Is Pinocchio’s Nose Long or His Head Small?
Learning Shape Distances for Classification
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Abstract. This work presents a new approach to analysis of shapes
represented by finite set of landmarks, that generalizes the notion of
Procrustes distance - an invariant metric under translation, scaling, and
rotation. In many shape classification tasks there is a large variability in
certain landmarks due to intra-class and/or inter-class variations. Such
variations cause poor shape alignment needed for Procrustes distance
computation, and lead to poor classification performance. We apply a
general framework to the task of supervised classification of shapes that
naturally deals with landmark distributions exhibiting large intra class
or inter-class variabilty. The incorporation of Procrustes metric and of
a learnt general quadratic distance inspired by Fisher linear discrimi-
nant objective function, produces a generalized Procrustes distance. The
learnt distance retains the invariance properties and emphasizes the dis-
criminative shape features. In addition, we show how the learnt metric
can be useful for kernel machines design and demonstrate a performance
enhancement accomplished by the learnt distances on a variety of clas-
sification tasks of organismal forms datasets.

1 Introduction

The mathematical notion of shape is an equivalence class under certain type of
group of transformations. The most common transformations are: translation,
scaling, and rotation. This definition refers only to the question whether two
shapes are identical, but in many cases we want to measure shape similarity
or shape distance. Shape definitions in statistics were given by Bookstein [1]
and Kendall [2], whose attitudes assume that correspondences between the two
shapes are known. These latter approaches make sense while assuming that the
two shapes are similar and have homologues features. A common and useful rep-
resentation of planar shape is by landmark points. This approach can be easily
extended to 3D shapes.

Parsimonious representation by landmarks has its advantages from the compu-
tational point of view and is very useful in many computer vision applications.
Indeed, geometric features can represent the shape and location of facial com-
ponents and are used in face analysis and synthesis [3]. Landmark analysis is
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also being used in medical imaging, robotics, dental medicine, anthropology,
and many more applications.

In a supervised learning setting a desirable metric for shape classification should
not only satisfy certain invariance properties but also capture the discriminative
properties of the inputs. In this paper we present a learning algorithm which
produces a metric, that satisfies these demands. Moreover, we show how this
metric can be used for the design of kernel machines for shape classification.

2 Shape Space and Distances

A natural choice of landmarks is a finite set of particularly meaningful and
salient points which can be identified by computer and humans. Several types
of landmarks were suggested in previous works (see [1]). In the general case,
there is a considerable loss of information by extracting only landmarks, and the
transformed shape cannot be restored exactly from the landmarks. Yet, many
essential characteristics may remain in such representation. A set of k& ordered
landmark points in 2D plane can be represented as a 2k-dimensional vector.
Comparing two shapes is usually based on corresponding landmarks which are
termed homologies.

The general notion of distance (or similarity) between two shapes is quite vague.
This term can be easily defined when using 2k-dimensional vectors by taking
only their coordinates as attributes. It is obvious that the order of the landmarks
matters. Another convenient representation is called planar-by-complex and uses
complex values to represent each 2-dimensional landmark point, so the whole
shape is represented as an k& x 1 complex vector. The configuration matrix is a
k x m matrix of real Cartesian coordinates of k landmarks in an m-dimensional
Euclidian space. In a planar-by-complex representation the configuration is a k
dimensional column vector of complex entries. From now on we will assume that
all the shapes we deal with are two-dimensional and are given in the planar-by-
complex representation.

2.1 Shape Metric

A desired distance measure between two planar landmark based shapes should
be insensitive to translation, scaling and rotation. Consider a configuration
x = (x',x2,...,x") € C*¥, a centered configuration x satisfies x*1;, = 0, which
is accomplished by: x — x — 15){1;€7 where x* denotes the complex conjugate of
X.

The full Procrustes fit of x onto y is: xI' = (a + ig)lk + Bet¥x where the param-
eters values (@, 3, 3 , 3) are chosen to minimize the Euclidean distance between y
and the transformed configuration of x, and their values are (see [4]):

Nl

B: (X*yy*X) (1)

a+ib=0, J = arg(x*y), -
X*X
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Removing the similarity operations from a k-landmark planar configuration
space leaves a 2k — 4 dimensional shape space manifold (2 dimensions for trans-
lation, one dimension for scaling, and one dimension for rotation).

The full Procrustes distance between two configurations x and y is given by:

1
* * 3
:OJ”W>.@)
X*Xy*y
The full Procrustes mean shape p of a set of configurations {w?_;} is the one

that minimizes the sum of square full Procrustes distances to each configuration
in the set, i.e.

Yy X

—- — Be™ —a—bi
Iyl Il

dF(X’ Y) =

inf
B,9,a,b

fo=arginf Y di(wi, p). (3)

=1

It can be shown that the full Procrustes mean shape, m, is the eigenvector
corresponding to the largest eigenvalue of the following matrix:

i (4)

(see [5]). The eigenvector is unique (up to rotations - all rotations of i are also
solutions, but these all correspond to the same shape) provided there is a single
largest eigenvalue of S. In many morphometric studies several configurations are
handled and pairwise fitted to a single common consensus in an iterative proce-
dure [6]. This process is called generalized Procrustes analysis. Scatter analysis,
using generalized Procrustes analysis handles the superimposed configurations
in an Euclidean manner and provides good linear approximation of the shape
space manifold in cases where the configurations variability is small.

Though Procrustes distances and least-squares superimpositions are very com-
mon, they can sometimes give a misleading explanation of the differences be-
tween a pair of configurations [6, 7], especially when the difference is limited to a
small subset of landmarks. The Procrustes superimposition tends to obtain less
extreme magnitudes of landmark shifts. The fact that in least-squares superim-
position landmarks are treated uniformly irrespective of their variance results in
poor estimation, and reaches its extreme when all of the shape variation occurs
at a single landmark, which is known as the Pinocchio effect [8]. This effect is
demonstrated in Fig. 1. Due to proportions conservation, trying to minimize
the sum-of-squares differences affects all landmarks and thus tilts the head and
diminishes its size. Moreover, such variations affect the configuration’s center
of mass and thus affect translation as well. Actually, the Procrustes fit does
not do what would have been expected from pre-classification alignment to do.
A desirable fit would be an alignment that brings together non-discriminative
landmarks and separates discriminative landmarks, and, in addition, gives ap-
propriate weights for the features according to their discriminative significance.
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Fig. 1. Pinocchio effect. Two faces which differ only by the tip of their nose are super-
imposed by their similar features (left). Minimization of the sum-of-squares differences
affects all landmarks of the longed-nose face: diminishes the head size and tilts it
(right).

2.2 General Quadratic Shape Metric

A general quadratic distance metric, can be represented by a symmetric positive
semi-definite k& x k matrix @ (we use the Q = A* A decomposition and estimate
A). Centering a configuration x according to the metric induced by @ means
that x*@Q1; = 0, and this is done by: x — x — ngxlk. For the rest of this
section, we assume that all configurations are centered according to the metric
induced by Q.

The general quadratic full Procrustes fit of x onto y is:

xP = (@9 + ib?) 1) + f2 7 x (5)
where the parameters values (aQ,3Q7 B\Q, 1§Q) are chosen to minimize:
i . 2
Dy (x,y) = HAy—Axﬂel9 — A(a+ bi)Lg|”. (6)
Claim 1 The minimizing parameters (EQ,BQ,EQ,@\Q) values are:

(x*Qyy*Qx)?

a? +ib? =0, 99 = arg(x*Qy), B9 = :
xX*Qx

(7)
(the proof is similar to the Euclidean case).

The general quadratic full Procrustes distance, according to matrix Q = A*A,
between two configurations x and y is given by:

A A X et
lylle Il

(®)

dy(x,y) = inf

B,9,a,b
(i y*@xx*@y)é
x*Qxy*Qy)

where ||x||z2 = x*@Qx is the square of the generalized norm.
The general quadratic Procrustes mean shape 9, with a matrix Q = A*A,
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of a set of configurations {w;}?_; is the one that minimizes the sum of square
generalized distances to each configuration in the set, i.e.

p? =arginf y _dgy(wi, ). 9)
=1

Claim 2 The general quadratic Procrustes mean shape is the eigenvector corre-
sponding to the largest eigenvalue of the following matrix:

qQ _ zn: Aw,w!A* 10)

L wi A* Aw;’
i=1 ?

(the proof is similar to the Euclidean case).

3 DMetric Learning

Many pattern recognition algorithms use a distance or similarity measures over
the input space. The right metric should fit the task at hand, and understanding
the input features and their importance for the task may lead to an appropriate
metric. In many cases there is no such prior understanding, but estimating the
metric from the data might result in a better performance than that achieved
by off the shelf metrics such as the Euclidean [9-11]. Fisher Linear Discriminant
(FLD) is a classical method for linear projection of the data in a way that
maximizes the ratio of the between-class scatter and the within-class scatter of
the transformed data (see [12]).

Given a labeled data set consisting of 2D input configurations x1,Xs,...,X,
where x; € C* and corresponding class labels ¢, ca, ..., c,, we define between-
class scatter and within-class scatter both induced by the metric Q. In a similar
way to FLD the desired metric ) is the one that maximizes the ratio of the
generalized between-class and within-class scatters.

We denote the general quadratic Procrustes mean shape of the members of class j
by ﬁJQ, and the full general quadratic Procrustes mean shape of all configurations

by €. Denote

Xl 5 0@ ~
Asz = ( 51?16 79’”) - /J’kQ (11)
’ [xilo ™
and
~050 59  ~
AP = peples — p? (12)

where E,gl, E,? are the scaling solutions of eq. 8 for the [-th configuration towards
the mean of class k, and scaling of the k-th mean configuration towards the global
mean respectively. The angles 19%, ﬁkQ are those which satisfy eq. 8 for rotation
the [-th configuration towards the mean of class k, and rotation of the k-th mean

configuration towards the global mean correspondently (the translations equal
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to zero if all configurations are previously centered).
The within class scatter according to a matrix @ is:

=Y (wo i) =303, (49) Q4% (9
j=1i=1 j=1i=1
where
_ J1x;eClassk
TRl = {0 Otherwise (14)
and m is the number of classes.
The between class scatter according to a matrix @ is:
m *
s3=>n (a7) @af. (15)
k=1

where ny is the number of samples belong to class k.
The desired metric Qo+ is the one that maximizes the ratio of the between-class
scatter and within-class scatter:
¢
Qopt = arg max %. (16)
Q Sy
The rank of Qo+ is at most m —1. Contrary to the standard FLD, the suggested
objective function f may have many local maxima. Thus, maximizing the ob-
jective function should be carried out carefully, and only a local maximum is

guaranteed.

4 Procrustes Distance Based Classifiers

One of the goals of distance learning is the enhancement of the performance of
classifiers. In recent years, many studies have dealt with the design and analysis
of kernel machines [13]. Kernel machines use inner-products functions where the
decision function is not a linear function of the data. Replacing the predefined
kernels with ones that are designed for the task at hand and are derived from
the data itself, is likely to improve the performance of the classifier considerably,
especially when training examples are scarce [14]. In this section we introduce
new kernels based on the general quadratic full procrustes distance where the
learnt metric can be plugged in to produce new kernels with improved capabilities
of shape classification.

4.1 General Quadratic Procrustes Kernels

Certain condition has to be fulfilled for a function to be a dot product in some
high dimensional space (see Mercer’s theorem [13]). Following the polynomial
and radial basis function (RBF) kernels, we propose the following kernels.
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Claim 3 The following function is an inner product kernel for any positive in-
teger p:

(17)

y*QXX*QY>p
x*Qxy*Qy

k’(X,Y) = (
For proof outline see appendix A.

Claim 4 The following function is an inner product kernel for any positive semi-
definite matriz QQ and any positive ~y:

(18)

k(x,y) = exp (—7 (1 _ Y*QXX*QY>>

x*Qxy*Qy

For proof see appendix B.

5 Experimental Results

The main role of the general quadratic Procrustes metric described in the pre-
vious section is to align configurations in a way that reveals the discriminative
features. Most of the datasets we examined were taken from the shapes pack-
age (http://www.maths.nott.ac.uk/personal/ild /shapes/), and they consist of
organismal forms data. We used six datasets where the samples are represented
by configurations of 2D landmarks, and each dataset is made of two categories.
The datasets are: gorilla midline skull data (8 landmarks 30 females and 29
males), chimpanzee skull data (8 landmarks, 26 females and 28 males), orang
utan skull data (8 landmarks 30 females and 30 males), mouse vertebrae (6
landmarks, 23 large mice and 23 small mice), landmarks taken in the near mid-
line from MR images of the brain (13 landmarks 14 subjects diagnosed with
schizophrenia and 14 normal subjects). In addition, we used a facial dataset
consists of landmarks taken from frontal images of 32 males and 78 females - all
with neutral expression. The extraction of the landmarks from the facial images
was done by the Bayesian Tangent Shape Model (BTSM) [15].

Figure 2 uncovers discriminative landmarks in facial configurations means. The
general quadratic Procrustes mean shape of females’ faces is fitted using the
learnt metric (general quadratic Procrustes fit) onto the general quadratic Pro-
crustes mean shape of males’ faces. It is evident that the learnt metric reveals
differences between the two classes. The males’ mandibles tend to be larger, and
their forehead hairlines tend to be higher than those of females. These differences
are not revealed when using the standard Procrustes metric.

The contribution of the Procrustes kernels and the learnt metric was evaluated
by the leave-one-out error rate of three classifiers:

e SVM with standard RBF kernel where the input configurations are pre-
processed by generalized Procrustes analysis onto the training samples full
Procrustes mean shape.

e SVM with full Procrustes distance based RBF kernel (Q = I).

e SVM with learnt Procrustes distance based RBF kernel (learnt Q).
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Fig. 2. Superimpositions of mean facial configurations: females (solid line) and males
(dashed line) according to the full Procrustes metric (left) and the learnt Procrustes
metric (right).

The leave-one-out error rates are given in Table 1. The results demonstrate two
things: (i) The Procrustes kernel is preferable over the general Procrustes analy-
sis followed by standard Euclidean based kernel (ii) The learnt metric improves
the classifier performance.

Table 1. Leave-One-Out error rates of the SVM classifiers.

Dataset Standard | Procrustes Learnt Procrustes
RBF Kernel (Q = I) | Kernel

Gorilla Skulls 3.39% 3.39% 0%

Mouse Vertebrae | 6.52% 4.35% 2.17%

Orang Utan Skulls | 11.11% | 5.56% 3.70%

Faces 12.73% 11.82% 10.91%

Chimpanzee Skulls | 31.48% 31.48% 25.93%

Schizophrenia, 32.14% | 32.14% 28.57%

6 Discussion and Conclusions

We have presented an algorithm for learning shape distances, generalizing the
Procrustes distance. In the two-classes case, the learnt metric induces a config-
uration superimposition where weights are assigned to the landmarks accord-
ing to their discriminative role. Aligning configurations according to the learnt
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metric enables a visualization that uncovers the discriminative landmarks. Sub-
stantial improvement in classification performance was demonstrated by using
Procrustes kernel (which keeps the pairwise full Procrustes distances between
shapes, where generalized Procrustes analysis does not) and became even more
pronounced when plugging in the learnt metric. The main contribution of the
learnt metric is the meaningful alignment - it is of particular importance in cases
where the training sets are small. Euclidean related kernels cannot learn transla-
tion, scaling, and rotation invariants from small data sets. Many types of devices
for measuring 3D coordinates are in a wide-spread use: computed tomography
(CT), optical scans of surfaces (laser scanners), etc. All the methods discussed
here can easily be extended to handle 3D configurations.
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Appendix A.

Proof outline: First we show that the following function is an inner product
kernel for any positive integer p:

* * p
y XXy
kxy) = (L2 (19)

We have to show that this kernel satisfies Mercer’s theorem. This is done by

proving that:
* * p
y XXy *
= dxdy >0 20
//(X*Xy*y) 9(x)g"(y)dxdy > (20)

for any function g with finite [ norm.
Each term of the multinomial expansion has a non-negative value:

2

J;Tl7x7‘2 .. _511)512 . e
(T17T27"'all7l27"'a)!H/( ! 2 ||X||2; 2 >g(X)dX ZO (21)
and hence the integral is non-negative.
Showing that:
Yy Oxx*Qy "
ky) =\ Shcone (22)
X*Qxy*Qy

Satisfies Mercer’s theorem is done in a similar way by using eigen-decomposition
the non-negativity of @’s eigenvalues.ll

Appendix B.

Proof:
k(x,y) = exp (—v (1 - yy>> = exp (—7) exp <7yy> - (23)

X*xXy*y X*xXy*y

The first factor on the right side is positive and the second factor can be arbitrar-
ily close approximated by polynomial of the exponent with positive coefficients,
thus using claim 3 we have a sum of semi-definite functions, which is also a
semi-definite function.l



