 1
5

, (2.8)

and

E(f̂hopt(C)− f(C))2 w
[

f(C)(f ′′(C))
1
2

n

] 4
5

. (2.9)

2.1 Asymptotics for a sparse vector of means and large C

As explained in the introduction, we are especially interested in the case where C is
large. Hence, in order to apply the above we need to estimate f(C) and f ′′(C)
for large values of C. In the asymptotics that follows, we consider C ≡ Cn =
(2α log(n))1/2 0 < α < 1. For such points f(Cn) and f ′′(Cn), might be of order
n−α. The usual interpretation of (2.8) and (2.9), as having bandwidth h of the order
n−1/5 while the corresponding square error risk of the order n−4/5, is not valid any-
more. Thus, a special attention should be given to the issue of estimation of f(C)
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and f ′′(C), in order to plug into (2.8) and (2.9), for the purpose of getting estimates
for hopt and its corresponding risk. An accuracy of order (say) n−1/2 in estimation
of f(C), could be very misleading, if the order of magnitude of f(C) itself is smaller
than n−1/2.

We will now turn to deal with the setup we have in mind, where the vector µ is
sparse. Our formal asymptotic treatment is in a context of triangular array. That
is, at stage n, the n random variables µ1, ..., µn, are i.i.d from a distribution Gn, Gn

depending on n. Note, when assuming a fixed G, as n →∞, we can not achieve the
sparsity setup we want to study. Under the setup that we have in mind the proportion
of non-zero signals is o(1), as n →∞. We will drop the super-script n; we write the
mixture density, corresponding to Gn, simply as f rather than fn. Similarly we write
C rather than Cn.

The following assumptions, while implying sparsity, are also convenient for our
derivation. Assume:

f(C) < κ1ϕ(C), (2.10)

|f ′′(C)| < κ2|ϕ′′(C)|. (2.11)

The bounds κi i = 1, 2, are uniform in n.

Remark 1

(i) Typically under (2.10) we expect that (2.11) is also satisfied, e.g., if µi < 2C for
all i, then (2.10) implies (2.11).

(ii) Assumption (2.10) holds for points C ≡ Cn is such that meaningful portion of
the detected item correspond to zero signal. Formally, if S = {i : Yi > C},
P (|{i ∈ S, µi > 0}|/|S| < 1− ε) → 1, where ε > 0. This is the more interesting
and challenging case, where it is essential to find a way to ‘screen out’ the zero
signals.

Define now h0(n) by

h0(n) ∼
[

ϕ(C)

n(ϕ′′(C))2

] 1
5

, (2.12)

Denote the kernel estimator induced by the h0(n), by

f̂ ≡ f̂h0(n).

Finally, define our estimator ŜC as:

ŜC = n(M − f̂), (2.13)
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where M is defined in (2.4) .

Theorem 1: Under conditions (2.10) and (2.11),

ŜC = η + Op(n
3
5 [ϕ(C)(|ϕ′′(C)|) 1

2 ]
2
5 ) = η + Op(C[nϕ(C)]

3
5 ) (2.14)

ŜC = SC + Op(C[nϕ(C)]
3
5 ) (2.15)

Proof: The proof of the first equality in (2.14) follows from the above, when observing
that the variance of ŜC is of the order of the variance of f̂(C) (i.e., var(

∑n
i=1 YiI(Yi >

C))/n = O(var(f̂(C))). The second equality in (2.14) follows by replacing |ϕ′′(C)| by
C2ϕ(C).

The proof of (2.15) follows when observing that (SC − η) = Op(C[nϕ(C)]
3
5 ). This

follows since SC is an unbiased estimator for η, with standard deviation Op([nϕ(C)]
1
2 ).

The last order for the standard deviation of SC is obtained as follows. E[µiI(Yi >
C)]2 ≤ P (Yi > C)Eµ2

i = Op(ϕ(C)). Hence var(SC) = OP (nϕ(C)).

The last theorem gives the same approximation for the order of (ŜC − η) and for
that of (ŜC − SC). It seems plausible that the second quantity is typically smaller
than the first one.

Remark 2. In situations where there is a very sparse and weak signal, the estimator
ŜC , might get negative values. The following adjustment of ŜC makes sense in such
a sparse situation. Let

ŜC
+

= max(0, ŜC).

In the simulations of the next section we study the adjusted estimator ŜC
+
.

Remark 3. One may be interested in estimating sum of higher order moments,
e.g.,

n∑
i=1

µ2
i I(Yi > C).

This may be done in a similar fashion, only estimation of further derivatives of f is
needed. It involves derivation which is similar to that of equation (1.2.2) of Brown
(1971).

Recall that f(y) =
∫

ϕ(y− µ)dG(µ). When computing the second derivative of f
through differentiation inside the integral we obtain:

f ′′(y)

f(y)
= −1 + y2 − 2yE(µ|Y = y) + E(µ2|Y = y).
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Recall that E(µ|Y = y) = y + f ′(y)
f(y)

. We obtain that:

∫ ∞

C

E(µ2|Y = y)f(y)dy

=

∫ ∞

C

f ′′(y)dy +

∫ ∞

C

f(y)dy +

∫ ∞

C

y2f(y)dy +

∫ ∞

C

2yf ′(y)dy

= −f ′(C) + (1− F (C)) +

∫ ∞

C

y2f(y)dy − 2[Cf(C) + 1− F (C)]

= −f ′(C)− (1− F (C)) +

∫ ∞

C

y2f(y)dy − 2Cf(C)

It follows that the estimation of
∑

µ2
i I(Yi > C) can be done along the lines of the

estimation of
∑

µiI(Yi > C), involving a further estimation of f ′(C).

3 Simulation

In this section, we present simulation studies for various situation. In addition to
the kernel estimator with bandwidth as in (2.12) of the previous section, we also
consider the bandwidth, h = 0.9An−1/5 where A=min(standard deviation, inter-
quartile range/1.34), as suggested in Silverman(1992). Note, the later bandwidth is
suggested to be used in general, not necessarily in a sparse setup, or under (2.10) and
(2.11). Yet, in our simulations, it gives very similar results to the estimator based on
our suggested bandwidth (2.12).

We consider two more estimators for SC . One is the naive approach of a hard-
threshold estimator, which estimates the mean of observations with values Yi above
a threshold C, by their m.l.e (i.e., by the observed Yi). Define:

ŜC,hard =
∑

{i:Yi>C}
µ̂mle

i =
∑

{i:Yi>C}
Yi

The other estimator follows the conditional maximum likelihood approach. This
approach was suggested for variable selection by Greenshtein et al. (2006). The
estimator is the maximum likelihood estimator of each of the relevant µi, conditional
on the event Yi > C. That is:

µ̂con
i = argmaxµi

ϕ(Yi − µi)

Pµi
(Yi > C)

= argmaxµi

ϕ(Yi − µi)

1− Φ(C − µi)
,

where ϕ and Φ are density and cdf of standard normal.
The latter estimator may obtain occasionally very small (negative!) values, when

the value of Yi is greater but very close to C. In fact, in the extreme case, Yi = C,
the corresponding conditional m.l.e is −∞. In order to avoid such cases, and to get
more meaningful comparisons with the conditional m.l.e., we consider in this section



Greenshtein, Park, and Ritov Page 9

a parameter space with µi ≥ 0. Thus: the conditional m.l.e. is µ̂con+
i = max(µ̂con

i , 0)
and the corresponding estimator is

ŜC,con =
∑

{i:Yi>C}
µ̂con+

i .

Of course, such an adjustment is reasonable in sparse situations also without formally
assuming that µi ≥ 0.

As in the case of conditional maximum likelihood estimator, we make the same
adjustment also to our estimator ŜC . We will consider

Ŝ+
C = max(ŜC , 0).

In our simulation, we let n = 105. We study the cases where N , the number of
nonzero µ, are 0, 200, and 400. We consider three types of the distributions of nonzero
µs: (i) point mass at some µ0 (ii) gamma distribution with various parameters (iii)
absolute value of t distribution with d.f. 1 (i.e., Cauchy distribution). We evaluate the
performance of the estimators in terms of (Eµ(ŜC−SC)2)1/2 for different C, C ∈ (2, 4)

where ŜC represents any of the estimators.
In the following graphs, kernel1 represents density estimator with the above men-

tioned bandwidth, suggested in Silverman(1992); kernel2 represents the kernel esti-
mator with bandwidth in (2.12).

Figure 1 shows the performance of the above mentioned four estimators of SC ,
when all µi’s are 0. In the same way, figure 2, 3 and 4 shows the case the nonzero µ’s
are from gamma, point mass, and |t| with d.f.1 respectively. The reduction in risk in
estimating SC , as C grows, is since there are fewer indices i for which Yi > C, hence
estimating the corresponding sum of µi has a smaller risk; a reduction in the risk as C
grows may also be since the set of µi corresponding to Yi > C is more homogeneous,
as C grows ( e.g., there are less zero valued µi in the set.)

We see that for moderately high values of C, ŜC
+

clearly dominates the other

estimators (using either kernel), while for very high values of C, ŜC
+

and ŜCcon are

comparable. The performance of ŜC
+

is nearly the same for the two kernels. In
Figure 1, where all µi are zero, there is a slight advantage to the kernel suggested in
(2.12).

4 The fdr for a Sparse Vector of means

In this section we study the notion of Local False Discovery Rate, denoted fdr, which
was suggested by Efron, et al. (2002). Let π1 ≡ π1(n) be the probability under
G ≡ Gn, that µi ≡ µn

i is not equal to zero, let, π0 = 1− π1. We assume:

π1(n) → 0. (4.16)
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Figure 1: (N,µ) = (0, 0). Solid line is η. The others are (Eµ(ŜC − SC)2)1/2 where
dashed line:kernel1(bandwidth in Silverman(1992)), dotted line:kernel2(bandwidth
with (2.12)), dashed-dot line:conditional mle, solid with circle:hard threshold
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Figure 2: (N, µ) = (400, G = Γ(2, 0.5)) and (N, µ) = (400, G = Γ(2, 1))
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Figure 3: In the first row (N,µ) = (200, 2) and (N,µ) = (400, 2). In the second row,
(N, µ) = (200, 3) and (N,µ) = (400, 3)
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Figure 4: (N, µ) = (200, |t1|)

Let f be the density of µi, under G. Then

f(y) = π1h(y) + π0ϕ(y), (4.17)

where ϕ is a standard normal density and h is the density of µi conditional that it is
not zero. Hence:

fdr(y) = PG(µi = 0|Yi = y) =
π0ϕ(y)

f(y)
=

ϕ(y)

f(y)
(1 + o(1)). (4.18)

The quantity 0 ≤ fdr(y)) ≤ 1 is suggested (analogously to p-value), as a measure
of the evidence against H i

0 : µi = 0. The smaller is the value of fdr(Yi), the stronger
is the evidence against H i

0. On the topic of measuring the evidence against H0, from
frequentist and Bayesian point of view, see Berger, et al. (1994), and references there.
See also Storey (2003) which discuss the issue through fdr . Measuring, the evidence
against each H i

0 : µi = 0, is important when planning a future study, having to
decide how much effort should be made in further studying each hypothesis H i

0. As
before, we proceed when treating the case Yi > 0, in order to have simpler notations.

When observing Yi > (2 log(n))1/2, we may be quite confident that the corre-
sponding µi is greater than zero, even in a sparse case. The interesting task is to
measure the evidence against H i

0, corresponding to Yi of the order (2α log(n))1/2 for
0 < α < 1. For such values of α, it may be easily shown that we may estimate fdr(y)
up to (1 + o(1)) error factor. Then we will get the following Theorem 2. Note, unlike
p-value, the values fdr(y) are not necessarily monotone decreasing in y, though most
usually they are. Let

f̂dr(y) =
ϕ(y)

f̂(y)
. (4.19)

In the following theorem, we consider asymptotics for a sequence y = yn. As in
the previous section, we assume a triangular array setup, in which assumptions (2.10)
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and (2.11), are satisfied, where yn plays the role of Cn. Note, if we do not assume
(2.10), then asymptotically the value of fdr(y) approaches 0, while we are interested
in estimating fdr(y) in the non-trivial case.

Theorem 2. Let y ≡ yn = (2α log(n))1/2, 0 < α < 1. Assume (2.10), (2.11) and
(4.16). Then

f̂dr(y) = fdr(y)(1 + op(1)).

Proof. The proof follows from the calculations in the previous section. One may
verify that for α < 1, f̂(y) = f(y) + op(f(y)). We use f(y) ∼ f ′′(y) ∼ ϕ(y) ∼ ϕ′′(y)
as follows from (2.10) and (2.11). Then we apply (4.18).
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