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Abstract

We consider the log-likelihood function of hidden Markov models, its derivatives
and expectations of these (such as different information functions). We give explicit
expressions for these functions and bound them as the size of the chain increases. We
apply our bounds to obtain partial second order asymptotics and some qualitative
properties of a special model as well as to extend some results of Petrie’s (1969).
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1 Introduction

In two previous papers, Bickel and Ritov (1996) and Bickel, Ritov and Rydén (1998),
we developed the theory of inference for hidden Markov models (HMMs) when the state
space of the chain is finite but the hiding mechanism is not finitely-valued. We recall the
definition of these models. An HMM is a discrete-time stochastic process {(Xt, Yt)} such
that (i) {Xt} is a Markov chain, and (ii) given {Xt} , {Yt} is a sequence of conditionally
independent random variables with the conditional distribution of Yn depending on {Xt}
only through Xn . The distribution of {Yt} is assumed to depend smoothly on a Euclidean
parameter θ . Equivalently an HMM can be thought of as Yn = h(Xn, εn), where {εt} is
an i.i.d. sequence independent of {Xt} , that is a stochastic function of Xn . The parameter
mentioned before labels both the transition probability matrix of the chain, the function
h and the distribution of {εt} , although in principle the latter can be taken as fixed,
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for example uniform on (0, 1). In this generality, HMMs include state space models,
cf. Kalman (1977). We, in this paper as before, restrict ourselves to the case where
the state space of the {Xt} is finite. HMMs have during the last decade become wide
spread for modeling sequences of weakly dependent random variables, with applications in
areas like speech processing (Rabiner, 1989), neurophysiology (Freaking and Rice, 1992),
and biology (Leroux and Puterman, 1992). See also the monograph by MacDonald and
Zucchini (1997).

Inference for HMMs was first considered by Baum and Petrie, who treated the case
when {Yt} takes values in a finite set. In Baum and Petrie (1966), results on consistency
and asymptotic normality of the maximum-likelihood estimator (MLE) are given, and the
conditions for consistency are weakened in Petrie (1969). Baum and Petrie and particularly
Petrie also studied the structure of the map ϑ → Eϑ log pϑ(Y1|Y0, Y−1, . . .), the conditional
limiting entropy per observation.

The results of Bickel et al. (1998) depend critically on bounds on derivatives of the log-
likelihood of the observations. Specifically, we showed that under Cramér-type conditions
at ϑ0 ,

sup
{

∂k

∂ϑk
log pϑ(Y1, . . . , Yn) : |ϑ− ϑ0| ≤ ε

}
≤ Mk(Y1, . . . , Yn), (1)

where Eϑ0 |Mk(Y1, . . . , Yn)| ≤ C < ∞ for k = 1, 2, as well as quasi-continuity of the map
ϑ 7→ (∂2/∂ϑ2) log pϑ(Y1, . . . , Yn) at ϑ0 . The same type of bounds were applied to state
space models by Jensen and Petersen (1999).

Similar bounds were obtained and used in the case where Y is finitely supported
by Baum and Petrie (1966) and Petrie (1969). They were actually able to show that
if ϑ is the transition probability matrix of the Markov chain (and when Y is finitely
supported this is the most general model) and Θ = {ϑ : ϑij ≥ δ > 0, ∀i, j} , then the map
ϑ 7→ Eϑ0 log pϑ(Y1|Y0, Y−1, . . .) has a convergent series expansion everywhere on Θ.

Our technical goals are threefold:

(i) To exhibit bounds on the derivatives of the form (1) and to show that, under some
conditions, Mk grows no faster than nCkk! . We shall derive these bounds by a
unified argument relying on results of Saulis and Statulevičius (1991) (henceforth
referred to as S&S).

(ii) To obtain bounds on

sup
{

∂k

∂ϑk
Eϑ

(
∂m

∂ϑm
log pϑ(Y1|Y0, Y−1, . . .)

)}
.

We give conditions under which this expression is bounded by Ck+m(k + m)!.
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(iii) To establish bounds on
∣∣∣∣

∂k

∂ϑk

(
log pϑ(Y1|Y0, Y−1, . . . , Yt)− log pϑ(Y1|Y0, Y−1, . . . , Ys)

)∣∣∣∣

of the form Cρ|t−s| for ρ < 1.

Using these results, we shall, under suitable conditions

(a) Show how to establish stochastic asymptotic expansions for the MLE in terms of
derivatives of the loglikelihood at ϑ0 . We sketch how in conjunction with Edgeworth
type expansions for sums of functions of Markov chains, these establish the validity of
procedures such as debiasing the MLE and other second order methods as available
in the i.i.d. case.

(b) Show that the following functions are analytic. The Fisher information

I(ϑ) = −Eϑ

{
∂2

∂ϑ2
log pϑ(Y1|Y0, Y−1, . . .)

}
,

the Kullback-Leibler distance

K(ϑ) = Eϑ

{
log

pϑ0

pϑ
(Y1|Y0, Y−1, . . .)

}

and the entropy
H(ϑ) = −Eϑ{log pϑ(Y1|Y0, Y−1, . . .)}.

(c) Study the behavior of these functions and their derivatives at points ϑ0 under which
the X ’s are i.i.d. (the transition probability matrix is degenerate). We show that
at such points, in principle, these quantities can be computed explicitly.

(d) Show how to use these expansions qualitatively to guess properties of I(ϑ) which
can be established in other ways.

2 Assumptions and main results

We observe Y -valued random variables Y1, . . . , Yn , where Y is a general space, distributed
as follows. We let {Xt}n

t=1 be a stationary Markov chain with state space {1, 2, . . . , R} and
transition probability matrix Aϑ = {αϑ(·, ·)} . Then, Y1, . . . , Yn are conditionally inde-
pendent given X1, . . . , Xn and the conditional distribution of Yt depends on Xt only. We
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assume that these distributions have densities gϑ(y|x), where y ∈ Y and x ∈ {1, . . . , R} ,
with respect to some common σ -finite measure on Y . Thus, given Xt = i , Yt has condi-
tional density gϑ(·|i). We assume that {Xt} is ergodic so that the stationary distribution
exists and is unique. We denote it by πϑ(·). The parameter ϑ lies in ϑ ∈ Θ ⊆ Rd , where
Θ is open. All computations will be done under a particular value of ϑ , denoted by ϑ0 .

We write Yt
s for (Ys, . . . , Yt) and define Xt

s similarly. We can and will embed Y1, . . . , Yn

into {Yt}∞t=−∞ related to {Xt}∞t=−∞ by the mechanism described above. When this is
done, we write Yt−∞ for (. . . , Yt−1, Yt) and define Xt−∞ similarly. Probabilities and ex-
pectations will be denoted by P and E , respectively, and the conditional expectation
given some random variable Y by EY . Likelihood ratios (with respect to ϑ0 ) will be
denoted by L and loglikelihood ratios by ` . Note that we use the same characters to
denote different functions; the specific function will be clear from the argument. If the
value of the parameter is ϑ0 , we often replace it by 0. Thus Lϑ(Yn

1 ) is the likelihood ratio
of Yn

1 calculated at ϑ , whereas `0(X,Y) is the loglikelihood ratio of X and Y (being
some general random variables) calculated at ϑ0 . To further shorten the notation, we
let ht(ϑ) = `ϑ(Xt, Yt|Xt−1

1 ,Yt−1
1 ) for t ≥ 1. Thus, by the very definition of an HMM,

ht(ϑ) = log αϑ(Xt−1, Xt)+log gϑ(Yt|Xt) for t > 1 and h1(ϑ) = log πϑ(X1)+log gϑ(Y1|X1).
If a = (a1, . . . , ad) is a d-dimensional vector with non-negative integer entries, then Da

denotes the corresponding partial derivative ∂|a|+/(∂a1
ϑ1
· · · ∂ad

ϑd
), where |a|+ =

∑d
1 ai . We

call such a a multi-index. Furthermore we define

Ck(y) = sup
ϑ∈V0

max
|a|+=k

max
i,j
{|Da log αϑ(i, j)|+ |Da log gϑ(y|i)|+ |Da log πϑ(i)|}, (2)

with V0 being a neighborhood of ϑ0 and the outer maximum being taken over all multi-
indices a with |a|+ = k , and

Bk = max





r∏

t=1

E0




pt∏

i=pt−1+1

Cji(Yt)
ji!

∣∣∣∣∣∣
Xt = xt


 : 1 ≤ m ≤ k, 1 ≤ r ≤ m,

j1, . . . , jm ≥ 1,
∑

ji = k, 0 = p0 < p1 < . . . < pr = m, x1, . . . , xr ∈ {1, . . . , R}
}

.

The last quantity measures how big, in expectation, we can make a product of partial
derivatives of the ht by distributing a total of k derivatives and possible time indices over
different components of the parameter and time, respectively. In particular, if Ck(y) =
max{Cm(y) : 1 ≤ m ≤ k} , then

Bk ≤ max{E0(Ck(Y1)|X1 = x)m : x ∈ {1, . . . , R}, 1 ≤ m ≤ k} ≤ C
k
,
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if all Ck ≤ C < ∞ . On the other hand, if the Yt are mutually independent, then

Bk ≤
k∏

m=1

(
1 ∨max{E0(Cm(Y1) | X1 = x) : x ∈ {1, . . . , R}}

)
.

We now state the main assumptions being used in this paper.

(A1) The entries of transition probability matrix Aϑ are bounded away from zero on V0 .

(A1∞) Condition (A1) holds for all ϑ0 .

(A2k) For all i, j , ϑ 7→ log αϑ(i, j) and ϑ 7→ log πϑ(i) has k continuous derivatives in
the neighborhood ϑ ∈ V0 of ϑ0 , and for all i and y ∈ Y , ϑ 7→ log gϑ(y|i) has k

continuous derivatives in the same neighborhood.

(A2∞) All log αϑ(i, j) and log πϑ(i) and all their derivatives are uniformly bounded.

(A3k) Bk < ∞ .

(A3∞) All derivatives of log gϑ(y|i) are uniformly bounded in y .

We now state our main results.

Theorem 2.1. Assume (A1), (A2k ) and (A3k ) hold. Then for all multi-indices a with

|a|+ = k ,

E0

∣∣∣∣ sup
ϑ∈V0

Da`ϑ(Yn
1 )

∣∣∣∣ ≤ C1nBkC
k
2 k!

for some C1 and C2 that depend on the transition probability matrix Aϑ , ϑ ∈ V0 , only.

Theorem 2.2. Let a and b be multi indices with |a|+ = k and |b|+ = m , respectively.

Then the following assertions hold true.

(i) Under (A1), (A2k) and (A3k), E0|Da`0(Y1|Y0−n)| ≤ C1BkC
k
2 k! where C1 and C2

depend on the transition probability matrix A0 only.

(ii) Under (A1), (A2∞) and (A3∞), if −n ≤ −t ≤ 0 then |DaP0(X1 = x|Y0−n) −
DaP0(X1 = x|Y0−t)| ≤ C3ρ

t , ρ < 1 where C3 depends on the uniform bound on all

derivatives and A0 .

(iii) Under (A1), (A2k), and (A3k), E0|Da`0(Y1|Y0−n)DbL0(Y1−n)| ≤ C3k!m! .

Remarks.
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1. The bounds in (i) and (iii) are the same as in the case {Yi} i.i.d.

2. The bound of (ii) expresses a strong mixing property. We could prove versions of (ii)
and (iii) under (A1), (A2k), and (A3k), but the results are technically complicated
and we leave them to the reader.

Theorem 2.3. Under (A1), (A2∞) and (A3∞) the following assertions hold true.

(i) Da`0(Y1|Y0−n) converges P0 -a.s. to Da`0(Y1|Y0−∞) .

(ii) E0(Da`0(Y1|Y0−n)DbL0(Y1−n)) converges to an appropriate limit as n →∞ .

(iii) n−1/2(Da`0(Yn
1 ) − E0Da`(Yn

1 )) converges weakly to a N(0,Var0(Da`0(Y1|Y0−∞)))
distribution under P0 .

3 Proofs of main results

Throughout the remainder of the paper we shall assume that the parameter space Θ
is one-dimensional, that is d = 1. This causes no loss of generality, but simplifies the
notations as we do not need to work with mixed partial derivatives. Derivatives with
respect to ϑ of order k will be denoted with superindex k , for example L

(k)
ϑ .

In many of the proofs, cumulants play a major role. Let Z1, . . . , Zk be k random
variables. We denote their cumulant by

Γ(Z1, . . . , Zk) =
1
ιk

∂

∂u1
· · · ∂

∂uk
log

(
Eeι(u1Z1+···+ukZk)

)∣∣∣∣
u1=...=uk=0

, (3)

where ι =
√−1. The cumulant is a multilinear function (that is, it is linear in any of the

random variables if all other variables are kept fixed) and, in particular, if Z1 = . . . = Zk

then Γ(Z1, . . . , Zk) is the standard k th cumulant of Z1 . Finally, if Z = (Z1, . . . , Zk) we
write Γ(Z) = Γ(Z1, . . . , Zk) and ΓW (Z) for the cumulant of the conditional distribution
of Z given W .

For the proof of Theorem 2.1 we proceed as follows.

(i) We write `
(k)
0 (Yn

1 ) as a linear combination of conditional cumulants of
∑n

t=1 h
(j)
t (ϑ0),

1 ≤ j ≤ k , by means of a general formula valid for any latent variable model, see
(4).

(ii) By a generalization of results by S&S we give a bound on the individual conditional
cumulants of the form (1) to yield the result.
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For the proof of Theorem 2.2(i), we use the same formula expressing `
(k)
0 (Y1|Y0−n) as

`
(k)
0 (Y1−n)− `

(k)
0 (Y0−n) and analyzing it in the same way as in Theorem 2.1. For part (ii)

we use a further decomposition into so-called centered moments; see below and part (ii)
of Theorem 2.2. We also relate L

(m)
0 to the h(i) , 1 ≤ i ≤ m , by another general formula.

For the general formula, we need additional notation. Let Z+ be the set of positive
integers. We let

J = {(J1, . . . , Jk) : k > 0, Jj ∈ Z+, j = 1, . . . , k} .

For J ∈ J , |J | denotes the dimension of the vector J and |J |+ =
∑

Jj . We define the
following subsets of J : J (k) = {J ∈ J : |J | = k} and J +(k) = {J ∈ J : |J |+ = k} .
Another useful set of integers is

J n
m(k) = {(I1, . . . , Ik) : Ii ∈ Z+,m ≤ Ii ≤ n, i = 1, . . . , k} .

For any integer vector I as above, min I = min Ii , max I = max Ii and ∆(I) = max I −
min I . Furthermore, if a1, a2, . . . is any sequence and |I| = k , then aI = (aI1 , . . . , aIk

). An
operation between two sequences is done term wise, so that aI/bI = (aI1/bI1 , . . . , aIk

/bIk
).

In general any operation is meant to be term by term, so J ! = (J1!, J2!, . . .),
∏

aI =∏k
i=1 aIi and a very typical expression in this paper is

f
(J)
I

J !
=

(
f

(J1)
I1

J1!
, . . . ,

f
(Jk)
Ik

Jk!

)
.

We now let X and Y be any random vectors such that only Y is observed with X
being missing at random.

Proposition 3.1. Suppose the loglikelihood ratio of the full data model `ϑ(X,Y) is

k times differentiable. Then the loglikelihood ratio of the observable model is k times

differentiable and

`
(k)
0 (Y) =

∑

J∈J+(k)

k!
|J |!Γ

Y
0

(
`
(J)
0 (X,Y)

J !

)
, (4)

L
(k)
0 (Y) =

∑

J∈J+(k)

k!
|J |!

∏ `
(J)
0 (Y)

J !
. (5)

The first of these formulae may be viewed as a generalization of results of Louis (1982)
and Meilijson (1989), relating the score function and observed information of the observ-
able vector Y to those of the full model. The above theorem provides results also for
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higher order derivatives. Both of the statements of the theorem are closely related to the
“exlog relations” in Barndorff-Nielsen and Cox (1989, pp. 140). For the proof we need the
following form of Faa di Bruno’s formula, whose proof is in the Appendix.

Lemma 3.1. (i) For any functions f : R → R and h : R → R with h(0) = 0 and f

and h being k times differentiable,

∂k

∂ϑk
f(h(ϑ))

∣∣∣∣
ϑ=0

=
∂k

∂ϑk
f

(
k∑

i=0

ϑih(i)(0)/i!

)∣∣∣∣∣
ϑ=0

.

(ii) If f : Rk → R , then

∂k

∂ϑk
f(ϑ, ϑ2/2, . . . , ϑk/k!)

∣∣∣∣
ϑ=0

=
∑

J∈J+(k)

k!
|J |!∏ J !

∂|J |

∂uJ1
· · · ∂uJ|J|

f(u1, . . . , uk)

∣∣∣∣∣
u1=...=uk=0

.

Proof of Proposition 3.1. We start with the representation

`ϑ(Y) = log EY
0 e`ϑ(X,Y).

Note that for random variables whose joint moment generating function exists in a vicinity
of 0, the joint characteristic function in the definition (3) of the cumulant can be replaced
by the joint moment generating function, and the factor ιk in the denominator then also
disappears. Hence

∂|J |

∂J1 · · · ∂J|J|
log EY

0 e
P

uiWi

∣∣∣∣∣
ui=...=u|J|=0

= ΓY(WJ1 , . . . , WJ|J|) = ΓY(WJ).

Now apply the first part of Lemma 3.1 to obtain

`
(k)
0 (Y) =

∂k

∂ϑk
log EY

0 exp

{
k∑

i=1

ϑi`
(i)
0 (X,Y)/i!

}∣∣∣∣∣
ϑ=0

.

Apply the second part of the lemma to this expression with

f(u1, . . . , uk) = log EY
0 exp

{
k∑

i=1

ui`
(i)
0 (X,Y)

}

to see that
`
(k)
0 (Y) =

∑

J∈J+(k)

k!
|J |! ∏J !

ΓY(`(J)
0 (X,Y)).
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The product
∏

J ! can be taken inside Γ because of the multilinearity of the cumulant
function and the proof of the first part of the lemma is complete.

Similarly,

L
(k)
0 (Y) =

∂k

∂ϑk
e`ϑ(Y)

∣∣∣∣
ϑ=0

=
∂k

∂ϑk
exp





k∑

j=1

ϑj`
(j)
0 (Y)/j!





∣∣∣∣∣∣
ϑ=0

=
∑

J∈J+(k)

k!
|J |!

∏ `
(J)
0 (Y)

J !

by Lemma 3.1 with f(u1, . . . , uk) = exp{∑k
j=1 uj`

(j)
0 (Y)} . 2

The next lemma requires introduction of so-called centered moments and notation of
mixing. For any random variables Z1, Z2, . . . , let χ′(Z1) = Z1 and χ(Z1) = EZ1 , and
define recursively

χ′(Z1, . . . , Zk) = Z1(χ′(Z2, . . . , Zk)− χ(Z2, . . . , Zk))

χ(Z1, . . . , Zk) = Eχ′(Z1, . . . , Zk).

χ is called the centered moment function (S&S, p. 12). For example,

χ(Z1, Z2, Z3) = E(Z1Z2Z3)−E(Z1)E(Z2Z3)−E(Z1Z2)E(Z3) + E(Z1)E(Z2)E(Z3). (6)

Similar to the notation for cumulants, if Z = (Z1, . . . , Zk) then χ(Z) = χ(Z1, . . . , Zk) and
χW (Z) is the centered moment of the conditional distribution of Z given W .

Let Zt = gt(Tt) for some measurable functions gt , where {Tt}∞t=−∞ is Markovian and
obeys the following mixing condition in terms of constants ϕt , −∞ < t < ∞ . If Fm

is the σ -field generated by Zt , −∞ < t ≤ m , and Fn is the σ -field generated by Zt ,
n ≤ t < ∞ , then for all m < n ,

sup{|P (B | A)− P (B)| : A ∈ Fm, B ∈ Fn, P (A) > 0} ≤
n∏

t=m+1

ϕt. (7)

Lemma 3.2. With {Zt} as above, assume |Zt| ≤ Ct a.s., 1 ≤ t ≤ n , and let 1 ≤ t1 ≤
t2 ≤ . . . ≤ tk ≤ n . Then

χ(Zt1 , . . . , Ztk) ≤ 2k−1
k∏

j=1

Ctj

tk∏

j=t1+1

ϕj .
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Proof. This is essentially Theorem 4.4 of S&S. The only difference is that we allow
different bounds Ct on the Zt ; the validity of this extension follows easily as multiplicative
constants can be moved in and out of centered moments. 2

We now express the cumulants of sums in terms of centered moments, a generalization
of a formula of S&S. Let W1,W2, . . . be random vectors, i.e. Wi = (Wi,1,Wi,2, . . .) etc. If
J ∈ J is a set of indices, Wi,J denotes the vector with elements Wi,j , j ∈ J .

Lemma 3.3. (i) The multivariate cumulant Γ(·) can be expanded and bounded as

∣∣∣∣∣Γ
(

n∑

i=1

Wi,J

)∣∣∣∣∣ =

∣∣∣∣∣∣
∑

I∈J n
1 (|J |)

Γ(WI,J)

∣∣∣∣∣∣

≤
n∑

i=1

∑

I∈J n
1 (|J |)

min I=i

|J |∑

ν=1

∑

]Kq={1,...,|J |}
Mν(K1, . . . ,Kν)

ν∏

q=1

|χ(WI(Kq),J(Kq))|,

where the inner sum is over all partitions K1, . . . , Kν of the set {1, . . . , |J |} , I(Kq) =
(IKq,1 , IKq,2 , . . .) and J(Kq) is defined similarly. The Mν are non-negative combinatorial

constants satisfying, in particular, that Mν(·) > 0 implies
∑ν

q=1 ∆(I(Kq)) ≥ ∆(I) .
(ii) For all i and 0 ≤ ρ < 1 ,

∣∣∣∣∣∣∣∣

∑

I∈J n
1 (|J |)

min I=i

|J |∑

ν=1

∑

]Kq={1,...,|J |}
Mν(K1, . . . , Kν)ρ

Pν
q=1 ∆(I(Kq))

∣∣∣∣∣∣∣∣
≤ |J |!

(
4

1− ρ

)|J |−1

.

To clarify the notation once more we remark that Γ(WI,J) = Γ(Wi1,j1 , . . . , Wi`,j`
), where

` = |I| = |J | .
Proof. The multilinearity of the cumulant function is one of its basic properties. The
bound in (i) comes from S&S Lemma 1.1, where also the property of the Mν ’s is found.
For part (ii), note that the proof of S&S Lemma 4.6 starts with their (4.55), which is
equivalent to the expression in part (i) of the lemma. Then, in S&S’s notation, we use
C0 = C2 = u = 1, f(s, t) = ρ|t−s| and the bound ρ∆(Ip) on χ(WIp,Jp); the result now
follows from (4.60) in S&S. 2

We remark that we tacitly assume that for any cumulant Γ(WI,J), the vectors I

(and J ) are rearranged so that the elements of I become sorted in non-decreasing order
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before the cumulant is expanded into centered moments as in the above lemma. Since
cumulants are invariant with respect to permutations of the random variables involved,
such a rearrangement does not change the value of the cumulant, but it is necessary as we
want to apply results like Lemmas 3.2 and 3.4 which do require sorted time indices.

We shall now examine the mixing condition (7) for HMMs and identify the ϕ ’s in this
particular case. Define ρ by

1− ρ = inf
ϑ∈V0

(
min
i,j

α0(i, j) ∧min
i,j

α∗0(i, j)
)

with α∗(i, j) = π0(j)/π0(i)×α0(j, i); note that α∗0(i, j) are the transition probabilities of
the time-reversed Markov chain. Under (A1), ρ < 1. Generally, if Aϑ is ergodic there
is an m , m ≤ R , such that all m-step transition probabilities are positive. Assuming
m = 1, it holds that if Ht is a set defined in terms of Xu and Yu , t ≤ u ≤ n only, then
for s < t ,

max
i

Pϑ(Ht | Yn
1 , Xs = i)−min

i
Pϑ(Ht | Yn

1 , Xs = i) ≤ ρt−s. (8)

This result is proved in Douc, Moulines, and Rydén (2001, Corollary 1). A simple condi-
tioning argument then yields

max
i
|Pϑ(Ht | Yn

1 , Xs = i)− Pϑ(Ht | Yn
1 )| ≤ ρt−s for all ϑ ∈ V0 , (9)

which is our particular version of (7). Note that we work with the conditional Markov chain
X|Y (it is straightforward to verify that the conditional process is still Markov, although
non-homogeneous), because in view of Proposition 3.1 we want to examine conditional
cumulants. When Yn

1 is fixed we can identify ϕt in (7) with ρ in (9). Following Bickel
et al. (1998, Lemma 5), one can also prove that for 1 ≤ s ≤ t− 1,

sup
A⊆{1,...,R}

|Pϑ(Xs ∈ A | Yt
1)− Pϑ(Xs ∈ A | Yt−1

1 )| ≤ ρt−1−s for all ϑ ∈ V0 . (10)

In the case m > 1, an inequality similar to (8) still holds true but with the bound
on the conditional mixing now depending on the Yt . This causes an additional degree of
difficulty in our subsequent arguments and we do not treat this case.

The next result now follows from the above and Lemma 3.2.

Lemma 3.4. Let Kq = (Kq,1, . . . ,Kq,`) be an element of a partition as in Lemma 3.3.

Then

|χYn
1

ϑ (h(J(Kq))
I(Kq) (ϑ))| ≤ 2`−1

∏̀

j=1

CJKq,j
(YIKq,j

)ρ∆(I(Kq)) for all ϑ ∈ V0 ,

where I(Kq) = (IKq,1 , . . . , IKq,`
) etc. and Ck(y) is defined in (2).

11



Proof of Theorem 2.1. First note that we may replace ϑ0 by any ϑ in Proposition 3.1
without changing the definition of ht , as only derivatives of this function appear in the
proposition. Hence

|`(k)
ϑ (Yn

1 )| ≤ k!
∑

J∈J+(k)

1
|J |!

∣∣∣∣∣Γ
Yn

1
ϑ

(∑n
i=1 h

(J)
i (ϑ)

J !

)∣∣∣∣∣ for all ϑ ∈ V0 .

Expand ΓYn
1

ϑ (
∑n

i=1 h
(J)
i (ϑ)) as in Lemma 3.3(i). We can employ Lemma 3.4 to obtain the

bound
∣∣∣∣∣∣

ν∏

q=1

χ
Yn

1
ϑ (h(J(Kq))

I(Kq) (ϑ))

∣∣∣∣∣∣
≤

ν∏

q=1



2|Kq |−1

|Kq |∏

j=1

CJKq,j
(YIKq,j

)ρ∆(I(Kq))





= 2|J |−ν

|J |∏

j=1

CJj (YIj )ρ
Pν

q=1 ∆(I(Kq)) for all ϑ ∈ V0. (11)

Taking the expectation of this bound and letting i′1 < i′2 < . . . < i′r denote the distinct
points of the vector I , the structure of an HMM yields

E0



 sup

ϑ∈V0

∣∣∣∣∣∣

ν∏

q=1

χYn
1 (h(J(Kq))

I(Kq) (ϑ))

∣∣∣∣∣∣





≤ 2|J |−νE0





|J |∏

j=1

CJj (YIj )



 ρ

Pν
q=1 ∆(I(Kq))

≤ 2|J |−νE0



E0




r∏

`=1

∏

j: Ij=i′`

CJj (Yi′`
)

∣∣∣∣∣∣
Xn

1






 ρ

Pν
q=1 ∆(I(Kq))

= 2|J |−νE0





r∏

`=1

E0


 ∏

j: Ij=i′`

CJj (Yi′`
)

∣∣∣∣∣∣
Xi′`






 ρ

Pν
q=1 ∆(I(Kq))

≤ 2|J |−1
r∏

`=1

max
x

E0


 ∏

j: Ij=i′`

CJj (Yi′`
)

∣∣∣∣∣∣
Xi′`

= x


 ρ

Pν
q=1 ∆(I(Kq)). (12)

Multiplying by 1/
∏

J ! and using Lemma 3.3(ii) we obtain

E0

{
sup
ϑ∈V0

∣∣∣∣∣Γ
Yn

1
ϑ

(∑n
i=1 h

(J)
i (ϑ)

J !

)∣∣∣∣∣

}
≤

n∑

i=1

Bk|J |!
(

8
1− ρ

)|J |−1

= nBk|J |!
(

8
1− ρ

)|J |−1

.
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Hence

E0

∣∣∣∣ sup
ϑ∈V0

`
(k)
ϑ (Yn

1 )
∣∣∣∣ ≤ nk!Bk

∑

J∈J+(k)

(
8

1− ρ

)|J |−1

≤ nk!Bk
8

1− ρ

(
1 +

8
1− ρ

)k−1

,

where the last inequality is from Lemma 4.1(ii) in the Appendix. 2

The next lemma is needed for the proof of Theorem 2.2.

Lemma 3.5. Let a′ ≤ a ≤ b ≤ b′ and suppose that W measurable w.r.t. the sigma-field

generated by Yb
a . Then

E0

{
WL

(m)
0 (Yb′

a′)
}

= E0

{
WL

(m)
0 (Yb

a)
}

, m = 0, 1, 2, . . .

The proof is given in the Appendix.

Proof of Theorem 2.2. In this proof we again use the notation of Lemma 3.3. and
drop the argument ϑ0 of the function h as this parameter stays fixed throughout the
proof. Moreover, since this lemma and other ones are formulated in terms of positive time
indices we shift the indices of the statement of the theorem and set out to prove

E0|`(k)
0 (Yn|Yn−1

1 )| ≤ C1BkC
k
2 k!.

By Proposition 3.1 and multilinearity of the cumulant function,

`
(k)
0 (Yn|Yn−1

1 ) = `
(k)
0 (Yn

1 )− `
(k)
0 (Yn−1

1 )

=
∑

J∈J+(k)

k!
|J |!

{
ΓYn

1
0

(∑n−1
i=1 h

(J)
i + h

(J)
n

J !

)
− ΓYn−1

1
0

(∑n−1
i=1 h

(J)
i

J !

)}

=
∑

J∈J+(k)

k!
|J |!

{
ΓYn

1
0

(∑n−1
i=1 h

(J)
i

J !

)
− ΓYn−1

1
0

(∑n−1
i=1 h

(J)
i

J !

)

+
∑

J ′]J ′′=J
J ′ 6=J

ΓYn
1

0

(∑n−1
i=1 h

(J ′)
i

J ′!
,
h

(J ′′)
n

J ′′!

)}
, (13)

where the last sum is over all partitions (J ′, J ′′) of the set J except (J ′, J ′′) = (J, ∅). This
partition is excluded since it is the first sum of the right hand side and will be compared
to the second one. Clearly, there are two types of cumulants here. The first two ones are
similar and their difference will be shown to remain bounded in expectation as n → ∞ .
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The last sum involves cumulants that contain at least one hn , and this is sufficient to keep
them bounded as n →∞ .

We start by considering

γ =

∣∣∣∣∣∣

ν∏

q=1

χ
Yn

1
0 (h(J(Kq))

I(Kq) )−
ν∏

q=1

χ
Yn−1

1
0 (h(J(Kq))

I(Kq) )

∣∣∣∣∣∣
,

where we assume that
ν∑

q=1

∆(I(Kq)) ≥ ∆(I).

This difference can be bounded in two ways. First, each term of the difference can be
bounded separately. Arguing as for (11), we obtain

γ ≤
ν∏

q=1

∣∣∣χYn
1

0 (h(J(Kq))
I(Kq) )

∣∣∣ +
ν∏

q=1

∣∣∣∣χ
Yn−1

1
0 (h(J(Kq))

I(Kq) )
∣∣∣∣

≤ 2× 2|J |−1

|J |∏

j=1

CJj (YIj )ρ
Pν

q=1 ∆(I(Kq)). (14)

Secondly, we can write

γ =
|J |∏

j=1

CJj (YIj )×
∣∣∣∣∣∣

ν∏

q=1

χ
Yn

1
0 (WI(Kq),J(Kq))−

ν∏

q=1

χ
Yn−1

1
0 (WI(Kq),J(Kq))

∣∣∣∣∣∣
, (15)

where Wij = h
(j)
i /Cj(Yi). Consider the scheme

m∏

i=1

Bi −
m∏

i=1

Ai =
m∑

j=1

(
j−1∏

i=1

Bi

)
(Bj −Aj)




m∏

i=j+1

Ai


 . (16)

We expand χ(WI(Kq),J(Kq)) into a sum of 2|Kq |−1 products of expected values of products
of Wij ’s, cf. (6), with each random factor being bounded by one. Pick one of the terms
in this sum. This term is thus a product of no more than |Kq| factors (with each factor
being a conditional expectation of a product of Wij ’s). We call these factors Ai and Bi ,
respectively, when the expectation is conditional on Yn

1 and Yn−1
1 , respectively. Using

(10) we find that for each factor, the difference between its conditional expectations under
Yn

1 and Yn−1
1 , respectively, is bounded by ρn−1−max I(Kq) ≤ ρn−1−max I , that is |Ai−Bi|

14



is bounded by this expression. Employing (16) the product, we can bound it by we arrive
at the bound |Kq|ρn−1−max I . Using this bound for each term, we find

|χYn
1

0 (WI(Kq),J(Kq))− χ
Yn−1

1
0 (WI(Kq),J(Kq))| ≤ 2|Kq |−1|Kq| ρn−1−max I ,

where 2|Kq |−1 is the total number of terms in the sum and |Kq| upper bounds the number
of factors in each term. In addition, just as Lemma 3.4 follows from Lemma 3.2 we obtain
|χYn

1
0 (WI(Kq),J(Kq))| ≤ 2|Kq |−1ρ∆(I(Kq)) and similarly for Yn−1

1 . Hence, by applying (16)
to (15),

γ ≤
|J |∏

j=1

CJj (YIj )
ν∑

p=1




ν∏

q=1
q 6=p

2|Kq |−1ρ∆(I(Kq))


 2|Kp|−1|Kp|ρn−1−max I

≤
|J |∏

j=1

CJj (YIj ) |J | 2|J |−1ρn−1−max I (17)

We can combine these two bounds, (14) and (17), by taking a geometric mean;

γ ≤ 2|J |−1

|J |∏

j=1

CJj (YIj )2
1/2|J |1/2ρ

Pν
q=1 ∆(I(Kq))/2+(n−1−max I)/2. (18)

As in the proof of Theorem 2.1, it follows that

E0

∣∣∣∣∣Γ
Yn

1
0

(∑n−1
i=1 h

(J)
i

J !

)
− ΓYn−1

1
0

(∑n−1
i=1 h

(J)
i

J !

)∣∣∣∣∣

≤ 21/2|J |1/2Bk

n−1∑

i=1

ρ(n−1−i)/2|J |!
(

8
1− ρ1/2

)|J |−1

≤ 21/2(1− ρ1/2)−1Bk|J |1/2|J |!
(

8
1− ρ1/2

)|J |−1

. (19)

We now proceed to bounding the second type of cumulants appearing in (13). Let
(J ′, J ′′) be a partition of some J ∈ J +(k) with J ′ 6= J . We can expand the cumulant
similarly to Lemma 3.3(i) to obtain

∣∣∣∣∣Γ
Yn

1
0

(
n−1∑

i=1

h
(J ′)
i , h(J ′′)

n

)∣∣∣∣∣

≤
∑

I∈J n−1
1 (|J ′|)×{n}|J′′|

|J |∑

ν=1

∑

]Kq={1,...,|J |}
Mν(K1, . . . ,Kν)

ν∏

q=1

|χYn
1

0 (h(J ′,J ′′)(Kq)
I(Kq) )|.
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Taking expectations, applying the bound (12) and multiplying by 1/(
∏

J ′!
∏

J ′′!) yields

E0

∣∣∣∣∣Γ
Yn

1
0

(∑n−1
i=1 h

(J ′)
i

J ′!
,
h

(J ′′)
n

J ′′!

)∣∣∣∣∣

≤ 2|J |−1Bk

∑

I∈J n−1
1 (|J ′|)×{n}|J′′|

|J |∑

ν=1

∑

]Kq={1,...,|J |}
Mν(K1, . . . ,Kν)ρ

Pν
q=1 ∆(I(Kq)).

Fix a partition (J ′, J ′′) of J such that J ′′ 6= J and an I ∈ J n−1
1 (|J ′|) × {n}|J ′′| .

We need to look closer at the combinatorial constants Mν(K1, . . . ,Kν). If the partition
(K1, . . . , Kν) is such that there is no Kq with I(Kq) containing an element less than n

as well as an element n , then Mν(K1, . . . , Kν) = 0. This is because in the graph for
Mν(K1, . . . , Kν) (see S&S, pp. 80) there can be no edge over the vertex corresponding to
the first occurrence of n in I . Hence, we may disregard partitions of this kind.

Now consider a partition (K1, . . . , Kν) with at least one I(Kq) containing an element
less than n and an element n , and let max′ I denote the second largest element of the
vector I , not counting multiple n ’s. We can form a new vector I ′ from I by replacing all
elements of I being equal to n by max′ I +1. Then

∑ν
q=1 ∆(I ′(Kq)) ≤

∑ν
q=1 ∆(I(Kq))−

(n−max′ I− 1). This vector I ′ is not a member of J n−1
1 (|J ′|)×{n}|J ′′| (unless max′ I =

n − 1), but does belong to Jmax′ I
1 (|J ′|) × {max′ I + 1}|J ′′| ; indeed, there is a one-to-one

correspondence between vectors I and I ′ with these characteristics. Therefore

∑

J ′]J ′′=J
J ′ 6=J

∑

I∈J n−1
1 (|J ′|)×{n}|J′′|

|J |∑

ν=1

∑

]Kq={1,...,|J |}
Mν(K1, . . . ,Kν)ρ

Pν
q=1 ∆(I(Kq))

≤
n−1∑

i=1

ρn−i−1
∑

J ′]J ′′=J
J ′ 6=J

∑

I∈J i
1(|J ′|)×{i+1}|J′′|

|J |∑

ν=1

∑

]Kq={1,...,|J |}
Mν(K1, . . . , Kν)ρ

Pν
q=1 ∆(I(Kq)).

For a fixed dimension |J ′′| the summation above is done over I ∈ J i
1(|J ′|)×{i + 1}|J ′′| , a

subset of J n
1 (|J |) characterized as vectors having exactly |J ′′| elements of maximal size

i + 1, all being located at the end of the vector. In J n
1 (|J |) there are more elements

having exactly |J ′′| elements of maximal size i + 1, disregarding their location. This
number is in exact correspondence with the number of partitions (J ′, J ′′) of J with |J ′′|
as prescribed; their common value is the combinatorial constant C(|J |, |J ′′|). Hence the
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above expression is bounded by

n−1∑

i=1

ρn−i−1
∑

I∈J n
1 (|J |)

max I=i+1

|J |∑

ν=1

∑

]Kq={1,...,|J |}
Mν(K1, . . . ,Kν)ρ

Pν
q=1 ∆(I(Kq))

≤
n−1∑

i=1

ρn−i−1|J |!
(

4
1− ρ

)|J |−1

≤ 1
1− ρ

|J |!
(

4
1− ρ

)|J |−1

,

where the second last inequality is Lemma 3.3(ii); by symmetry, the bound is still valid
when min I = i is replaced by max I = i . We note that this bound does in fact also
take the partition (J ′, J ′′) = (∅, J), which was not considered above, into account; it
corresponds to I = {n}|J | . Thus

E0

∣∣∣∣∣Γ
Yn

1
0

(∑n−1
i=1 h

(J ′)
i

J ′!
,
h

(J ′′)
n

J ′′!

)∣∣∣∣∣ ≤
1

1− ρ
Bk|J |!

(
8

1− ρ

)|J |−1

. (20)

Adding (19) and (20) as in (13) we find, using Lemma 4.1(ii) in the Appendix, that

E0|`(k)
0 (Yn|Yn−1

1 )| ≤ C ′Bkk!
∑

J∈J+(k)

|J |1/2

(
8

1− ρ1/2

)|J |−1

≤ C ′Bkk!
∑

J∈J+(k)

C |J |−1

≤ C ′Bk(1 + C)k−1k!

for some C > 8/(1− ρ1/2) and C ′ = 21/2/(1− ρ1/2) + 1/(1− ρ).
Here is the proof of part (ii). Since DkP0(X1 = x | Y0

−j), j = t, . . . , n , can be
expressed as polynomials in P0(X1 = x | Y0

−j) and Dr log P0(X1 = x | Y0
−j), 1 ≤ r ≤ k ,

it is enough to establish bounds for these quantities. The claim for P0(X1 = x | Y0
−j) is

essentially part 3 of Lemma 5 of Bickel et al. (1998). In general, note that, since

Pϑ(X1 = x | Y0
−j) = E0

{
I(X1 = x)

Lϑ(X1
−j ,Y

0
−j)

Lϑ(Y0
−j)

∣∣∣∣∣ Y0
−j

}

= P0(X1 = x|Y0
−j)E0

{
Lϑ(X1

−j ,Y
0
−j)

Lϑ(Y0
−j)

∣∣∣∣∣ Y0
−j , X1 = x

}
,

it holds that

Dr log P0(X1 = x | Y1
−j) =

∑

J∈J+(r)

r!
|J |! ∏ J !

Γ
(

`
(J)
0 (X0

−j ,Y
0
−j)−`

(J)
0 (Y0

−j)
∣∣∣∣Y0

−j , X1 = x

)
.
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One can argue as for part (i) of the theorem with the critical step being a bound on

γ̃ =

∣∣∣∣∣∣

ν∏

q=1

χ0

(
WI(Kq),J(Kq)

∣∣∣∣Y0
−j , X1 = x

)
−

ν∏

q=1

χ0

(
WI(Kq),J(Kq)

∣∣∣∣Y0
−j , X1 = x

)∣∣∣∣∣∣
.

The argument follows the route in going from (15) to (18),
We now prove part (iii) of Theorem 2.2. We start by establishing a bound on derivative

of the likelihood. Note that by Proposition 3.1, Theorem 2.1 and Lemma 4.1,

|L(k)
0 (Yn

1 )| ≤ C1nBkk!
∑

J∈J+(k)

1
|J |!

∏
C
|J |
2 ≤ C1nk!BkC

k
2 2k (21)

for some constants C2 , C2 , and Bk .
Let

Λj
i =

ν∏

q=1

χ
Yj

i
0 (h(J(Kq))

I(Kq) ).

Then

E0{γL
(m)
0 (Y1

−n)} ≤ E0{|Λ1
min I − Λ0

min I |L(m)
0 (Y1

−n)}

+
n+min I∑

i=0

E0{|Λ1
min I−i−1 − Λ0

min I−i−1 − Λ1
min I−i + Λ0

min I−i|L(m)
0 (Y1

−n)}

= γ1 + γ2,

say. We bound now each of the terms. First

γ1 ≤ Cm
1 C

|J |
2 (|min I| ∨m)mρ

Pν
q=1 ∆(I(Kq))/2+|min I|/2

by Lemma 3.5, (21), and (18). But (|min I| ∨ m)mρmax I/4 < Cm
3 m! for some C3 > 0,

whence
γ1 ≤ Cm

1 C
|J |
2 m!ρ|min I|/4+

Pν
q=1 ∆(I(Kq)).

Similarly, by considering the appropriate differences in the expression for γ2 depending
on whether i > max(I) or vice-versa,

γ2 ≤
∞∑

i=1

Cm
1 C

|J |
2 ((|min I|+ i) ∨m)mρ

Pν
q=1 ∆(I(Kq))/2+(i

W |min I|)/2

≤
∞∑

i=1

Cm
3 C

|J |
2 m!ρ

Pν
q=1 ∆(I(Kq))/2+(i+|min I|)/4

≤ Cm
4 C

|J |
2 m!ρ

Pν
q=1 ∆(I(Kq))/3+|min I|/12.
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Having the bound on E0{γL(m)} = γ1 + γ2 , similar to the bound (18) on γ (except for
the factor Cmm!), we continue as in the first part of the proof to prove the theorem.

This completes the proof of Theorem 2.2.
2

Proof of Theorem 2.3.

We proceed under the given assumptions. The first part of Theorem 2.3 follows readily
from part (ii) of Theorem 2.2, since

Da`0(Y1|Y0
−n) = Da log

(∑
x

P (X1 = x|Y0
−n)gϑ(Y1|x)

)∣∣∣∣
ϑ=0

. (22)

For the second part note that

Da`0(Yn
1 ) =

n∑

i=1

Da`0(Yi|Yi−1
1 ) =

n∑

i=(log n)2+1

Da`0(Yi|Yi−1
i−(log n)2

) + op(n1/2), (23)

by (22) and part (ii) of Theorem 2.2.
Now, under our assumptions the variables in the sum in (23) are uniformly bounded

and geometrically mixing since the ith one is a function of Ui,n = (Yi−(log n)2 , . . . , Yi), and
the {Ui,n} are uniformly in n geometrically ϕ-mixing. Then asymptotic normality, with
natural centering by means and scaling by standard deviations, follows by the obvious
extension to triangular arrays of the classical theorem of Ibragimov, see Doukhan (1994,
p. 47) for instance. That the means and variances converge to the limit postulated is again
an exercise in applying part (ii) of Theorem 2.2. 2

4 Applications

4.1 A start at higher order asymptotics

It is well known, see for example Barndorff-Nielsen and Cox (1989) that in the i.i.d. case
it is possible under suitable smoothness and moment conditions to ‘debias’ the MLE ϑ̂ to
first order, that is to construct b̂(·) such that

Eϑ(ϑ̂ + n−1b̂(ϑ̂)) = ϑ + O(n−3/2)

and b̂ → b in probability, uniformly in ϑ , for a fixed continuous b . With further conditions,
O(n−3/2) can be turned into O(n−2).
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Other second order asymptotics results of interest are Pfanzagl’s second order optimal-
ity of functions of the MLE within classes of estimates with the same bias function (see
for example Bickel, Götze and van Zwet, 1985), the validity of Bartlett’s correction to the
likelihood ratio test (see for example Bickel and Ghosh, 1990), the second order validity
of bootstrap t-tests (see for example Hall, 1988) etc. The basic ingredients of debiasing
are:

(a) A stochastic expansion for the MLE in terms of polynomials of the derivatives of
`ϑ(Yn

1 ).

(b) Probability bounds on probabilities of intermediate and large deviations of the
derivatives `ϑ(Yn

1 ).

For the other types of results one further needs,

(c) Edgeworth expansions for the joint distribution of the first few derivatives of `ϑ(Yn
1 )

at ϑ0 .

As we shall see, our bounds give (a) directly. We conjecture that (b) can be established
using results for sums of functions of Markov Variables as in S&S. Results of type (c)
under simple assumptions, although plausible appear difficult to attain.

Here is the argument for (a) under (A1), (A2∞), and (A3∞) and real ϑ . Write ϑ̂

for the MLE. Then, by a Taylor expansion,

−n−1/2D`0(Yn
1 ) = n1/2(ϑ̂− ϑ0) n−1D2`0(Yn

1 ) +
1
2
n−1/2n(ϑ̂− ϑ0)2n−1D3`ϑ∗(Yn

1 ),

where ϑ∗ lies between ϑ̂ and ϑ0 . Suppose for simplicity that all entries of A0 are positive
and that the derivatives of log gϑ are uniformly bounded in a neighborhood of ϑ0 . Then,
by Theorem 2.1, under ϑ0 ,

n1/2(ϑ̂− ϑ0) = −n−1/2D`0(Yn
1 )

n−1D2`0(Yn
1 )

− 1
2
n−1/2

(
n−1/2D`0(Yn

1 )
n−1D2`0(Yn

1 )

)2
n−1D3`0(Yn

1 )
n−1D2`0(Yn

1 )
+ Op(n−1).

But
n−1D2`0(Yn

1 ) = −I(ϑ0) + Op(n−1/2)

by Theorem 2.3 (which can be viewed as a refinement of Lemma 2 of Bickel et al., 1998).
Here

I(ϑ0) = Eϑ0(D2 log pϑ0(Y1|Y0
−∞))2.
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Finally we get

n1/2(ϑ̂− ϑ0) = n−1/2D`0(Yn
1 )I(ϑ0)−1

− n−1/2D`0(Yn
1 )I(ϑ0)−2(n−1D2`0(Yn

1 ) + I(ϑ0))

− 1
2
n−5/2(D`0(Yn

1 ))2I(ϑ0)−3D3`0(Yn
1 ) + Op(n−1),

the desired stochastic expansion.

4.2 Asymptotic expansions

The following results generalizes Theorem 3.18 of Petrie (1969). For simplicity we assume
that the parameter is real.

Theorem 4.1. Assume that (A1∞)–(A3∞) hold. Then I(ϑ) and K(ϑ) are analytic

functions. For instance,

K(ϑ) =
∞∑

j=1

DjK(ϑ0)
(ϑ− ϑ0)j

j!

in some neighborhood of every ϑ0 ∈ Θ .

The series converges absolutely in some neighborhood of ϑ0 , since for every ϑ0 ,

|DjK(ϑ0)| ≤ C(ϑ0)jj! .
Moreover,

D1K(ϑ0) = E0D`0(Y1|Y0
−∞) = 0,

D2K(ϑ0) = −I(ϑ0),

Dj+2K(ϑ) = lim
n→∞n−1I

(j)
n2 (ϑ0),

where

I
(j)
nd (ϑ0) = n−1 ∂j

∂ϑj
E0[`

(d)
ϑ (Yn

1 )Lϑ(Yn
1 )]

∣∣∣∣∣
ϑ0

.

The limit I
(j)
∞d(ϑ0) exists under our assumptions and can be represented by

j∑

k=0

(
j

k

) ∑

J∈J+(k+d)

(k + d)!
|J !|

∑

I∈J∞1 (|J |), min(I)=1

E0

{
ΓY∞

1
0

(
L

(J)
I

J !

)
L

(j−k)
0 (Ymax(I)

1 )

}
,(24)

where LI = L0(YI) .
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Proof. Note that I(ϑ) = −D2K(ϑ), so that it is enough to establish the claim for K(ϑ).
Since

Ind =
n∑

i=1

E0{`(d)
ϑ (Yi|Yi−1

1 )Lϑ(Yn
1 )},

we obtain

∣∣∣n−1I
(j)
nd (ϑ0)

∣∣∣ =
1
n

∣∣∣∣∣
n∑

i=1

j∑

k=0

(
j

k

)
E0{`(k+d)

0 (Yi|Yi−1
1 )L(j−k)

0 (Yn
1 )}

∣∣∣∣∣

and the bound follows from Theorem 2.2. The limit is clearly given by the similarly
bounded derivative of the expression

lim
n→∞E0{`(d)

0 (Y1|Y0
−n)L0(Y1

−n)}.

We need the limit in this expression since L0(Y1−∞) is not defined.
The other representation follows by expanding the derivatives as in Proposition 3.1,

expanding the cumulant function as in Lemma 3.3 and using this lemma and Lemma 3.5
to argue that the limit exists.

lim
n→∞n−1I

(j)
nd (ϑ0)

= lim
n→∞

1
n

j∑

k=0

(
j

k

) ∑

J∈J+(k+d)

(k + d)!
|J |!

∑
I∈J∞1 (|J|)
min(I)=1

E0

{
ΓY∞

1
0

(
L

(J)
I

J !

)
L

(j−k)
0 (Ymax(I)

1 )

}

=
j∑

k=0

(
j

k

) ∑

J∈J+(k+d)

(k + d)!
|J |!

∑

I∈J∞1 (|J |)
min(I)=1

E0

{
ΓY∞

1
0

(
L

(J)
I

J !

)
L

(j−k)
0 (Ymax(I)

1 )

}
.

2

Corollary 4.1. If under ϑ0 the Yi are i.i.d., then the sum in (24) becomes in principle

computable as

E0Γ
Y∞

1
0

(
L

(J)
I

J !

)
L

(j−k)
0 (Ymax(I)

1 ) = 0

unless I1 = 1 , I1 − Ii−1 = 0 or 1, i = 1, . . . , |J | .

Proof. Unless the conditions above are satisfied, ΓY∞
1

0 (L(J)
I /J !) = 0, since the indices

involved could be split into two blocks of the form {i1 ≤ . . . ≤ ik} and {ik+1 ≤ . . . ≤
imax(I)} with ik+1 − ik > 1.
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Since all variables in L
(J)
I are at most 2-dependent, the conditional cumulant would

have to vanish because the variables involved could be split into independent blocks. 2

We give some explicit computations for a special case below. We note that unfortu-
nately the number of non-zero terms in ΓY∞

1
0 (L(J)

I /J !) grows exponentially as a function
of |J | .
Corollary 4.2. If E0| log p0(Y1)| < ∞ and the conditions of Theorem 2.2 hold then H(ϑ)
is analytic.

Proof. H(ϑ) = K(ϑ)− Eϑ log p0(Y1|Y0−∞) in this case. 2

4.3 Example: Information under independence and a two-state Markov

chain with Gaussian observations

We consider now a reversible two state Markov chain with normal observations. Let
Xi ∈ {−1, 1} , P (Xi+1 6= Xi | Xi) = p and Yi = Xi + εi where . . . , ε0, ε1, . . . are i.i.d.
N(0, σ2), σ2 known, random variables independent of the X process. We identify the
parameter p with the ϑ of the general discussion and take ϑ0 = 1/2.

One can derive the information from Proposition 3.1. Alternatively, one can compute
directly, cf. Louis (1982) and Meilijson (1989):

`ϑ(Yn
1 ) = E0(`ϑ(Xn

1 ,Yn
1 ) | Yn

1 )−E0(`ϑ(Xn
1 |Yn

1 ) | Yn
1 )

`
(2)
0 (Yn

1 ) = E0(`
(2)
ϑ (Xn

1 ,Yn
1 ) | Yn

1 )−E0(`
(2)
ϑ (Xn

1 |Yn
1 ) | Yn

1 )
∣∣∣∣
ϑ0

= E0(`
(2)
0 (Xn

1 ,Yn
1 ) | Yn

1 ) + var0(`
(1)
0 (Xn

1 |Yn
1 ) | Yn

1 )

E0`
(2)
ϑ (Yn

1 ) = E0`
(2)
0 (Xn

1 ,Yn
1 ) + E0 var0(`

(1)
0 (Xn

1 |Yn
1 ) | Yn

1 )

However, if X1, X2, . . . are i.i.d. under ϑ0 , then we can simplify this expression. Write
`(Xn

1 |Yn
1 ) =

∑
hϑ,t =

∑
hϑ,t(Xt−1, Xt, Yt), and note that, under independence, ḣϑ,i and

ḣϑ,j , |j − i| > 1 are independent given Yn
1 . Moreover,

E0 cov(ḣϑ0,2, ḣϑ0,3|Yn
1 ) = E0E0(ḣϑ0,2ḣϑ0,3|Y2, Y2, Y3)−E0(E0(ḣϑ0,2|Y1, Y2)E(ḣϑ0,3|Y2, Y3)) = 0.

Hence
I(ϑ0) = −E0E0(ḧϑ0,2|Y1, Y2)− E0 var(ḣϑ0,2|Y1, Y2).

We specialize to our model where hp,2 = (1 − X1X2) log(p)/2 + (1 + X1X2) log(1 −
p)/2 + c0 for some c0 . Here

I(1/2) = 4(1− E0 var(X1X2|Y1, Y2)) = 4E0(E0(X1|Y1))4, I ′(1/2) = 0.
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It is reasonable to conjecture the following result.

Theorem 4.2. Consider the two state symmetric Markov chain with normal observations

as above. Then I(p) has the following properties:

(i) Symmetry: I(p) = I(1− p) ;

(ii) Unimodality with minimum at 1/2;

(iii) Unboundness: 0 < lim infp↓0 pI(p) ≤ lim supp↓0 pI(p) ≤ 1 .

The proof of this result cannot depend on the expansion. Here is an argument.

Proof. The first two properties will be proved by showing that for any p∗ between p and
1 − p there is a Markov kernel that does not depend on the unknown parameter p , and
transforms the observations Y1, Y2, . . . to another sequence of variables Y ∗

1 , Y ∗
2 , . . . , such

that the latter follows the same model as the original observations but with parameter
p∗ . This shows that I(p∗) ≤ I(p), for any such p , and in particular I(p) = I(1− p). Let
S1, S2, . . . be i.i.d. Bernoulli random variables with mean α , independent of the Y process
and define

Y ∗
i = (−1)

Pi
j=1 SjYi = (−1)

Pi
j=1 Sj (Xi + εi) = X∗

i + ε∗i .

Now, ε∗i are still i.i.d. Gaussian, and X∗
1 , X∗

2 , . . . is still Markovian, with values in {−1, 1} ,
but with probability of switching given by p∗ = (1− α)p + α(1− p).

We now prove the third property. We will argue that for any p0 there is an estimator
of p , valid for values of the parameter in a small neighborhood of p0 , whose asymptotic
variance converges to 0 as p0 → 0. Since the information at p0 is larger than the inverse
of the variance of any regular estimator, limp0→0 I(p0) = ∞ .

Here are the details.
We consider a net of models indexed by p0 ∈ (0, 1). The parameter space of the p0

model is (p0−p2
0, p0 +p2

0). We consider the limit as p0 → 0. Let m = m(p0) be such that
p0m → 1/2. For a given p0 :

It is easy to see, for example by induction, that

P (Xi = 1 | X1 = 1) =
1
2

+
1
2
(1− 2p)i−1.

µm(p) =
1
m

E

(
m∑

i=1

Xi

∣∣∣∣∣ X1 = 1

)
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=
1
m

m∑

i=1

(1− 2p)i−1

=
1− (1− 2p)m

2pm

→ 1− e−1,

Note that

vm(p) = E

(
1
m

m∑

i=1

Xi

)2

=
1
m

+
2

m2

m−1∑

i=1

m∑

j=i+1

E(XiXj)

=
1
m

+
2

m2

m−1∑

i=1

m∑

j=i+1

(1− 2p)j−i

=
1
m

+
2(1− 2p)

m2

m∑

i=1

1− (1− 2p)m−i

2p

=
1

pm
(1− p) +

1− (1− 2p)m

2p2m2

→ 4− 2e−1,

Let 1 < T1 < . . . TM ≤ m be the times of switches, that is XTi−1 = . . . = XTi−1 6=
XTi (with random M ). Then the process T1/m, T2/m, . . . , TM/m converges weakly to
a Poisson process on (0, 1), and hence the limiting distribution of (m−1

∑m
i=1 Xi)2 is

non-degenerate. Since the limit distribution of (m−1
∑m

i=1 εi)2 is degenerate, the limit
distribution of (m−1

∑m
i=1 Yi)2 is non-degenerate and equals the limiting distribution of

(m−1
∑m

i=1 Xi)2 .
Consider now the statistics

v̂m =
m

n

[n/m]−1∑

j=0

(
1
m

m∑

i=1

Yjm+i

)2

.

Then
lim

p0→0
lim

n→∞(n/m) var(v̂m − vm(p)) = cv < ∞.

Suppose it is known that p ∈ (p0 − p2
0, p0 + p2

0) and let the estimator p̂ be defined by
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vm(p̂) = v̂m . Since

dvm(p)
dp

= − 1
mp2

+
m(1− 2p)m−1

p2m2
− 1− (1− 2p)m

p3m2
,

it follows that
p0

dvm(p)
dp

→ −6 + 6e−1,

where the limit is taken as above. Hence

lim inf
p0→0

p0I(p0) ≥ lim inf
p0→0

p0

n var(p̂)
= 72c−1

v (1− e−1)−1 > 0.

On the other hand the information cannot be larger than the information when the X

process is observed directly. The latter is p−1
0 in the limit. 2
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Appendix

Proof of Lemma 3.1. The first part is clear since the k th derivative depends on h only
through its k first derivatives at 0, and hence it will not be changed if h is replaced by
any other function with the same k first derivatives.

For the second part, we first observe that

∂k

∂ϑk
f(ϑ, ϑ2/2, . . . , ϑk/k!)

∣∣∣∣
ϑ=0

=
∑

J∈J
C(J, k)

∂|J |

∂uJ1 · · · ∂uJ|J|
f(u1, . . . , uk)

∣∣∣∣∣
u1=···=uk=0

,

where the constants C(J, k) do not depend on f , and, without loss of generality, C(J, k) =
C(J ′, k) if J ′ is a permutation of J . We will find these constants by considering a
convenient family of functions f . Let

f(u1, . . . , uk) =
k∏

j=1

u
mj

j

mj !
.
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Then
∂|J |

∂uJ1 · · · ∂uJ|J|
f(u1, . . . , uk)

∣∣∣∣∣
u1=···=uk=0

=

{
1 if J ∈ A(m1, . . . ,mk),
0 otherwise,

where A(m1, . . . ,mk) = {J ∈ J +(
∑

mi) :
∑

j 1(Jj = i) = mi, i = 1, . . . , k} . Hence

∂k

∂ϑk
f(ϑ, ϑ2/2, . . . , ϑk/k!)

∣∣∣∣
ϑ=0

= C(J∗, k) |A(m1, . . . , mk)|

= C(J∗, k)
(
∑k

i=1 mi)!∏k
i=1 mi!

, (25)

where J∗ is any member of A(m1, . . . , mk). On the other hand, we can compute directly
that

f(ϑ, ϑ2/2, . . . , ϑk/k!) =
ϑ
Pk

i=1 imi

∏k
i=1 mi!

∏k
i=1(i!)mi

and
∂k

∂ϑk
f(ϑ, ϑ2/2, . . . , ϑk/k!)

∣∣∣∣
ϑ=0

=





(
Pk

i=1 imi)!Qk
i=1 mi!

Qk
i=1(i!)

mi
if

∑k
i=1 imi = k,

0 otherwise.
(26)

Comparing (25) to (26) and noting that |J∗| = ∑k
i=1 mi and |J∗|+ =

∑k
i=1 imi we obtain

that

C(J, k) =

{
k!

|J |!Q J ! if |J |+ = k,
0 otherwise,

and the proof is complete. 2

Proof of Lemma 3.5. The lemma follows since for any two random variables U1 and
U2 with joint density hU1U2(·, ·) with respect to some measure µ1 × µ2 :

h
(m)
U1U2

(u1, u2) =
∑m

j=0

(
m

j

)
h

(j)
U1

(u1)h
(m−j)
U2|U1

(u2|u1).

Hence, for any function f(·):

E

{
f(U1)

h
(m)
U1U2

(U1, U2)
hU1U2(U1, U2)

}
=

m∑

j=0

(
m

j

) ∫
f(u1)h

(j)
U1

(u1)h
(m−j)
U2|U1

(u2|u1)dµ1(u1)dµ2(u2)

=
∫

f(u1)h
(m)
U1

(u1)dµ1(u1)

= E

{
f(U1)

h
(m)
U1

(U1)
hU1(U1)

}
,
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since
∫

h
(m−j)
U2|U1

(u2|u1)dµ2(u2) =

{
1 j = m

0 j 6= m.

Now, let U1 represents Yb
a , U2 be all the Y outside this range.

2

Lemma 4.1. (i) For any real-valued sequence a1, . . . , an ,

(
n∑

i=1

ai

)k

=
∑

I∈J n
1 (k)

∏
aI =

∑

J∈J (k)

∏
aJ ,

with ai = 0 for i > n .

(ii) For any c ≥ 0 and k > 0 ,

∑

J∈J+(k)

c|J | = c(c + 1)k−1,

∑

J∈J+(k)

c|J |

|J |! ≤
(c ∨ k)k

k!
2k−1.

Proof. Part (i) follows by expanding the expression on the left hand side.
For part (ii), let ak =

∑
J∈J+(k) c|J | . Then for |x| small enough,

∞∑

k=1

akx
k =

∞∑

k=1

∑

J∈J+(k)

c|J |x|J |+

=
∞∑

i=1

ci
∑

J∈J (i)

x|J |+

=
∞∑

i=1

ci
∑

J∈J (i)

∏
xJ

=
∞∑

i=1

ci




∞∑

j=1

xj




i

=
c

c + 1

∞∑

k=1

(c + 1)kxk.
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The first claim follows.
To prove the second claim note that if c ≥ k then c|J |/|J |! ≤ ck/k! (since |J | ≤ k ) and∑

J∈J+(k) 1 = 2k−1 (e.g. by the first part). On the other hand if c ≤ k then c|J |/|J |! ≤
kk/k! . 2
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